

Optimising Equipment Maintenance & Replacement Decisions

20 - 24 October 2014

Carlton Conference Centre, Kuala Lumpur

By

Mr. Max Zornada Senior Consultant

This material is intended for the personal use of the delegate attending the programme presented by GLOMACS. No part of the material may be reproduced, stored electronically, or transmitted in any form or by any means without the prior written consent of GLOMACS.

ISO 9001: 2008 Certification

Optimizing Equipment Maintenance and Replacement Decisions

Program Content Topic Overview by Day

Topics

Day 1	Physical Asset Management and Reliability Concepts 1. Introduction to the Maintenance Management Process 2. The Path to World Class Maintenance 3. Maintenance Self-Assessment 4. Maintenance Best Practice Benchmarks Review
Day 2	Reliability and Preventive Maintenance Strategy
	 5. Foundations of Reliability 6. Measuring Maintenance Performance 7. Reliability Based Preventive Maintenance Strategy 8. Preventive Maintenance Optimisation 9. Spare Parts Strategy 10. Risk Based Maintenance
Day 3	Condition Monitoring and Statistical Methods
	 11. Condition Monitoring and Predictive Maintenance 12. Introduction to Statistical Methods in Maintenance 13. Failure Analysis 14. Using Statistical Methods to Determine Optimum Maintenance Strategies
Day 4	Economics of Reliability
	15. Capital Decision Making in Maintenance16. Discounted Cash Flow Analysis17. Life-Cycle Cost Concepts18. Repair vs Replace Decisions
Day 5	Effective Management of Maintenance Resources and Information
	 19. Organisational Level Maintenance Strategies 20. The Availability-Reliability Matrix 21. Outsourcing and Use of Contractors 22. Computerised Maintenance Management Systems

Detailed Table of Contents

	Page
Module 1: Physical Asset Management and Reliability Concepts	1-1
Management Process Case Study	1-3
The Management Process in Maintenance	1-7
Definitions: Types of Maintenance Work	1-12
Maintenance Management System Workflows	1-16
The Path to World Class Maintenance	1-17
Equipment and Component Failure Characteristics	1-21
Strategic Maintenance Management – The Maintenance Pyramid	1-24
Maintenance Excellence Self-Assessment	1-26
Best Practice Benchmarks Review	1-28
Foundations of Reliability	1-35
Measuring Failure Rates	1-36
MTBF, MTTR, MTTF	1-40
Maintenance Strategy vs Maintenance System	1-42
Measuring Maintenance Performance	1-43
Maintenance KPI's	1-47
The Flow View of Processes	1-50
The Failure Process	1-53
Managing Maintenance Backlogs	1-56
Lead and Lag Indicators for Maintenance and Reliability	1-57
Overall Equipment Effectiveness	1-59
Module 2: Preventive Maintenance and Spare Parts Strategy	2-1
Introduction to Reliability Centred Maintenance	2-2
The 7 Questions of RCM	2-3
What research says about equipment failure	2-4
RCM Approach to Maintenance Strategy	2-7
The Plant Hierarchy	2-8
Definition of Criticality	2-10
Functions and Failures	2-17
Failure Modes, Effects and Consequences Analysis	2-19
PM Task Options	2-22
Maintenance Policies	2-26
Task Selection Logic Tree	2-27
Asset Specific Maintenance Strategies	2-28
Implementing RCM	2-32
Preventive Maintenance Optimisation	2-33
Managing Maintenance Spare Parts	2-39

Module 3: Condition Monitoring and Statistical Methods in Maintenance

To be handed out as a standalone handout during sessions.

Module 4: Economics of Reliability

Introduction to Discounted Cashflow Analysis	4-1
Capex vs Opex	4-2
Financial Assessment Techniques	4-2
The Payback Method	4-4
The Time Value of Money	4-7
Net Present Value	4-9
Internal Rate of Return	4-11
Prioritisation Techniques	4.12
Life Cycle Costing Concepts	4-13
LCC Case Study	4-18
Repair-Replace Decisions	4-18
Module 5: Effective Management of Maintenance Resources and Informa	ation
The Maintenance Strategy Process	5-3
Organisational Level Maintenance Strategies and Policies	5-4
The Maintenance Management Strategy Matrix (Availability/Reliability)	5-5
Plant Configurations	5-5
Organisational Level Policies Case Study – Gas Plant	5-7
Organisational Level Policies Case Study – Crude Stabilisation Plant	5-13
Outsourcing and Use of Contractors	5-19
Typical Uses of Contractors	5-20
Issues to consider when allocating work to contractors	5-21
The Decision to Outsource	5-24
Partnering	5-27
Module 6: Computerised Maintenance Management Systems	
Maintenance Documentation Model	6-1
Maintenance Management System Workflows	6-2
Work Initiation Key Issues	6-3
Priorities	6-5
Corrective Work Orders	6-7
Work Order Planning	6-8
Work Order Scheduling	6-14
Preventive Work Order	6-16
Equipment Nameplate Data	6-17
Master Parts Catalogue	6-19
Equipment History	6-20
Best Practice Benchmarking Findings	6-20

Presenter Profile

Mr. Max Zornada B.E. (Mech), Hons. M.B.A.

Max is a Senior Consultant with Glomacs, a Management Educator with extensive experience teaching MBA, Executive Education and Management Development Seminars and as a hands-on practitioner, consulting to major corporations on a range of Operational and Strategic issues, throughout Australia, the US, Middle East, UK, Western Europe and Asia.

Max Zornada is an Adjunct Lecturer at the University of Adelaide Business School where he currently teaches the Operations

Management and Business Improvement in the MBA Program. He has also taught Project Management, Managing Innovation and Technology and E-Business.

He delivers various Executive Education Programs including Yellow Belt, Green Belt and Black Belt level Lean Six Sigma programs.

He has also presented programs for the University of New South Wales, Southern Cross and was a Visiting Professor at the Consorzio MIP at the Politecnico di Milano.

Max spent several years with the London based international management and technology consultancy PA Consulting Group, after holding various managerial and professional engineering positions in the chemicals processing and petrochemicals industry with Adelaide and Wallaroo Fertilisers, ICI and Santos.

During his time working in the Petrochemical Industry, Max developed specific expertise in Maintenance Management, Shutdown and Turnaround Management, Process Plant Start-up and Commissioning through hands-on involvement in commissioning of new plant, as a Shutdown/Turnaround Manager and implementing computerised maintenance management systems.

He has used this experience to develop a range of training programs on topics such as Process Plant Start-up and Commissioning, Shutdown and Turnaround Management, Maintenance Management which he runs in locations around the world such as Dubai, Abu Dhabi, Kuwait and Bahrain as public programs and on an inhouse basis.

From his base in Adelaide, Australia, Max maintains an active international consulting and education practice, with a focus on the management of capital intensive (petrochemical, energy and chemicals) businesses in the Middle East, Europe and Asia.

Optimizing Equipment Maintenance and Replacement Decisions

Introduction

- Is your equipment (fixed or mobile) failing before planned replacement?
- Are you unable to execute maintenance tasks because spare parts are not available?
- Have you made significant investment in CBM methods and tools but struggle to realize the benefit?
- Do you have lots of data from oil analyses but still struggling to accurately predict your equipment breakdowns?
- Do you know how to determine optimum asset life?
- Are you struggling to justify the economics of asset replacement?
- Are you having difficulties in deciding whether to rebuild or replace your equipment to minimize the life cycle costs?
- Do you need to optimize your emergency spare requirements?

Objectives

The objectives of the program can be summarized as follows:

- To focus on the techniques of optimization the single most important thrust of this learning program. Whether the decision is about work-crew sizes, or the replacement of component-parts or entire equipment units, the concept of making the very best, most optimal, decision will be the principal concern of the training program.
- The concept of making the very best, most optimal, decision will be the principal concern of the training program.
- To equip the participating maintenance managers, planners and schedulers and engineers
 with the know-how to select the most appropriate analytical tools for their maintenance
 decision-making.
- Reflecting the growing focus of industrial safety and the profusion of safety-related litigation - think of transportation accidents, chemical spills, and mining disasters - the program will show how safety objectives relate to the optimization models, and will underline the advantages of having a well-documented and rigorously-executed program of maintenance and replacement.
- To introduce the critical decision-making topics that can make a significant difference to the in-service time of equipment, to the costs related to doing maintenance too often or too seldom, and the optimization of asset utilization.
- To not only cover the classic need-to-know material in the area, but to acquaint the participants with leading-edge and on-the-horizon approaches that they will encounter in the near future.

Training Methodology

The course will combine presentations with interactive practical exercises, supported by numerous case studies. Delegates will be encouraged to participate actively in relating the methodologies and tool s presented during the 5-day course to the particular needs of their workplace.

Organisational Impact

Focus on the most advanced techniques for Maintenance Optimization:

- Select the most appropriate Analytical tools for maintenance decision making
- Relate Safety objectives to optimization models
- Introduce Critical Decision-Making Topics
- Acquaint with Leading-Edge and On-The-Horizon approaches
- Continue to Apply the Course-Learning to your workplace problems

Personal Impact

- Equipment maintenance and replacement decision are frequently based on informed opinions or subjective responses to common situations. In this course, we will deal with procedures based on careful research that is firmly rooted in reality. The course is intended to give you the tools needed to make data-driven decisions, which you can apply in your own environment and upon which you can rely to help you in developing appropriate programs. With so much data available, we often find ourselves in the bewildering position of being data rich but information poor. We may have all the raw data we'll ever need at our fingertips; but unless we can interpret and integrate it properly, it is of little use. To refine this data into useful information, we need the appropriate tools.
- This course is designed to give you those tools. Our time is limited, and our individual
 interests and concerns vary. So we may not solve your particular problems in this course.
 However, I hope it will at least provide you with the concepts and techniques you need to
 address problems that arise as you carry out your responsibilities.

Who Should Attend?

- Engineers
- Professionals of Plant operations
- Facility Professionals
- Maintenance or Reliability professionals who are responsible for maintaining and managing the physical equipment assets of a Plant/Facility

The ideal candidate for this seminar is an Engineer, Professional of Plant operations, Facility Professional, Maintenance or Reliability professional who is responsible for maintaining and managing the physical equipment assets of a Plant/Facility. He or she represents large Facilities and Plants from industries such as Oil and Gas, Petrochemical and Fertilizer, Pulp and Paper, Cement and Ceramics, Power Generation and Utilities, Primary Metals, and Heavy Manufacturing and Facilities.

SEMINAR OUTLINE

DAY 1: Physical Asset Management & Reliability Concepts

From Maintenance Management to Physical Asset Management

- Challenges of physical asset management
- The maintenance excellence pyramid
- Total Productive Maintenance
- Reliability Centered Maintenance
- Optimizing Maintenance & Replacement Decisions

Reliability Improvement through Preventive Maintenance

- Analysis of Component Failure Data
- Probability Density Function
- Reliability Function
- Weibull Density
- Infant Mortality
- Bath-Tub Curve

Exercise in Analysing Component Failure Data Using the Weibull Distribution

- Estimating the Weibull Parameters
- Using Median Rank Tables

Dealing with Censored Data, the 3-Parameter Weibull, and the Kolomorgov-Smirnov Test

- Upper-End Censoring, Multiply Censored Group Data
- Estimating the Location Parameter in the Weibull Distribution
- Checking the Goodness-of-Fit of the Distribution

DAY 2 Preventive Maintenance & Spare Parts Replacements

Reliability Improvement through Preventive Maintenance (continued)

- Component Replacement Procedures including Glasser's Graph
- Block Replacement Policies
- Age-Based Replacement Policy
- Setting Policies based on Safety Constraints, Cost-Minimization and Availability-Maximization
- Repairable systems

Case Studies in Component Preventive Replacement

Including boiler plant, bearings, pumps, sugar feeds, compressor valves, and centrifuges

Spare parts provisioning

- Fast moving spares
- Emergency (insurance) spares

Case studies in spares provisioning

• Including line replaceable units (LRUs), cylinder heads, repairable conveyor electric motors and utility transformers

Group and individual exercises

Clinic: Hands-On Use of PC Software (OREST) for Preventive Replacement Strategies

• Participants will solve pre-set problems

DAY 3 Machine Health Monitoring & Inspection

Reliability Improvement through Inspection

Inspection Frequency and Depth for equipment in continuous operation

- Inspection Intervals to Maximize Profit
- Maximizing Equipment Availability
- Inspection Intervals for Equipment Used in Emergency Situations (e.g. protective devices)
- Case studies including oil and gas field equipment such as pressure safely valves (for protective devices)

Health-Monitoring Procedures

- Proportional Hazards Modelling
- Spectroscopic Oil Analysis Programs
- Optimization of Condition-Based Maintenance Procedures
- Role of EXAKT software for CBM optimization
- Case studies including food procession industry (vibration monitoring), pulp and paper and shipping equipment such as compressors (vibration monitoring) and diesel engines (oil analysis), turbines in an electrical generating station (pressure measurements)

DAY 4 Economics of Reliability

Reliability Improvement through Asset Replacement

Aspects of Discounted Cash Flow Used in Capital Equipment Replacement Analysis

- Estimating the Interest Rate Appropriate for discounting
- Present-Value Calculations
- The effects of Inflation in the Analysis
- Calculating the Equivalent Annual Cost (EAC)

Economic Life of Capital Equipment

- The "Classic" Economic Life Model
- Before-and-After Tax Calculations
- The Repair-vs-Replace Decision
- Life-Cycle Costing
- Technological Improvement

Group and individual exercises

Clinic: Hands-On Use of PC Software (AGE/CON and PERDEC) for Capital Equipment Replacement Analysis

• Participants will solve pre-set problems

DAY 5 Effective Management of Maintenance Resources & Information

Effective Use of Maintenance Resources

Organizational Structure, Crew Sizes, Workshop Resource Requirements

- Balancing Maintenance Costs against Plant Reliability
- Establishing the optimal number of machines to have in a workshop
- Resource Requirements Using Queuing Theory and Simulation

- Utilization of Outside Resources
- Lease-vs.-Buy Decision

Case studies including balancing maintenance cost and reliability in an electrical generating station, establishing optimal mix of machines to have in a steel mill maintenance workshop, establishing shift patterns and maintenance crew sizes in a petrochemical plant.

Maintenance Management Information Systems

• Methodology for Auditing a CMMS

Discussion Period for Left-Over Questions Summary of Issues Covered, Lessons Learned

Module 1:

Physical Asset Management and Reliability Concepts

The Management Process Case Study

Smith's Auto-Service Centre

Smith's Auto-Service Centre

After some 15 years working as a mechanic in the after sales service division of a major dealership, Bob Smith decided to go into business for himself. He and his brother Phil, pooled their savings and managed to secure a loan from their bank, to buy an auto-service centre located in the central business district.

Smith's Auto-Service Centre employed 5 mechanics and 1 auto-electrician. It consisted of 8 service bays, a small workshop facility for refurbishing major items and an electrical work area.

Bob was the overall "business manager" while his brother Phil looked after some of the support functions such as sourcing and purchasing spare parts, "drumming up" business from some of the local businesses and offering specialist services to local garages.

Typically, the Smith's main sources of business came from:

- Customers who lived/worked locally booking in their cars for a routine service or tune-up. These customers were keen to get their cars back the same day. Typically they would drop off their cars in the morning and expect them to be ready by the afternoon. Many of these customers included local business who had agreed to have all of their company cars serviced by Smith's Auto Service Centre. Bob's usual practice was to book these in approximately a week in advance.
- Customers who lived/worked locally bringing in their cars to have some kind of problem investigated and repaired. Bob tried to book these types of jobs in to be done within a week of the customer first coming in with the problem.
- Local garages sub-contracting specialist work to the Smith's eg. Electrical work and work requiring machining facilities (which the Smith's had). Bob had asked the local garages for at least a week's notice for this type of work, but quite often they would only find out about these jobs on the same day that they were required. In such cases, unless they had some slack, Bob usually slotted these jobs in for the next day.
- Customers coming in off the street with some urgent problem needing immediate attention.

Bob felt that the local customers who lived and or worked in the area, and booked their cars in for services or other work were the most important. It was from these that he was most likely to get the volume of repeat and ongoing business that he required to make his business viable in the long-term.

The Smith's first few months had been close to a disaster. Many of the local customers had been dissatisfied and there had been many complaints, as their cars had not been ready within the day as promised.

Bob's practice had been to book in at least 4 cars per mechanic per day, in this way leaving some time free to attend to any urgent work that arose during the day.

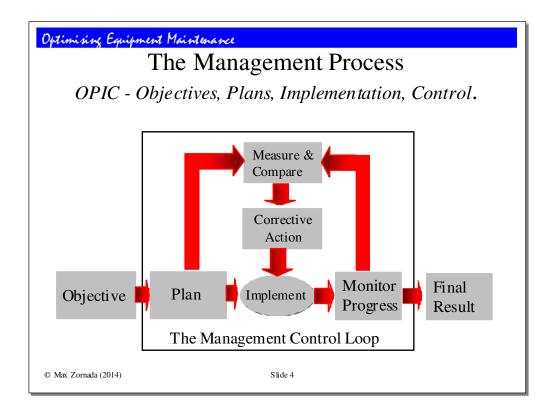
Although some days worked out well, other days had been an absolute disaster.

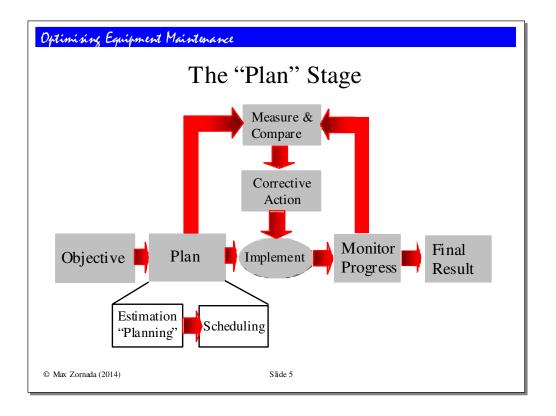
The following events were typical of the kind of things that happened:

- Sometimes, cars required major work or significantly more than a routine grease and oil change taking almost the full day to be completed. In such cases, 2 or 3 of the cars allocated to each mechanic were left unserviced. Bob often did not find out about these until just after the afternoon tea break by which time it was too late to reallocate other mechanics to help with these jobs;
- Bob did not carry stocks of oil filters and other components for some of the more exotic cars and time was often wasted chasing these up.
 Similarly, some of the repairs where often delayed when they required parts that were not carried in stock;
- Service and repair work was often left, to attend to customers who came in off the street in a panic with some problem needing immediate attention. Many of these problems were fixed relatively quickly. However, on some mornings, particularly when it was raining, there was a rush of these types of jobs. It was not unusual for 2 or 3 mechanics to get "tied up" until lunchtime doing this type of work, before they were free to get onto the service work. In addition, the occasional problem car came in which could take one or more days to fix.
- Bob wondered what he could do to deal with some of the problems he
 was experiencing, in particular those that were affecting his regular
 service and repair work customers.

Questions

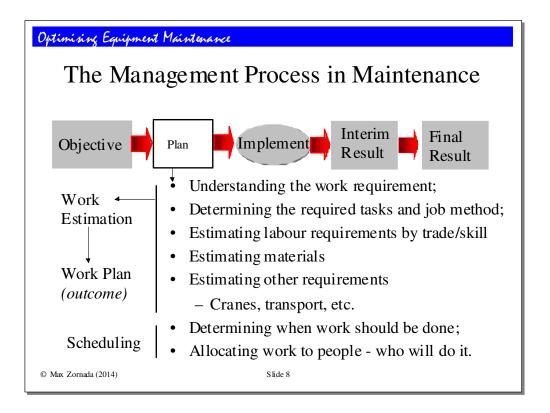
Discuss some of the problems Bob is experiencing.

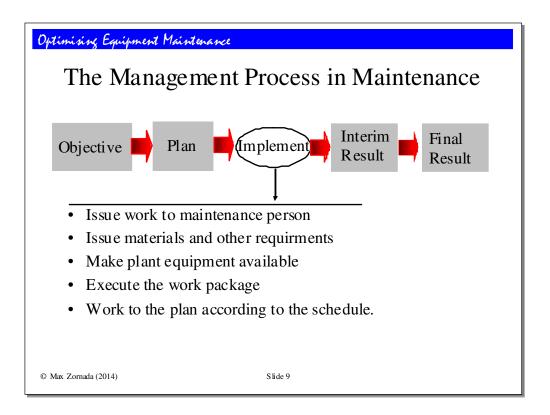

What are some of the things that Bob could do to improve things and make his operation run more smoothly. In particular, consider:


- How can Bob improve the level of customer satisfaction for what he regards as his most important customer group?
- How can he get a better match between the work coming in, the services and repairs that are prebooked in particular, and the labour he has available so that the cars that have been slotted in for a particular day actually get done that day?
- What can he do to avoid delays due to parts not being available?
- How can he better find out when some-one is running behind with their day's work so as to reallocate people working on less important work before it is too late?

Notes			

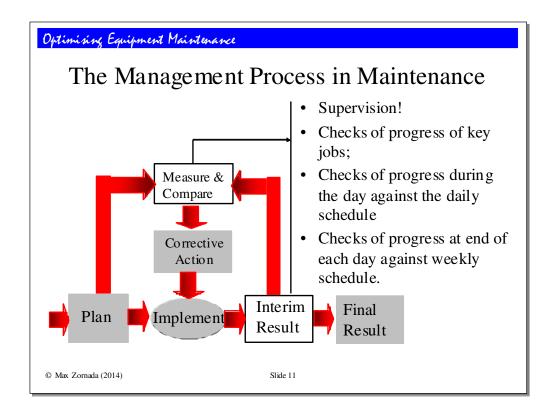
The key management activities

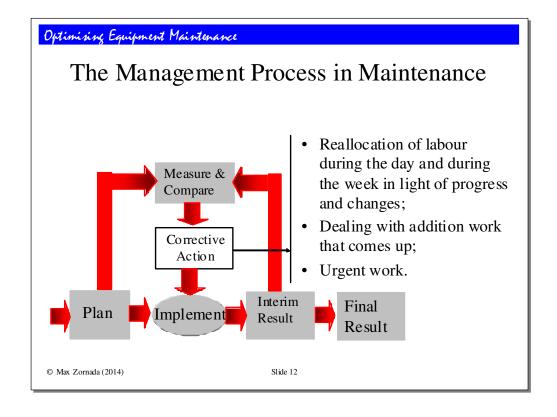

- Setting Objectives
- Developing plans and schedules
- Implementing allocating tasks
- Measuring and monitoring results
- Taking corrective actions

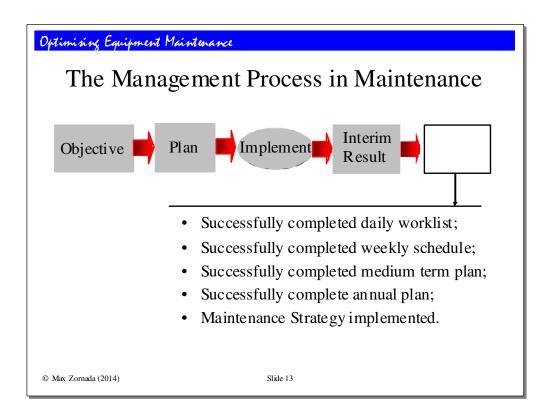

© Max Zornada (2014)

Slide 6

Optimising Equipment Maintenance The Management Process in Maintenance Interim Final Objective Plan **Implement** Result Result Work receipt for corrective maintenance Authorisation of incoming work • Preventive maintenance plan work Approach to Prioritisation; Total work that needs to be done to meet production reliability and availability requirements; Degree of responsiveness. © Max Zornada (2014) Slide 7







Optimising Equipment Maintenance The Management Process in Maintenance Interim Final Implement Objective Plan Result Result Supervision! Checks of progress of key jobs; Checks of progress during the day against the daily schedule • Checks of progress at end of each day against weekly schedule. © Max Zornada (2014) Slide 10

Maintenance Management

- Maintenance Management is about applying "management" processes to maintenance;
- "Management" processes are applied by way of a "system" that establishes a set of management practices with associated information requirements required to make the system work;
- Computer systems often support the information requirements but most of what makes an effective maintenance management system is done by people.

© Max Zornada (2014)

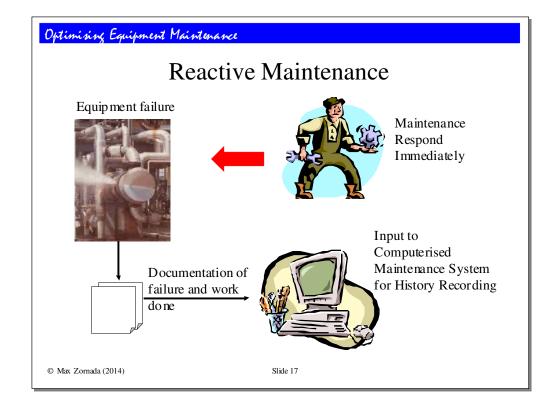
Slide 14

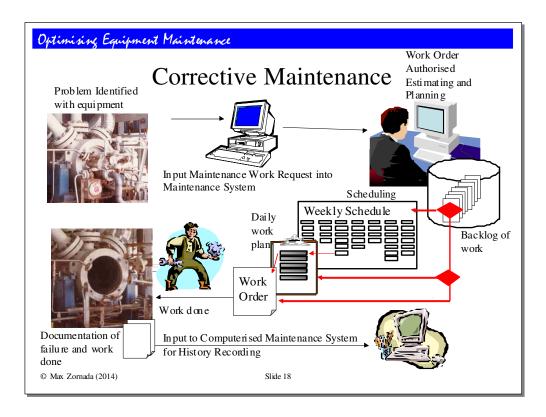
Optimising Equipment Maintenance

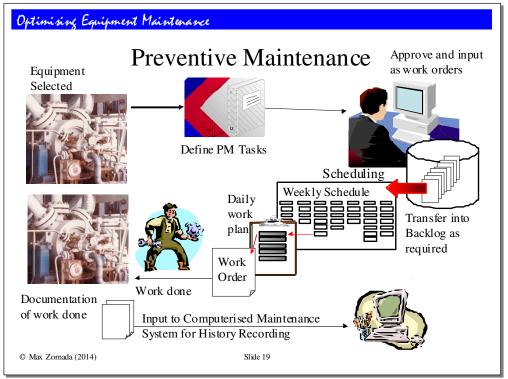
Definitions: Types of Maintenance Work

- Reactive Maintenance:
 - Urgent work that needs to be done immediately, such that there is no time to
 plan in advance. Usually in response to a breakdown or failure having
 immediate impact on operations. Can be also referred to as <u>breakdown</u>
 <u>maintenance, unplanned corrective, emergency or urgent work</u> and will
 therefore be unplanned.
- Corrective Maintenance:
 - Work done in response to the identification of a defect or abnormal operating condition, which if unattended would result in a breakdown/failure. The fact that failure has not occurred yet offers the opportunity to plan and coordinate the execution of this work in advance. This type of work is often referred to as planned repairs, planned corrective or proactive maintenance.
- Preventive Maintenance:
 - Any work done as a deliberate attempt to pre-empt a failure or the development of a defect which is initiated proactively. (<u>Is not done as a response to a</u> breakdown or identified defect.). This includes Predictive Maintenance.

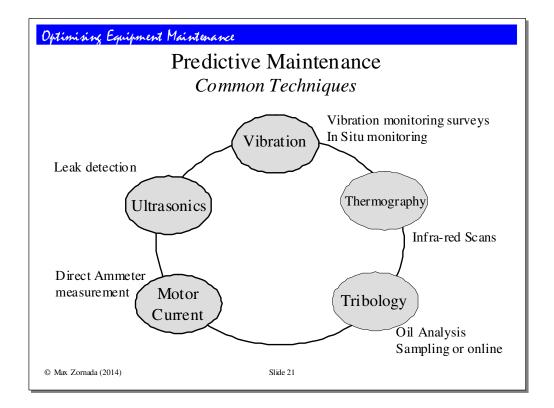
Note: Corrective Maintenance that has been planned in advance and Preventive Maintenance, together are often referred to a planned maintenance.

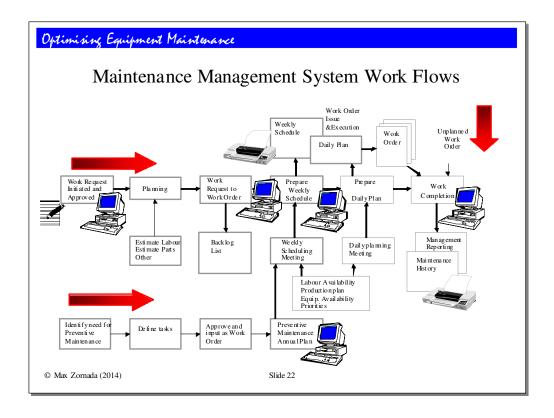

© Max Zornada (2014)


Maintenance Timing


- Operating or running maintenance:
 - Maintenance work (of any type) done and/or scheduled to be done in a way that does not interrupt normal operations.
- Shutdown/Turnaround Maintenance:
 - Maintenance work (of any type) that can only be done when the plant is shutdown.

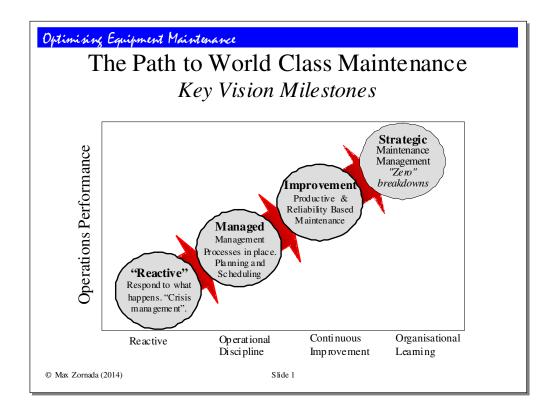
© Max Zornada (2014)




Types of Preventive Maintenance

- Fixed time or Fixed interval inspections, component replacement or refurbishment/overhaul;
- On condition based inspections, component replacement or refurbishment/overhaul;
 - Run hours based;
 - Indicator based;
 - Predictive Maintenance Techniques.

© Max Zornada (2014)

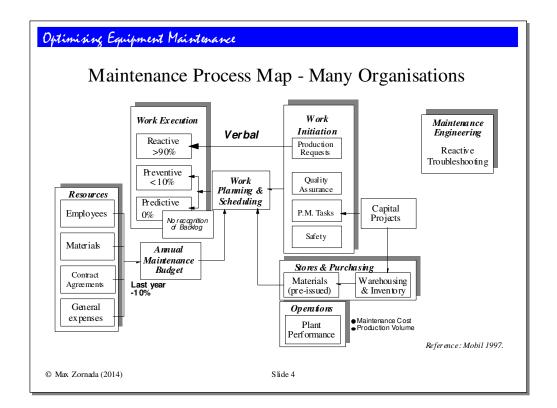

Approaches to Improvement

Organisations have at various times tried many approaches to improvement

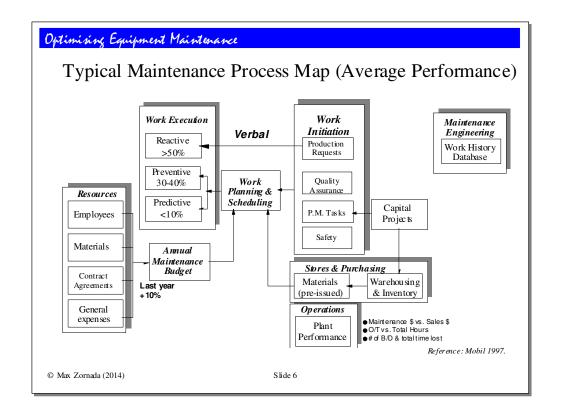
- Preventive Maintenance;
- Computerised Maintenance Management Systems;
- A focus on planning and scheduling work;
- Total Productive Maintenance:
- Self-directed work teams;
- Predictive Maintenance & Condition Monitoring;
- Reliability Centred Maintenance (RCM) and Preventive Maintenance Optimisation (PMO);
- Predictive Maintenance;
- Risk Based Maintenance.

© Max Zornada (2014)

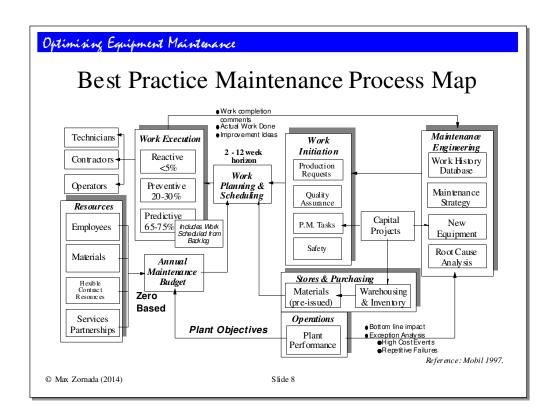
Reactive Maintenance Manage ment Key Features React to breakdowns and other problems as they occur; Try to keep up with the work as it comes in; Maintenance find out about problems as they arise; Only jobs not done as they come up are those that cannot be done either through lack of access or lack of parts; Maintenance Managers and Supervisors are unaware of Backlog. It is "invisible" or in different people's heads; Backlog is not acknowledged or measured. **Do any of these apply to your organisation?*



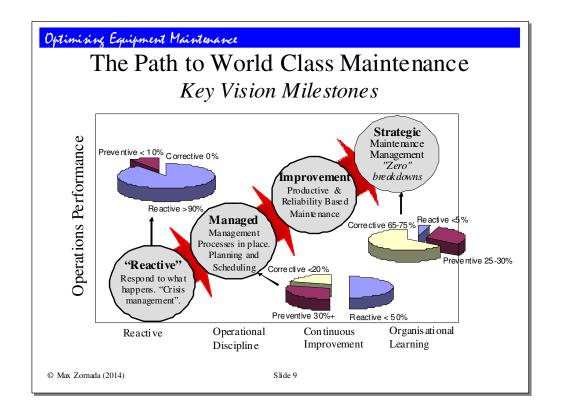
Preventive Maintenance The First Step on the Improvement Process

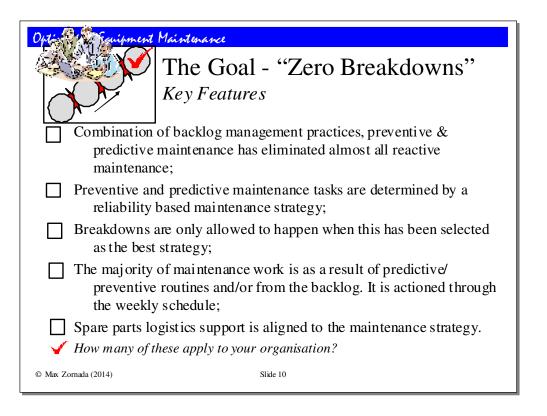

- "Planned" Preventive Maintenance, usually on fixed time or fixed interval basis is scheduled to be done, so as to reduce the number of breakdowns;.
- Remainder of work (majority) is done the same as for reactive maintenance management.

© Max Zornada (2014)

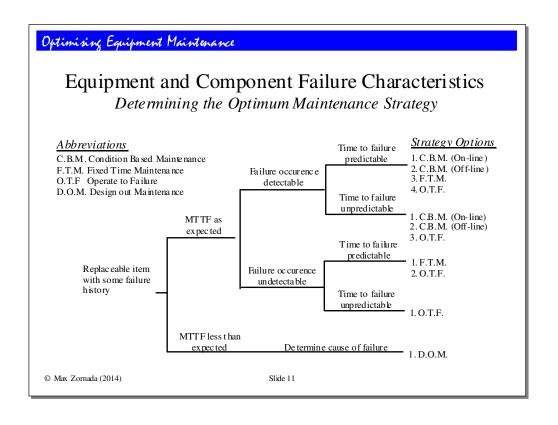


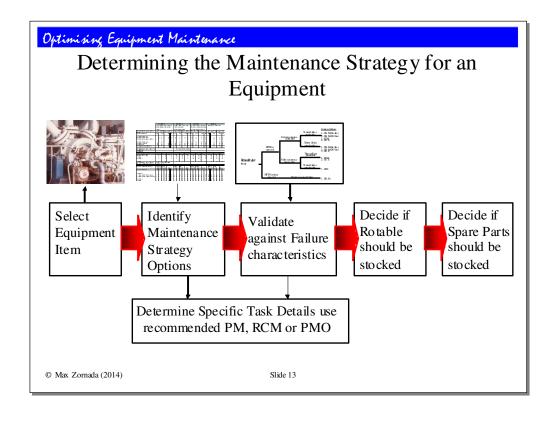
Equipment Maintenance "Managed" Approach to Maintenance Key Features Planned preventive maintenance is scheduled to be done on a regular basis. This may include predictive maintenance inspections and condition monitoring; "Urgent" breakdowns are reacted to when they occur; An effective priority/criticality system is in place that clearly identify genuinely urgent work from planable work. All other work is planned and registered on a "backlog" as soon as it is known about; Work is scheduled from the backlog on a weekly basis; Backlog levels are known, monitored and managed. How many of these apply to your organisation? © Max Zornada (2014) Slide 5

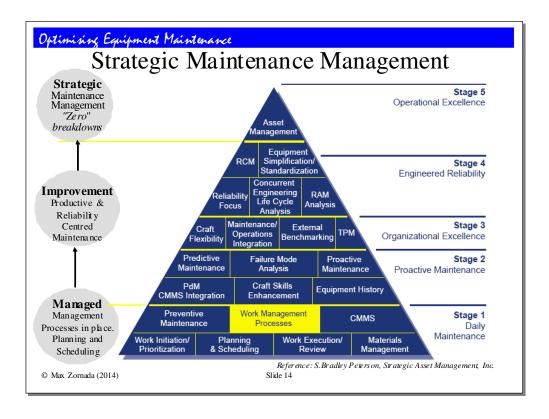




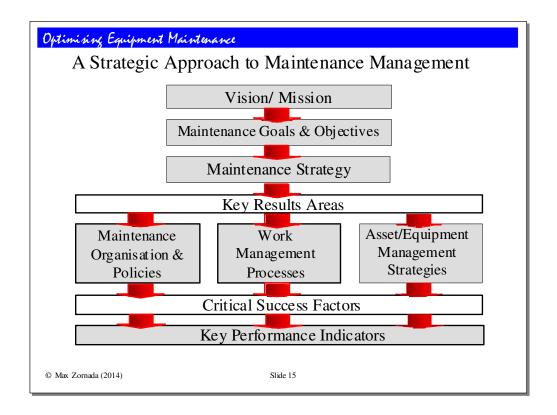
Optimising Equipment Maintenance Increasing Level of Performance through Improvement Strategies Key Features Use of Reliability Centred Maintenance and Preventive Maintenance Optimisation to improve effectiveness of Preventive Maintenance Increasing levels of planned and scheduled work Maintenance of Backlog at target levels Improvement in equipment and plant reliability through problems solving and root cause analysis techniques Streamlining of spare parts management and matching to maintenance strategy. How many of these apply to your organisation? Slide 7 © Max Zornada (2014)

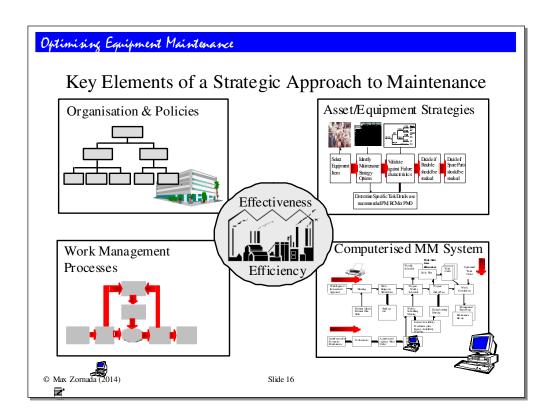


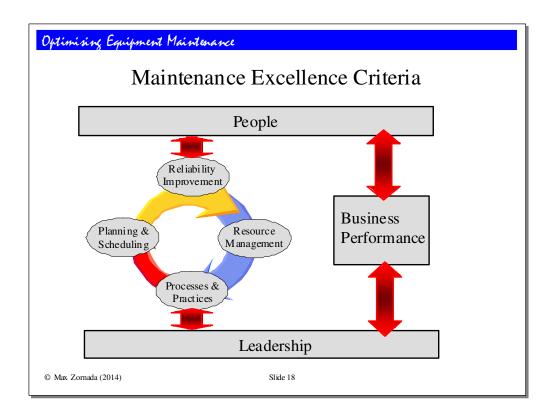

			, 1	Ja	SC	u	IVI	ai	ш	CI.	lai	IC	e i	วน	rat	99	y	C	П	11 L				
		Critic	ality	1				Critic	cality	2				Critic	calit v 3	3				Critic	ality	4		
	Tota	prod			triev	ably	Parti				ss or l	loss	Incre		risko		luctio	n or	No I				ction	_
		or Saf	et y/Er	nviron	ment	al			cy. Ma						loss.									
	Impa	act					Envi	mnon	ental	Impa	.ct		by pa	ass o	ontrd	valve	s etc	.)						
Differential Maintenance Cost of Failure	High	1 (>\$3	(000)	Low	(\$3	(000)	High	1 (>\$3	3,000)	Low	(\$3	,000)	High	(>\$3	3,000)	Low	(\$3	(000	High	1 (>\$3	(000)	Low	(\$3	,000
Failure Predictable	Υœ		No		Yes	No	Yes		No		Yes	No	Yes		No		Yes	No	Yes		No		Yes	No
Type of Maintenance	1					l _		_		1								1	_	1				1
Inspection/Lubrication	Y		Υ		Υ	Y	Y		Υ		Υ	Υ	Y		Υ		Υ	Y	Y		Υ		Υ	Υ
Preventive Maintenance (Task)	Y		Υ		Υ	Υ	Y		Υ		Υ	Υ	Y		Υ		Υ	N	Y		N		N	Ν
Condition Manitoring	Y		N		Υ	N	Y		N		Υ	N	Y		N		N	N	l N		N		N	N
Change Out On Life	N		Υ		N	Y	N		Υ		N	N	N		Y		N	N	Y		Υ		N	N
Runto Failure	N	_	N			N	N		N		N	Υ	N		N		Υ	Υ	N		N		Υ	Υ
Investigation of Break downs	Y		Υ		Υ	Υ	Y	<u> </u>	Y	ļ.,	Y	Υ	Y		Υ		N	N	N	1	N		N	N
Of f-Site Repairs (Assuming can be								lot	e dec	ided	indvi	oually												
done on site)																			_					
Use Rotable		0017	10.00					0017	1000						10.00					0017			1	
Value of Rotable Stock	>\$10		\$20-	100K	<\$2		>\$1 0		\$20-		<\$20		>\$10		\$20-		<\$2		>\$1		\$20		<\$2	
Repair Time < 1 Day		Υ		Υ		Υ		N		N		N		N		N		N		N		N		N
1-3 Days		Y		Y		Y		N Y		N Y		Y		N N		N N		N Y		N N		N		N N
3-15 Days		Y		Y		Y		Y		Y		•						Y		N N		N		
>15 Days Stock Holdings (Items< \$20,000)	A	umes	na D		Ctoo			Y		Y	_	Υ	_	Υ		Υ		Y	-	IN		N		N
					S 100	K																		
(Whetherto Hold Stock or Not) Value of Total Stock Holding	10 S2.0	for th	s500		_		\$2.0	m	\$500	_			\$2.00	m	\$500		_		\$2.0	· m	\$500	_		
value or rotal Stock Holding		.000	-\$2.0		<\$50	0		.000			<\$50	00		.000	-\$2.0		<\$50	10		0.000	-\$2.0		<\$50	20
Failure Predictable?	Yes		Yes		Yes		Yes		Yes		Yes		Yes		Yes		Yes		Yes		Yes			No
ralidie i redictable :	ıω	140	163	140	163	110	165	140	163	IVO	163	140	ıω	140	103	140	163	140	165	IWO	163	NO	163	140
Lead Time											1	l						1						ı
< 1 Day (Avail Ex. Stock-Local)	Υ	lγ	Υ	Υ	Υ	γ	N	Υ	N	Υ	Υ	Υ	N	N	N	N	N	N	N	N	N	N	N	N
1-5 Days (Avail Ex. Stock-Country)	Ý	Ϊ́Υ	Ý			Ý	N	Ý		Ý	Ý	Ý		N			N	Ϋ́	N	N	N	N	N	N
5-15 Days	Ý	Ϊ́Υ	Ý			Ý	Y	Ý		Ϋ́	Ÿ	Ý		N	1		Y	Ý	N	N	N	N	N	N
>15 Days	v	ľ	v	Ÿ	Ý	ý	Ý	Ý	Ý	Ÿ	Ý	Ý		Y	Y	Ý	Ý	Ý	N	N	N	N.	N	N



Reliability Based Maintenance Strategy Chart


	Critic	Criticality 1			Orit	Criticality 2			0	Criticality	73			Criți	Criticality 4		
	Total prodi	luct lost i	uct lost irretrievably	Ş	Partial Production loss or loss	oductio	o ssol r	r loss	Increas	sed risk	of pro	Increased risk of production or	Ι.	No Impact on Production	t on Pr	oducti	uc
	Major Safety/Environmenta	ety/Envir	onmenta		of efficiency. Major	ıcy. Maj	or		efficier	icy loss	. (Spar	efficiency loss. (Spared equip,	ď,				
	Impact			7	Environmental Impact	ental In	pact		by pas	by pass control valves etc.	ol valve	s etc.)					
Differential Maintenance Cost of Failure	High (>\$3,000)		Low (<\$3,000)	_	High (>\$3,000)		Low (<\$3,000)	3,000)	×) High	High (>\$3,000)		Low (<\$3,000)		High (>\$3,000)	(000)	row (<	Low (<\$3,000)
Failure Predictable	Yes	2	Yes	<u>≻</u>	Yes	2	Ye	es No	Yes	8		Yes N	No Ye	se	8		Yes No
Type of Maintenance																	
Inspection/Lubrication	>	>		>	>	>	>	>	>	>				>	>	>	
Preventive Maintenance (Task)	>	>	>	>	>	>	>	>	>	>		<u>z</u> ≻	_	>	z	Z	<u>z</u>
Condition Monitoring	>	z		z	>	z	>	z	>	Z			_	z	z	_	
Change Out On Life	Z	>		>	z	>	Z	z	Z	>			_	>	>	_	
Run to Failure	Z	Z		z	Z	Z	Z	≻	Z	Z			,	Z	Z	_	
Investigation of Breakdowns	У	Υ	У	Υ	У	У	Υ	Υ	Ь	Υ		N N	_	Z	Z	Z	Z
Off-Site Repairs (Assuming can be					То	be decided individually	led indiv	idually									
done on site)																	
Use Rotable																	
Value of Rotable Stock	>\$100K	\$20-100K	K <\$20K		>\$100K	\$20-100K		<\$20K	>\$100k	\sim	\$20-100K	*\$20K	\$ <	>\$100K	\$20-100K	_	<\$20K
Repair Time < 1 Day	Υ	⋆		Υ	Z	_	7	z	Z		z	٧	_	Z		z	Z
1-3 Days	>	>		<u> </u>	Z			>	Z		z	_	_	Z		z	Z
3-15 Days	>	>	_	>	>	_	>	>	Z		z	>		z		z	Z
>15 Days	>	>	,	_	>	_		\	⋆		\	_	,	Z		z	Z
Stock Holdings (Items< \$20,000)	Assumes	no Rotable	le Stock														
(Whether to Hold Stock or Not)	held for th	ie part															
Value of Total Stock Holding	\$2,000 -	-005\$		↔	\$2,000 -	\$200			\$2,000	- \$200-	-00			\$2,000 -	\$200		
	-\$20,000	-\$2,000	<\$500		-\$20,000	-\$2,000		<\$500	-\$20,000		-\$2,000	<\$500		-\$20,000	-\$2,000		<\$200
Failure Predictable?	Yes No	Yes No	Yes	۲ 9	Yes No	Yes	No Ye	es No	Yes N	No Yes	S S	Yes N	No Yes	s No	Yes	۸oN	Yes No
Lead Time	>		;				>	>			2						
I Day (Avail Ex. Stock-Local) I - 5 Days (Avail Ex. Stock-Country)	<u>- ></u>	<u>- </u>	- >	<u> </u>		z >	<u>- ></u>	- >			zz			ZZ			
5-15 Days	<u>≻</u> >	· ≻ >	· > >	· > >	<u>>></u>	· > >	<u> </u>	· > >	z >	Z;	> >	· > >	Z 2	zz	z		Z 2
>15 Days	γ							_			-			z			





Maintenance Self-Assessment

Maintenance Excellence Framework

© Max Zornada (2014)

CONTENTS

Introduction	2
The Self-Assessment Process	3
Categories and Criteria	4
• Leadership	4
• People	5
Planning and Scheduling	6
Maintenance Processes and Practices	8
Reliability Improvement	10
Resource Management	11
Business Performance	13
Self-Assessment Scoring Guidelines	14
Self-Assessment Scoring	14
Use of Scoring System	14
Scoring Table	15
Improvement Opportunities Table	16

INTRODUCTION

The Australian Maintenance Excellence Awards considers seven categories and related criteria:

- Leadership
- People
- Planning and Scheduling
- Maintenance Processes and Practices
- Reliability Improvement
- Resource Management
- Business Performance

By using these criteria, enterprises will be able to evaluate their capabilities of managing maintenance and its contribution to the business.

Through the Australian Maintenance Excellence Awards the IMRt seeks to provide a high quality process which acknowledges maintenance excellence, supports continuous improvement in the maintenance function, focusing on people, practices and the business impact of maintenance excellence.

Self-assessment has been recognised as a means of identifying and driving improvement opportunities by assessing current performance against a model of excellence.

This document is part of the companion set of Australian Maintenance Excellence Awards material which includes:

- Resource Booklet
- Criteria and Applications Guidelines
- Evaluation Team Booklet

This Self-Assessment Booklet is closely linked with the Resource Booklet. They are both more detailed

than the Criteria and Applications Guidelines material. While covering the same categories and criteria the Criteria and Applications Guidelines material includes more general and broader questions and is intended to provide an opportunity for a more adaptive approach for Award assessment purposes. The Criteria and Applications Guidelines provide a suggested framework for a submission for the Australian Maintenance Excellence Awards. This Self Assessment booklet may be used as 'food for thought' when preparing a submission.

The Industrial Maintenance Roundtable (IMRt) wishes to acknowledge:

- El DuPont de Nemours & Co who have provided insight and information gained through its Maintenance Excellence Recognition Process (MERP) and who very kindly made MERP material available to IMRt to assist the development of the Australian Maintenance Excellence Awards.
- the Australian Quality Council for its support and expert advice given freely to the IMRt during the development of The Australian Maintenance Excellence Awards.
- the National Minerals Industry Excellence Award for Safety and Health which provided a model for the development of this award.

THE SELF-ASSESSMENT PROCESS

It is recommended that to be most effective, the self-assessment process be carried out in a structured workshop, with a cross-functional team, and facilitated by a trained assessor.

The workshop, during the self-assessment process, provides an assessment of where the enterprise is today compared to the maintenance excellence model. It also provides quantitative data through the questionnaire and also qualitative data on the current position of the enterprise.

A feedback report can be collated from this data which is also used as a basis for planning improvement.

Typical work sheets have been provided to assist with the analysis, refer to pages 15 and 16.

1. LEADERSHIP (14% of total)

The intent of this Category is to cover the role of leadership in the development of the maintaining function within the organisation at a corporate and enterprise level.

		1	2	3	4	5
a.	Planned maintenance is part of our written business philosophy, mission or aim.					
b.	We have written goals, objectives and measures that document continued improvement of the maintenance function's contribution to the business.					
C.	There is a leadership network that provides guidance and direction for continual functional improvement of the maintenance function.					
d.	Reports measuring planned maintenance performance, i.e., key parameters VS goal are periodically issued.					
e.	Company reference documents, such as "Maintenance Procedures" and "Engineering Standards" are routinely adhered to.					
	Column Total					
	Multiply by	1	2	3	4	5
	=					
	Category Total		Add	ition o	f the a	bove
	Category, % Max. Score		Cate	Category Total/25 x 100%		
	Category Total, Weighted		Cate	gory 1	otal x	14/25

2. PEOPLE (18% of total)

The intent of this category is cover the extent to which the organisation provides people at all levels in the enterprise with the appropriate skills, and engenders the commitment required to achieve the maintenance goals and objectives.

		1	2	3	4	5
a.	A long-range strategic plan for maintenance is in place that defines what the maintenance job will look like, what skills will be necessary and how these skills will be acquired.					
b.	A job analysis that defines required skills has been conducted and is updated periodically.					
c.	Resource persons available to answer questions during the training process and available to assist in developing troubleshooting skills with skills demonstrations.					
d.	A formal program to refresh the skills of trades people and to introduce new skills is in place.					
e.	A formal cross-training plan is in place to develop versatility in the workforce.					
f.	A means of measuring results, such as task-certification programs and detailed training records to track the effectiveness of the program are in place.					
g.	A means to train maintenance supervisory personnel in maintenance best practices and systems.					
	Column Total					
	Multiply by	1	2	3	4	5
	=					
	Category Total		Addi	ition o	f the a	bove
	Category, % Max. Score		Cate	gory 1	otal/3	5 x 100%
	Category Total, Weighted		Cate	gory T	otal x	18/35

3. PLANNING AND SCHEDULING (11% of total)

The intent of this category is to cover how the enterprise develops, implements, controls, measures and improves its planning and scheduling of its maintenance work to achieve the corporate objectives.

		1	2	3	4	5
a.	Production, maintenance and technical strongly support the concept of planned and scheduled maintenance and, as partners, are committed to its success.					
b.	A team dedicated to the planning, scheduling and coordinating of routine maintenance work is in place.					
c.	Preventive and predictive maintenance work is an integral part of this P&S effort.					
d.	Routinely, the right materials and resources are brought together at the right place and the right time to work on properly prepared equipment.					
e.	Repairs are promptly made when indicated by trend analysis.					
f.	Inspection records include: 1. Inspection checklists and routes 2. Inspection frequency					
g.	Systems are in place which ensure action is taken when inspections and repairs do not occur as scheduled.					
h.	Systems are in place which: 1. Describe the nature of the repair 2. Provide instructions to craftsmen 3. Record what repairs were completed 4. Collect labor and materials charges 5. Track downtime	0000		0000	0000	00000

3.

			Category, % Max. Score Category			
J 0					of local codes and corporate standards (pressure	i.
4 5	i. Records for inspections and repairs meet requirements of local codes and corporate standards (pressure vessels, boilers, expansion joints, etc). Column Total Multiply by Category Total Category, % Max. Score Category Total/7					
					= -	
e above	f the a	tion o	Addi	cords for inspections and repairs meet requirements ocal codes and corporate standards (pressure seels, boilers, expansion joints, etc). Column Total Multiply by Category Total Category, % Max. Score		
al/70 x 100%	otal/7	gory 1	Cate		Category, % Max. Score	
al x 11/70	cons and repairs meet requirements corporate standards (pressure ansion joints, etc). Column Total Multiply by 1 2 3 4 = Category Total Category, % Max. Score Category Total/7	Category Total, Weighted				

4. MAINTENANCE PROCESSES AND PRACTICES (16% of total)

analy	ntent of this category is to cover how the enterprise establishes and improves its preventive, predictive and reactive manufacture and reactive manufacture.		•			
goals	s of the organisation.	1	2	3	4	5
a.	A formal, periodic equipment inspection system is in place that is consistent with manufacturers' specifications and in compliance with government regulations.					
b.	Predictive maintenance inspection routes have been established and inspections are made on schedule.					
C.	Inspections are always carried out exactly as specified and at the specified inspection frequency.					
d.	Discrepancies are always corrected before the process/equipment is returned to operation.					
e.	A lubrication program is in place to ensure equipment is lubricated routinely and adequately with the proper lubricant.					
f.	Critical equipment (based on impact on safety, production, quality, environment, cost etc) have been identified and listed for the purpose of applying predictive maintenance techniques.					
g.	Alert and danger limits for parameters have been established and published.					
h.	Records are formalised and trend analysis is routinely used to monitor equipment condition.					
i.	 A system of inspections have been developed for: 1. Noise level 2. Leaks or emissions 3. Hot spots 4. Physical condition (paint, corrosion, loose parts, missing nuts or bolts, deteriorated insulation, etc) 	0000		0000		0000
j.	A system is in place to ensure that inspections occur.					

4.

k.	Equipment specifications are maintained and are easily retrieved when needed.					
	Column Total					
	Multiply by	1	2	3	4	5
	=					
	Category Total		Addi	ition o	f the a	bove
	Category, % Max. Score		Cate	gory 1	Γotal/7	0 x 100%
	Category Total, Weighted		Cate	gory 1	Total x	16/70

MAINTENANCE PROCESSES AND PRACTICES (16% of total) continued ...

5. RELIABILITY IMPROVEMENT (18% of total)

The intent of this category is to cover how the enterprise establishes and maintains a focus on the needs of the business in particular on the reliability improvement process using problem solving techniques, increasing uptime, improving yields and process reliability and assuring quality.

		1	2	3	4	5
a.	Records are maintained and periodically audited to ensure preventive maintenance is performed on each piece of equipment as intended.					
b.	A long-range program is in place that enhances					
	equipment reliability through:1. Initial design to enhance maintainability through life cycle cost analyses.					
	 Proper operation of equipment during its normal life span. 					
c.	A formal system exists to attack equipment problems					
	that includes: 1. Identification and qualification of the problem and					
	definition of the underlying root cause.2. Long-term corrective action.3. Effective tracking of corrective action to ensure success.					
d.	Measures that emphasise uptime are identified, collected, tracked and reported throughout the organisation.					
e.	Equipment performance and maintenance history are stored and used to trend reliability, repair frequencies, failure modes, mean time to failure, etc.					
	Column Total					
	Multiply by	1	2	3	4	5
	=					
	Category Total		Addi	tion o	f the a	bove
	Category, % Max. Score		Cate	gory 1	otal/4	0 x 100%
	Category Total, Weighted		Cate	gory T	otal x	18/40

6. RESOURCE MANAGEMENT (11% of total)

The intent of this category is to cover the management of materials, contracts and consultants and how the enterprises establishes, implements, monitors, analyses and improves its materials and resources under contract.

		1	2	3	4	5
a.	Where appropriate, integrated supply, vendor stocking, vendor consignment, vendor direct delivery, etc are a part of the overall materials management process.					
b.	Rebuilding programs for appropriate items (motors, valves, seals, etc) are operational.					
C.	An alternative materials procurement is in place and used where appropriate.					
d.	Corporate convergence efforts are supported and the EEA (Effective Equipment Acquisition) agreements are utilised where appropriate.					
e.	Measurement techniques for stores performance (investment, service, utilisation, etc) are routinely used.					
f.	Equipment parts lists are readily available.					
g.	There is a site materials improvement cross-functional network that provides direction and processes improvement opportunities for maintenance requisition order materials					
h.	Electronic means for procurement is maximised where functional capability exists.					
i.	Site principles are in place that define what work is contracted and what is kept in-house.					
j.	A training program for contract administrators that covers all aspects of contractor monitoring is in place.					
k.	An audit system is in place to monitor the quality, productivity, and cost of work performed by contractors.					
I.	A contractor selection process is in place that considers capabilities, types of contracts, best practices, and corporate guidelines.					

6.

m. A	OURCE MANAGEMENT (11% of total) continued					
m.	An effective working relationship that supports continuous improvement is built with primary contractors.					
	Column Total					
	Multiply by	1	2	3	4	5
	=					
	Category Total		Add	ition o	f the a	bove
	Category, % Max. Score		Cate	gory 1	Γotal/6	5 x 100%
	Category Total, Weighted		Category Total x 11/65			

7. BUSINESS PERFORMANCE (12% of total)

The intent of this category is to cover the extent to which the operation demonstrates sustained improvement to the key objectives and performance indicators and how this contributes to the overall performance of the organisation.

		1	2	3	4	5	
a.	Goals have been set and performance is measured and reported throughout the organisation; corrective action is aimed at continued improvement.						
b.	Performance reports exist that show progress toward a long-range strategic plan for maintenance.						
C.	Where maintenance of a facility impacts quality, it is identified, measured and reported: e.g., out of tolerance or variable tolerance product associated with machine breakdown or out of tolerance equipment.						
d.	Where maintenance of a facility impacts the amount of product produced, it is identified, measured and reported, i.e., rate reduction or scrap associated with machine breakdown or out of tolerance equipment.						
j.	Where maintenance of a facility impacts bottom line cost, it is identified, measured and reported, i.e., cost reductions through improved maintenance procedures/programs.						
	Column Total						
	Multiply by	1	2	3	4	5	
	=						
	Category Total		Addi	ition o	f the a	bove	
	Category, % Max. Score		Cate	gory 1	otal/2	5 x 100°	%
	Category Total, Weighted	/eighted Category Total					

SELF-ASSESSMENT SCORING GUIDELINES

Each question within a section is weighed equally. Points are assigned as follows:

- 1 = No system in place
- 2 = System planning beginning
- 3 = System planning complete
- 4 = System implemented
- 5 = System implemented and mature

Results provide a general guide relative to Maintenance Excellence scoring and help identify areas for improvement opportunities.

SELF-ASSESSMENT SCORING

It should be noted that the score in and of itself is not important. What is important is that this self-assessment process provides an opportunity to identify which best practice areas require most attention for improvement and which are strongest.

The questions may also provide guidance regarding particular strengths and opportunities for improvement. A page to assist with this exercise is included on page 16.

The process for identifying opportunities can be assisted by the data summary chart on page 15 which shows:

- the percentage of the maximum score for each category (% Category Max. Score);
- the weighted category score; and
- the relative ranking of each category score.

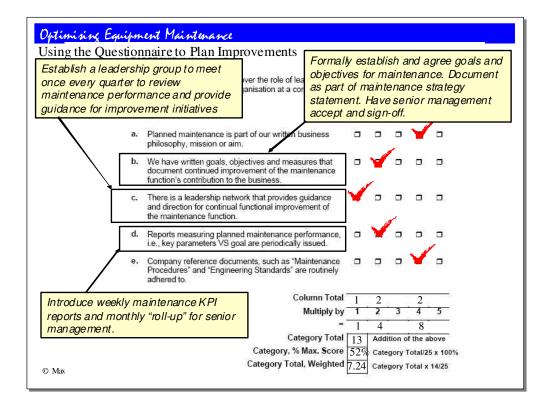
USE OF THE SCORING SYSTEM

Scores are used to analyse relative ranking of each category.

- · Low scores indicate categories for improvement opportunities;
- · High scores indicate strengths;
- Gap between scores and maximum possible scores attainable indicate opportunities for improvement in striving to achieve excellence.

SCORE TABLE

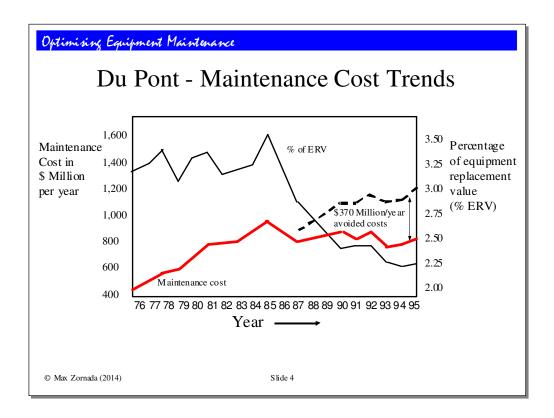
Category	Category Total	Category, % Max. Score	Weighted Score	Relative Ranking
Leadership				
People				
Planning and Scheduling				
Maintenance Processes and Practices				
Reliability Improvement				
Resource Management				
Business Performance				


IMPROVEMENT OPPORTUNTIES TABLE

Category	Strengths	Opportunities

Using the Questionnaire to Plan Improvements

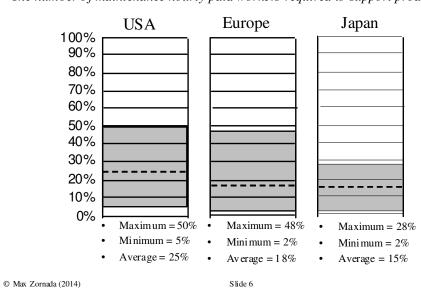
- Identify which areas scored the lowest scores;
- Look at the detailed questions in that section and focus on the ones that score low (eg. 1 or 2)
- Read the question and determine what requirements are implied by the question;
- Determine what you would need to do to improve your score;
- Work through with other questions and other sections.


© Max Zornada (2014)

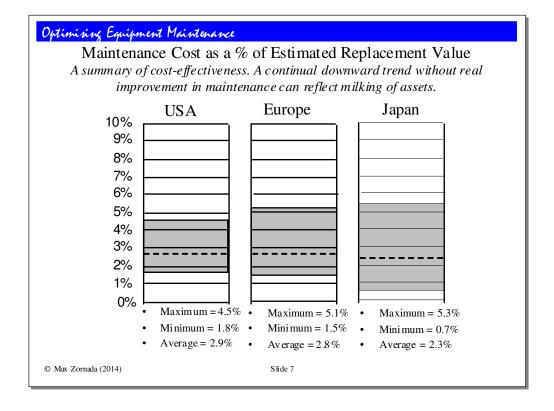
Maintenance Best Practice Benchmarks Review

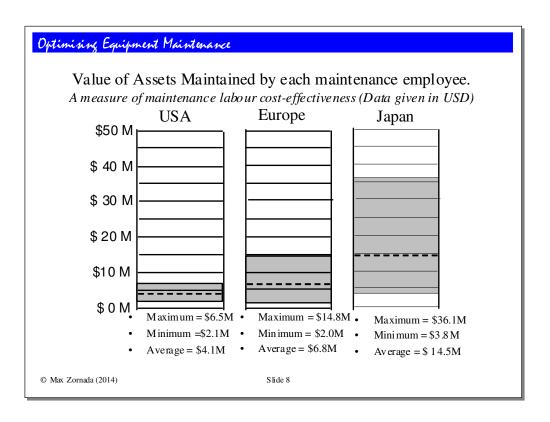
© Max Zornada (2014)

A Sampling of the Du Pont Benchmarks

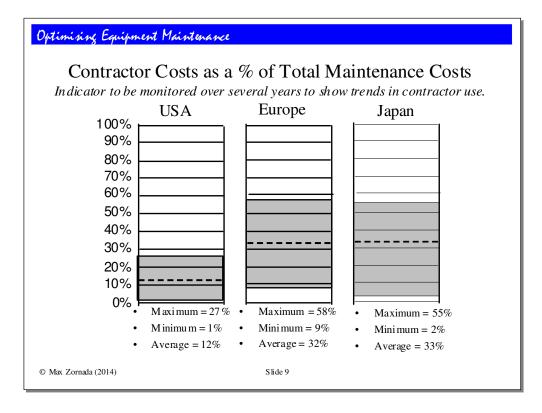

What they found

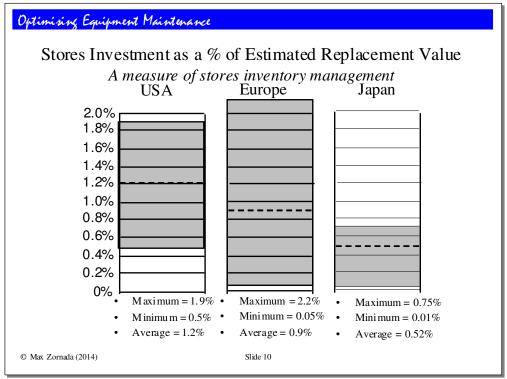
© Max Zornada (2014)

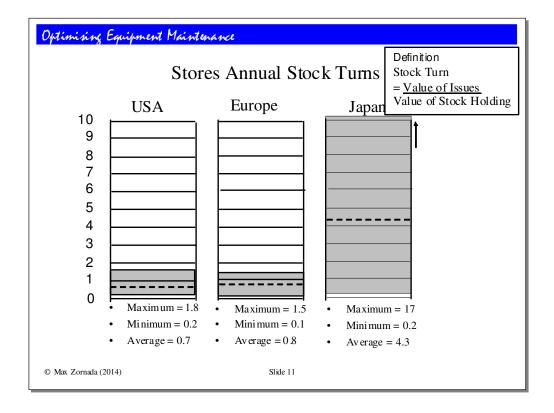

Slide 5

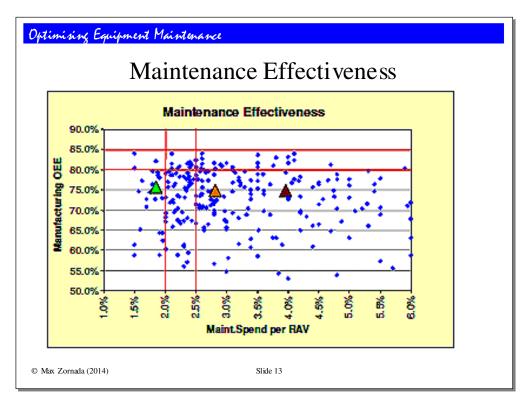

Optimising Equipment Maintenance

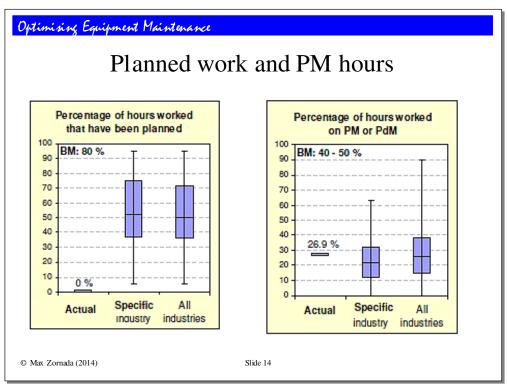
Maintenance Workers as a % of Total Plant Workers *The number of maintenance hourly paid workers required to support production.*



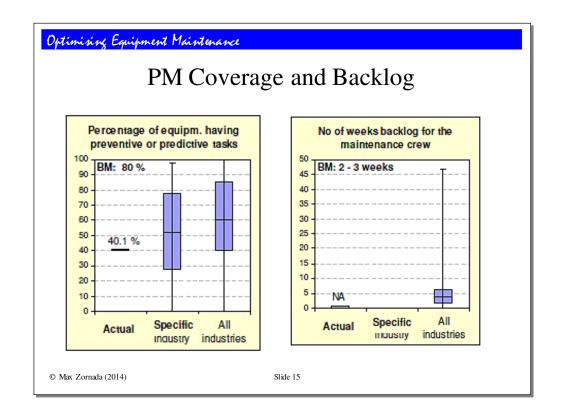





2006 Maintenance Benchmarking Study included following participants


- CMS, Chile
- BlueScope Steel, Australia
- Hydro Aluminium, Australia
- Kunda Nordic Cement, Estonia
- Mondo Minerals, Finland (3 sites)
- Boliden Harjavalta, Finland
- Outokumpu Poricopper, Finland
- OMG Harjavalta Nickel, Finland

- JaRo, Finland
- ABB Motors, Finland
- ABB Industry, Finland
- ABB Motors, Estonia
- DMS, South Africa
- MMC, South Africa
- Columbus Steel, South Africa
- Outokumpu Stainless, Sweden
- Alçan, UK


© Max Zornada (2014)

Foundations of Reliability

© Max Zornada (2014)

Slide 1

Optimising Equipment Maintenance

Reliability: A Definition

- A probability;
- Probability that a part or product will function properly for a given length of time.

© Max Zornada (2014)

Tactics for Reliability and Maintenance

- Reliability Tactics
 - improving individual components
 - providing redundancy
- Maintenance Tactics
 - implementing preventive maintenance
 - increasing repair capabilities

© Max Zornada (2014)

Slide 3

Optimising Equipment Maintenance

Measuring Failure Rates

- Failure Rate:
 - FR(%): # of failures / # tested in percent
 - Example: test 200 items, 4 fail,
 - FR(%)=2%
- FR(N): = # of failures / operating time
- Example: Test 25 light bulbs for 1500 hours. 5 fail at 500, 700, 750, 800, and 1200 hours
 - Total operating time = (20x1500)+3950=33950
 - -FR(N) = 5/33950 = 0.000147275 failures per hr.

© Max Zornada (2014)

Example, Continued

- Suppose you have 100 light bulbs that will be used for 1000 hours
- How many would you expect to fail?
- FR(N)x100x1000=14.72 bulbs

© Max Zornada (2014)

Slide 5

Optimising Equipment Maintenance

Mean Time Between Failures

- MTBF=1/FR(N)
 - for our example, 1/FR(N) = 6,790 hours

© Max Zornada (2014)

Summary of Definitions

- Reliability:
 - Probability that an item will function for a given time;
- Mean time between failures (MTBF):
 - Average time between failures of a repairable item;
- Failure rate:
 - Reciprocal of MTBF.

© Max Zornada (2014)

Slide 7

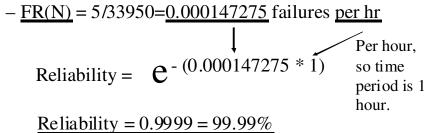
Optimising Equipment Maintenance

Quantifying Reliability

Reliability =
$$e^{-(fr * t)}$$

Where:

e = 2.718


fr = failure rate during a fixed period t = the duration of the fixed period.

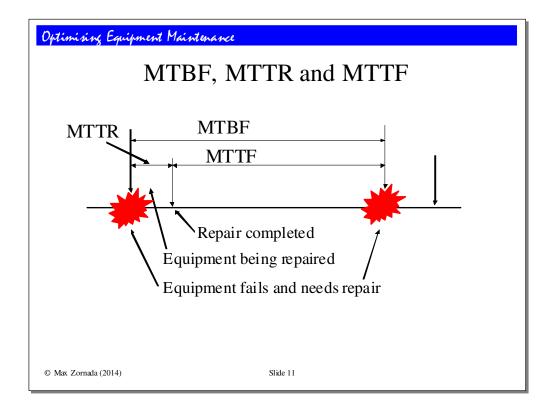
© Max Zornada (2014)

Reliability Example

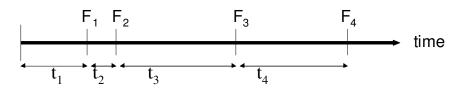
• Recall our light globes:

© Max Zornada (2014)

Slide 9


Optimising Equipment Maintenance

Some more definitions

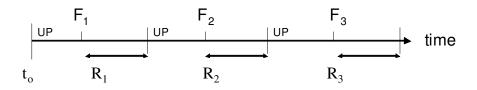

- Mean Time To Repair (MTTR)
 - The average time is takes to repair something after a failure;
- Mean Time To Failure (MTTF)
 - Is the time from when the repair is completed and the next failure;
 - Also referred to as Mean Time Between Repairs (MTBR)

© Max Zornada (2014)

MTBF and MTTF

 $t_0 = start time$

 $t_1 \dots t_4$ = operating times 1 through 4


 $F_1 \dots F_4 = failures 1 through 4$

$$MTBF = \underbrace{t_1 + t_2 + t_3 + \ldots + t_n}_{n}$$

© Max Zornada (2014)

Mean Time to Repair

$$t_0 = \text{start time}$$

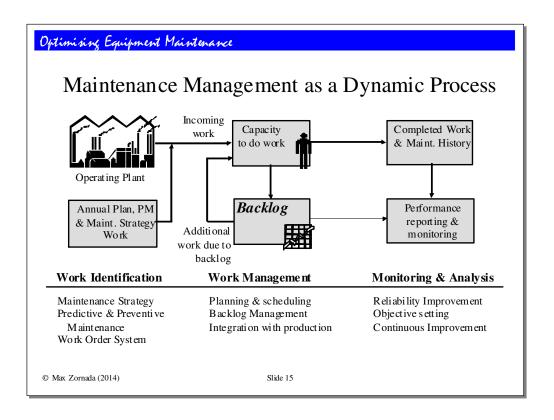
$$F_1 \dots F_3 = \text{failures } 1 \text{ through } 3$$

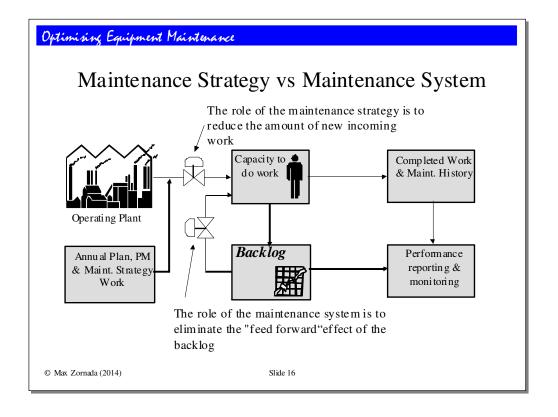
 $R_1 \dots R_3$ = repair times 1 through 3

$$MTTR = \frac{R_1 + R_2 \dots + R_n}{n}$$

© Max Zornada (2014)

Slide 13


Optimising Equipment Maintenance


MTTF, MTTR etc....

- MTTF = MTBF MTTR
- Is a better measure of improving reliability because:-
 - Poor maintainability (i.e. making repairs take longer) results in a longer MTTR and extends the MTBF for a given MTTF.
- MTTR is used as a measure of maintainability i.e. how fast are repairs complete;
- Downtime = $\frac{MTTR}{MTBF}$

© Max Zornada (2014)

Measuring Maintenance Performance

A Typical Week in Maintenance

A Typical Week in Maintenance

After meeting with the production supervision to discuss the week's production priorities and maintenance requirements, the maintenance supervisor prepares a weekly schedule for his work group.

After preparing the schedule, he notes that a total of *319 Estimated Labour Hours* of work have been scheduled. This represent a little over 50 % of his permanent workforce, which he feels should be achievable.

The week passes by like weeks usually do, and his schedule ends up being "blown out the water" as it is during most weeks. Additional jobs came up during the week in the form of urgent breakdowns, that forced him to reallocate tradespeople who had originally been allocated to scheduled work, to attend to these breakdowns.

Other jobs from the backlog, which had not been given priority at the weekly scheduling meeting suddenly became urgent requiring several unscheduled "backlog" jobs to be done in favour of scheduled work.

It was time to review just how badly things had gone before his manager "collars" him over some aspect of the week's schedule.

He uses his computerised maintenance management system to dial up a listing of total work done during the week. He notes that the total number of actual labour hours booked to jobs completed during the schedule week was **280 Actual Hours**. This included all jobs done regardless of whether they had been planned or scheduled or even known about in advance before being done.

Already things didn't look too good. The labour report indicated that even after allowing for the few sickies that were taken during the week and absence of the two fitters who attended a training course for most of the week, *540 Actual Hours* were available for work in his department during the schedule week.

Where had all the hours gone?

Closer examination of the work done list revealed that a reasonable portion of the work originally scheduled was actually done. In fact, 171 Estimated Hours had

been cleared from the scheduled and the total hours booked to complete these jobs was 175 Actual Hours.

Comparing the 175 actual hours to the 280 actual hours indicating the total work done, suggested that an additional 105 actual hours of work was done on jobs that had not been anticipated when the schedule was originally put together.

A quick scan through all the jobs that had been estimated prior to completion, which would suggest someone had looked at them in advance and done at least some degree of planning, revealed that a total of **210 Estimated Hours** had been completed from the backlog during the week. Furthermore, these jobs with estimates had **221 Actual Hours** booked against them.

A look at preventive maintenance specifically, revealed that of the work originally scheduled *80 Estimated Hours* had been PM. Of these, *76 Estimated Hours* had taken *82 Actual Hours* to complete. This looked good. However, the total hours of PM that had been missed indicated that total overdue preventive maintenance from previous weeks added upto 15 hours, add to this the 4 hours from the week just gone, brought the overdue PM to 19 hours for the year.

A check of the existing backlog indicated that *625 Estimated Hours* of work were still registered on the backlog and that an additional *145 Estimated Hours* of preventive maintenance would fall due within the next 2 schedule weeks.

As he looked up from his computer screen, he could see the Maintenance Manager coming through the door at the opposite end of the workshop and striding in his direction. It was times like these that he wished the back door to his office had not been sealed off when they relocated the tool store.

Discussion Question

Without attempting to do any in-depth calculations on the figures given what are you initial thoughts about the situation described?

A Summary of the Week's Numbers

Actual hours booked against all jobs done	280
Actual hours booked against jobs with estimates	221
Estimated hours cleared from the schedule	171
Estimated hours originally scheduled	319
Actual hours spent on scheduled work	175
Estimated hours of PM cleared from the schedule	76
Estimated hours of PM originally scheduled	80
Actual hours spent working on PM	82
Overdue PM	19
Estimated hours completed	210
Actual hours on planned jobs	221
Estimated hours still to do at the end of the week	625
PM due during the next 2 weeks	145
Total Backlog Hours	770
Total Hours of Labour Available during the week	540
	Actual hours booked against jobs with estimates Estimated hours cleared from the schedule Estimated hours originally scheduled Actual hours spent on scheduled work Estimated hours of PM cleared from the schedule Estimated hours of PM originally scheduled Actual hours spent working on PM Overdue PM Estimated hours completed Actual hours on planned jobs Estimated hours still to do at the end of the week PM due during the next 2 weeks Total Backlog Hours

Maintenance KPI's

% Planned Work = Planned Work Done (B) = 221 Total Work Done (A) 280

= 79%

Schedule = $\frac{\text{Est Hours Sched. Work Done (C)}}{\text{Achievement}}$ = $\frac{171}{319}$

= 54%

% Scheduled = $\underline{\text{Act Hours on Sched Work Done (E)}}$ = $\underline{175}$

Total Work Done (A)

280

= 63%

© Max Zornada (2014) Slide 19

Optimising Equipment Maintenance

Maintenance KPI's (Continued)

PM Schedule ach'vmnt = Est. Hours of PM Scheduled & Completed (F)

Est. Hours of PM originally scheduled (G)

 $\frac{76}{80} = 95\%$

 $\% \text{ PM} = \underline{\text{Act Hours on PM (H)}} = \underline{82}$

Total Work Done (A) 280

= 29%

Overdue PM = 19 Hours

© Max Zornada (2014) Slide 20

Maintenance KPI's (Continued)

Estimating Index = Est Hours on Planned Work (I)
Actual Hours on Planned Work (J)

= $\frac{210}{221}$

= 95%

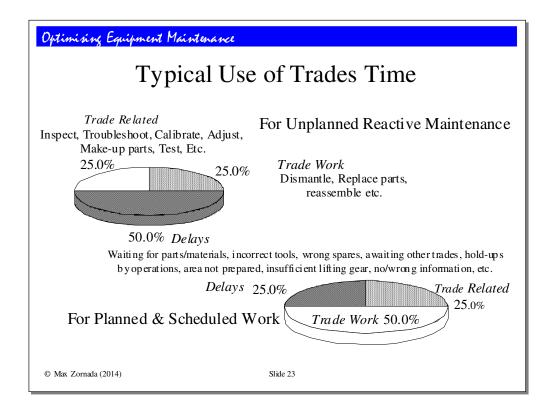
© Max Zornada (2014)

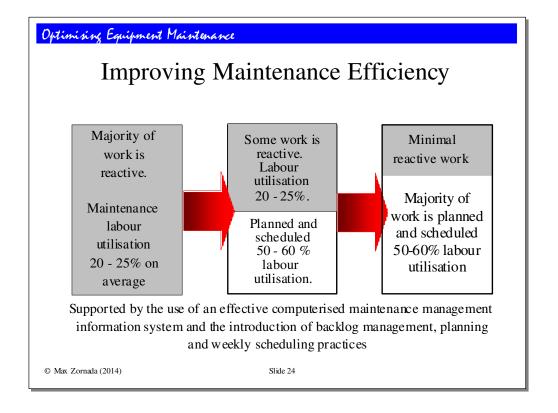
Slide 21

Optimising Equipment Maintenance

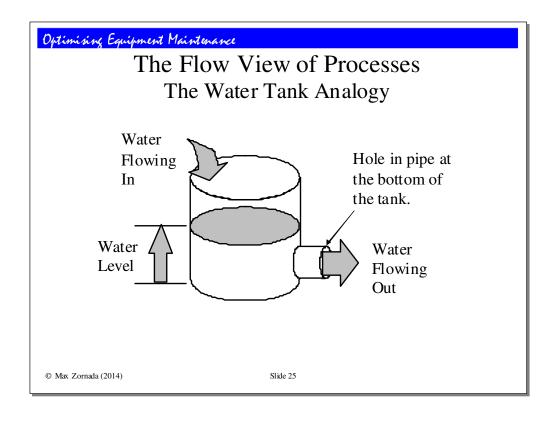
Maintenance KPI's (Continued)

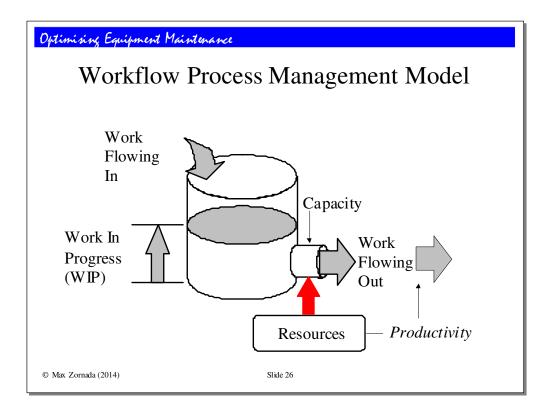
Backlog in hours

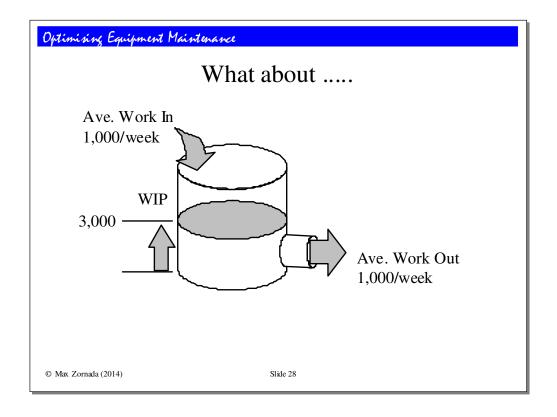

- = Estimated Hours outstanding work + next 2 weeks PM
- = 625 + 145 = 770 Hours

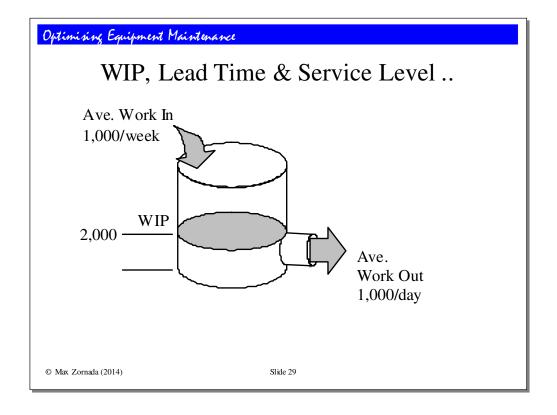

Backlog load in weeks

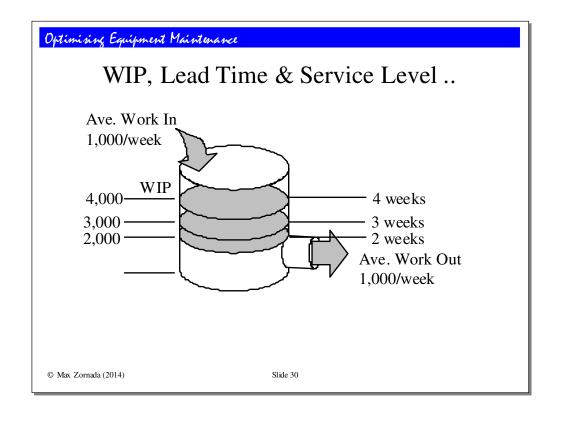
- = Estimated Hours Outstanding = 770 Total Hours Done This Week x EI 280 X 0.95
- = <u>2.9 weeks</u>

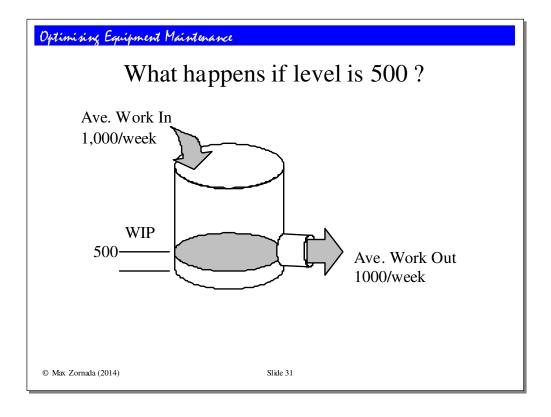

© Max Zornada (2014)

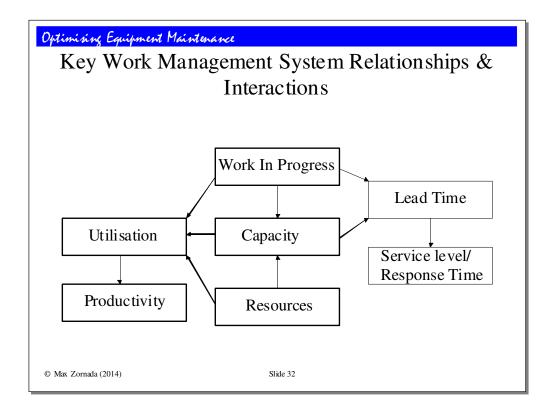


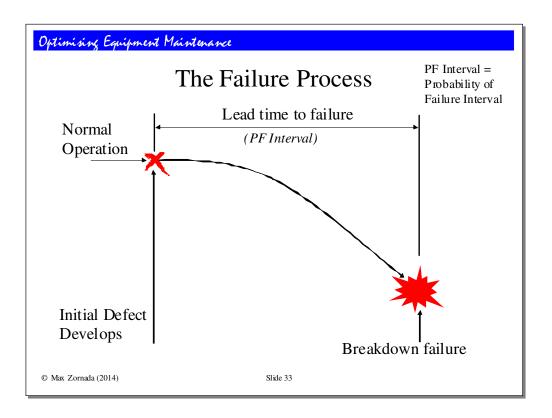


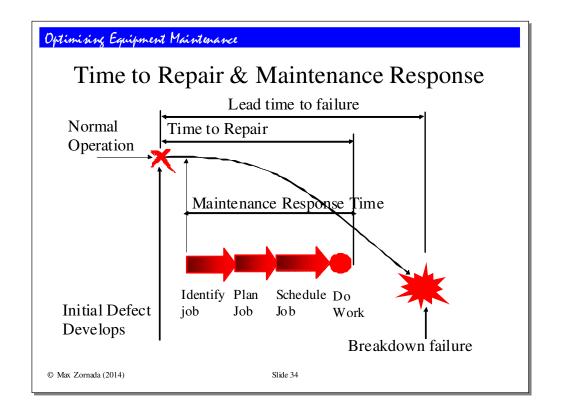


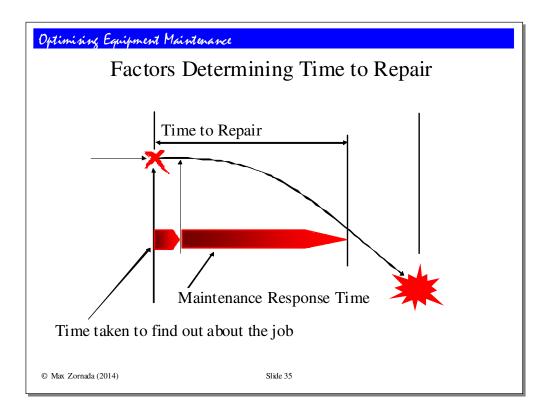


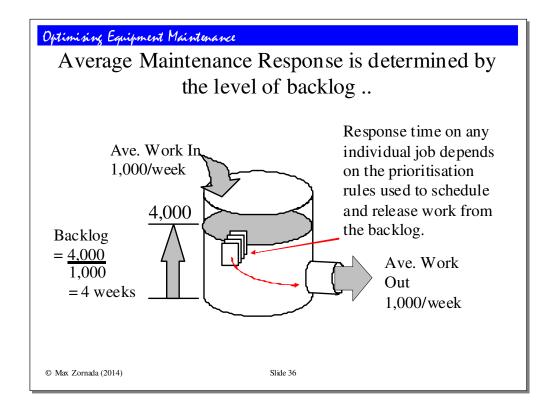


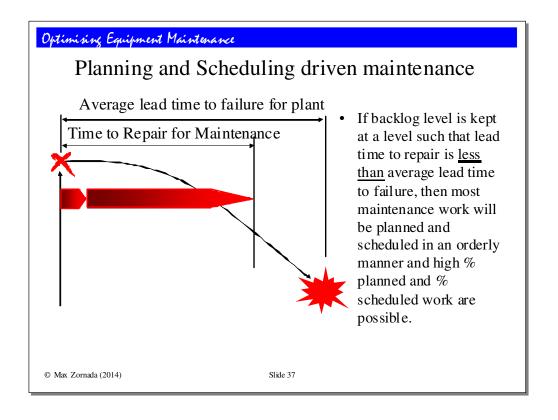


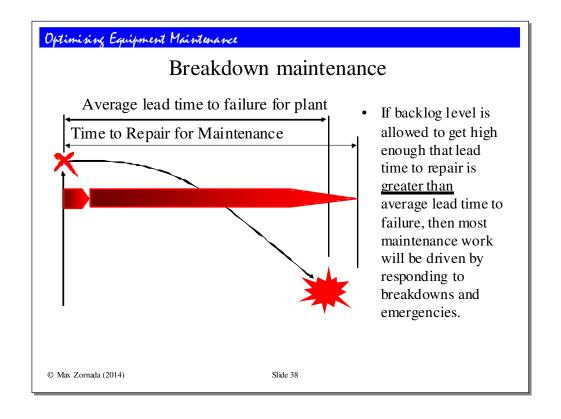


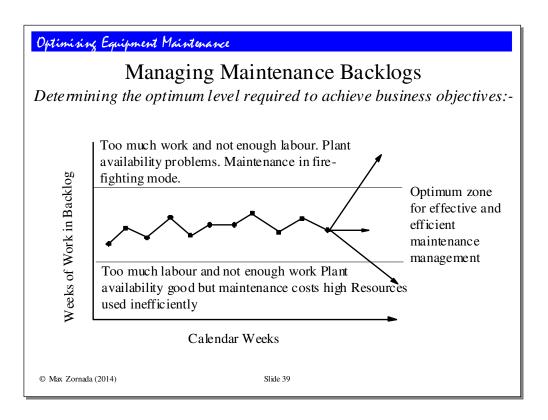




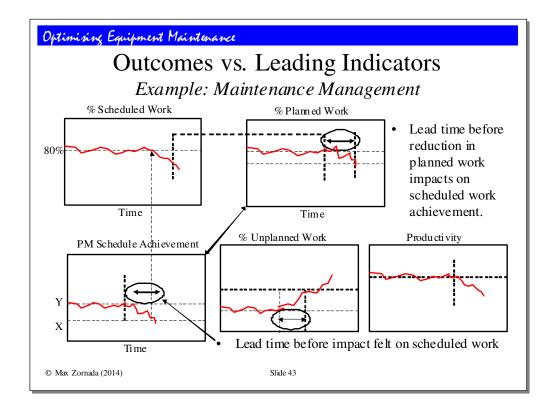








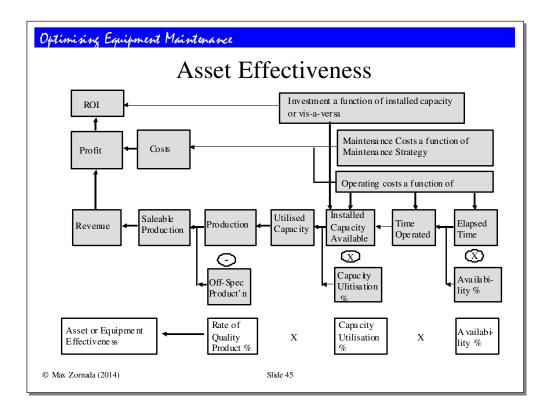
Lead and Lag Indicators for Maintenance Management and Reliability

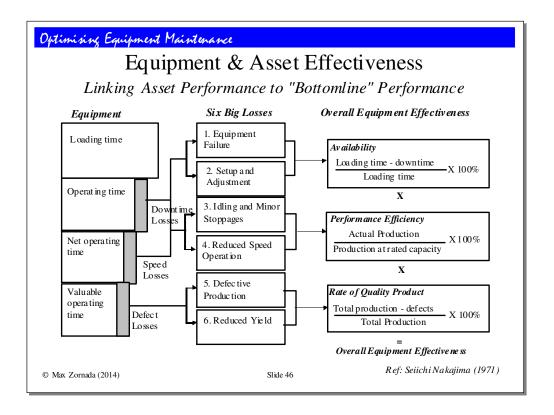

© Max Zornada (2014)

Slide 40

Optimising Equipment Maintenance Monitoring Maintenance Management KPI's Backlog in Weeks Plant Performance Backlog held at Maximum optimal level gives good plant performance. Minimum % Planned % Scheduled High levels of planned and scheduled work achievable © Max Zornada (2014) Slide 41

Optimising Equipment Maintenance Monitoring Maintenance Management KPI's Backlog in Weeks Plant Performance · Backlog get to Maximum high; Breakdowns interrupt schedule, Minimum leading to % schedule reducing; • Leads to less % Scheduled % Planned planned work done; • Leads to deterioration in plan performance. Slide 42 © Max Zornada (2014)




Overall Equipment Effectiveness

Also called: Overall Asset Effectiveness

© Max Zornada (2014)

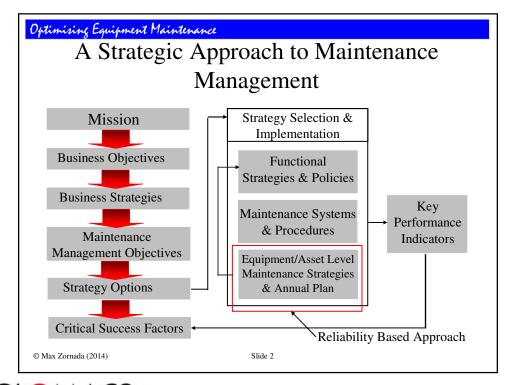
OEE Definition

The objective of OEE is to evaluate the global effectiveness of a specific equipment of plant. It is calculated considering losses of Availability, Productivity and Quality.

© Max Zornada (2014)

Process Industry Equivalent of OEE: UPtime the equivalent amount of time the facility can operate at its maximum demonstrated rate while making first quality product. Scheduled Outage Losses Unscheduled Outage Losses Plant Process Related Rate Losses Quality and Yield Rate Losses Transition Losses Valuable Operating Time

Module 2:


Preventive Maintenance and Spare Parts Strategy

Reliability Based Preventive Maintenance Strategy

© Max Zornada (2014)

Introduction to Reliability Centred Maintenance (RCM)

© Max Zornada (2014)

Slide 3

Optimising Equipment Maintenance

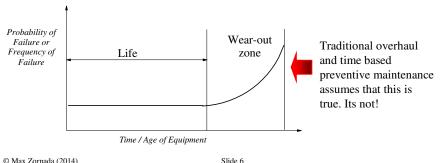
The Purpose of RCM

• RCM determines what must be done to ensure that any physical asset continues to fulfill its intended functions in its present operating context

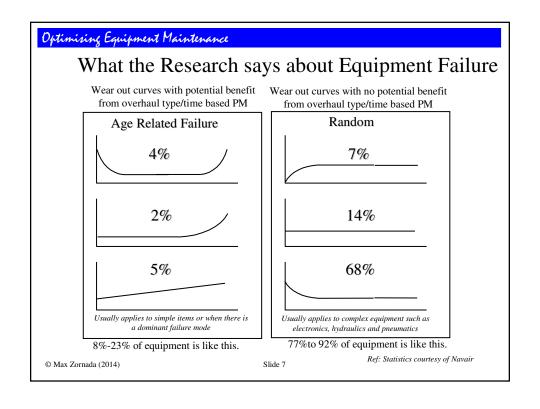
© Max Zornada (2014)

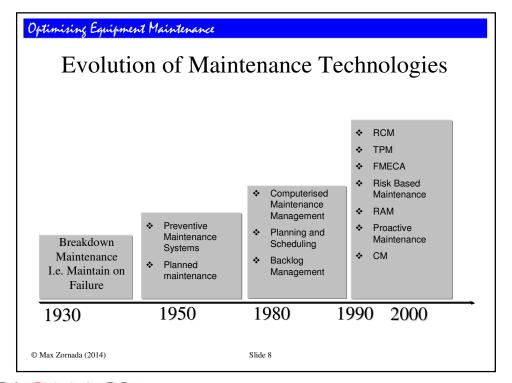
The 7 Questions of RCM

- What are the functions and the required performance standards of the asset?
- In what ways does it fail to fulfil its functions?
- What causes each functional failure?
- What happens when each failure occurs?
- In what way does each failure matter?
- What can be done to prevent each failure?
- What should be done if a suitable preventive task cannot be found?


© Max Zornada (2014)

Slide 5


Optimising Equipment Maintenance


Traditional Views of Equipment Failure

- The frequency of scheduled restoration (PM/Overhauls) and/or scheduled discard (replacement) is determined by the equipment life;
- Carry out PM or replace just before reaching the wearout zone.

Consider 3 identical pumps

What is the best Preventive Maintenance Program?

Pump B

- Fixed time maintenance?
- Condition monitoring?
- Run to failure?

© Max Zornada (2014)

Slide 9

Optimising Equipment Maintenance The Operating Context influences PM

Three Items of Equipment Three PM Approaches Stand-by

Pump A

Stand-alone

Pump B

Common Spare

Pump C

Operational Consequences

- Non-Operational Consequences
- Hidden Failure

- Overhauls
- Fixed time inspections Condition monitoring
- No scheduled maintenance
- Check for failure

© Max Zornada (2014)

Reliability Centred Maintenance

- Developed within the US aircraft industry to provide a formal definition of preventive maintenance tasks in a safety critical environment;
- Based on reliability engineering principles and focuses maintenance on expected failure modes within a specific operating context.

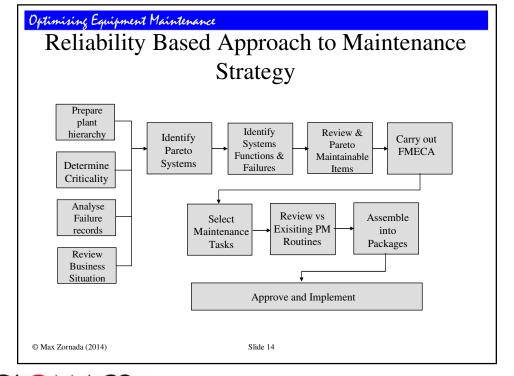
© Max Zornada (2014)

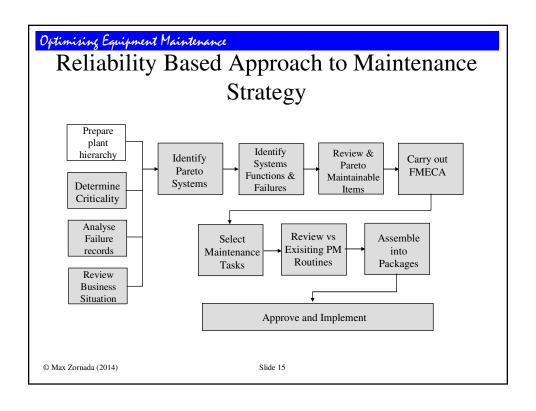
Slide 11

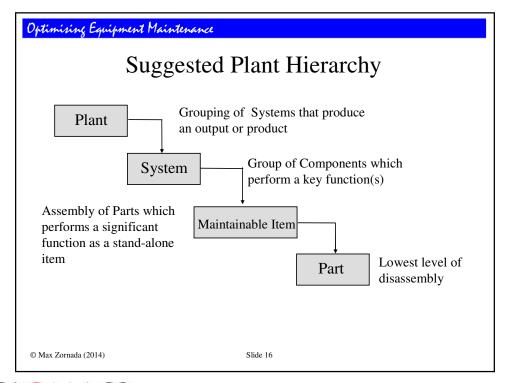
Optimising Equipment Maintenance

Impact of RCM on Work Loads

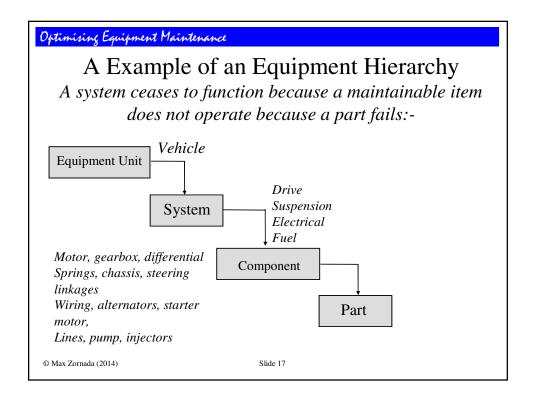
- Reduced overhaul scope of work:
 - DC8:339 Items DC10:Only 7 Items
- Reduced Effort
 - 20,000 hour major overhaul
 - DC8: 4 Million manhours
 - 747 : 66,000 manhours

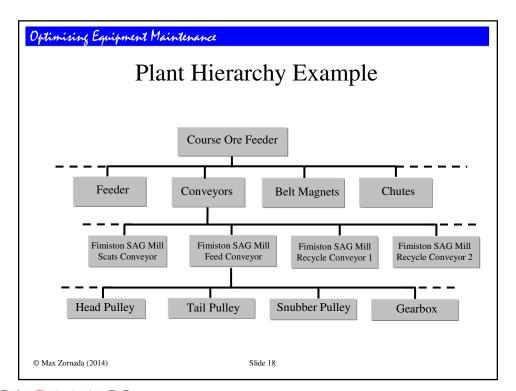

© Max Zornada (2014)

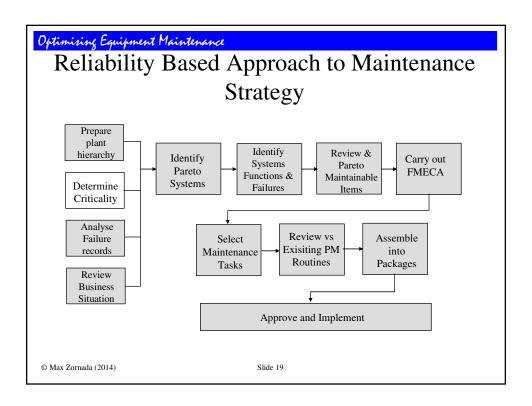

Impact of RCM on Safety


- Overall Fatality Rates
 - 1958: 60 per million takeoffs
 - 1998: 1 per million takeoffs
- Equipment Failure as a Root Cause
 - 1958: 40 per million takeoffs (2/3)
 - 1998: 1 in 30 million takeoffs (1/1200 of the historical rate)

© Max Zornada (2014)







Definition of Criticality

- Criticality is the impact of failure of a system or maintainable item on:
 - Environment;
 - Safety;
 - Plant integrity;
 - Sales and customers;
 - Production (and sales);

© Max Zornada (2014)

The Use of Criticality

- Criticality is used to determine the order in which we will address the systems/maintainable items. Having selected a system, criticality is not used in the analysis in determining what is the appropriate maintenance strategy, which, as we shall see, has more to do with cost and other matters. However at the maintainable item level criticality or some other measure may be used to determine whether or not to spend the time developing the strategy or not.
- Again depending on the reason for carrying out RCM criticality may not have any bearing on our decisions. For instance if the purpose was to reduce plant downtime caused by maintenance problems and there were adequate records indicating which items of plant were the main offenders, then these records could be used for setting the priority in which the systems / components were addressed.

© Max Zornada (2014)

Slide 21

Optimising Equipment Maintenance

An Example of Criticality Definitions

Criticality 1

- Immediate or severe danger to personnel
- Major production stoppage
- Major quality impact
- Immediate or severe danger to environment

© Max Zornada (2014)

Criticality 2

Criticality 3

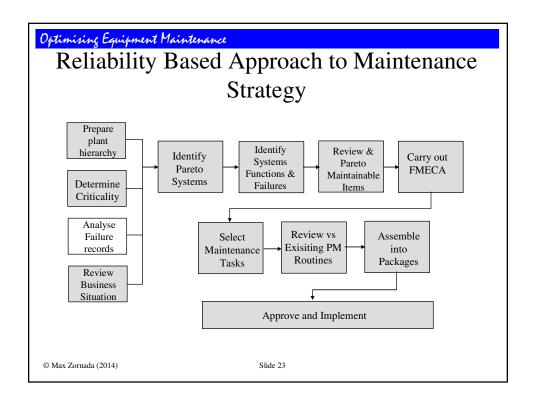
Increased risk of

production or quality

Criticality 4

- environmental hazard Minor production
- stoppage
- Minor quality impact

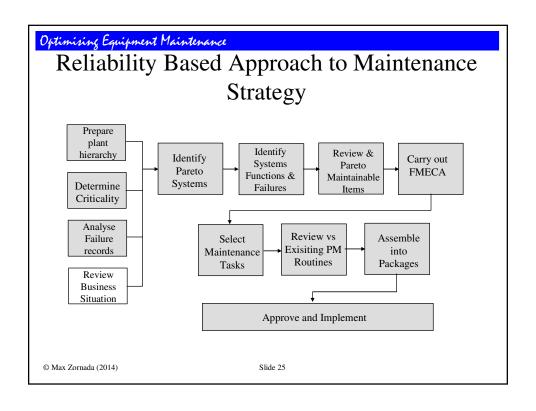
Potential safety or

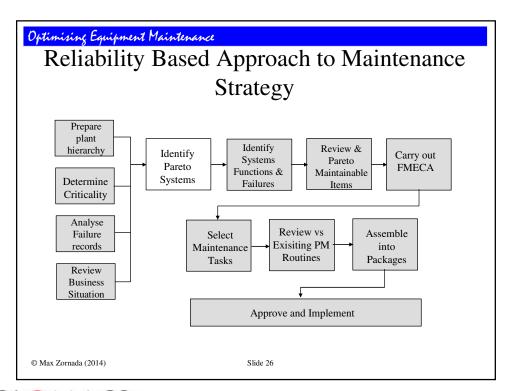

No back-up

No identifiable or

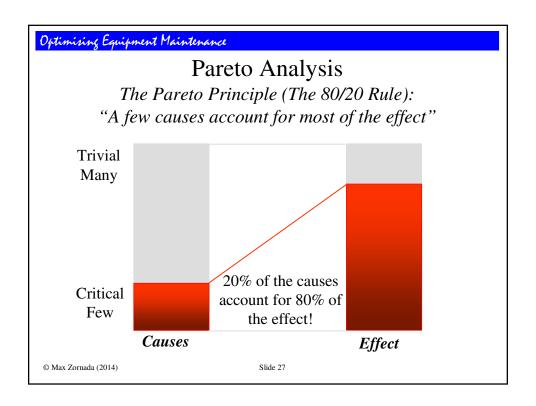
quality impact

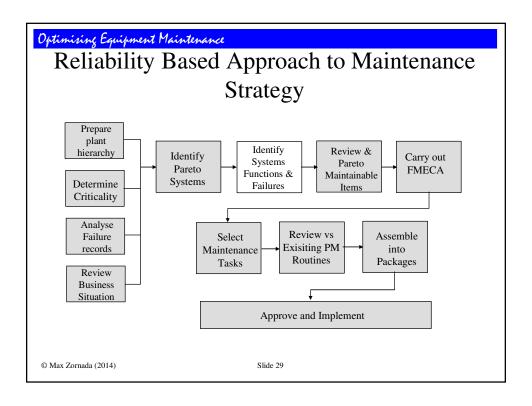
likely production or




Analyse Failure Records

- Need to establish starting measures of Reliability;
- Need to analyse downtime if it is the driver of the project:
 - Total downtime by plant/system;
 - Frequency of failure (MTBF or FR);
 - Average duration of downtime (MTTR);
- Need to analyse maintenance costs.


© Max Zornada (2014)



Determine Order of Systems on which to apply the RCM Process

- Determine Order of Systems on which to apply the RCM Process;
- Identify the driver (business reason) establishing the priority of a system;
- Rank maintainable items in descending order of importance.

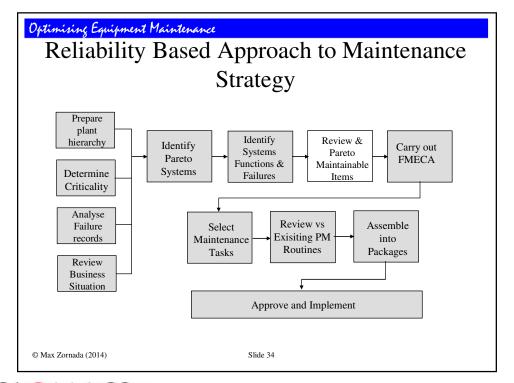
© Max Zornada (2014)

Define System Functions and Failure Types

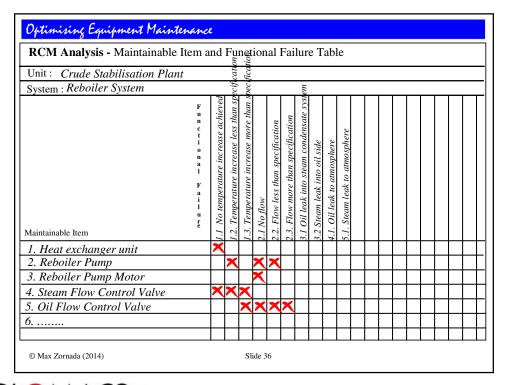
- For each selected System:
 - describe the system its mode of operation and required functions;
 - define the various ways in which the system can fail to perform its function (assume appropriate supply of inputs i.e. required outputs from other systems are being provided);
 - analyse existing records or knowledge to determine how the components have failed historically.

© Max Zornada (2014)

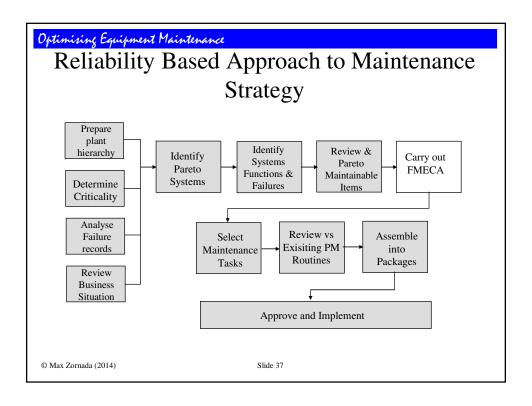
Optimising Equipment Maintenance	
RCM Analysis - Function and Function	nal Failure
Unit:	
System:	
System Function	Functional Failure
© Max Zornada (2014)	Slide 31


Optimising Equipment Maintenance	
RCM Analysis - Function and Functional Fa	iilure
Unit: Crude Stabilisation Plant	
System: Reboiler System	
System Function	Functional Failure
1. Heat Crude Oil to achieve specified	1.1 No temperature increase achieved
temperature increase.	1.2. Temperature increase less than specification
_	1.3. Temperature increase more than specification
2. Circulate Oil at specified flowrate.	2.1 No flow
	2.2. Flow less than specification
	2.3. Flow more than specification
3. Maintain separation between steam side	3.1 Oil leak into steam condensate system
and oil side to avoid cross contamination.	3.2 Steam leak into oil side
4. Hold process pressure on oil side.	4.1. Oil leak to atmosphere
5. Hold process pressure on steam side.	5.1. Steam leak to atmosphere
<i>6.</i> ??	
© Max Zornada (2014)	Slide 32

Functions and Failures


- <u>Functions:</u> How does it work and what performance do we want from the equipment in its present operating context?
- <u>Functional Failures:</u> In what way does it fail to do what we want?
- Failure Modes: What actually causes each failure?
- <u>Failure Effects:</u> What happens when each failure mode occurs?

© Max Zornada (2014)



Failure Modes, Effects & Consequences Analysis (FMECA)

- FMECA refers to the determination of functions, functional failures, failure modes, failure effects, and failure rates to the extent required for RCM analysis of a selected item.
- Does not intend to imply that a full FMEA or FMECA as defined for design or other processes is required to perform RCM...

© Max Zornada (2014)

Failure Modes, Effects & Consequences Analysis (FMECA)

- · Select maintainable items most likely to fail
- For each identified maintainable item, determine all the failure modes
- For each failure mode identify root cause and the consequence of the failure
- Apply a ranking to each mode of failure considering impact on :
 - safety
 - regulations
 - product quality

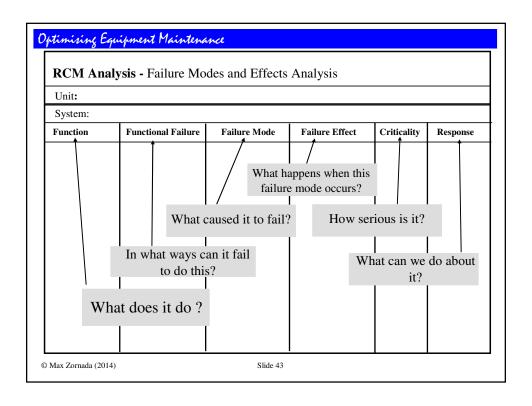
© Max Zornada (2014)

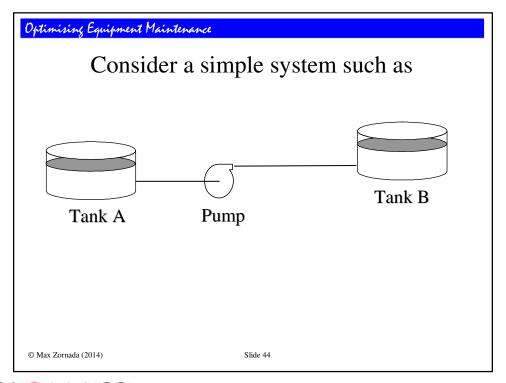
Slide 39

Optimising Equipment Maintenance

Failure Consequences or Effects

- <u>Hidden Failures:</u> -Mostly protective devices which are not fail-safe.
- <u>Safety or Environmental Consequences:</u> -Some-one could get hurt or killed, or an environmental standard or regulation could be breached.
- <u>Operational:</u> Affect output, product quality or customer service.
- Non-operational Consequences: Repair only.

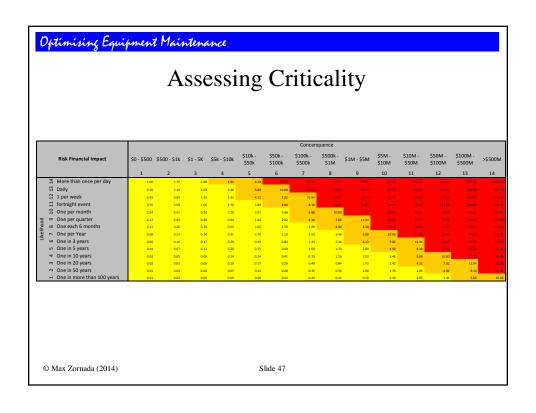

© Max Zornada (2014)

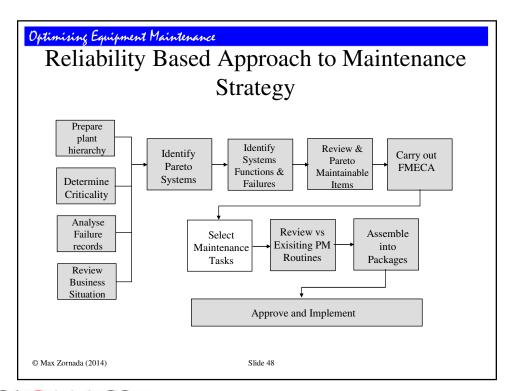


	•	des and Effects			
Unit:					
System:					
Function	Functional Failure	Failure Mode	Failure Effect	Criticality	Response
			l		

timising Equipment Maintenance											
llysis - Failure Mod	des and Effects	Analysis									
Functional Failure	Failure Mode	Failure Effect	Criticality	Response							
	an	l									
	llysis - Failure Mod	Functional Failure Failure Mode	Functional Failure Failure Mode Failure Effect	Functional Failure Failure Mode Failure Effect Criticality							

Analysing the Functions and Failures


Function	Function Functional Failure		On I still still				Failure Effect (What Happens After it Fails)
1 To pump water from Tank A to Tank B at not less than 1000 Litres per	A	Fails to pump any water at all.	1	Bearing seized	Motor trips, trip alarm sounds. Tank B low level alarm sounds after 20 minutes and tank runs dry in 30 minutes. Downtime to replace bearing about 4 hours.		
minute			2	Coupling fails	Motor does not trip but low level alarm sounds after 20 minutes.		
			3	etc., etc.,	Downtime to replace coupling about 3 hours.		
	В	Pumps less than 1,000 litres per min.	1	Impeller worn	Level in tank B gradually drops until low level alarm sounds. Downtime to replace impeller, about 2 hours.		


© Max Zornada (2014)

Slide 45

RCM Analysis - Failure Modes and Effects Analysis Unit: System: Function Functional Failure Failure Mode Failure Effect Criticality Response

Preventive Maintenance Task Options

- S (Servicing Task) Replenishment of consumable materials depleted during normal operations
- L (Lubrication Task) Replacement of a lubricant based on manufacturer's predicted or measured life of the lubricant
- OC (On Condition Task) Periodic or continuous inspection designed to detect a potential failure condition prior to functional failure
- ST (Time Scheduled Task)
 - STR Scheduled restoration overhaul at fixed intervals regardless of its condition;
 - STD Scheduled discard replace at fixed intervals regardless of its condition.
- FF (Failure Finding Task) A preventive maintenance task performed at a specified interval to determine whether a hidden functional failure has occurred.

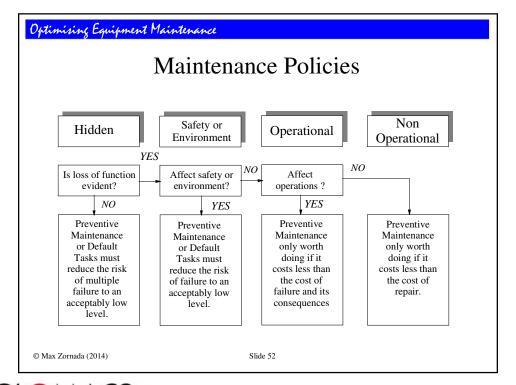
© Max Zornada (2014)

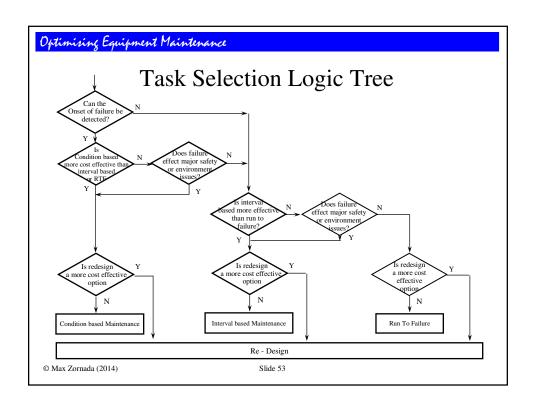
Slide 49

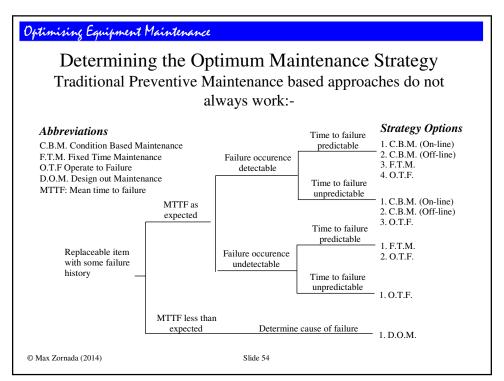
Optimising Equipment Maintenance

Other Actions

- One time action, other than PM, that will effectively reduce the likelihood and consequences of failure to an acceptable level
 - Redesign change the equipment or the process;
 - Change in an operational or maintenance procedure
 - Operating restrictions
- Failure check finds that failure has occurred;
- No scheduled maintenance.

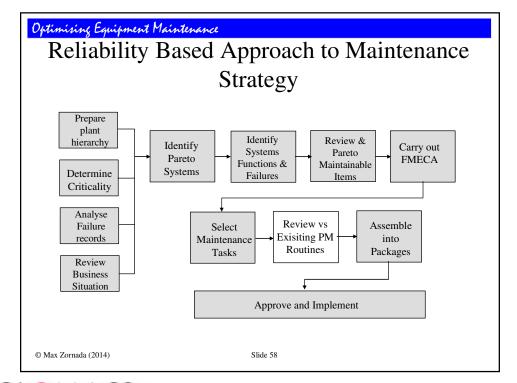

© Max Zornada (2014)


Select Maintenance Task


- Apply the Task Selection Decision Tree logic
- Determine the specific maintenance task/action
- For each maintenance task carry out preliminary planning. Determine :
 - -task frequency
 - -skill classification
 - -labour duration and numbers

© Max Zornada (2014)

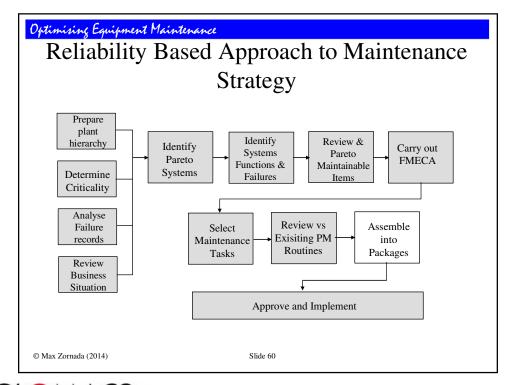
		/11	ιις	/ L	oa	se	u	IVI	aı	Πl	en	lai	ıc	e S	Su	al	eg	Зy		H	ш			
			cality						cality:						cality (cality -			
		r Saf			etrieva		of ef	ficien	oducti cy. M ental	ajor	ss or ct	loss	effic	eased iency ass c	loss.	(Spar	ed ed	quip,	No Ir	mpac	t on P	rodu	ction	
Differential Maintenance Cost of Failure	High	(>\$3	,000)	Low	(<\$3,	000)	High	(>\$3	,000)	Low	(<\$3	(000	High	ı (>\$3	,000)	Low	(<\$3,	000)	High	(>\$3	,000)	Low	(<\$3,	,000)
Failure Predictable	Yes		No		Yes	No	Yes		No		Yes	No	Yes		No		Yes	No	Yes		No		Yes	No
Type of Maintenance	.,		v		٧.	· ·	.,		٧.		V	,		,	V		٧.		.,		٧.			,
Inspection/Lubrication	Y		Y	l	Y	Y Y	Y		Y		Y Y	Y Y	l Ì	J	Y	l	Y	Y	Y		Y N	l	Y N	Y
Preventive Maintenance (Task) Condition Monitoring	I v		Y N		Y	Y N	Y		Y N		Y	N	,		Y N		Y N	N N	N N		N		N N	N
	l N		Y		N.	Y	N N		Y		N.	N	l i		N Y		N	N	Y		N Y		N	N
Change Out On Life Run to Failure	I N		N.		N	Y N	N N		N.		N	IN	l N		N N		Υ	Y	N		Y N		Y	Ϋ́
Investigation of Breakdowns	IN V		Y		Y	Y	IN Y	-	Y	<u> </u>	V	Y		-	Y		N.	N	N N		N	-	N	N
Off-Site Repairs (Assuming can be	+ '		1		-	1		Tob		idad	indivi	t dually	Η'	1	1		IN	IN	IN	<u> </u>	IN	_	IN	IN
on-site Repairs (Assuming can be done on site)								100	e ded	aaea	maivi	dually												
Use Rotable	+-												-											
Value of Rotable Stock	>\$10	no IZ	ቀሳሰ	1001/	<\$20	NZ.	>\$10	nov.	¢ሳስ	1001/	I<\$20	nV	. 01	00K	\$20-	1001/	<\$20	NZ.	>\$10	nov.	600	100K	<\$20	nν
Repair Time < 1 Day	2010	Y	φ20-	Y	<\$20	Y	>\$10	N	φ20-	N	<φ2ι	N	> P 1	N	φ20-	N	<\$20	N	>\$1C	N	φ20-	N	<\$2\	N
1-3 Days		Ÿ		Y		Ÿ		N		N		Y		N		N		N		N		N		N
3-15 Days		Ÿ		Ý		Ÿ		Y		Y		Ý		N		N		Y		N		N		N
>15 Days		Ÿ		v		Ÿ		Ý		Ý		Ý		Y		Y		Ÿ		N		N		N
Stock Holdings (Items< \$20,000)	Δοοι		no Br		Stoc				_		1		H							IN	-	IV		IN
(Whether to Hold Stock or Not)			e par		. 0.00		1						1						1					
Value of Total Stock Holding			\$500		Т		\$2.0	00 -	\$500)-	1		\$2.0	000 -	\$500)-	Г		\$2.0	00 -	\$500)-	Т	
raide of Total Clock Holding			-\$2.0		<\$50	nn	-\$20		-\$2,0		<\$50	າດ		0.000	-\$2.0		<\$50	າດ	-\$20		-\$2.0		<\$50	nn
Failure Predictable?	Yes		Yes		Yes		Yes		Yes		Yes			No	Yes		Yes		Yes		Yes		Yes	
	1.00		. 50		1.50			1		1	1.00	1	1.00	1	. 50		. 50	1		1	1.00	1		1
Lead Time			l		1		1		1		1	1	1	ĺ	Ì				1	1	ĺ	l		1
< 1 Day (Avail Ex. Stock-Local)	Υ	Υ	Υ	Υ	Υ	Υ	N	Υ	N	Υ	Υ	Υ	N	N		N	N	N	N	N		N	N	N
1-5 Days (Avail Ex. Stock-Country)	Y				Y	Ý	N	Ý	Υ	Y	Y		N							N		N	N	N
5-15 Days	Y	Y	Ý		Y	Ý	Υ	Ý	Y	Y	Y		N				Υ	Ý	N	N			N	N
>15 Days	Y	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	N	N	N	N	N	N


Optimi	sing Equipme	nt Maintenance		
	Asset	Specific Ma	intenance S	Strategies
	High	Time Based Useful Life, Schedule and Replace Before Failure	Time Based Useful Life, Inspect, PM and CM.	RCM, FMECA, CM, PdM and PM. Root Cause Analysis
Criticality	Medium	Inspect, Run to Failure	Inspect, Preventive Maintenance.	PM, PdM and Root Cause Analysis
)	Low	Run to Failure	Operational Maintenance	Preventive Maintenance
V	omponent alue ornada (2014)	0-\$5,000	\$5,000-50,000 Slide 56	\$50,000++

Costing Considerations What are the real costs of failure?

- Lost revenue due to the lost time
- Shut down and start up costs
- Plant ticking over costs
- Off specification product rework costs
- Wasted operator costs
- Additional maintenance administration costs
- Inefficient maintenance working
- Increased inventory
- Consequential damage

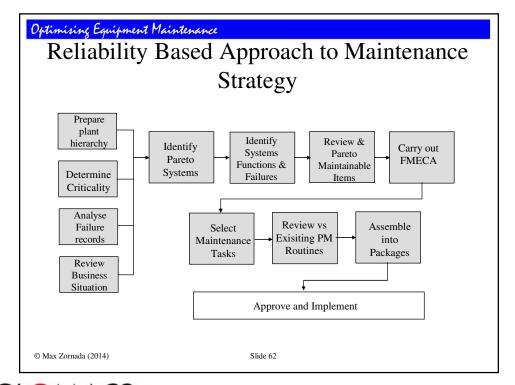
© Max Zornada (2014)

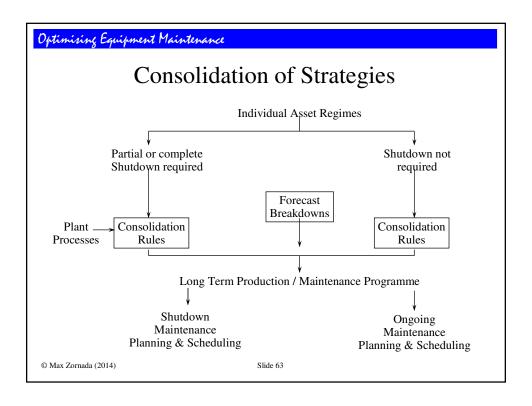


Review Selected Tasks Against Existing Maintenance Strategy

- Sort tasks by common frequency
- Review existing maintenance programme to:
 - identify any tasks not included in the RCM analysis
 - identify significant differences in frequency and duration of common tasks
- Hold challenge sessions with key maintenance and operating

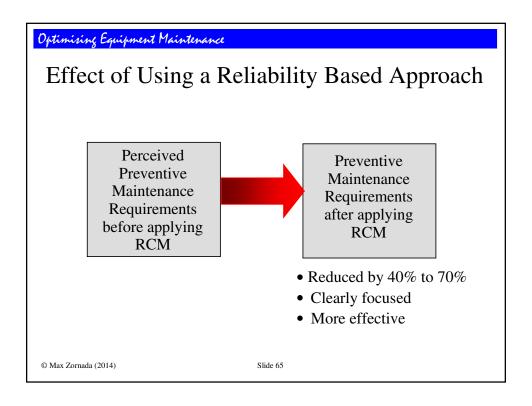
© Max Zornada (2014)




Assemble Work Packages and Schedule in Computer System

- Complete task planning -Start date, procedure, parts/rotables, access
- Sort tasks into groups with similar skills, access requirements and frequencies
- Assemble grouped tasks into sensible work packages
- Plan the implementation of the new work packages
- Input planned work packages into the maintenance management system

© Max Zornada (2014)

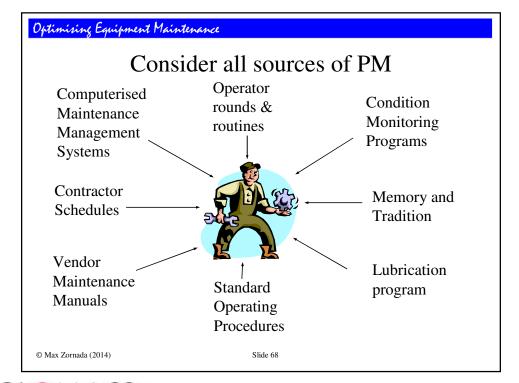


Implementing the RCM Process

- Draw up a plant register;
- Analyse functions and failures;
- Evaluate failure consequences;
- Select maintenance policies;
- Compile maintenance schedules, revise operating procedures, implement design changes;
- Progressively implement into work management system.

© Max Zornada (2014)

Preventive Maintenance Optimisation


© Max Zornada (2014)

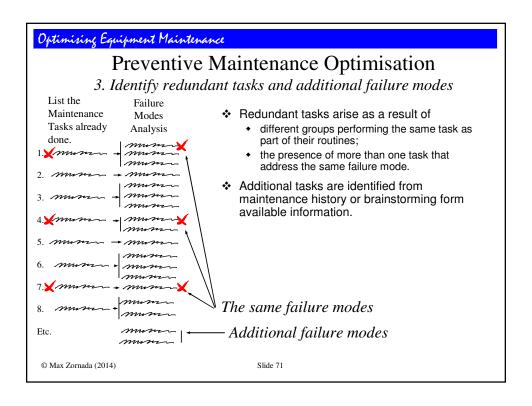
Key Steps in PMO

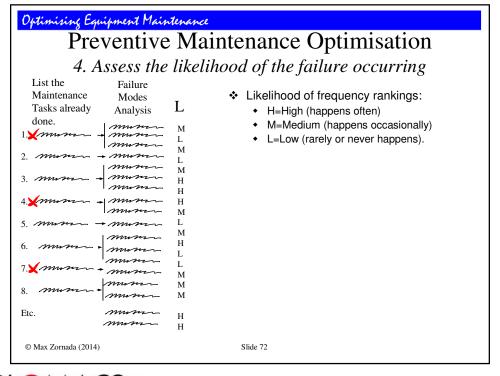
- Task Compilation Identify existing maintenance tasks
- Failure Modes Analysis (FMA)
- Rationalisation and FMA review
- Functional Analysis (Optional)
- Consequences Evaluation
- Maintenance Policy Determination
- Group and Review
- Approval and Implementation
- Review and Update in light of operating experience.

© Max Zornada (2014)

Optimising Equipment Maintenance Step 1 — Task Compilation

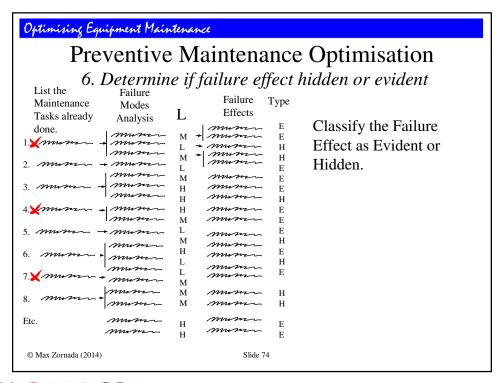
Identify Existing Maintenance Tasks

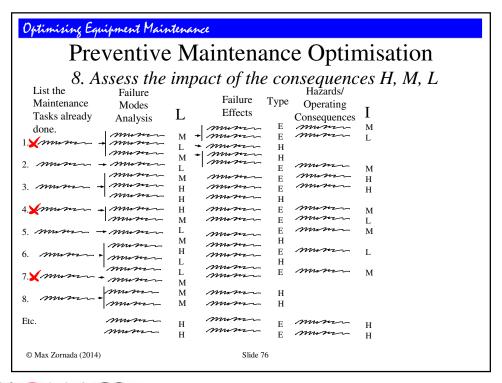

- Identify/collecting or document the existing maintenance program (formal or informal) and load into a database via a spreadsheet.
- Maintenance is often performed by a wide cross section of people including operators.
- Some Preventive Maintenance is done at the initiative of the tradesmen or operators and not documented formally.
- In this situation, task compilation is a simple matter of writing down what the people are doing.


© Max Zornada (2014)

Slide 69

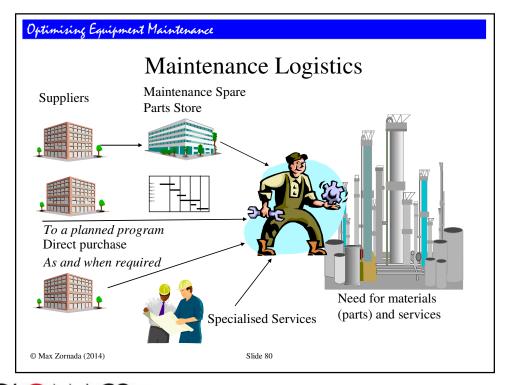
Optimising Equipment Maintenance Preventive Maintenance Optimisation 2. Identify the Failure Modes the tasks address List the Failure Maintenance Modes Tasks already Analysis done. Etc. © Max Zornada (2014) Slide 70





Preventive Maintenance Optimisation								
		Failure L Effects M + mmm L + mmm M + mm M +						
mun-	munn	M munn H munn H munn						
mun -	munn	M munn L munn M munn						
× mum	munn	H mmm L mmm L mmm M						
mm.	munn	M mmm						
te.	munn	H mmm						
Max Zornada (2014)		Slide 73						

		amcman	ce Optimisation
7. If	effect is ev	ident, identif	y hazards/operating
Maintenance M Tasks already Andone.	adure lodes lalysis L L L L L L L L L L L L L	Consequence Failure Ty Effects mum mum mum mum mum mum mum m	Consequences munu munu munu munu munu munu munu munu munu
mum mm	M H L L	muni	i mum
mun mu	M M M	munn]	=
c. <i>m</i>	H H	mm	


I I C V CII CI		rannena	uic	e Opun	nisation
9. Develo	o Ma	aintenanc	e P	olicy usin	g RCM
List the Failure		techniq		Hazards/	
Maintenance Modes	-	Failure	Type	Operating	Maintenance
Tasks already Analysis	L	Effects	_	Consequences	I Policy
done.	- м	+ mun-	E E	mm	M munn
munn - munn	L	+ munu	Н		L
mon + mon	- M L	mm	H E	munn	M munu
mum	. М	mum	E	munn	H mm
mun + munn	H	mm	E H	mm	H mmm
January - munur	. н	mon	E	mum	M mum
mm	M	mour	E	mm	L
mum + mm		mm	E	mm	M mmm
munn	M H	munn	H E	mm	L
min	L	mm	Н		
mum + mum	L M	mum	Е	mon	M mmm
mum	M	mm	Н		
mun .	M	mum	Н		
c. munn	Н	mum	Е	mm	u mum
mum	Н	mon	E	mum	Hmm

Optimising Egy	uipment Mair	tena	nce												
	Preventive Maintenance Optimisation 10. Establish Intervals/Basis of application														
I	0. Establi	sh	Intervals/.	Bas	us of appl	ication									
List the Maintenance Tasks already done.	Failure Modes Analysis	L	Failure Effects	Type E E	Hazards/ Operating Consequences mmm mmm	Maintenance I Policy M mmm	Intervals /Basis								
1. munu 2. munu 3. munu	munn munn munn munn	L M L M H	* munu * munu munu munu	H H E E E	mun- mun-	M munu H munu H munu									
4. \ mm.	munn	H H M	mon	H E E	mun	M munu L									
5. mm -	mum	L M H	mon	E H E	munn	M mmm									
7. \ mm	munn	L L M	munn	H E	mun	M mum									
8. mm	mum	M M	mon	H H											
Etc.	mon	H H	mon	E E	mun	H mmm									
© Max Zornada (2014))		Slide 7	8											

Managing Maintenance Spare Parts

© Max Zornada (2014)

Inventory

- Inventory is the stock of any item or resource used in an organisation;
- An inventory system is the set of policies and controls that monitors levels of inventories;
- Maintenance inventory is typically in the form of spare parts and rotable units.
- Cost of holding inventory has been found to be 20-25% of the capital value of items held, per annum.

© Max Zornada (2014)

Slide 81

Optimising Equipment Maintenance

Inventory Management

- An inventory management system tries to answer the following questions:
 - how much to order;
 - when to order;
 - how much to stock.

© Max Zornada (2014)

What are the costs of inventory?

The benefits of maintaining inventory need to be offset against the costs of inventory:

- Holding (or carrying costs) includes:
 - cost of storage facilities
 - handling
 - insurance
 - pilferage
 - breakage and waste
 - obsolescence
 - depreciation
 - taxes
 - opportunity cost of capital

© Max Zornada (2014)

Slide 83

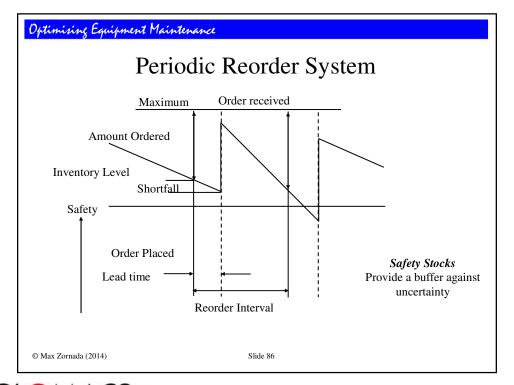
- Setup or changeover costs;
- Ordering costs managerial and clerical costs to prepare purchase or production orders;
- Shortage cost stock out cost.

Optimising Equipment Maintenance

Independent Demand Inventory

- Demand is independent of time, variable and uncertain;
- Use forecasts, based on historical demand;
- Two major techniques for managing independent demand inventories:
 - Reorder Point (ROP) System also referred to as fixed-order quantity, economic order quantity (EOQ) or Q model;
 - Periodic Reorder System also refered to as fixed-time period, periodic review, fixed interval or P model.
- ROP system is event triggered, fixed interval system is time triggered.

© Max Zornada (2014)

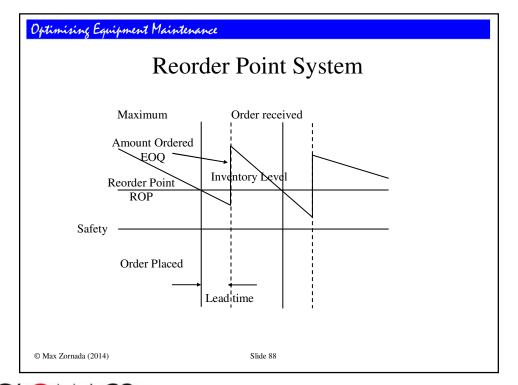


Periodic Reorder System

- Decide on:
 - A maximum stock level
 - A safety of minimum level
 - A reorder interval
 - Order to the maximum level at regularly spaced intervals.

Amount Ordered = Desired Level - actual on hand

© Max Zornada (2014)



Reorder Point System (ROP)

- Decide on:
 - A safety or minimum level
 - The reorder point
 - The Reorder Quantity the Economic Order Quantity
- If there were no uncertainty, ROP would be chosen as 1/2 X Demand + safety level.

© Max Zornada (2014)

EOQ Model Assumptions

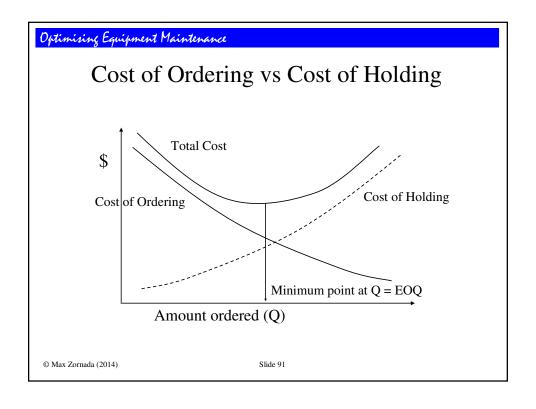
- The usage rate is uniform and known ie. constant demand;
- The item cost does not vary with order size;
- All the order is delivered at the same time;
- Lead time is known well enough that an order can be timed to arrive when inventory is exhausted ie. no stockouts;
- The cost to place and receive an order is the same regardless of the amount:
- the cost of holding inventory is a linear function of the number of items held.

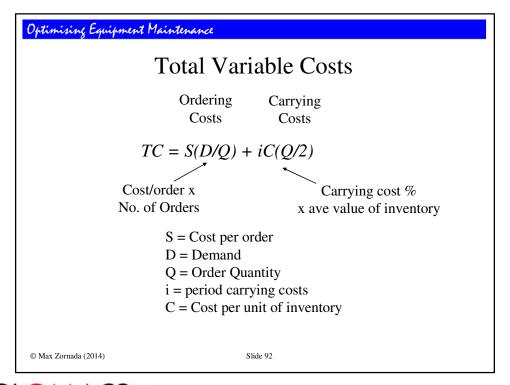
© Max Zornada (2014)

Slide 89

Optimising Equipment Maintenance

Economic Order Quantity


The Economic Order Quantity (EOQ) is chosen as the order quantity that minimises the total variable costs associated with changing order quantities


Total Variable Costs

- = Ordering Costs
- + Carrying Costs

© Max Zornada (2014)

Economic Order Quantity

Achieved when

$$S(D/Q) = iC(Q/2)$$

Rearranging

$$EOQ = \sqrt{2SD}/iC$$

© Max Zornada (2014)

Slide 93

Optimising Equipment Maintenance

Economic Order Quantity Example Process Plant

- 20 pumps all use the same mechanical seal as the inboard seal;
- Maintenance history and manufacturer's information suggests that the inboard seal will fail once a year on average;
- Cost of the seal is \$1,000 per seal;
- The lead time from order to receipt is 4 weeks;
- Cost of ordering = \$100 per order;
- Cost of holding stock = 25% of the value of the item.
- Question: How many should be held in stock, what are the key control points?

© Max Zornada (2014)

EOQ Calculations

EOQ =
$$\sqrt{\frac{2 \times 100 \times 20}{0.25 \times 1,000}}$$

$$EOQ = \sqrt{\frac{4,000}{250}} \sqrt{=16}$$

$$= 4$$

© Max Zornada (2014)

Slide 95

Optimising Equipment Maintenance

Key Control Parameters

- Set safety stock at say = 1
- During delivery lead time, we are likely to use up to 1 seal;
- Reorder Point needs to be at least 2, make it 3 just to be safe;
- If we receive 4 when stock has run down to 1 we have Maximum stock level of 5, Minimum of 1 and an Average level of 3.

© Max Zornada (2014)

Exercise

- As a result of a recent plant expansion, an additional 5 new pumps are added to the plant;
- Assuming the same failure characteristics for the seal as previously, do we need to revise our stocking levels for this part?

© Max Zornada (2014)

Slide 97

Optimising Equipment Maintenance

Safety Stock

- Is intended to provide coverage for demand uncertainty during the lead time period;
- Most organisations settle on an optimal safety stock level for an item, through trial and error;
- Level of safety stock influenced by:
 - How frequently orders are placed;
 - Lead time length (the longer the lead time the more potential for uncertainty);
 - Stability or volatility of demand in general;
 - Relative costs of stockout vs inventory carrying costs.

© Max Zornada (2014)

Statistical Basis for Safety Stock

• Safety Stock can be calculated statistically as: safety stock = $Z \sigma$

Where:

Z = the Z-value corresponding to the level of service required (based on normal distribution)

e.g. Service level of 95%, Z = 1.96

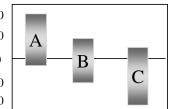
 σ = the standard deviation of demand during the order lead-time.

© Max Zornada (2014)

Slide 99

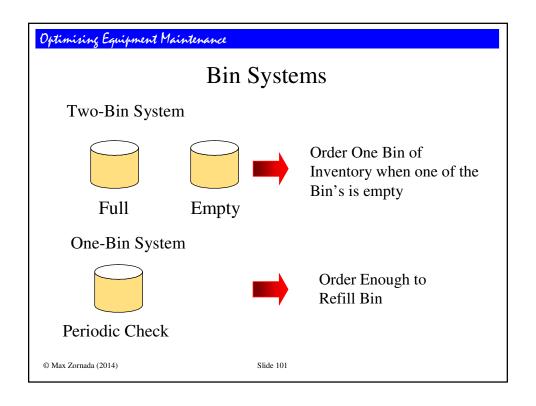
Optimising Equipment Maintenance

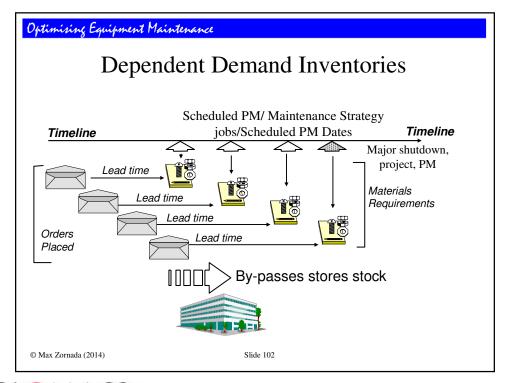
ABC Categorisation of Inventory


- Items kept in inventory are not of equal importance in terms of Value, Profit potential, Sales or usage volume, Stock-out penalties etc.
- We identify inventory items based on percentage of total value, where:
 - A : are roughly top 15 %,

- B : next 35 %,

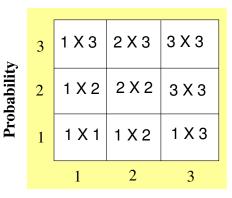
- C: the lower 65%


% of \$ Value 30 0


% of 30 Use 60

© Max Zornada (2014)

A Risk Based Approach


Probability of Failure vs Predictability

Is item likely to fail in service?

- 1. Failures are common with this type of item
- 2. Item is subject to noticeable wear and tear
- 3. Item is robust and not subject to undue stress

Is failure predictable?

- 1. Very difficult or impossible
- 2. Moderately difficult
- 3. Relatively easy

Predictability

© Max Zornada (2014)

Slide 103

Optimising Equipment Maintenance

A Risk Based Approach

Component Inventory Management Strategy

1 X 1	• Item is likely to fail and failure is hard to predict - therefore it is likely to be in the organisation's interest to hold a spare in stock.
1 X 2 1 X 3	Reduce stock levels if possible
2 X 2 2 X 3	Question in more detail - do we really need this spare?
3 X 3	Item is not likely to fail, and if it was, it would be easy to predict. Under these conditions spares availability could be easily coordinated. Therefore it would probably be unnecessary to hold as a spare.

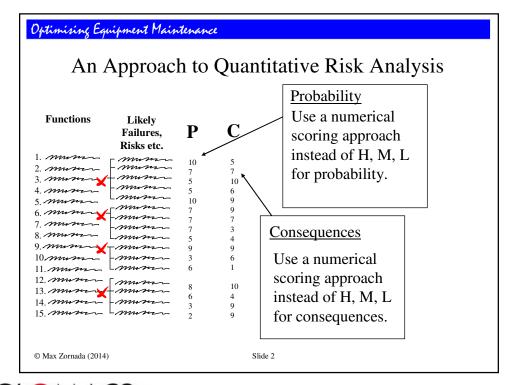
© Max Zornada (2014)

Relia	bil	it	y]	Ba	ıse	ed	N	I a	int	eı	ıa	nc	e	St	ra	teg	gy	<i>(</i>	Ch	art	t			
		Critic	ality	1				Critic	cality 2	2				Critic	cality 3	3				Critic	ality 4	1		
		r Saf		st irre nviron			of et	ficien	oducti cy. Ma ental l	ajor			effici	ency	risk o loss. ontrol	(Span	ed ec	quip,	No I	mpact	on P	roduct	.on	
Differential Maintenance Cost of Failure	High	(>\$3	,000)	Low	(<\$3,	,000)	High	ı (>\$3	,000)	Low	(<\$3	(000	High	(>\$3	,000)	Low	(<\$3,	(000	High	(>\$3,	(000	Low (-	<\$3,	,000)
Failure Predictable	Yes		No		Yes	No	Yes		No		Yes	No	Yes		No		Yes	No	Yes		No	,	res .	No
Type of Maintenance Inspection/Lubrication Preventive Maintenance (Task)	Y		Y Y		Y Y	Y Y	Y	,	Y Y		Y Y	Y Y	Y		Y Y		Y Y	Y N	Y		Y N		Y N	Y N
Condition Monitoring Change Out On Life	Y N		N Y		Y N	N Y	Ŋ		N Y		Y N	N N	Y N		N Y		N N	N N	N Y		N Y	1	N N	N N
Run to Failure	N		N	_	N	N	N	4	N		N	Υ	N		N		Υ	Υ	N		N		Y	Υ
Investigation of Breakdowns Off-Site Repairs (Assuming can be done on site)	Y		Y		Υ	Υ	Y	To b	Y ie dec	ided i	Y indivi	dually	Y	<u> </u>	Υ		N	N	N		N		N	N
Use Rotable																								
Value of Rotable Stock	>\$10		\$20-	100K	<\$20		>\$1		\$20-	100K	<\$20		>\$10		\$20-		<\$20		>\$10		\$20-		<\$20	
Repair Time < 1 Day 1-3 Days 3-15 Days		Y Y Y		Y Y Y		Y Y Y		N N Y		N N Y		N Y Y		N N N		N N N		N N Y		N N N		N N N		N N N
>15 Days		Υ		Υ		Υ		Υ		Υ		Υ		Υ		Υ		Υ		N		N		N
Stock Holdings (Items< \$20,000) (Whether to Hold Stock or Not)	Assu held			otable t	Stoc	k																		
Value of Total Stock Holding	\$2,0 -\$20	000	\$500 -\$2,0	000	<\$50			0,000	\$500 -\$2,0	000	<\$50		\$2,00 -\$20,	,000	\$500 -\$2,0	100	<\$50			,000	\$500 -\$2,0	00	<\$50	
Failure Predictable?	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	No \	res_	No
Lead Time < 1 Day (Avail Ex. Stock-Local) 1-5 Days (Avail Ex. Stock-Country) 5-15 Days >15 Days		Y Y Y	Y Y Y Y	Υ	Y Y Y Y	Y Y Y	Z Z Y Y	Y Y Y		Y Y Y	Y Y Y Y	Υ	N		N	N	N	N Y Y	N	N	N	1 N 1 N 1 N	N	N N N

Optimising Equipment Maintenance	
© Max Zornada (2014)	Slide 106

RCM Analysis - Function and Functional F	Failure
Unit:	
System:	
System Function	Functional Failure

RCM Analysis - Maintainable Item a	nd	Fu	nct	ion	al I	Fai	lur	e T	`abl	le					
Unit: Crude Stabilisation Plant															
System: Reboiler System															
F u n c t i o n a l															
											\Box				\dashv


RCM Ana	alysis - Failure Mod	les and Effects	Analysis		
Unit:					
System:					
Function	Functional Failure	Failure Mode	Failure Effect	Criticality	Response
	+				

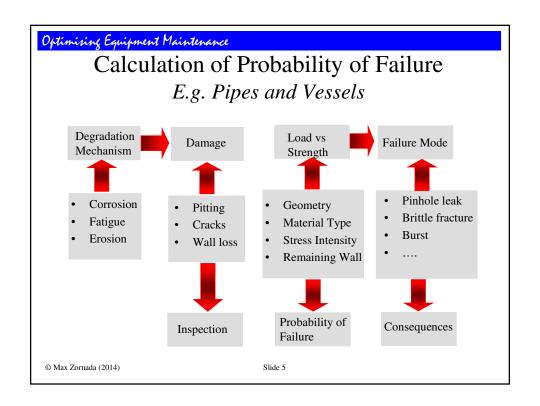
Unit:					
System:					
Function	Functional Failure	Failure Mode	Failure Effect	Criticality	Response

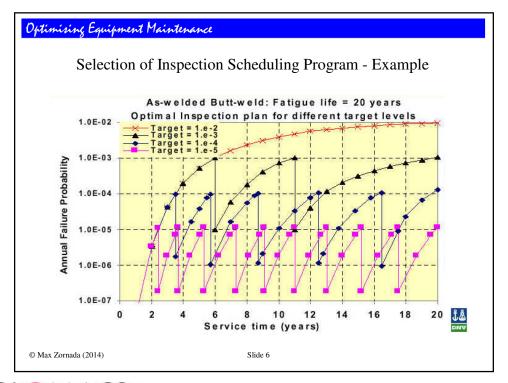
Unit:					
System:					
Function	Functional Failure	Failure Mode	Failure Effect	Criticality	Response

Risk Based Inspection Strategies

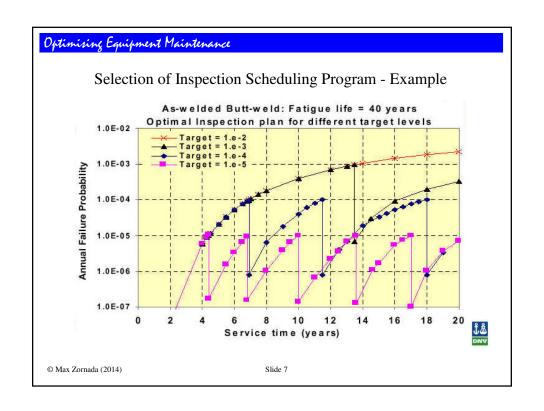
© Max Zornada (2014)

<mark>Optimising Eg</mark> Ri				ty X C	Consequences
Functions	Likely Failures, Risks etc.	P X	C	= Risk	Quantified value for
1. munu 2. munu	- mm	10 7	5 7	50 49	risk calculated as:
3. mum 4. mum 5. mum 6. mum	munn munn munn	5 5 10 7	10 6 9 9	50 30 90 63 49	Risk = Probability X
7. mm 8. mm 9. mm	munn	7 5 9	3 4 9	21 20 81	Consequences
10 mmm 11. mmm	munn	3	6 1	18 6	Calculated value is
12. mmm 13. mmm 14. mmm 15 mmm	munn	8 6 3	10 4 9	80 24 27	used to determine <u>Criticality</u> and to <u>Rank</u>
13.77	-1,000	2	9	18	the Risks
© Max Zornada (2014)			Slide 3	


Determining Probabilities

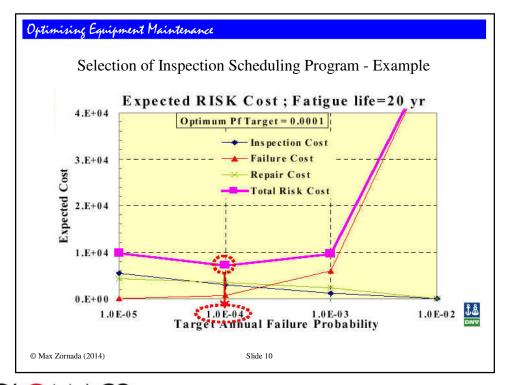

Slide 4

- Analysis of History
 - Pareto Analysis
- Monte Carlo Simulation
- Fault Tree Analysis
- HAZOP Analysis
- Industry and 3rd Party Statistics
 - Tables and graphs
 - Manufacturer's data

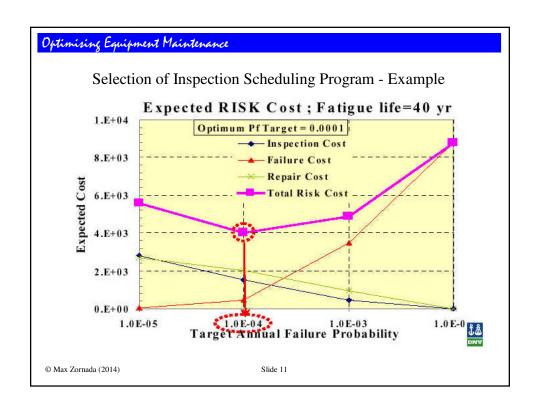

© Max Zornada (2014)

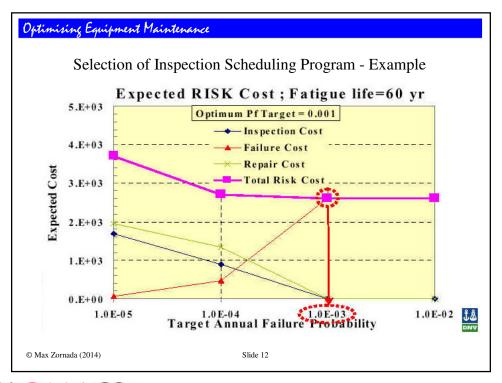


Cost Terms

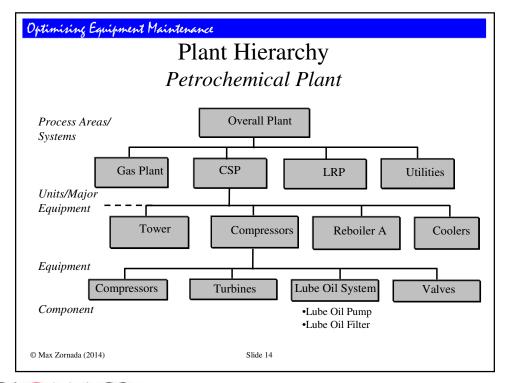

• Expected Failure Cost : US \$ 1.4 Million

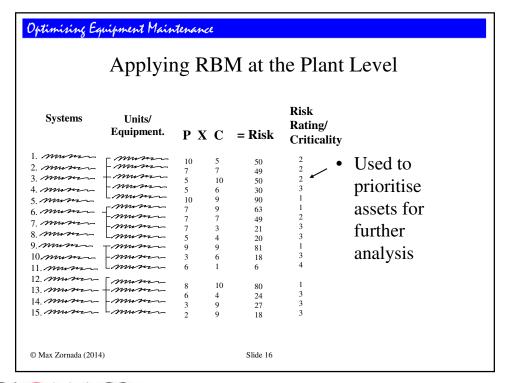
• Expected Inspection Cost: US \$1,000


• Expected Repair Cost: US \$10,000


• Discount Rate: 6%

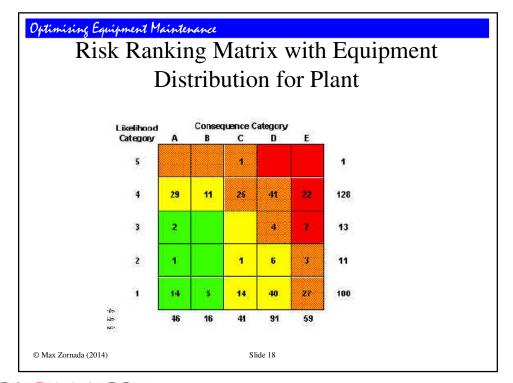
© Max Zornada (2014)




Applying RBM at Different Levels

© Max Zornada (2014)

Optimising Equipment Maintenance Applying RBM at the Plant Level Generally Systems Likely identifies Failures, P X C = RiskRisks etc. equipment items 1. munu 2 mum that are parts of mum 3. mum 10 50 the system. mm mum mum 8. mm Lmm 6.mm Lumm 11. mum mum 12. mmm [mmm 80 13. mm 14. mm - mm - mm 27 18 © Max Zornada (2014) Slide 15



Plant Area/System Level QRA Summary

Table 1. Top Ten High Risk Items

Equipment Type	Description	Risk Value	Primary Damage Mechanis m	Likelihood Factor	Consequence Factor	Likelihood Category	Consequence Category
EXCHANGER	Reformer Gas Boiler- Shell	3330	НТНА	1800	11860	5	E
HEATER	Primary Reformer Tubes	1104	Creep	5000	33457	5	E
VESSEL	Ammonia Converter	950	HTHA	800	7610	4	E
VESSEL	Purge Gas Ammonia Stripper	204	Internal Thinning	265	4933	4	E
2° PIPE	NH3 Stripper	4	Internal Localized Thinning and CUI	485	2381	4	E
4" PIPE	Syn Gas Chiller	4	Internal Thinning and CUI	96	26097	3	E

© Max Zornada (2014)

Optimising Equipment Maintenance Select Critical Assets for further analysis Identifies Critical Equipment Table 1. Top Ten High Risk Items Equipment Type Consequence Factor Likelihood Category Consequence Category Factor Damage Mechanis EXCHANGER 3330 1800 11860 Reformer HTHA Gas Boiler-Shell HEATER Primary Creep 33457 Reformer Tubes 7610 Ammonia Converter VESSEL 265 4933 Purge Gas Ammonia E

Internal Thinning

Internal Thinning and CUI

Thinning and CUI

© Max Zornada (2014)

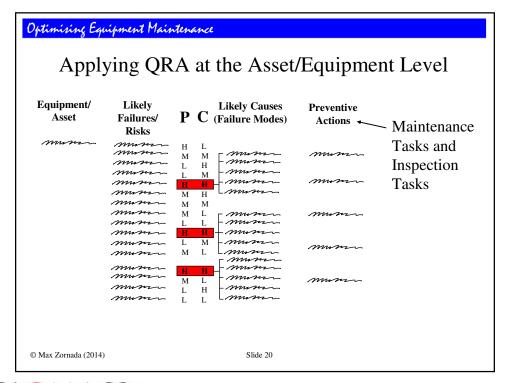
2" PIPE

4" PIPE

Stripper

NH3 Strippe

Syn Gas


Chiller

Slide 19

485

2381

26097

Optimising Equips	nent Ma	ainter	ance												
	Risk Ranking Matrix														
	HIGH														
	A	Н	Н	Е	Е	E	F	EXTREME RISK							
Probability	В	М	Н	Н	E	E	H	HIGH RISK							
1 100donity	C	L	М	Н	Е	E	M	MODERATE RISK LOW RISK							
_	D	L	L	М	Н	E	L	LOW RISK							
	E	L	L	М	Н	Н									
LC	WC	1	2	3	4	5	HIGH								
Consequences															
© Max Zornada (2014)	© Max Zornada (2014) Slide 21														

Inspection Planning Recommendations

Table 2. Inspection Planning Recommendations.

Equipment ID	Description	Risk Rank	Likelihood Driver	Damage Factor without Inspection by 2005	Damage Factor with Inspection by 2005	Recommended Internal Thinning Inspection Level	Comments
Exchanger	Reformer Gas	High	HTHA, Highly suscep- tible	2000	800		Maximum interval of 2.5 years to maintain factor of 400 minimum value only (for CS only). The recommended inspection technique involves a combination of Backscatter, Velocity Ratio, and Spectrum Analysis followed up with field metallography. See Inspection Effectiveness Tables for HTHA.

© Max Zornada (2014) Slide 22

Module 3:

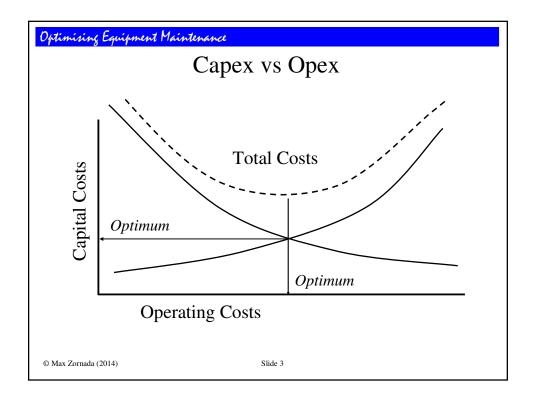
Condition Monitoring and Statistical Methods in Maintenance

Module 4:

Economics of Reliability

Economics of Reliability

© Max Zornada (2014)


Slide 1

Optimising Equipment Maintenance

Introduction to Discounted Cashflow Analysis and Capital Decision Making

© Max Zornada (2014)

Financial Assessment Techniques

- · Payback
- · Discounted Cashflow Techniques
 - Net Present Value (NPV)
 - Internal Rate of Return (IRR)

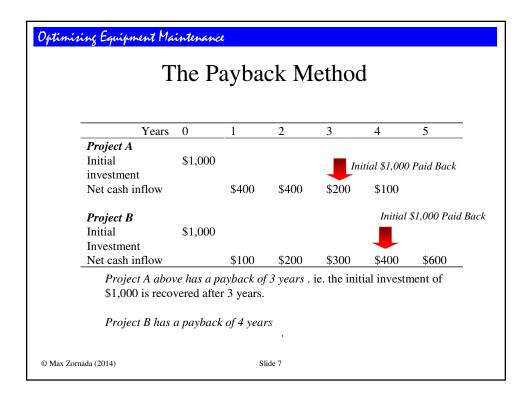
© Max Zornada (2014)

Project Cash Flows

- We apply our financial analysis techniques to the net cash inflow generated by a project;
- Net Cash Inflow
 - = Incoming cash flow Outgoing cash flow Due to the project

© Max Zornada (2014)

Slide 5


Optimising Equipment Maintenance

Typical Project Cash Flows

- Incoming Cash Flows:
 - Additional sales revenue, cost reductions, revenue from asset sales (eg. salvage);
- Outgoing Cash Flows:
 - Operating costs during project life, taxes, increases in working capital, interest on loans (except where NPV and IRR methods used).

© Max Zornada (2014)

The \$1,000 Investment

- You have \$1,000 to invest;
- You are able to find a Bank that will give you 10% interest (with no fees) if you leave it in your account for 1 year;
- How much will you have at the end of 1 year?
- Assuming no withdrawals, how much will you have at the end of 2 years?
- At the end of 3 years?

© Max Zornada (2014) Slide 8

The \$1,000 Project

- A friend has asked you to invest in a project;
- The investment they require is \$1,000;
- You will get you initial money back plus your share of the profit, in three years time;
- How much would you expect to get back for you to be interested?

© Max Zornada (2014)

Slide 9

Optimising Equipment Maintenance

The \$1,000 Investment Calculations

$$$1,000 \text{ x } (1.1)$$
 = $$1,100 \text{ at the end of 1 year}$

$$$1,100 \text{ x} (1.1) = $1,210 \text{ at the end of 2 years}$$

$$$1,210 \text{ x } (1.1)$$
 = \$1,331 at the end of 3 years

© Max Zornada (2014)

The Time Value of Money

- The fact that our \$1,000 is worth \$1,331 in years time if we just leave it in the bank is referred to the *Time Value of Money*;
- The "do nothing" option has real value because of the time value of money;
- Any proposed investment, must outperform the do nothing option.

© Max Zornada (2014)

Slide 11

Optimising Equipment Maintenance

In general

The future value (FV) of any sum of money we have today (PV or Present Value) can be found using the formula

$$FV = PV(1+r)^n$$

Where n = number of yearsand r = interest rate

© Max Zornada (2014)

Projects and the Time Value of Money

- Projects produce benefits which are realised in the future

 in the form of net cash flows. These are future values
 (FV's);
- Our investment is usually required now. This is a PV;
- To compare the future benefits to today's investment, we need to work out what the future benefits are worth in today's money (PV's).

© Max Zornada (2014)

Slide 13

Optimising Equipment Maintenance

Calculating Project Benefit PV's

$$PV = \frac{FV}{(1+r)^n}$$

© Max Zornada (2014)

Consider Project A and Project B

Years	0	1	2	3	4	5
Project A						
Initial	\$1,000					
investment						
Net cash inflow		\$400	\$400	\$200	\$100	
Project B						
Initial	\$1,000					
Investment						
Net cash inflow		\$100	\$200	\$300	\$400	\$600

© Max Zornada (2014)

Slide 15

Optimising Equipment Maintenance

Present Value of Net Future Cash Flows: Project A

$$= \frac{$400}{(1.1)} + \frac{$400}{(1.1)^2} + \frac{$200}{(1.1)^3} + \frac{$100}{(1.1)^4}$$

$$= \frac{$400}{1.1} + \frac{$400}{1.21} + \frac{$200}{1.331} + \frac{$100}{1.464}$$

$$= $363.64 + $330.58 + $150.3 + $68.3$$

$$= $912.78$$

$$= $913$$

© Max Zornada (2014)

Net Present Value: Project A

Present Value of Future Cash — Present Value of Investment Flows

\$ 913 **— \$** 1,000

= - \$ 87 Net Present Value (NPV)

© Max Zornada (2014)

Slide 17

Optimising Equipment Maintenance

Present Value of Net Future Cash Flows: Project B

$$= \frac{\$100 + \$200 + \$300 + \$400 + \$600}{(1.1) (1.1)^2 (1.1)^3} (1.1)^4 + (1.1)^5$$

$$= \frac{\$100 + \$200 + \$300 + \$400 + \$600}{1.1 \cdot 1.21 \cdot 1.331 \cdot 1.464 \cdot 1.61}$$

$$=$$
 90.9 + 165.3 + 225.39 + 273.21 + 372.67

= \$1,127.47

= \$1,127

© Max Zornada (2014)

Net Present Value: Project B

Present Value of Future Cash — Present Value of Investment Flows

\$ 1,127 — \$ 1,000

= \$127 Net Present Value (NPV)

© Max Zornada (2014)

Slide 19

Optimising Equipment Maintenance

What does NPV mean?

- NPV is a direct measure of the amount of value a project creates in financial terms;
- A Positive NPV project creates value;
- A Zero NPV project neither creates nor dissipates value;
- A Negative NPV project dissipates or destroys existing value.

© Max Zornada (2014)

Some key terms

- Risk Free Rate
- Risk Premium
- Cost of Capital
- Weighted Average Cost of Capital (WACC)
- Discount Rate

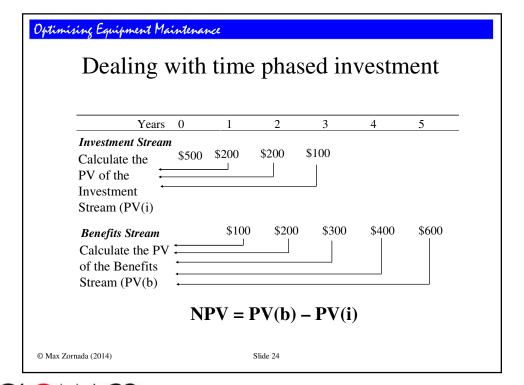
© Max Zornada (2014)

Slide 21

Optimising Equipment Maintenance

Internal Rate of Return (IRR)

- Internal rate of return is the rate of return which results in an NPV of zero;
- Is a measure of the rate at which a project generates NPV;
- Can be effectively used to prioritise projects and other activities requiring the investment of funds.


© Max Zornada (2014)

Prioritisation Techniques

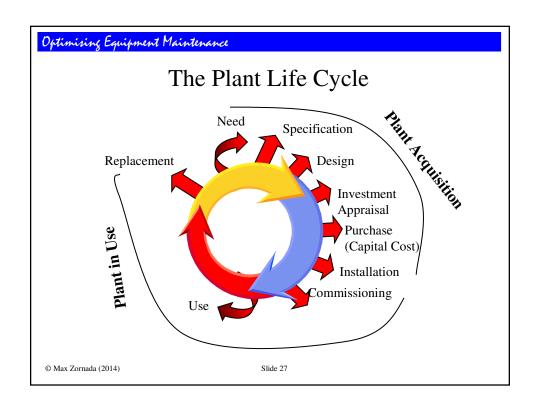
- Once NPV has been used to filter out undesirable projects and investment opportunities, the remaining may be prioritised by a number of techniques:
 - IRR;
 - Payback
 - Various NPV ratios NPV/Years, NPV/Investment, NPV p.a./Investment p.a.

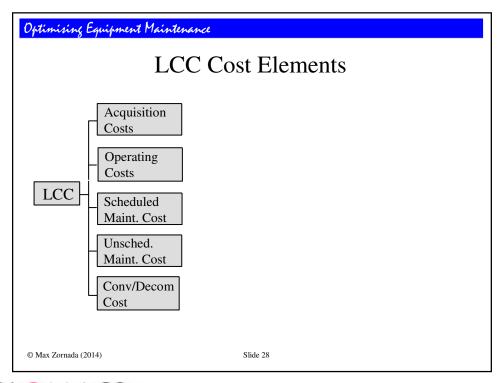
© Max Zornada (2014)

Life Cycle Cost Concepts

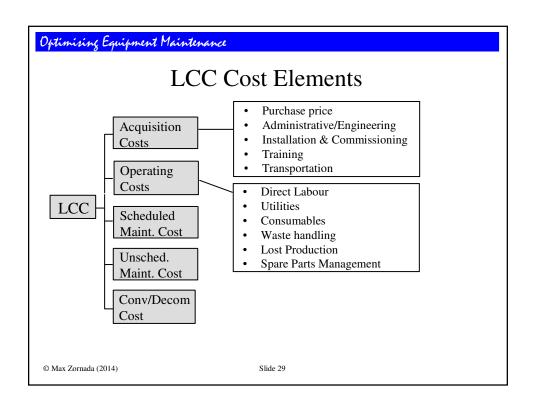
© Max Zornada (2014)

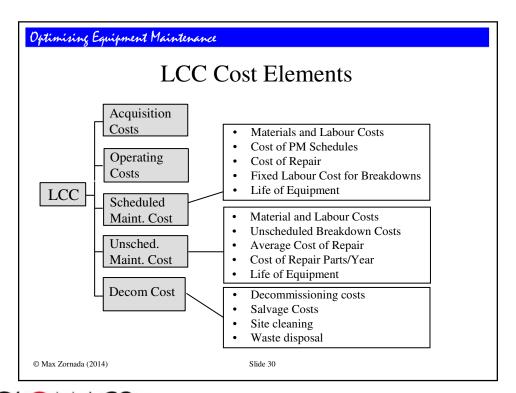
Slide 25


Optimising Equipment Maintenance


Life Cycle Costing

• The basic concept of Life Cycle Costs is that equipment acquisition and maintenance decision should be made on the basis of the "total cost of ownership" for that equipment, not just the lowest purchase cost (Capex) or lowest operating costs (Opex).


© Max Zornada (2014)



Simplified LCC Case Study

	Pump 1	Pump 2
Purchase price	\$10,000	\$15,000
Annual cost of breakdowns	\$ \$150	\$60
Operating Costs	\$1,000	\$850
Consumable costs	\$150	\$100
Cost of Preventive Maint.	\$250	\$300
Salvage Value	\$2,000	\$10,000

• Pump is intended to be operated for 5 years before disposal.

© Max Zornada (2014)

Slide 31

Optimising Equipment Maintenance

Pump 1 LCC

Year	0	1	2	3	4	5
Purchase Price						
Annual cost of breakdowns						
Operating Costs						
Consumables costs						
Cost of Preventive Maint.						
Total Cost						
PV of Costs						
Salvage Value						
PV of Salvage Value						
Net PV Cost						

© Max Zornada (2014)

Pump 2 LCC

Year	0	1	2	3	4	5
Purchase Price						
Annual cost of breakdowns						
Operating Costs						
Consumables costs						
Cost of Preventive Maint.						
Total Cost						
PV of Costs						
Salvage Value						
PV of Salvage Value						
Net PV Cost						

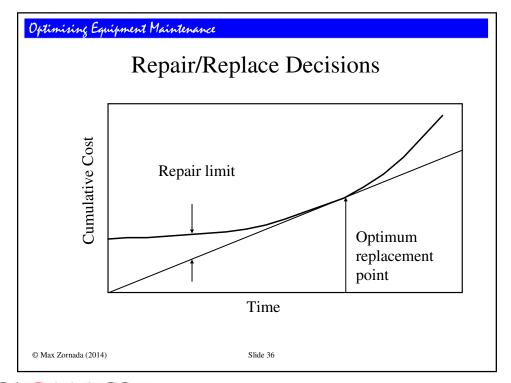
© Max Zornada (2014)

Slide 33

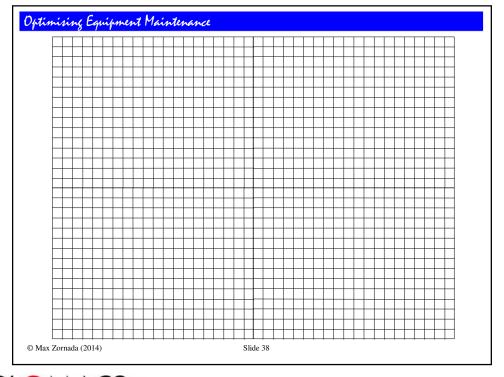
Optimising Equipment Maintenance

Key Uncertainties in LCC

- Equipment life;
- Cost of Breakdowns;
- Cost of Preventive and Proactive Maintenance
 - Impact of these on Breakdown and Operating Costs.
- Cost and impact of various maintenance strategies;
- Salvage value at the end;


© Max Zornada (2014)

Overcoming the Uncertainties in LCC

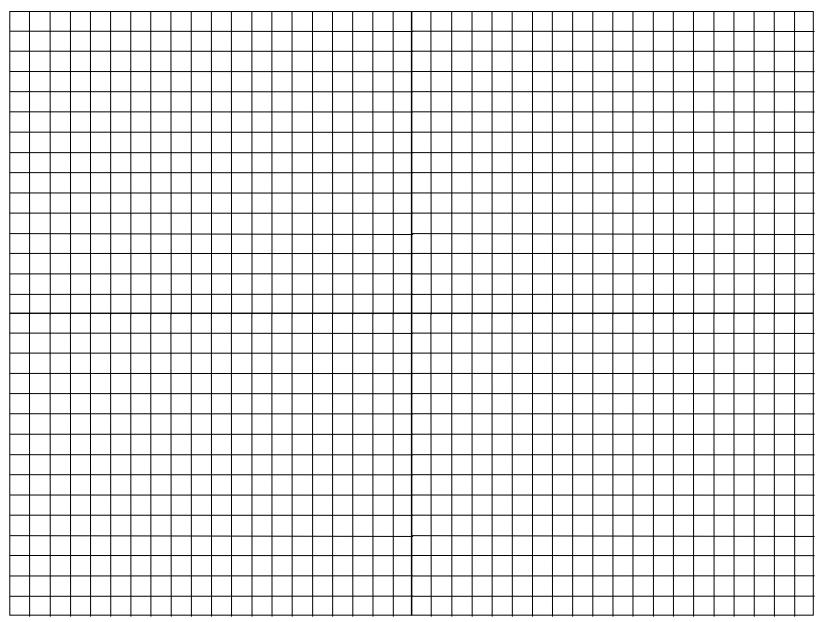

- Accurate equipment history and cost record keeping;
- Modelling various scenarios:
 - Best Case
 - Worst Case
 - Most likely Case
- Statistical and Probabilistic modelling e.g. Monte Carlo Analysis

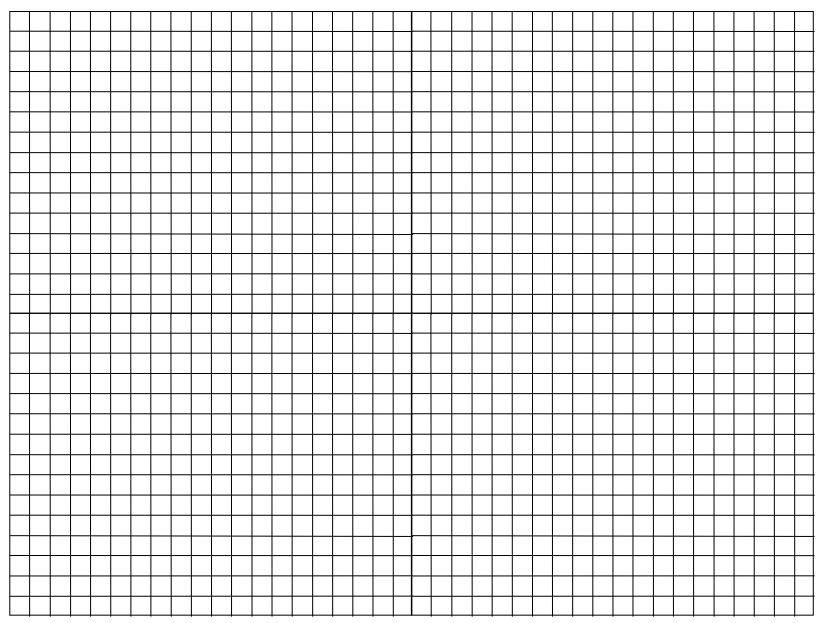
© Max Zornada (2014)

e Study: R	lepair/ R	Replace	
		Cost	Cummulative
Purchase Price	e: Year 0	\$20,000	
Operating	Year 1	\$ 200	
and	Year 2	\$ 200	
Maintenance	Year 3	\$ 400	
Cost	Year 4	\$ 400	
	Year 5	\$ 600	
	Year 6	\$ 600	
	Year 7	\$ 1200	
	Year 8	\$ 1600	
	Year 9	\$ 2000	
	<u>Year 10</u>	\$ 2400	
	<u>Year 11</u>	\$ 2600	
	Year 12	\$ 2800	
	Year 13	\$ 4000	
	Year 14	\$ 5000	
	Year 15	\$ 6000	

Optimising Equipment Maintenance	
© Max Zornada (2014)	Slide 39

Module 4: Economics of Reliability Templates

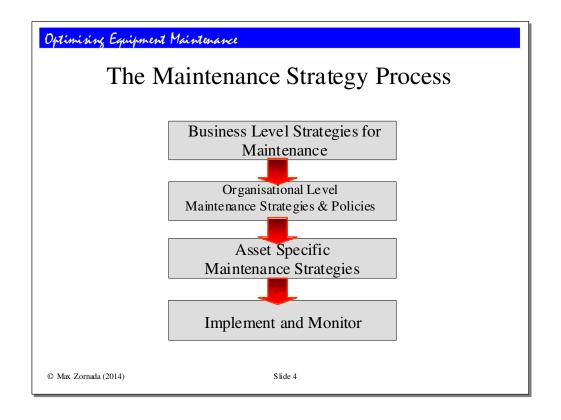


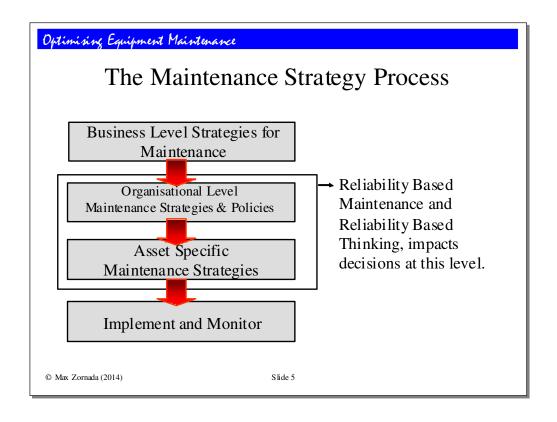

Pump 1 LCC

Year	0	1	2	3	4	5
Purchase Price						
Annual cost of breakdowns						
Operating Costs						
Consumables costs						
Cost of Preventive Maint.						
Total Cost						
PV of Costs						
Salvage Value						
PV of Salvage Value						
Net PV Cost						

Pump 2 LCC

Year	0	1	2	3	4	5
Purchase Price						
Annual cost of breakdowns						
Operating Costs						
Consumables costs						
Cost of Preventive Maint.						
Total Cost						
PV of Costs						
Salvage Value						
PV of Salvage Value						
Net PV Cost						


Module 5:


Effective Management of Maintenance

Resources and Information

Organisational Level Maintenance Strategies and Policies

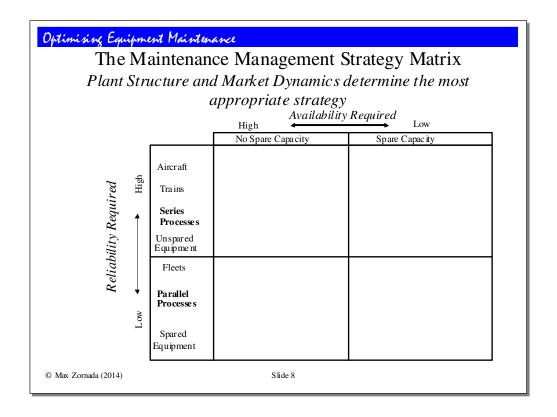
• Is about making appropriate choices about all the strategic factors for specific groups or assets or processes within the framework of the managerial level strategies and policies for maintenance.

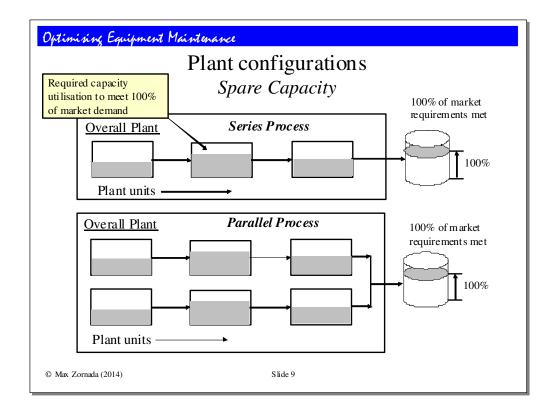
© Max Zornada (2014)

Slide 6

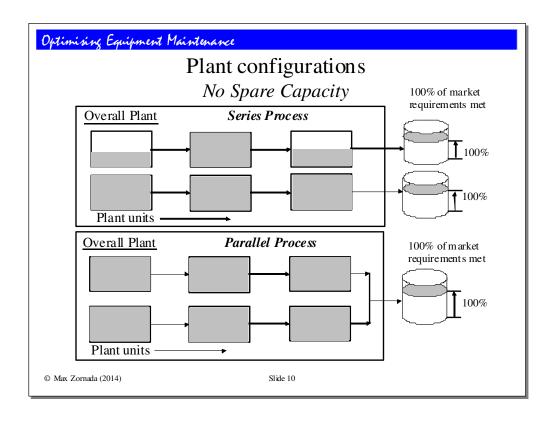
Optimising Equipment Maintenance

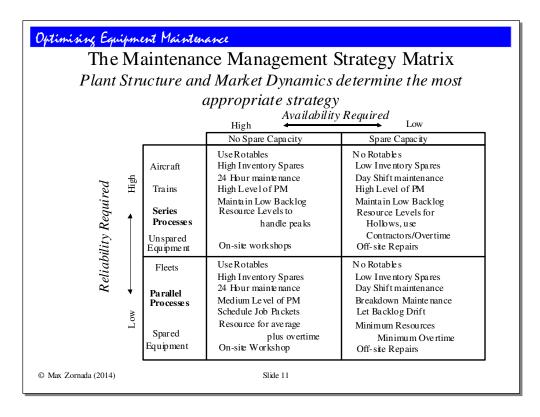
Organisational Level Maintenance Strategies and Policies


Decision Areas


- Maintenance Philosophy
- Maintenance objectives
- Maintenance budgeting and cost management
- Resource Structure (Electricians, Fitters etc.)
- Resource Levels
- Management Structure
- Preventive Maintenance Levels
- Preventive Maintenance Types
- Backlog Levels

- Work Location (in-situ, inhouse, external)
- Use of contractors
- Workshop facilities
- Purchasing and Stores Policies
- Inventory Levels
- Use of Rotable Spares
- Planning and Scheduling Approach
- Coordination with production


© Max Zornada (2014)



Maintenance Strategy Development

Organisational Level Maintenance Strategies and Policies

Case Study
Southern Petrochemical Company
Gas Processing Operations

Gas Processing Operations

Case Notes

- SPC's Gas Processing Plant is shown in the schematic in Figure 1.
- Gas and Crude Oil are received at the plant inlet area the gas goes to the Gas
 Separation unit the oil to the Crude Stabilisation Plant (CSP). Hydrocarbon
 condensate which is recovered in the gas separation unit is also fed to the CSP. Gas
 Separation area must be operating at 100% capacity for normal operations.
- Flash Gas from the CSP is fed to the Gas Sweetening Plant which has 3 trains. Two are required to be operating at full capacity for normal operations.
- Stabilised crude is pumped to the Tank Farm where it is stored awaiting shipment.
 The Gas Plant can operate independently of the CSP. However, a failure of the CSP will shut down the oil side of the operation.
- Sweetened gas goes to the Liquids Recovery Plant where it is cooled and further
 Hydrocarbon Liquids are recovered. These are routed back to the CSP. The LRP was
 designed such that it can meet normal operating requirements at 80% capacity.
- Cold, dry gas goes to the De-methaniser unit, where two towers operate. Demethaniser bottoms progress to the De-ethaniser unit, the methane progresses to the methane compressors, where it is compressed to full pipeline pressure for sales.
- The ethane from the De-ethaniser Unit goes to the Ethane Compressors where it is compressed for storage in bullets, awaiting further distribution.
- The De-ethaniser bottoms (NGL's) are routed to storage bullets awaiting further sales.
- The Methane and Ethane compressors units are made up of 3 compressors, only 2 of which need to be operating for normal operations.
- The De-methaniser and De-ethaniser units need to be operating at 80% capacity for normal operations.
- Stabilised Crude sales generates the most revenue for the company and there is
 always pressure to maximise the output of stabilised crude. However, the company is
 tied in to gas supply contracts to several major cities and their electricity utility
 companies. Operational problems or unanticipated reductions in production in the gas
 plant have the potential to cause severe disruption to their customers which would
 result in legal action and claims for compensation.

Figure 1. Gas Processing Plant Schematic

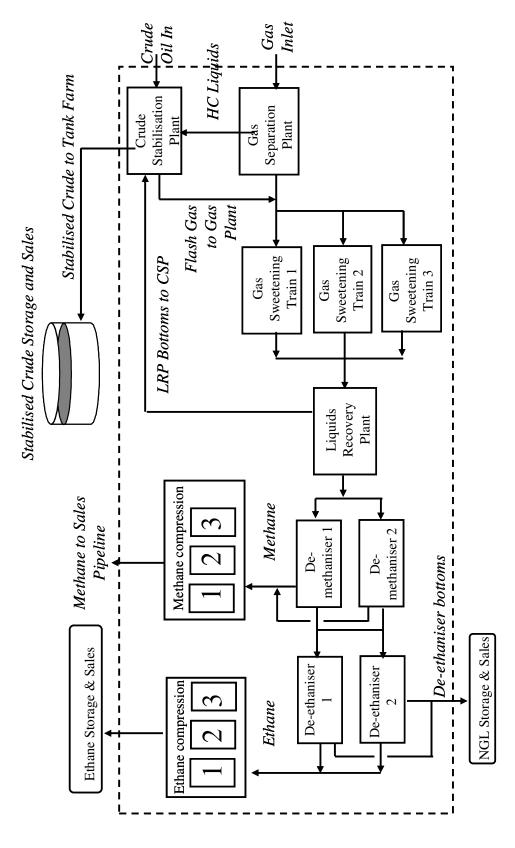
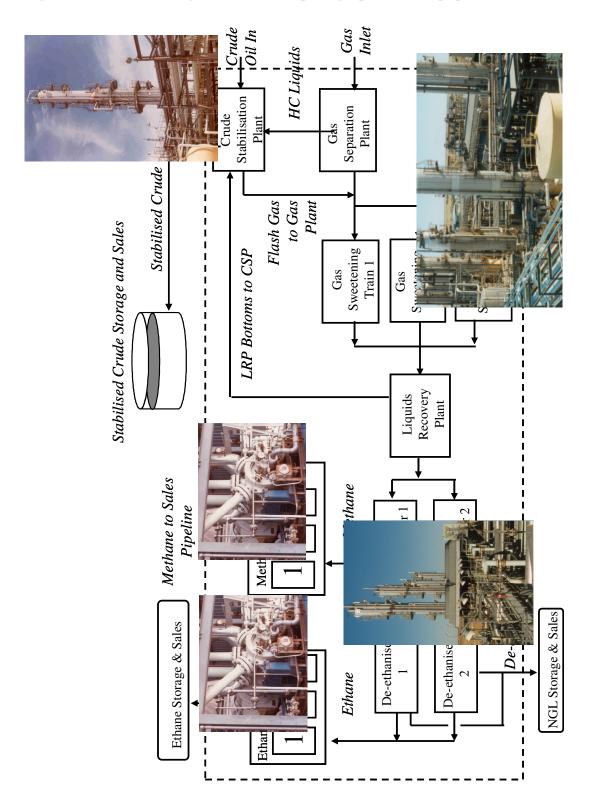
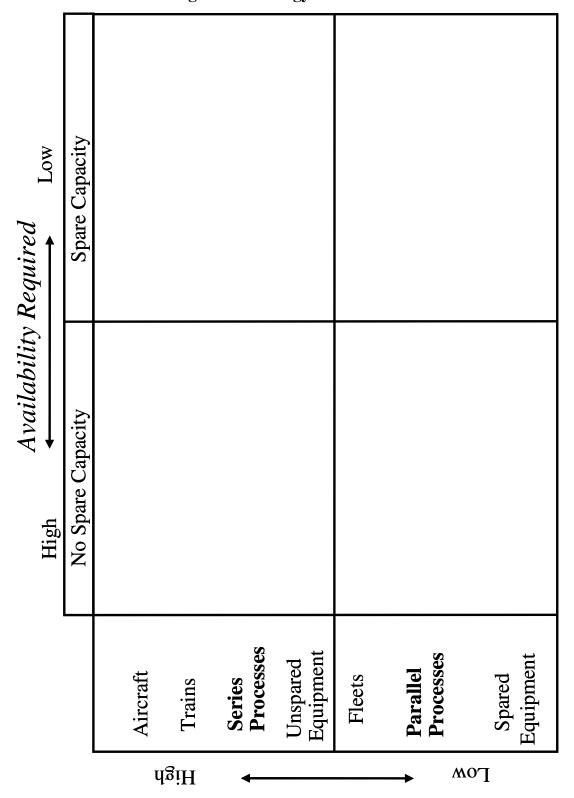



Figure 1.a. Gas Processing Schematic with photographs of key equipment


Exercise 1

Use the Strategy Matrix to determine the most appropriate maintenance organisational level policies/strategies to apply in each of the major areas of the plant.

Use the blank strategy matrix proforma and map the various plant areas to the matrix.

The Maintenance Management Strategy Matrix

Reliability Required

Exercise 2: The Crude Stabilisation Plant

Figure 2 shows the Crude Stabilisation Plant detail.

- The CSP has a single fractionation tower, which is fed through a feed heater and feed drum.
- A spared pump-set feed the CSP Tower. A spared pump-set also pumps the CSP bottoms (stabilised crude oil) to the Tank Farm.
- The CSP Tower can operate at 50% capacity without the Feed heater operational.
- CSP Flash gas is routed through a bank of 4 fin-fan type coolers, 3 of
 which must be operational or normal operations. The liquid condensate is
 recovered in Liquids Recovery Pot A and is refluxed back by way of a
 single Reflux Pump. Failure of the reflux system reduces tower capacity
 by 25%.
- The cooled flash gas is compressed using a spared compressor set, before being routed to a second back of 4 fin-fan coolers (3 of which must be operational) and a second reflux loop, with a Liquids Recovery pot and pump. This second reflux loop increases tower efficiency by an additional 5%.
- Heat is provided to the CSP Tower be way of 2 reboilers, each with their own reboiler pumps. The tower can operate at 80% capacity with a single reboiler operational.

Figure 2. Schematic Flow Diagram of Crude Stabilisation Plant

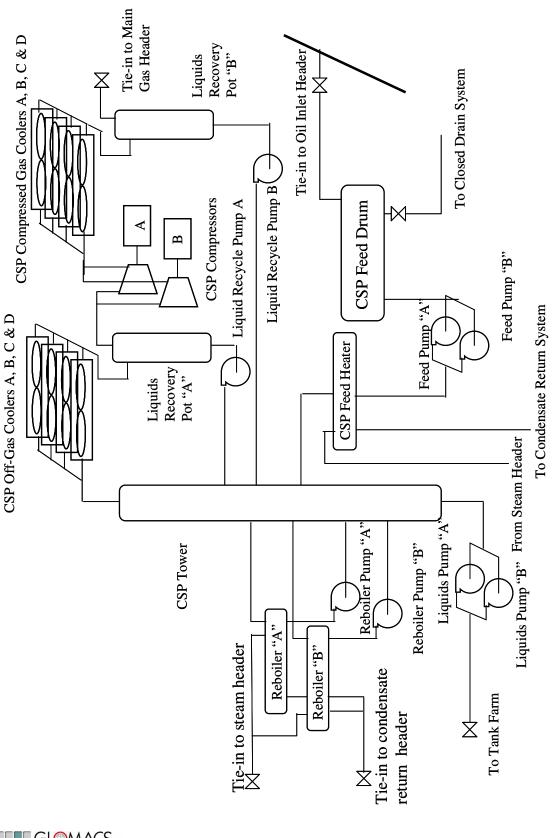
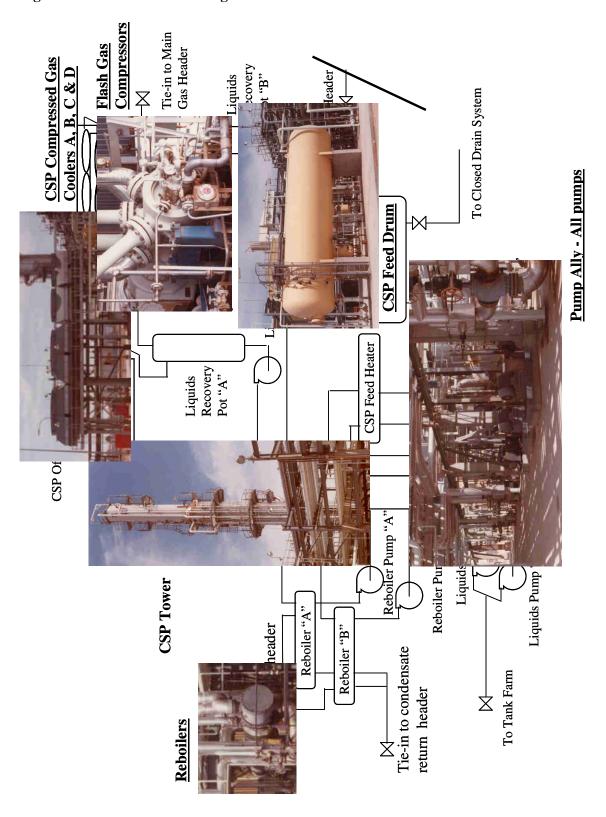
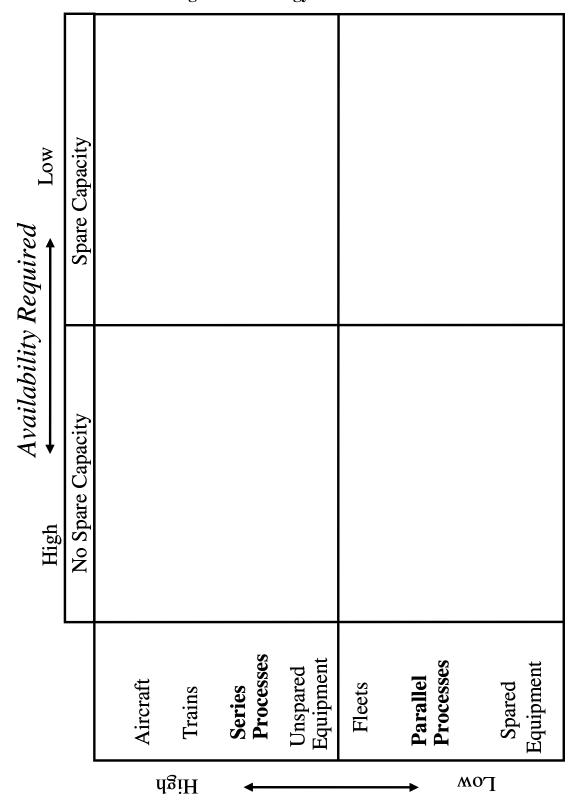



Figure 2.a. Schematic Flow Diagram of Crude Stabilisation Plant



Exercise 2: The Crude Stabilisation Plant

- Use the Maintenance Strategy Matrix to construct a "first draft" maintenance strategy proposal for each of the major units within the CSP;
- Map each of the major units in the CSP to the Strategy Matrix proforma.

The Maintenance Management Strategy Matrix

Reliability Required

Outsourcing and Use of Contractors

© Max Zornada (2014)

Slide 1

Optimising Equipment Maintenance

Use of Contractors in Maintenance Examples Include:-

- Using contractors to supplement permanent workforce;
- Using contractors for specific and specialist functions. eg. Condition Monitoring, Inspections, NDT etc.;
- Using contractors for specific projects eg. during turnarounds;
- Contracting out the whole maintenance function.

© Max Zornada (2014)

Typical uses of Contractors

Supplement workforce

- Contractors used to cover workload peaks;
- Contractor levels based on schedule requirements, derived from critical path;
- Needs driven;
- Paid on an hourly basis from timesheets
 labour only.

Specialist Functions

- Contractors hire on a job-by-job or contract basis;
- Provide skills and expertise not available and/or not intended to be available in the permanent workforce;
- Often to cover jobs requiring significantly higher levels of skill than normally required and/or types of skills that are only occasionally required;
- Examples include: Condition Monitoring, NDT,
 Airconditioning Tech,
 Scaffolding, Cleaning etc.

Specific Projects

- Contractors used for specific well defined projects or work package;
- Specific work packages defined from the overall Work Breakdown Structure allocated to contractors;
- Capital projects from Engineering Group

© Max Zornada (2014)

Slide 3

Optimising Equipment Maintenance

Outsourcing the whole maintenance function

- Most discussions of outsourcing centre around the definition of "core business" and outsourcing all that is "non-core";
- What is "core?"
- The answer is usually derived through political agenda's and short-term cost cutting justifications rather than through rational analysis.

© Max Zornada (2014)

Is Maintenance Core Business?

- Finding an answer is not easy. Need to consider many factors:
- Are skills general or equipment/plant specific;
- Level of planning and supervision that can be applied;
- Is learning specific or general;
- Are skills available in marketplace;
- Level of coordination required between maintenance and production;
- The nature of the contract.

© Max Zornada (2014)

Slide 5

Optimising Equipment Maintenance

Issues to consider when allocating work to contractors?

- Are skills generic or equipment/plant specific;
- Level of planning and supervision that can be applied;
- Are skills available in marketplace;
- Level of coordination required between maintenance and production.

Contractor	Inhouse
Non-Specific	Specific
High Low	Low
Readily Avail.	Not Readily Avail.
Low	High

© Max Zornada (2014)

Contracting/Outsourcing Costs

of Marinenance Budget	
Spent on Contractors	% of Companies
• 2-5%	4%
• 5-10%	12.5%
• 10-20%	25%
• 20-35%	21%
• 35-50%	17%
• 50-75%	12.5%
• 75-10%	12%

© Max Zornada (2014)

Slide 8

Optimising Equipment Maintenance

Contractor Tasks and Roles

Contractor Tasks/Activities	% of Companies
 Total Maintenance Service 	14%
 Minor Capital Work 	76%
 Labour Hire 	76%
 NDT/Condition Monitoring 	70%
Shutdown Planning and Managem	nent 14%
 Offsite Overhauls and Repairs 	72%
 Painting and Surface Protection 	62%

© Max Zornada (2014)

Contractor Selection

- Ability of Contractor to supply good 1st-line Supervision;
- Important to supply regular/experienced employees vs new hire employees;
- Certify the contractors ability to supply appropriately experienced resources in the numbers required;
- Historical contractor safety and environment performance;

© Max Zornada (2014)

Slide 10

Optimising Equipment Maintenance

Evolution of approaches to Contracts

- Early 80's
- Cost Plus
- Late 80's
- Lump Sum
- 1992
- Lump Sum contract negotiated Lump Sum for additional work;
- 1993/94
- Lump Sum contract and 50% Lump Sum and 50% timesheets for all additional work;
- 1995
- Lump sum contract & tendered billing rate time sheets for 80% additional work;
- 1996
- Lump sum contract and fixed management fee for all additional work.

Reference: Ampol

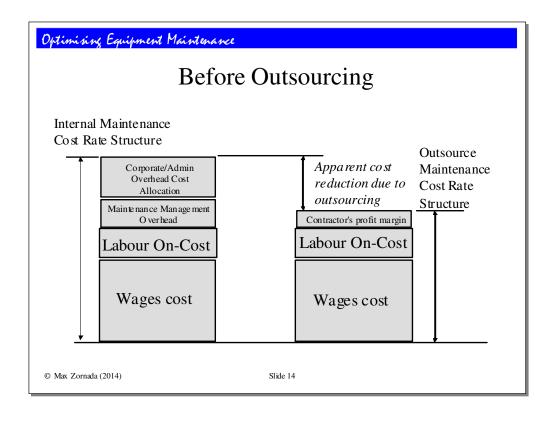
© Max Zornada (2014)

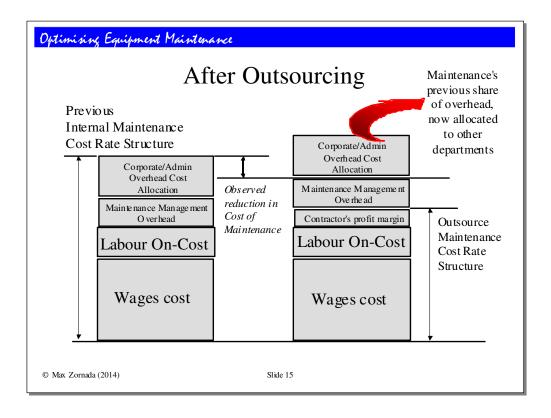
The Decision to Outsource

- The decision to outsource is usually made and justified on the basis of:
 - Simplifying management's workload, allowing them to focus better on core business;
 - Economic bases: ie. cost reduction;
 - Resolving industrial relations issues.

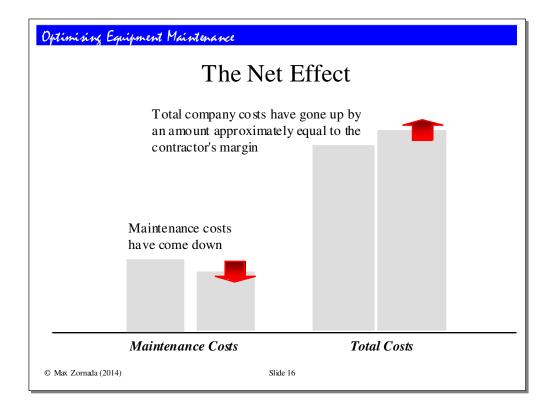
© Max Zornada (2014)

Slide 12


Optimising Equipment Maintenance


Outsourcing Traps Knowing your true costs

- A significant problem for many organisations when making an assessment of the economic benefit of outsourcing is calculating the benefit;
- A key issue is the difficulty in calculating the cost associated with not outsourcing;
- Cost accounting practices in many organisations give a distorted picture which discriminates against in-house maintenance when it may indeed be the superior option.


© Max Zornada (2014)

Outsourcing Lesson

- When calculating the cost/benefits of outsourcing, where outsourcing is being considered for mainly financial benefits:
 - Be sure you look at the "big picture" and take a total cost view;
 - Need to know:-
 - What costs will still remain in the company cost structure even though they may no longer appear in the maintenance budget.

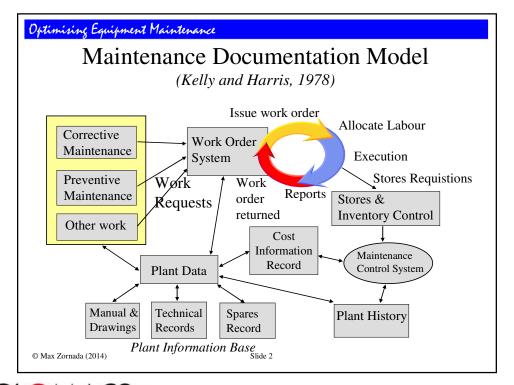
© Max Zornada (2014)

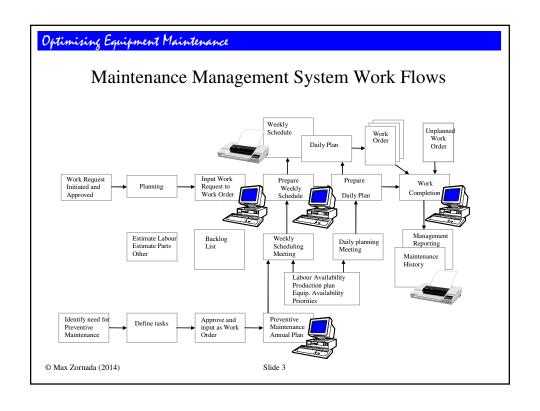
Partnering

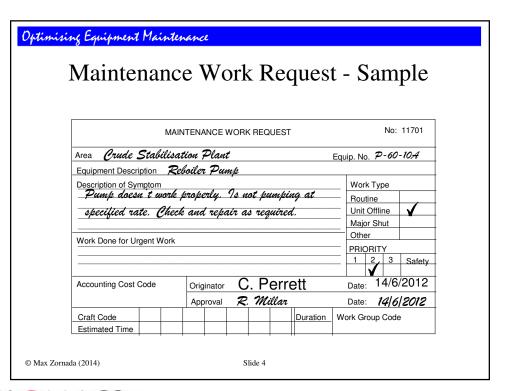
- Many organisations have elected to use a "partnering" approach, in order to avoid some of the negative aspects of using contractors;
- Establish a long term agreement with a contracting organisation and use them all of the time;
- Contractor retains a core of employees who are competent and become knowledgeable in the clients plant;
- Often use incentive type payment schemes to ensure contractor does not become complacent.

© Max Zornada (2014)

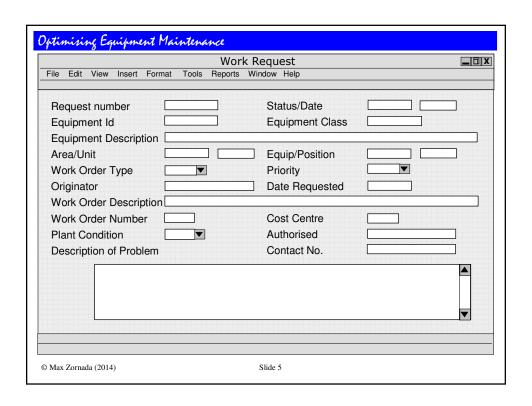
Module 6:

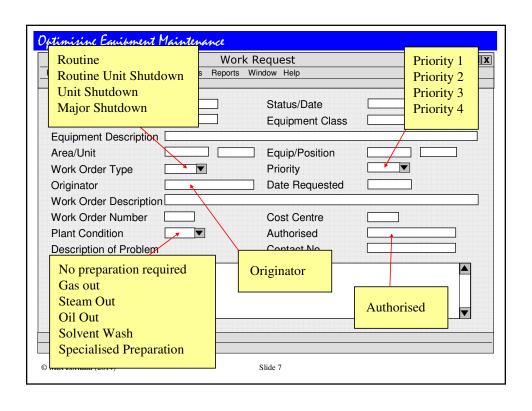

Computerised Maintenance Management Systems




Computerised Maintenance Management Systems (CMMS) and Maintenance Work Order System Design

© Max Zornada (2014)

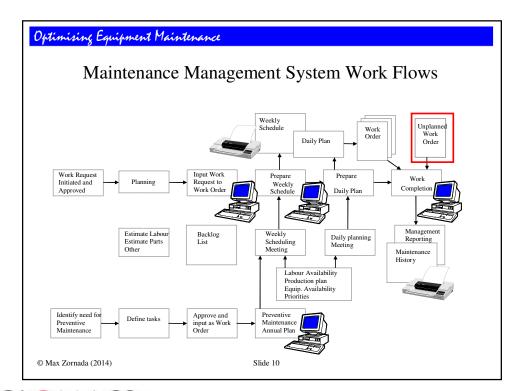


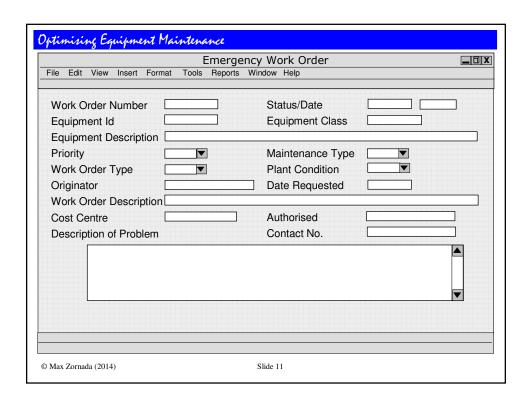


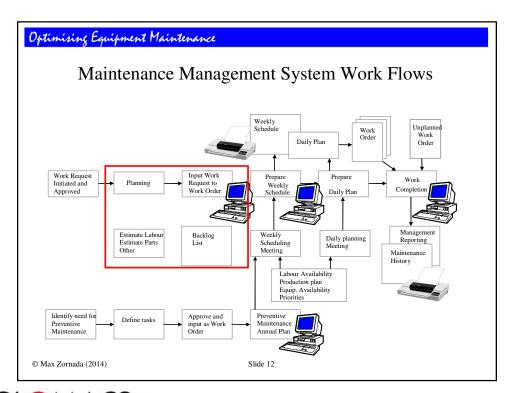
Work Initiation - Key Issues

- Equipment identification
- Priority System
- Work type definition
- Initiation
- Authorisation

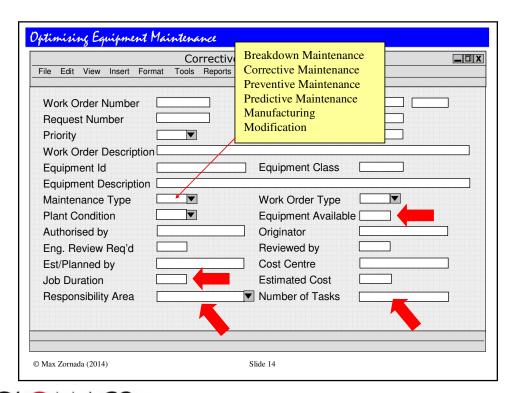
© Max Zornada (2014)

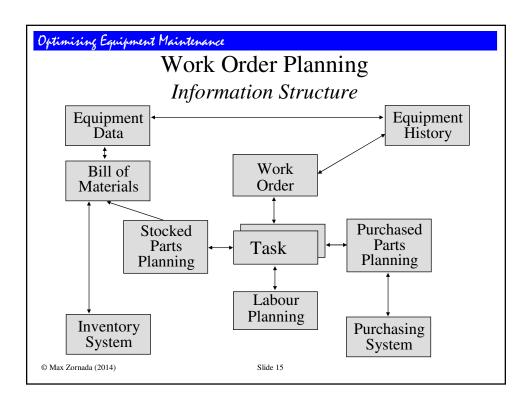

Optimising Equipment Ma Exercise: H	ow does your organisation handle
Issue	Your organisation's approach
Equipment Identification	
Priority System	
Work Type Definitions	
Initiation of Work Requests	
Authorisation of Work	
© Max Zornada (2014)	Slide 8


Priorities - How one company does it ..

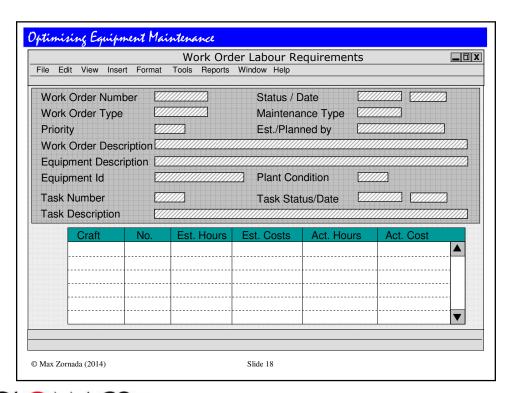

- Priority 1: Work will start ASAP, even if it means interrupting scheduled work.
 Priority 1 will only be allocated to jobs currently affecting output needed for immediate sales. Work on equipment that has spare capacity is never priority 1.
- <u>Priority 2:</u> Work which must be carried out within the current weekly schedule period. If not carried out in the current schedule period:
 - There is a high risk that production will be affected;
 - The equipment, while continuing to operate will continue to deteriorate and cause increased maintenance costs if repairs are delayed.
- <u>Priority 3:</u> Work that will be scheduled as part of the next weekly scheduling process. PM is the most important category of this type of work.
- <u>Priority 4:</u> Work that needs to be done but which is independent of production requirements.

© Max Zornada (2014)





Corrective Work Order								
File Edit View Insert Format	Tools	Reports	Window Help					
Work Order Number]	Status / Date					
Request Number			Date Raised					
Priority			Date Required [
Work Order Description								
Equipment Id			Equipment Class [
Equipment Description								
Maintenance Type			Work Order Type		▼			
Plant Condition	▼		Equipment Available [)			
Authorised by			Originator [
Eng. Review Req'd			Reviewed by]			
Est/Planned by			Cost Centre					
Job Duration			Estimated Cost					
Responsibility Area			▼ Number of Tasks [

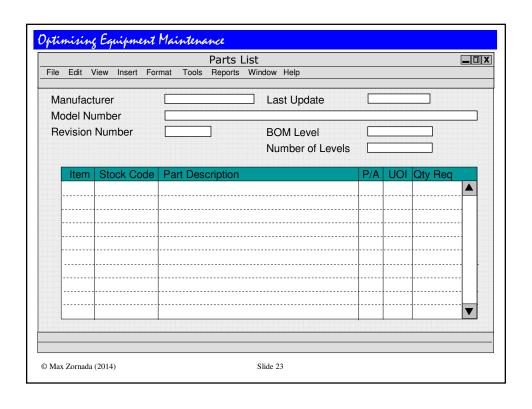

Discussion Issues

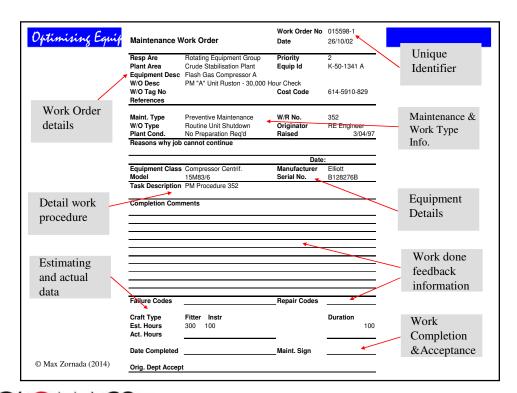
- Multiple tasks per work order;
- Joint responsibility for work orders;
 - e.g. Mechanical and Electrical etc.
- Tracking partial completion of jobs for long jobs.

© Max Zornada (2014)

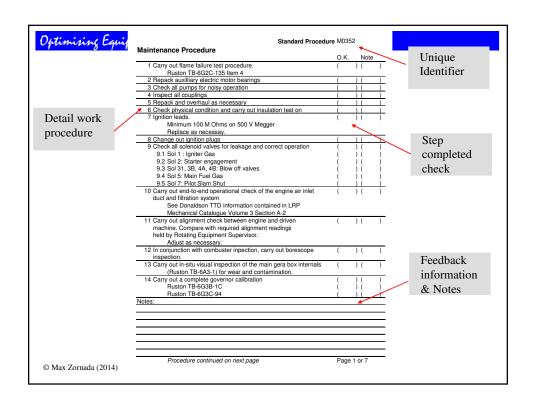
	Task Description	
ile Edit View Insert Format Tools Reports W	/indow Help	
Work Order Number	Status / Date	
Work Order Type	Maintenance Type	
Priority	Est./Planned by	
Work Order Description		
Equipment Description		
Equipment Id	Plant Condition	
Task Number	Task Status/Date	
Standards/Procedures	Permit Number	
Supervisor Assigned	Scheduled Date	
Task Description		
		A

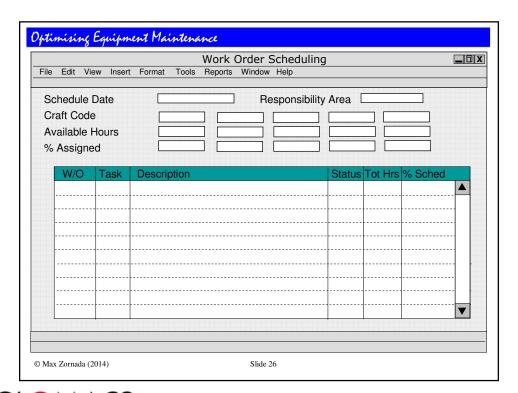
		ked Parts Requirem	ents	
File Edit View Insert For	mat Tools Reports Wir	idow Help		
Work Order Number		Status / Date		
Work Order Type		Maintenance Type		
Priority		Est./Planned by		
Work Order Description	1			
Equipment Description				
Equipment Id		Plant Condition		
Task Number		Task Status/Date		
Task Description				
Stock Code	Part Description	Est Qty Act	Qty UOI	Status
			,	A

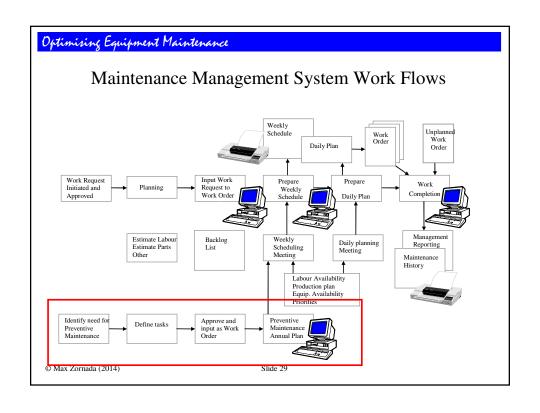

ile Edit View Insert Form		curement Requisitio	ning	J		
He Latt View Hissit 1 Sil	nat 10013 Hoporto 111	ndow rieip		total total		
Work Order Number		Status / Date				
Work Order Type		Maintenance Type	VIII			
Priority		Est./Planned by				
Work Order Description	1					
Task Number		Task Status/Date				
Task Description						11/1/2
P/O Number		P/O Number		of		
Vendor		Available Date				
Stock Code	Part Description	Est Qty Act	Qty	UOI	Status	
					ļ	
						▼

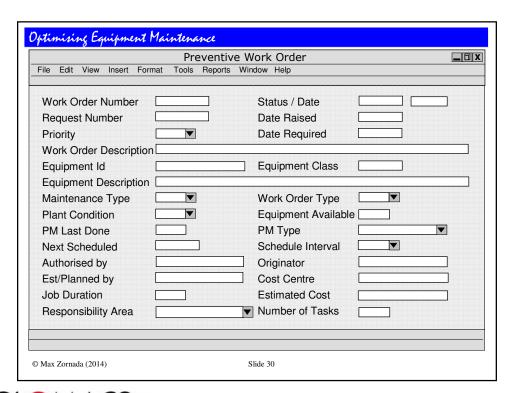


	Work Sta	ndards and Procedure	es	
File Edit View Insert Format	Tools Reports	Window Help		
Std/Procedure Number		Permit Reference		
Maintenance Type		Equipment Class		
Short Description				
Step Procedure Desc	ription			
				▼

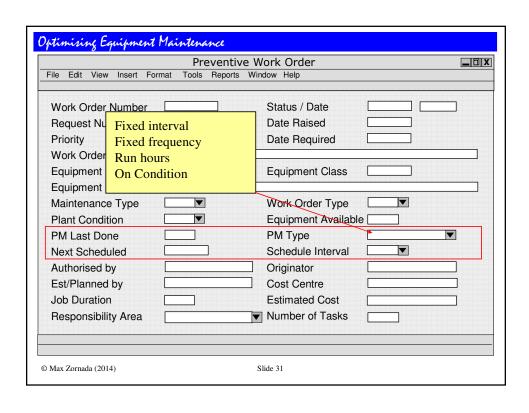

					Bill of	Mat	erials				[
File Edit	View	Insert	Format	Tools	Reports	Win	ndow Help					
Equipme	ent C	lass					Last Update					
BOM De												
Manufad	cture						Model Number					
Revision	n Nun	nber					Number of Levels					
Item	Sto	ock Co	de Pa	rt Des	cription			P/A	UOI	Qty I	Req	
												A
												-
												▼

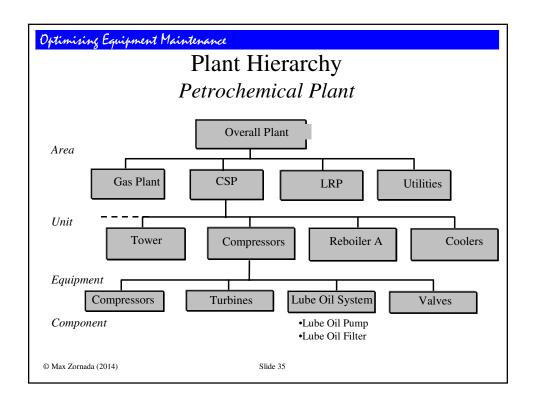






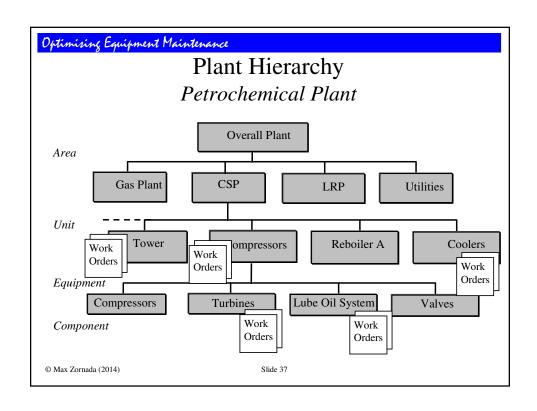
File Edit View Insert Forn			r Completion		
File Edit View Iliseit Foli	nat 100is	перопъ	willdow Help		
Work Order Number			Status / Date		
Work Order Type			Maintenance Type	1	
Priority			Est./Planned by		
Work Order Description					
Equipment Description					
Equipment Id			Plant Condition		
Failure Codes			Repair Codes		
% Completion			Certified By		
Completion Date					
Completion Remarks					
					lacksquare


View Inse	ert Format	Tools	Reports	Window	Heln				
Order Num					ПОІР				
	hor [7 15	st Updat	10		-	
					isi Opuai	.6			
nsibility Ar	ea		J						
nolovee No) Name					Regular	Overtime	Double	
						. rogala		2000.0	
									1
									- 1
									-
	nsibility Ar	Order Description Insibility Area Inployee No. Name	nsibility Area						


Optimising Equipment Ma	intenance
Exercise: Ho	ow does your organisation handle
Issue	Your organisation's approach
Scheduling and Issue of Work	
Registering of Completed Work	
Management of PM Work	
Emergency work	
Supervisory Responsibility	
© Max Zornada (2014)	Slide 32

	Equipmer	nt Nameplate Data	
File Edit View Insert Forma	at Tools Reports	Window Help	
Equipment Id		Last Update	
Description			
Equipment Class] Criticality	
Area/ Unit		Equipment/Comp.	
Installation Date		Start-up Date	
Vendor Name		Vendor Reference	
Manufacturer		Driver Equip. No.	
Model Number		Mating Equip. No.	
Serial Number		Control Panel Id.	
Drawing Reference		Component Track	Y/N
Warranty Exp. Date			
Original Cost			
Cost Code			

File Edit View Insert Format Tools Reports Window Help Equipment Id Last Update Description Equipment Class Criticality	
Description	
Equipment Class Criticality	
Area/ Unit Equipment/Comp.	
Installation Date Start-up Date	
Vendor Name Vendor Reference	
Manufacturer Driver Equip. No.	
Model Number Mating Equip. No.	
Serial Number Control Panel Id.	
Drawing Reference Component Track Y	/N
Warranty Exp. Date	
Original Cost	
Cost Code	



Issues to consider

- Relationships between major units, equipment and components;
- Criticality;
- Access and windows of opportunity.

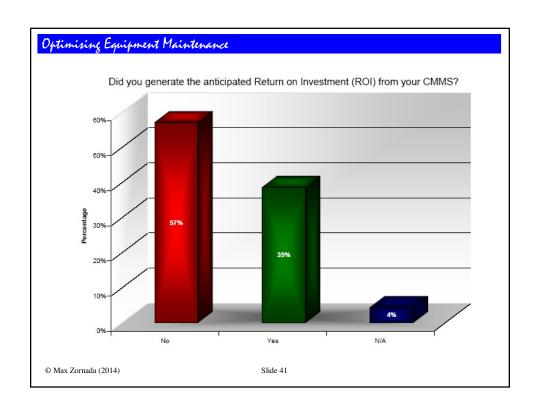
© Max Zornada (2014)

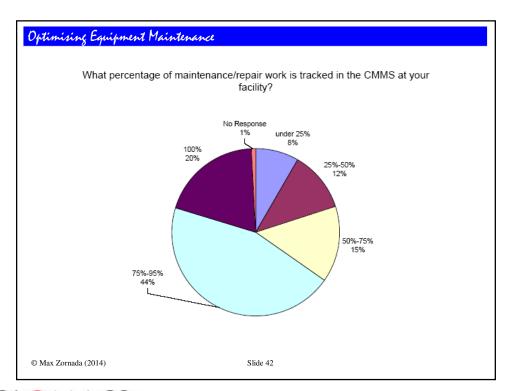
	Master Parts	Catalogue	
File Edit View Insert Format	Tools Reports Win	ndow Help	
Stock Code		Last Update	
Manufacturer Name		Manuf. Part Number]
Vendor Name		Vendor Ref. Number)
Serial Number		Model Number	בֿ
Part Description			
Item Type		Stocking Status	
Unit of Issue]	ABC Analysis]
Standard Cost		Control Strategy	
Order Quantity		Quantity on Hand]
Safety Stock		Quantity Available	
Reorder Point / Interval		Quantity Reserved]
Lead Time		Usage Y-T-D	
Quantity on Order		Stock Outs Y-T-D	
Quantity in Transit			

Equipment History					
File Edit View Insert Format Tools I	Reports Window Help				
Work Order Number	Status / Date				
Work Order Type	Maintenance Type				
Priority	Work Request No.				
Work Order Description					
Equipment Description					
Equipment Id	Cost Code				
Manufacturer	Equipment Class				
Model Number	Serial Number				
Est. Company Labour	Act. Company Labour				
Est. Contract Labour	Act. Contract Labour				
Est. Materials	Act. Materials				
Est. Services	Act. Services				
Est. Other	Act. Other				
Est. Total	Act. Total				
Est/Actual Variance	Percentage Variance				

0	ptimisis	ne Equi	ament 1	1ainte	nance

Computerised Maintenance Management Systems


Best Practice Benchmarking Findings


Slide 40

Reference: Terrence O'Hanlon (CMRP) Reliabilityweb.com

© Max Zornada (2014)

