

<u>Comprehensive Pump</u> <u>Series - Best Practices of</u> <u>Centrifugal Pumps</u>

from

Central Air conditioning and Trading and Services

Presentation -1

- **❖ MAJOR PUMP COMPONENTS**
- ***** FUNCTIONS OF COMPONENTS
 - **❖ DESIGN CALCULATIONS ON SHAFT DEFELCTIONS**
 - Losses in pumps
 - Pump selection Basic
 - **❖** Trouble shooting

Criteria for Selection of Suitable Type of Pump

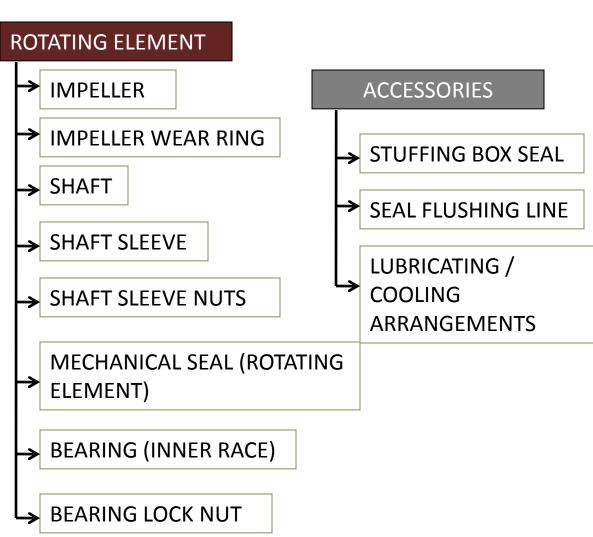
Design Objectives

- >Achieve design flow rate and total head.
- >Attain optimum efficiency.
- ➤ Obtain stable head-capacity characteristics.
- **≻**Minimize NPSH required.
- >Ensure wide operating range.
- **≻Optimize pump size.**
- **▶** Attain non-overloading power characteristics.
- Minimize vibration and noise.
- ➤ Minimize hydraulic axial and radial thrust loads.
- **▶** Design for ease of production.
- > Ensure maximum interchangeability.
- **≻Minimize cost.**

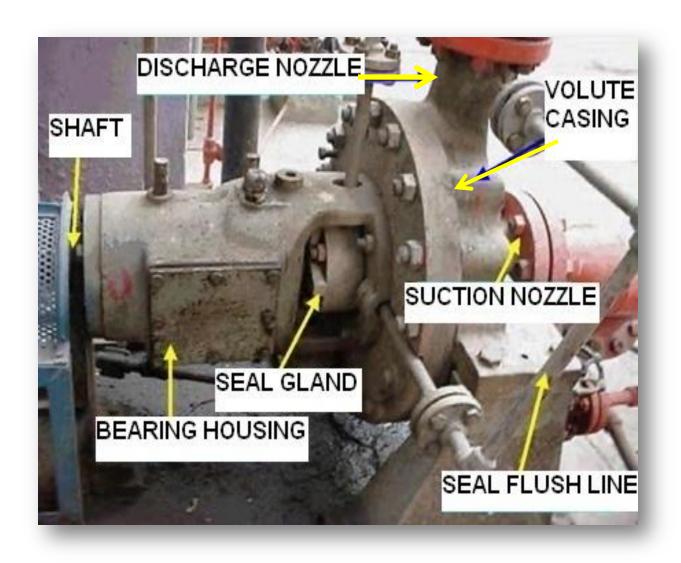
MAJOR COMPONENTS OF A CENTRIFUGAL PUMP

STATIONARY PARTS

→ CASING(TOP & BOTTOM)


→ BEARING HOUSING

→ BEARING BRACKET


→ CASING WEAR RINGS

→ SHAFT SI

→ SHAFT SI

MAJOR COMPONENTS OF AN END SUCTION PUMP

MAJOR COMPONENTS OF A SPLIT CASE PUMP

CASING

PACKING

SLEEVE

IMPELLER

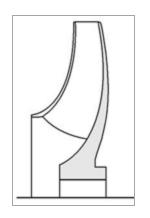
BEARING BRACKET

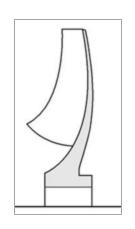
> WEAR RING

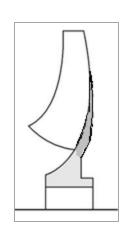
STUFFING BOX UNIT

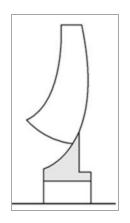
> LANTERN RING

FUNCTIONS OF CENTRIFUGAL PUMP COMPONENTS

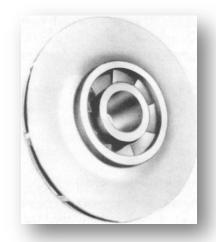

COMPONENTS	FUNCTIONS		
IMPELLER	> TO DEVELOP DYNAMIC HEAD SINGLE SUCTION DOUBLE SUCTION		
CASING	 ➤ TO CONVERT KINETIC ENERGY INTO PRESSURE ENERGY WITH MINIMUM HYDRAULIC LOSSES BY MEANS OF VOLUTE, DIFFUSERS OR GUIDE VANES ➤ INCORPORATES NOZZLES TO CONNECT SUCTION & DISCHARGE PIPING ➤ DIRECTS FLOW INTO & OUT OF THE IMPELLER. ➤ PROVIDES SUPPORT TO THE BEARING BRACKET SPLIT-CASE END SUCTION IN-LINE		
WEAR RING	 ➤ TO PROTECT THE ROTATING IMPELLER FROM RUBBING WITH THE STATIONARY CASING. TO PROVIDE A REPLACEABLE WEAR JOINT ➤ TO CONTROL THE LEAKAGE LOSSES ACROSS THE ANNULAR PATH BETWEEN IMPELLER AND WEAR RING		
IMPELLER NUT	> TO LOCK THE IMPELLER IN ITS PROPER AXIAL POSITION > TO PREVENT AXIAL MOVEMENT DUE TO HYDRAULIC THRUST		


FUNCTIONS OF CENTRIFUGAL PUMP COMPONENTS


COMPONENTS	FUNCTIONS		
SHAFT	> TRNSMITS TORQUE TO THE IMPELLER FROM THE DRIVER > SUPPORTS IMPELLER AND OTHER ROTATING ELEMENTS SHAFT		
SLEEVE	 ➤ TO ENHANCE THE STIFFNESS OF THE ROTATING ELEMENT ➤ TO PROTECT THE SHAFT FROM ABRASION WEAR AT PACKED STUFFING BOX OR AT LEAKAGE JOINTS ➤ TO PROTECT THE SHAFT FROM EROSION & CORROSION 		
SLEEVE NUT	> TO FASTEN THE SLEEVES TO THE SHAFT > TO PREVENT MOVEMENT OF THE SLEEVE		
THROTTLE BUSH	 CAUSES PRESSURE BREAKDOWN AS THE LIQUID THROTTLES ACROSS IT THUS BOOSTING THE SERVICE LIFE OF PACKING SERVES AS A LANDING FOR THE LOWEST RING OF THE PACKING RESTRICTS SOLID PARTICLE IN THE PUMPED LIQUID FROM GETTING EMBEDDED INTO THE PACKING AREA AND THUS PROTECTING SHAFT OR SLEEVE FROM WEAR		


TYPES OF IMPELLERS BASED ON MECHANICAL CONSTRUCTION

- USED DEPENDING ON THE NATURE OF THE LIQUID PUMPED

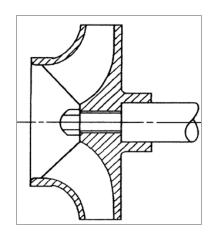


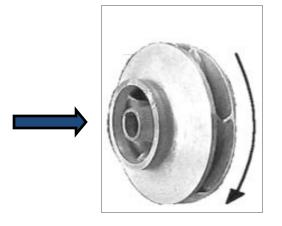
SECTIONAL VIEWS OF IMPELLERS SHOWN BELOW

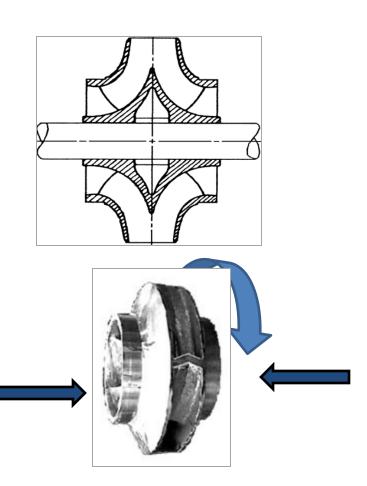

CLOSED IMPELLER

SEMI-OPEN IMPELLER

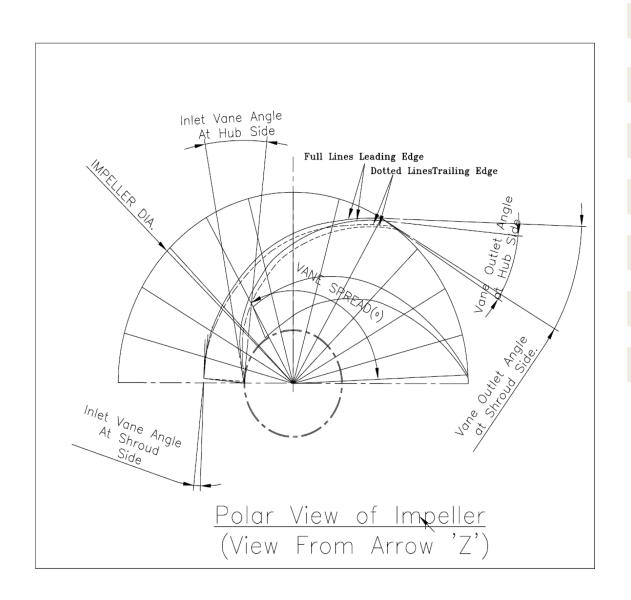
PARTIAL SHROUDED IMPELLER




OPEN IMPELLER


Type of impellers

Closed Impeller	Semi Open	Open
This type of impeller	Semi open impellers are	Open impellers are used
works best with clear	used for fibers or	for high speed pumps of
water.	potentially clogging	over 10,000 rpm.
	materials in the pumping	
	liquid	
After extensive operation	The impeller requires	
and wear, pump efficiency	tight clearance be	
can normally be restored	maintained between the	
to original levels by	open face and its mating	
replacing the inlet	stationary surface	
wearing ring (originally	(clearance between 0.25	
clearance) to the adjacent	and 0.38 mm	
casing wearing ring.		

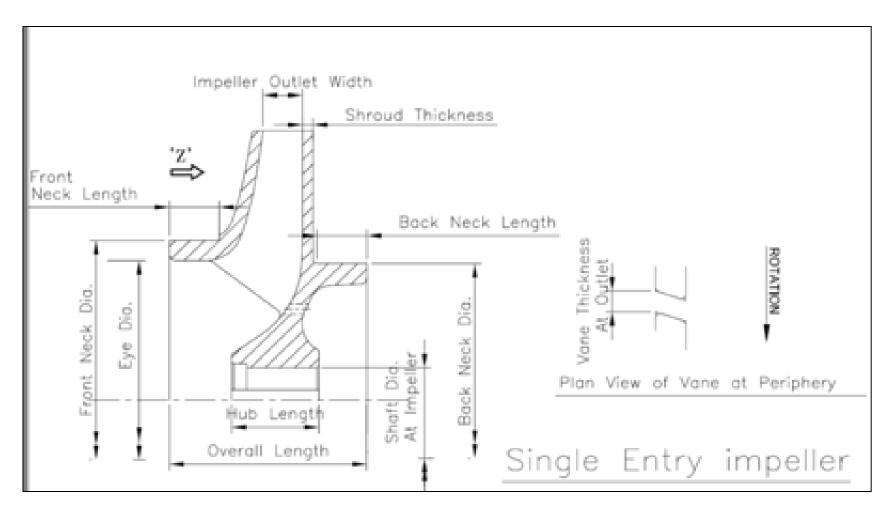

TYPES OF IMPELLERS BASED ON NUMBER OF SUCTION EYES

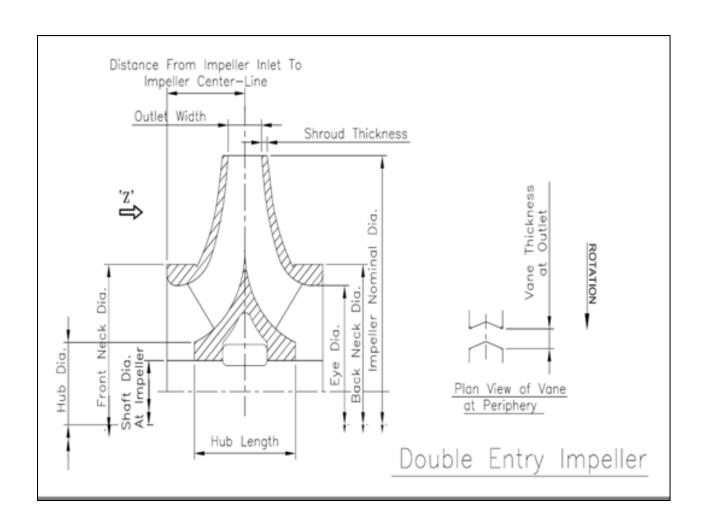
MAIN DESIGN PARAMETERS OF AN IMPELLER

NUMBER OF VANES

IMPELLER DIA.

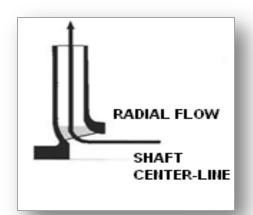
IMPELLER WIDTH

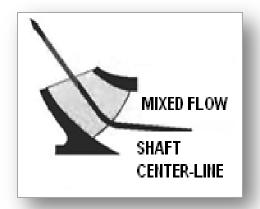

VANE OUTLET ANGLE

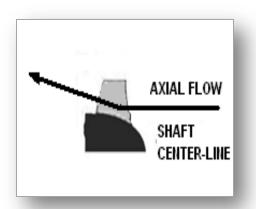

VANE SPREAD

EYE DIAMETER

VANE INLET ANGLE

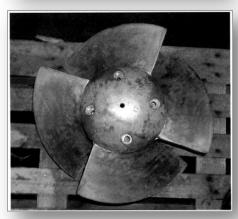

MAJOR DIMENSIONS OF AN IMPELLER





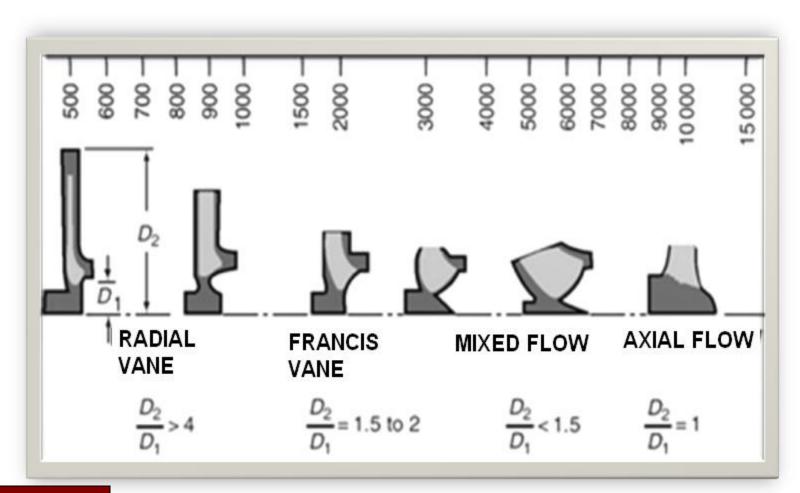
TYPES OF IMPELLERS BASED ON THE MAJOR DIRECTION OF FLOW

WITH RESPECT TO THE AXIS OF ROTATION



RADIAL VANE IMPELLER

SUITABLE FOR DISCHARGING RELATIVELY SMALL QUANTITY OF FLOW AGAINST HIGH HEAD



SUITABLE FOR DISCHARGING LARGE QUANTITY OF FLOW AGAINST MEDIUM HEAD

PROPELLER

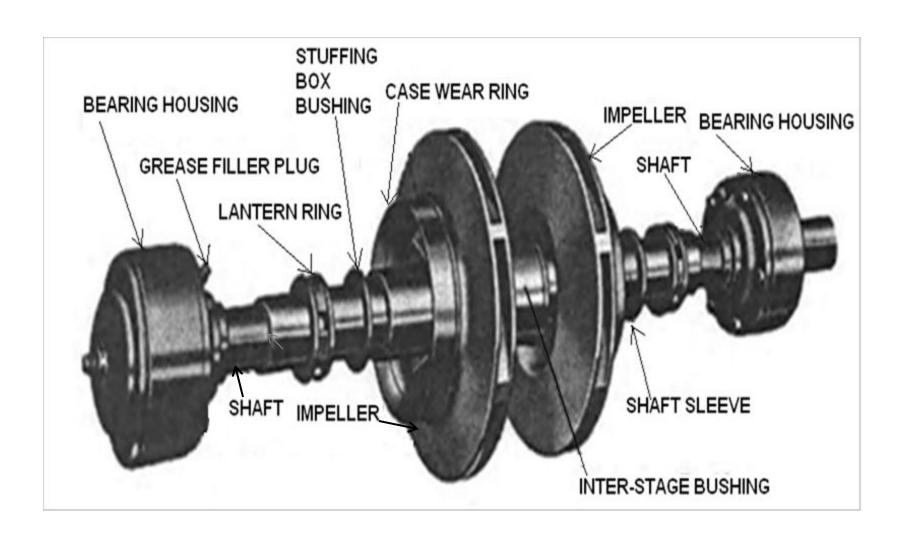
SUITABLE FOR DISCHARGING LARGE QUANTITY OF FLOW AGAINST SMALL HEAD

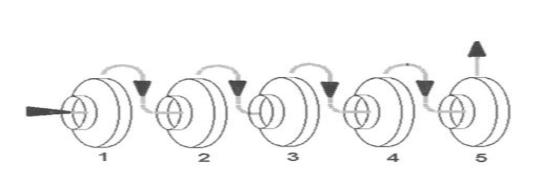
CHANGE OF IMPELLER SHAPE WITH SPECIFIC SPEED

SPECIFIC SPEED &

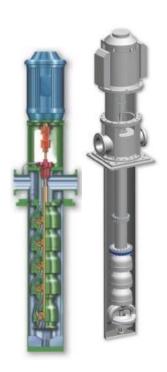
EFFICIENCY

TYPES OF IMPELLERS BASED ON THEIR RELATIVE POSITIONS ON THE SHAFT


OVER-HUNG IMPELLER

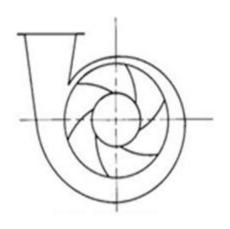

IMPELLER BETWEEN BEARINGS

TWO-STAGE PUMP ROTATING ELEMENT ASSEMBLY



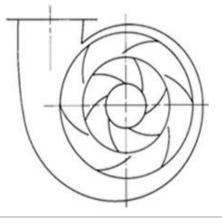
Multistage Pumps

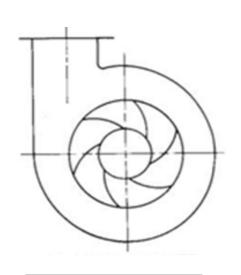
Essentially a High Head Pump having two or more Impellers Mounted on a Common Shaft in Series



Multi-stage Pump

Vertical Multistage Can Pumps


VARIOUS TYPES OF COLLECTORS & THEIR ADVANTAGES & DISADVANTAGES


SINGLE VOLUTE

VERTICAL PUMP WITH DIFFUSER

VOLUTE WITH DIFFUSER VANES

CIRCULAR VOLUTE

DOUBLE VOLUTE

FUNCTIONS OF A PUMP VOLUTE

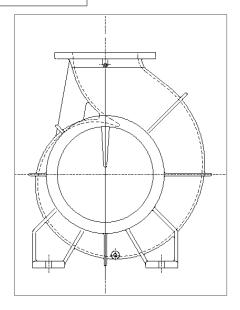
- 1. TO CONVERT KINETIC ENERGY IMPARTED BY THE IMPELLER INTO PRESSURE ENERGY
- 2. **TO MINIMIZE LOSSES** DURING THIS ENERGY CONVERSION PROCESS
- 3. THE PUMP CASING DOES NOT TAKE ANY **PART IN DYNAMIC HEAD GENERATION**
- 4. THE BEST VOLUTES ARE OF CONSTANT VELOCITY DESIGN
- 5. **KINETIC ENERGY IS CONVERTED INTO PRESSURE ENERGY**ONLY IN THE DIFFUSION NOZZLE IMMEDIATELY AFTER THE
 VOLUTE THROAT

TYPES OF VOLUTES – SINGLE VOLUTE CASINGS

- SINGLE VOLUTE CASINGS ARE OF CONSTANT VELOCITY DESIGN.
- 2. THEY ARE EASY TO CAST AND ECONOMICAL TO MANUFACTURE.
- 3. THEY PRODUCE THE BEST EFFICIENCIES AT DESIGN POINT COMPARED TO OTHER COLLECTOR SHAPES.
- 4. PRESSURE DISTRIBUTION AROUND THE IMPELLER IS UNIFORM ONLY AT THE DESIGN POINT.
- 5. RESULTANT RADIAL THRUST DUE TO NON-UNIFORM PRESSURE DISTRIBUTION IS GIVEN BY:

$P = K x H x D_2 x b_2 x S.G / 2.31$

P = RADIAL THRUST IN POUNDS

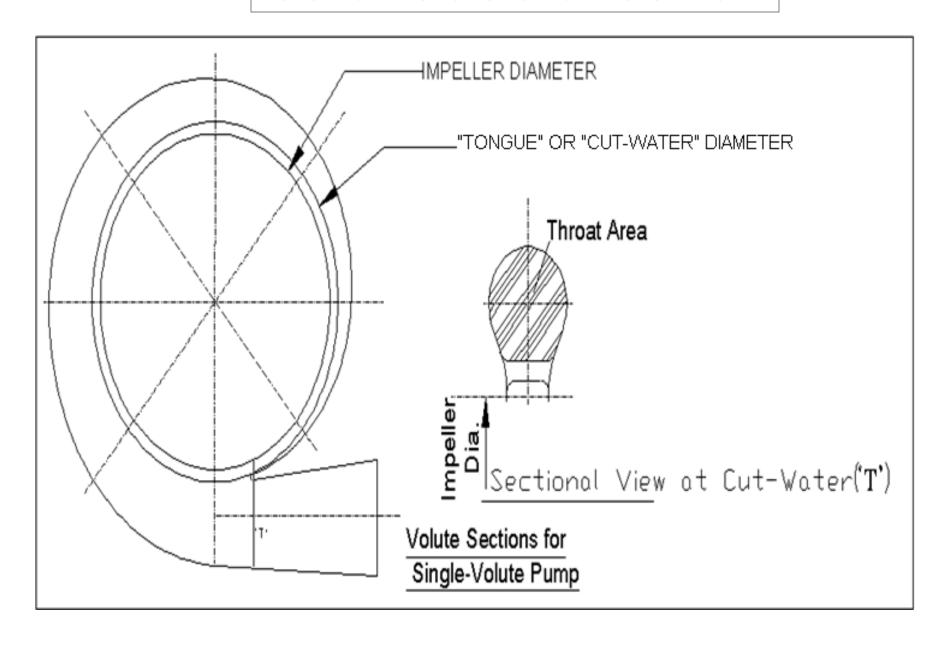

K = THRUST FACTOR

H = DEVELOPED HEAD/STAGE IN FT

D₂ = IMPELLER DIA, IN INCHES

b₂ = IMPELLER WIDTH IN INCHES (INCLUDING SHROUDS)

- 6. SINGLE VOLUTE PUMPS ARE USED MAINLY ON LOW CAPACITY, LOW SPECIFIC SPEED PUMPS.
- 7. THEY ARE ALSO USED FOR SPECIAL APPLICATIONS SUCH AS SLURRIES OR SOLID HANDLING PUMPS.



SINGLE VOLUTE

VOLUTE AS-CAST

VOLUTE SECTIONS FOR SINGLE VOLUTE PUMP

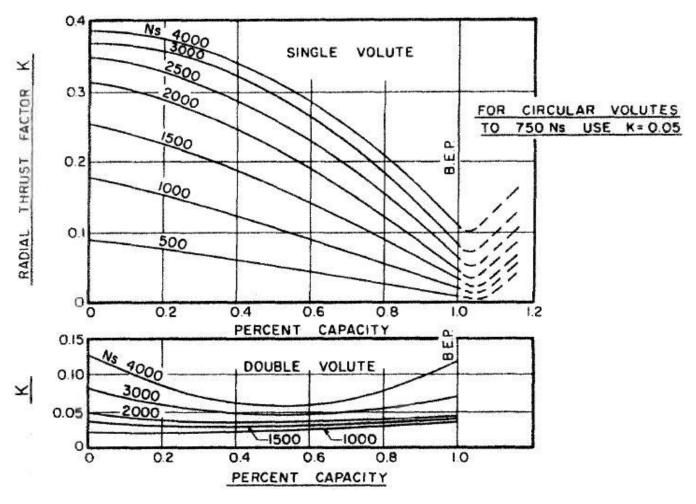
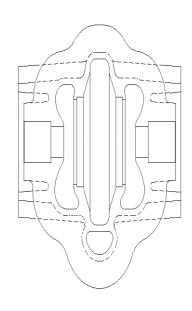
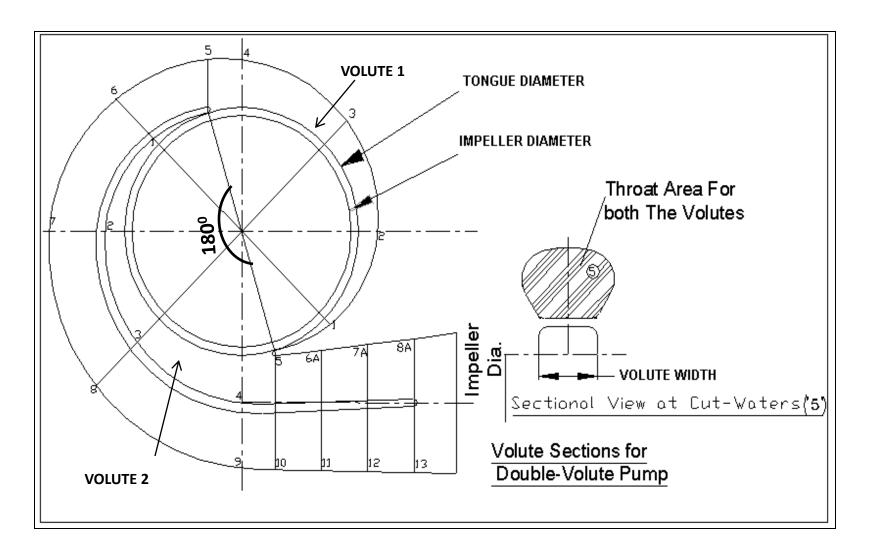



Figure 5-2. Radial thrust factor.

TYPES OF VOLUTES – DOUBLE VOLUTE CASINGS

- 1. A DOUBLE VOLUTE CASING HAS TWO SINGLE VOLUTES 180° APART.
- 2. TOTAL THROAT AREA OF TWO VOLUTE IS SAME AS THE THROAT AREA OF A COMPARABLE SINGLE VOLUTE PUMP.
- 3. DOUBLE VOLUTE SIGNIFICANTLY REDUCES THE RADIAL LOAD PROBLEM OF THE SINGLE VOLUTE PUMP.
- 4. HYDRAULIC PERFORMANCE OF A DOUBLE VOLUTE PUMP IS NEARLY THE SAME AS THAT OF A SINGLE VOLUTE PUMP.
- 5. DOUBLE VOLUTE PUMP IS AROUND 1 1.5 POINT LESS EFFICIENT AT B.E.P BUT ABOUT TWO POINTS MORE EFFICIENT ON EITHER SIDE OF B.E.P.
- 6. DOUBLE VOLUTES ARE NOT USED FOR FLOWS BELOW 90 M³/HR.(400 US GPM).



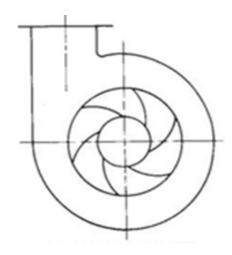
DOUBLE VOLUTE

VOLUTE AS-CAST

VOLUTE SECTIONS FOR DOUBLE VOLUTE PUMP

SAME THROAT AREA FOR BOTH THE VOLUTES

Volute with Diffuser vanes


An Impeller discharges into multiple divergent passes (normally two or more) with the outer casing functioning as a collector, directing fluid in to the pump discharge or the next pump stage

Circular (concentric) casing

An Impeller discharges in to a circulator collector with a single discharge port.

A circular casing is often used where efficiency is not a concern
Casings are commonly fabricated and it may improve the efficiency of very low specific speed.

Application: Slurry pumps.

CASING THICKNESS CALCULATION USING ASME STANDARD

$$t = \frac{p \cdot r}{f - .6p} + 3$$

Where, p= max working pressure= 12 bar= 174psi (for CSC range)

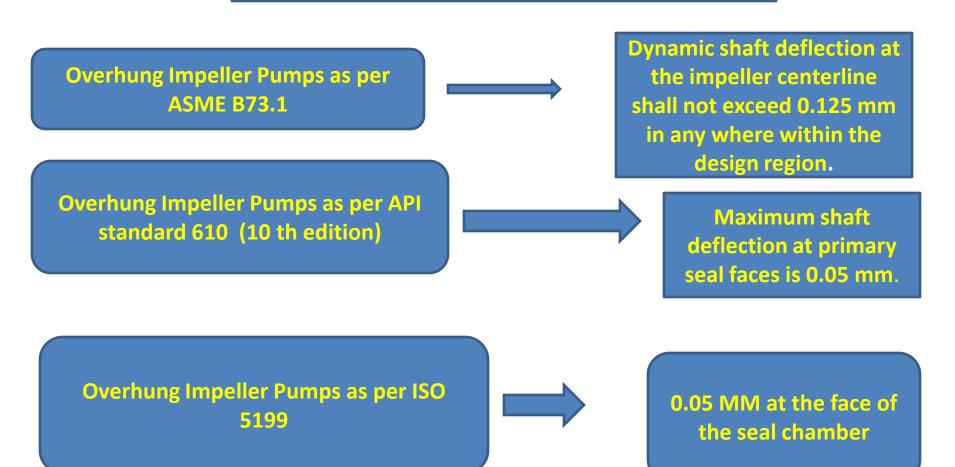
r = casing internal radius

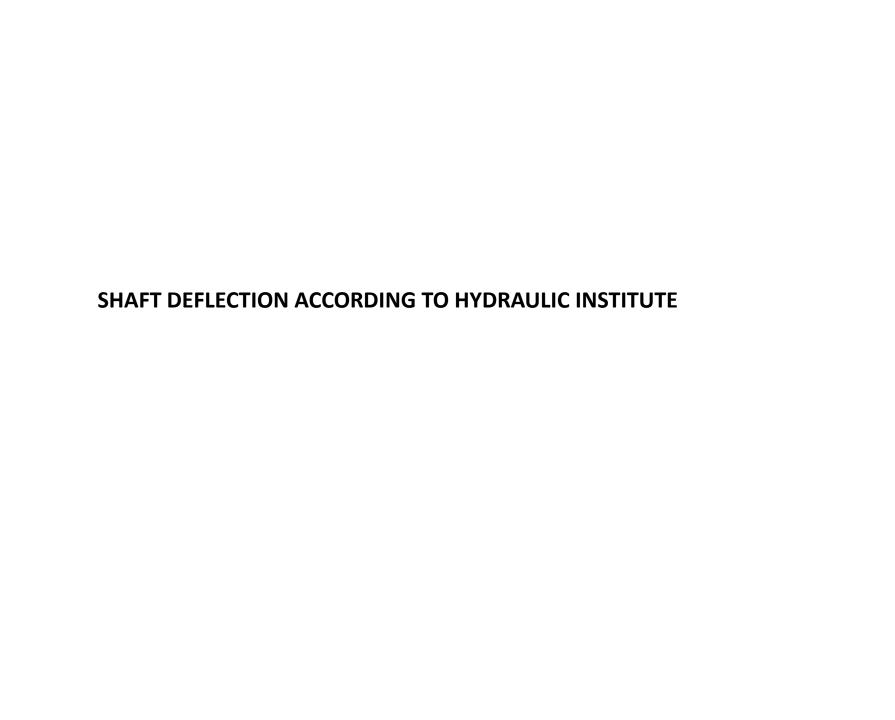
f= permissible stress= .25× UTS ×.8

For, Grade 14(FG220) = $.25 \times 14 \times .8 \times 2240 = 6272$ psi

Grade 17(FG 260) = 7616 psi

GGG50 = 13600 psi

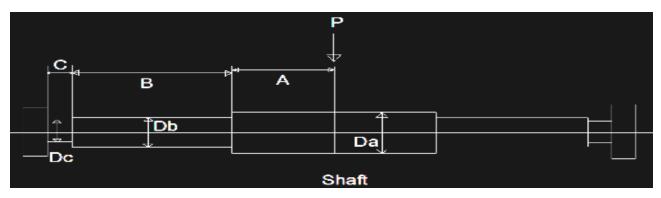

Shaft deflection


Shaft deflection is the designed criterion that greatly influences pump performance due to its effect on the mechanical seal, internal clearance and bearings.

The radial loads acting on the rotating impellers are transmitted directly to the pump shaft. This forces will deflect the shaft where it is applied ,irrespective of the bearing configuration.

The shaft must be designed to accommodated this hydraulic radial load in conjunction with the additional radial load imposed due to the mass of the impellers and other rotating components. Under these condition the rotor must be stiff enough to limit the resulting deflection to within limits.

Standards



> <u>Deflection of shaft :Between the bearing</u>

Deflection (Δ) = P/(6EIc)(C^3+ {(C+B)^3-C^3}/K2 + {(A+B+C)^3-(B+C)^3}/K3)

Δ is in mm.

P= load at the impeller: (P)

E(Modulus of elasticity) = 200 GPa = 200×10^6 Kpa

A= length of shaft at section A

B= length of shaft at section B

C= length of shaft at section C

≻ K2, K3 can be calculated as below,

$$K_2 = Ib/Ic$$

 $K_3 = Ia/Ic$

> Determination of moment of inertia of each section:

Ia= moment of inertia = $\pi \times Da^4/64$

Ib= moment of inertia = $\pi \times Db^4/64$

Ic= moment of inertia = $\pi \times Dc^4/64$

Da= Dia of the shaft at section A

Db= Dia of the shaft at section B

Dc= Dia of the shaft at section C

Determination of load at the impeller: (P)

Wi = Wgt of the impeller

Ws = Wgt of the shaft

W= static load of rotor = Wi + Ws

P (load at the impeller) = W+R

> Calculate Radial Thrust:

$$R = Kr \times H \times \rho \times g \times B_2 \times D_2$$

Where,

Kr = thrust factor which varies with rate of flow and specific speed

H = Developed head per stage in m

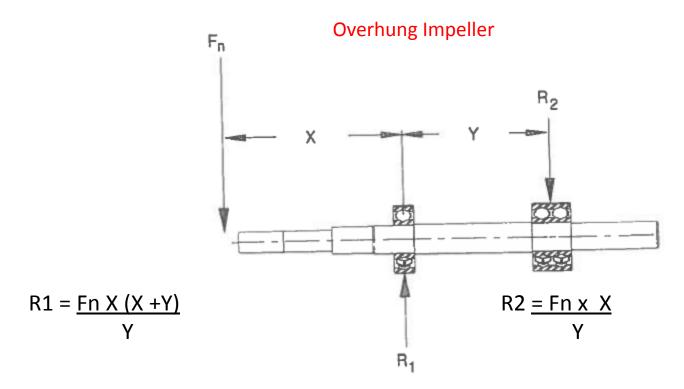
ρ= density of the liquid in kg/m³

Gravitational constant = 9.81 m/s2

D2= Impeller dia in m

B2= Impeller width at discharge including shrouds in m

Note: = $H \times S/2.31$ in US units


Calculate specific speed Ns:

> <u>Determine Kr:</u>

The variation of Kr with specific speed is given in the table:

Duty 50%	Ns(Us)	Ns(metric)	Kr
Double volute	500	600	0.02
	1000	1200	0.025
	1500	1250	0.035
	2000	2300	0.048
	3500	4000	0.05

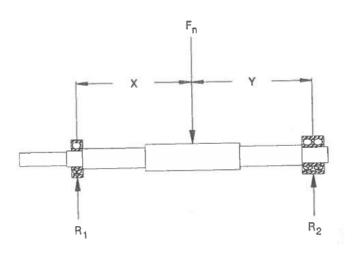
Bearing load calculation – Ref- Hydraulic Institute

Where,

R1 – Inboard reaction load , R2 – Outboard bearing reaction load

Fn = Fr + W; Where

Fn – Net force typically applied at the impeller center line,


Fr –Radial hydraulic thrust applied at impeller center line.

W-Impeller weight

X- Distance from applied load to the center of the inboard bearing

Y= Distance between in board and out board bearing

Bearing load – Between the bearing

$$R1 = \frac{Fn \times Y}{X+Y}$$

 $R2 = \frac{Fn \times X}{X + Y}$

Where,

R1 – Inboard reaction load, R2 – Outboard bearing reaction load

Fn = Fr + W; Where

Fn – Net force typically applied at the impeller center line,

Fr –Radial hydraulic thrust applied at impeller center line.

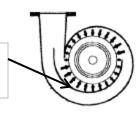
W-Impeller weight

X- Distance from applied load to the center of the inboard bearing

Y= Distance between in board and out board bearing

HYDRAULIC THURSTS GENERATED IN A CENTRIFUGAL PUMP

RADIAL THRUST


• SUMMATION OF UNBALANCED HYDRAULIC FORCES ACTING RADIALLY. DUE TO UNEQUAL VELOCITY OF THE FLUID FLOWING THROUGH THE CASING AT PART FLOW, A NON-UNIFORM PRESSURE DISTRIBUTION EXISTS OVER THE CIRCUMFERENCE OF THE IMPELLER.

RADIAL THRUST IS AN IMPORTANT PARAMETER WHEN DESIGNING PUMP'S MECHANICAL ELEMENTS LIKE SHAFT AND BEARINGS.

SINGLE VOLUTE CASING

SECOND VOLUTE

DOUBLE VOLUTE CASING

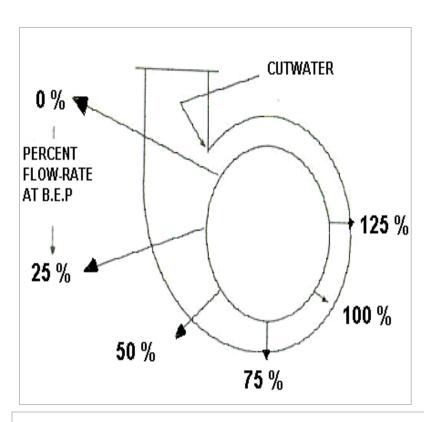
STATIC PRESSURE DISTRIBUTION
OVER THE IMPELLER OUTLET FOR
DIFFERENT CASING GEOMETRIES AT
PART FLOW REGIME

CONCENTRIC CASING

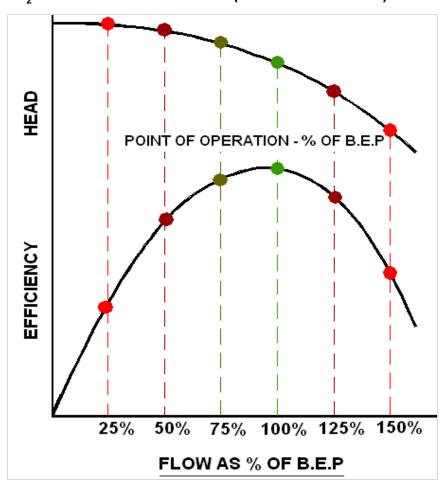
VANED DIFFUSER

RADIAL THRUST IS A FUNCTION OF TOTAL HEAD OF THE PUMP & WIDTH & DIAMETER OF THE IMPELLER

 $P = K x H x D_2 x b_2 x S.G / 2.31$


P = RADIAL THRUST IN POUNDS

K = THRUST FACTOR


H = DEVELOPED HEAD/STAGE IN FT

D₂ = IMPELLER DIA, IN INCHES

b₂ = IMPELLER WIDTH IN INCHES(INCLUDING SHROUDS)

RADIAL REACTION VECTOR REPRESENTED BY THE ARROWS AT DIFFERENT FLOW CONDITIONS FOR A SINGLE VOLUTE CASING

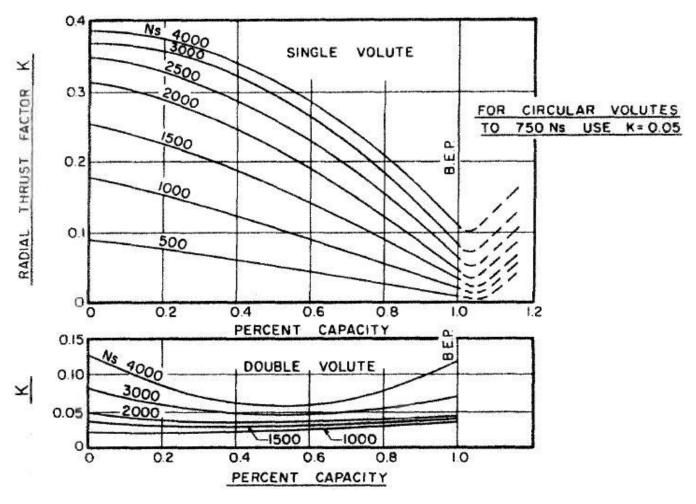
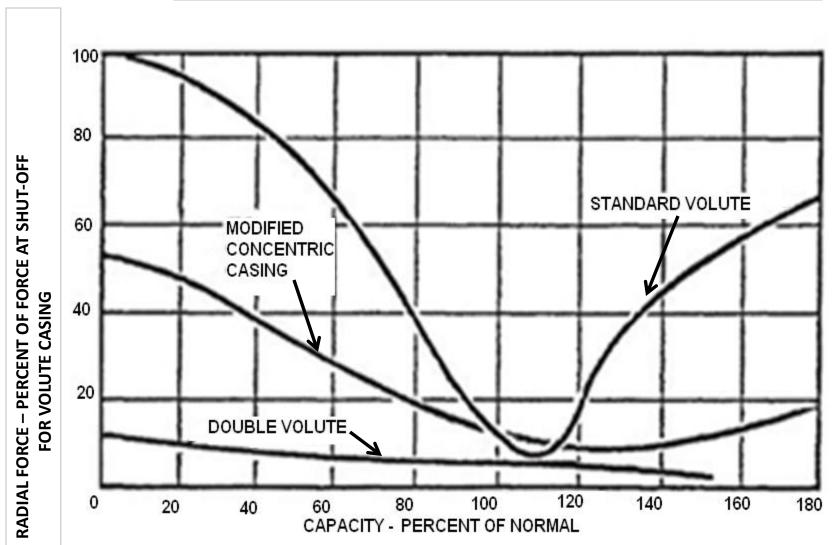
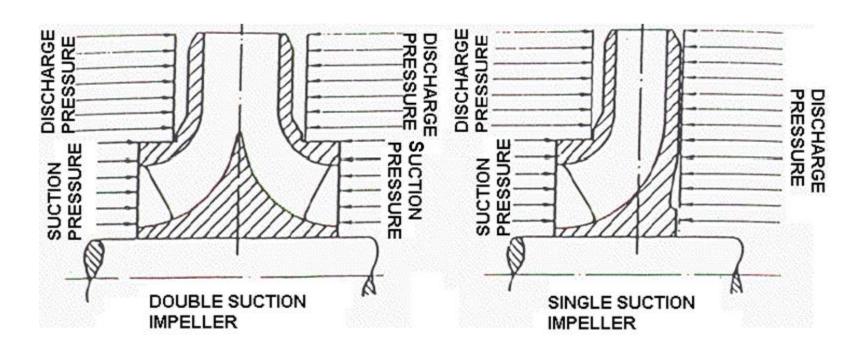



Figure 5-2. Radial thrust factor.

RADIAL FORCE FOR VARIOUS TYPES OF VOLUTES



AXIAL THRUST

SUMMATION OF UNBALANCED HYDRAULIC FORCES ACTING AXIALLY ON THE IMPELLER.

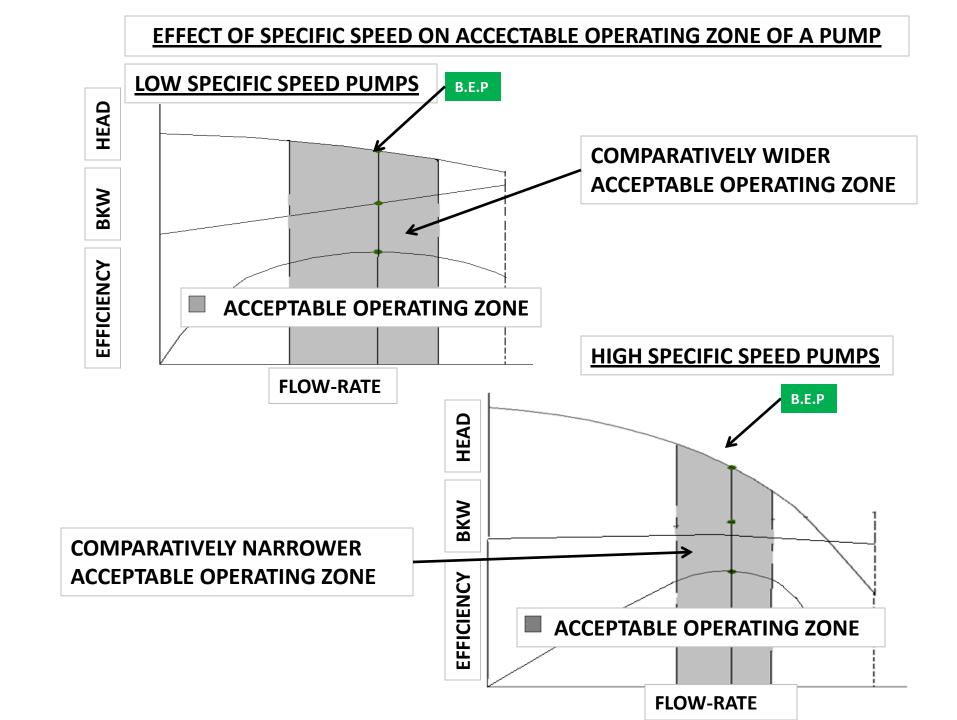
SEVERITY OF AXIAL THURST DEPENDS ON THE TOTAL HEAD, SUCTION PRESSURE & MECHANICAL CONFIGURATION OF IMPELLER.

AXIAL PRESSURE ACTING ON THE IMPELLER SHROUDS TO PRODUCE AXIAL THRUST

SPECIFIC SPEED OF A CENTRIFUGAL PUMP

IT'S A <u>DESIGN_INDEX</u> THAT DETERMINES THE IMPELLER TYPE AND GEOMETRIC SIMILARITY OF PUMPS.

$Ns = N \times \sqrt{Q / (H)^{0.75}}$


WHERE,

- ➤ Ns = SPECIFIC SPEED IN METRIC UNITS.
- \triangleright Q = FLOW IN M³/HR. AT B.E.P.
- N = ROTATIVE SPEED IN R.P.M.
- ➤ H = HEAD DEVELOPED IN M. AT B.E.P.

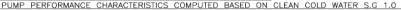
$Ns = N \times \sqrt{Q / (H)^{0.75}}$

WHERE,

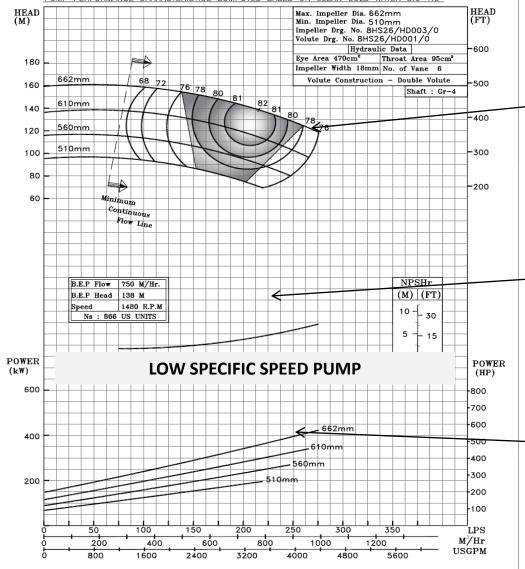
- > Ns = SPECIFIC SPEED IN US CUSTOMARY UNITS.
- ➤ Q = FLOW IN US GPM AT B.E.P.
- N = ROTATIVE SPEED IN R.P.M.
- ➤ H = HEAD DEVELOPED IN FT. AT B.E.P.

5

PUMPSENSE


 PERFORMANCE
 CURVE
 OF
 8HS26
 @1480
 R.P.M
 8HS26/X/0610

 MODEL
 8HS26
 WORKING PRESS 16 bar


SIZE 250×200-662 TEST PRESS. 24 bar

TYPE-AXIALLY SPLIT CASE SINGLE STAGE
SPEED 1480 rpm

SHADED REGION ON THE H-Q CURVE REPRESENTS OPTIMUM SELECTION ZONE

HS RANGE

SPECIFIC SPEED & ITS EFFECT ON PUMP PERFORMANCE CHARACTERISTICS

COMPARATIVELY FLAT H-Q CURVE

COMPARATIVELY LOW NPSH REQUIREMENT

RISING POWER CURVE

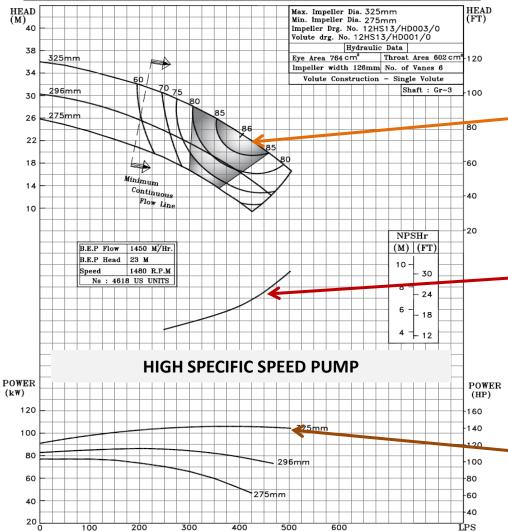
5

PUMPSENSE

12HS13/X/0610

M³/Hr

USGPM


MODEL 12HS13

WORKING PRESS 16 bar SIZE 350×300-325 TEST PRESS. 24 bar HS RANGE TYPE-AXIALLY SPLIT CASE SINGLE STAGE

SPEED 1480 rpm

THICKER PORTION OF THE H-Q CURVE REPRESENTS OPTIMUM SELECTION ZONE PERFORMANCE CHARACTERISTICS BASED UPON CLEAN COLD WATER - ADD 0.5m TO NPSHR FOR SAFETY

PERFORMANCE CURVE OF 12HS13 @1480 R.P.M

800 1000 1200 1400 1600 1800 2000 2200

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

SPECIFIC SPEED & ITS FEFFCT ON **PUMP PERFORMANCE CHARACTERISTICS**

COMPARATIVELY STEEP H-Q CURVE

COMPARATIVELY HIGH NPSH **REQUIREMENT**

NON-OVERLOADING POWER CURVE

Allowable Operating Region & Preferred Operating Region

Reference Source ANSI HI 9.6.3-1997

Preferred Operating Region - POR

The flow remains well controlled within a range of rates of flow designated as the Preferred Operating Region (POR). Within this region the service life of the pump will not be significantly affected by hydraulic loads, vibration or flow separation.

Specific Speed		POR
Metric	US Units	
< 5200	< 4500	Between 70% & 120% of BEP
> 5200	> 4500	Between 80% & 115% of BEP

SUCTION SPECIFIC SPEED

Suction specific speed is an indicator of the net positive suction head require for 3% drop in head at a given flow rate and rotation speed.

$Nss = N \times \sqrt{Q / (NPSHr)^{0.75}}$

WHERE,

- > Nss = Suction specific speed in metric units
- ➤ **Q** = Flow in m³/hr at b.e.p (use half of the total flow for double suction pumps)
- \triangleright **N** = rotative speed in r.p.m
- ➤ NPSHr = Net +ve suction head required in m (established by 3% head drop test)

$Nss = N \times \sqrt{Q / (NPSHr)^{0.75}}$

where,

- ➤ **Nss** = Suction specific speed in us customary units.
- ➤ **Q** = Flow in us gpm at b.e.p (use half of the total flow for double suction pumps)
- \triangleright **N** = Rotative speed in r.p.m
- ➤ **NPSHr** = Net +ve suction head required in ft (established by 3% head drop test)

SPEED LIMITATION AND SUCTION SPECIFIC SPEED

Increased pump speed without proper suction conditions

can lead to

- Abnormal pump wear
- Failure due to excessive vibration
- Noise
- Cavitations damage

Suction specific speed has been found to be a valuable criterion in determining the maximum speed

Hydraulic institute uses a value of 10,000 metric units (8500 us units) as a practical value for determining the maximum operating speed.

In metric units,

 $n = 10,000 \times npsha^{0.75} / q^{0.5}$

where , n = max. speed(r.p.m). npsha = npsh available in m. q = flow in m³/hr. (take half of the flow for double suction pump). In us customary units,

 $n = 8,500 \times npsha^{0.75} / q^{0.5}$

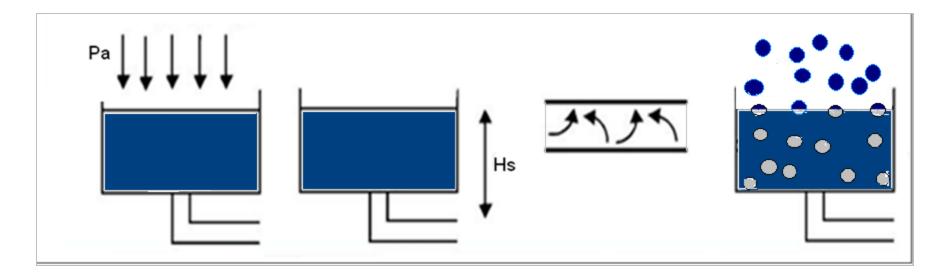

where , n = max. speed(r.p.m).

npsha = npsh available in ft.

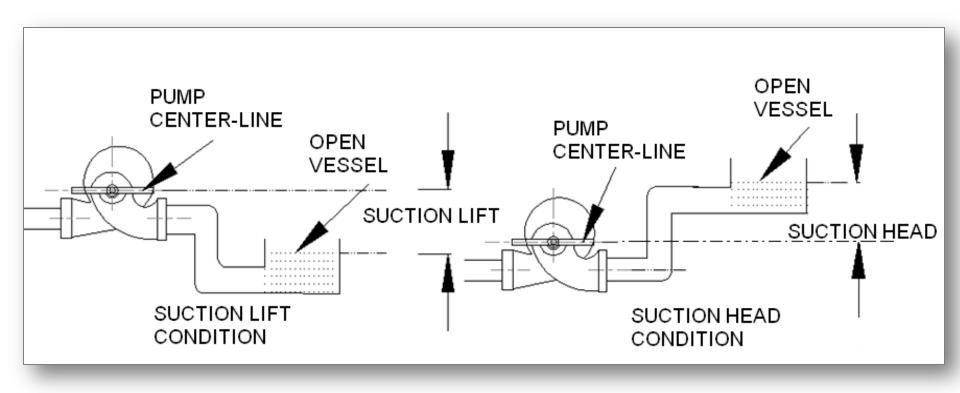
q = flow in us g.p.m. (take half of the flow for double suction pump).

SAFE OPERATING WINDOW Vs SUCTION SPECIFIC SPEED

Ttest of a 4 inch pump with different Nss impellers.
bep & impeller profiles are identical, only eye geometry is different for each Nss


NPSHr & NPSHa

NPSHr IS A CHARACTERISTIC OF YOUR PUMP.	NPSHa IS A CHARACTERISTIC OF YOUR SYSTEM
THIS IS A FUNCTION OF PUMP SUCTION DESIGN. IT VARIES WITH THE SPEED & CAPACITY FOR A PARTICULAR PUMP.	THIS IS A FUNCTION OF SYSTEM CONFIGURATION ON THE SUCTION SIDE OF THE PUMP.
THIS IS THE +VE HEAD IN M ABSOLUTE REQUIRED AT PUMP SUCTION TO OVERCOME PUMP INTERNAL LOSSES — LOSSES DUE TO TURBULANCE (GENERATED AS THE LIQUID STRIKES THE IMPELLER AT IMPELLER INLET), LOSSES IN THE SUCTION PASSAGE & VANE INLET PASSAGES TO MAITAIN THE PUMPING FLUID IN LIQUID STATE.	IT IS THE AVAILABLE TOTAL SUCTION HEAD IN METRES ABSOLUTE DETERMINED AT THE INLET NOZZLE OF THE PUMP & CORRECTED TO THE PUMP DATUM LESS THE VAPOUR PRESSURE HEAD OF THE LIQUID IN METRES ABSOLUTE AT THE PUMPING TEMPERATURE.


FOR CAVITATION-FREE SAFE OPERATION, YOU'VE TO KEEP, NPSHa > NPSHr

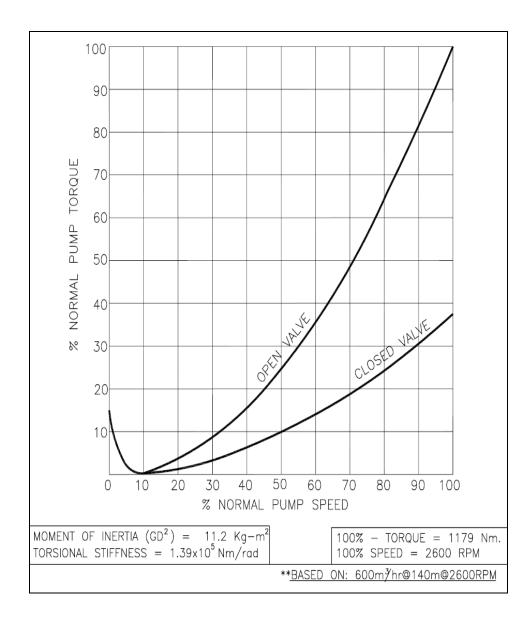
CALCULATION OF AVAILABLE NPSH (NPSHa)

- ☐ CHARACTERISTIC OF THE PROCESS SUCTION SYSTEM.
- AN ANALYSIS OF TOTAL ENERGY ON THE SUCTION SIDE OF A PUMP TO DETERMINE WHETHER THE LIQUID WILL VAPOURIZE AT A LOW PRESSURE POINT IN THE PUMP.

<u>CALCULATION OF NPSH</u>_A FOR SYSTEMS WITH SUCTION HEAD & SUCTION LIFT

NPSHa (M) = ATMOSPHERIC PRESSURE(M) SUCTION LIFT(M) - FRICTIONAL
HEAD LOSS(M) - V.P (M)

NPSHa (M) = ATMOSPHERIC PRESSURE(M) +
SUCTION HEAD(M) - FRICTIONAL
HEAD LOSS(M) - V. P (M)


REASONS FORSAFETY MARGIN FOR MOTOR SELECTION

• IF A MOTOR IS CONSTANTLY OVERLOADED PRODUCING A POWER MORE THAN THE RATED, IT WILL DRAW MORE CURRENT AND THIS WILL INCREASE THE POWER LOSS (I²R). HIGHER THE LOSS, HIGHER WOULD BE THE HEAT GENERATED LEADING TO RAPID DAMAGE TO THE MOTOR INSULATION.

BKW (for pump) = $\frac{\text{(Capacity in cum/hr X Head in meters X sp. Gravity)}}{367 \text{ x eff. of the pump at duty}}$

A GUIDE FOR SELECTING SAFETY MARGIN – ISO 5199

MOTOR RATING	MARGIN OF SAFETY (% OF MOTOR RATING)
1 kW TO 100 kW	135% TO 110%
ABOVE 100 kW	110%

TYPICAL SPEED TOQUE CURVE WITH TVA DATA

CLASSIFICATION OF LOSSES

LOSSES IN A CENTRIFUGAL PUMP ARE CLASSIFIED INTO FIVE TYPES:

MECHANICAL LOSSES

IMPELLER LOSSES

DISK FRICTION LOSSES

LEAKAGE LOSSES

CASING HYDRAULIC LOSSES

There are number of mechanical, hydraulics losses in impeller and pump casing, this will affect the pump performance is lower than predicted by the Euler pump equation.

MECHANICAL LOSSES

EXCLUSIVELY POWER LOSS
TAKES PLACE PRIMARILY IN
BEARINGS, MECHANICAL SEALS OR
GLAND PACKING

LOSSES
IN CENTRIFUGAL PUMP

CONTD..

Pump Losses

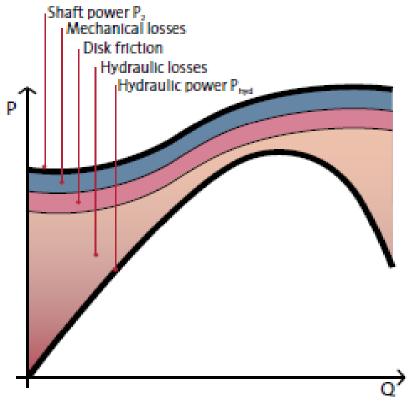
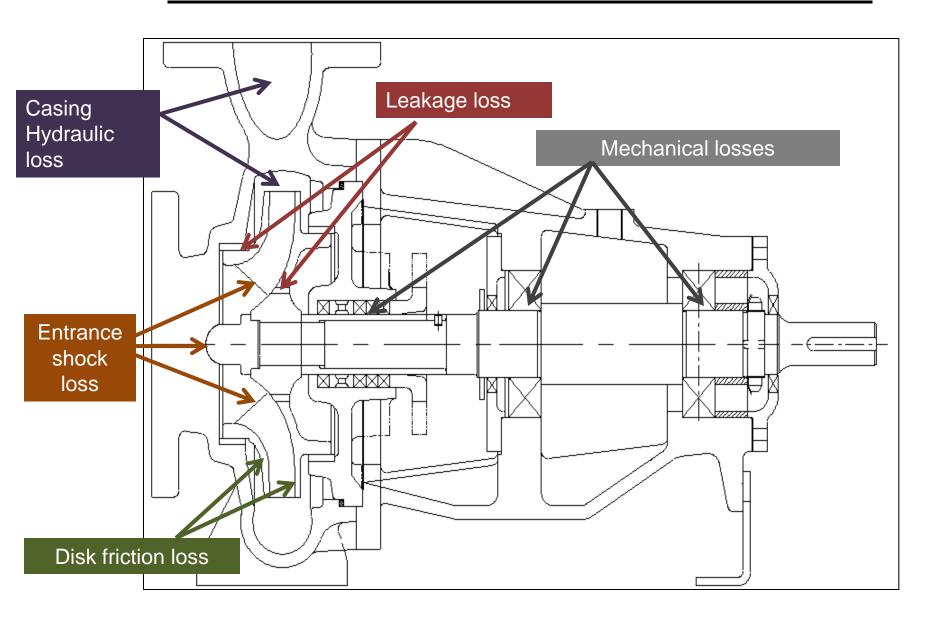
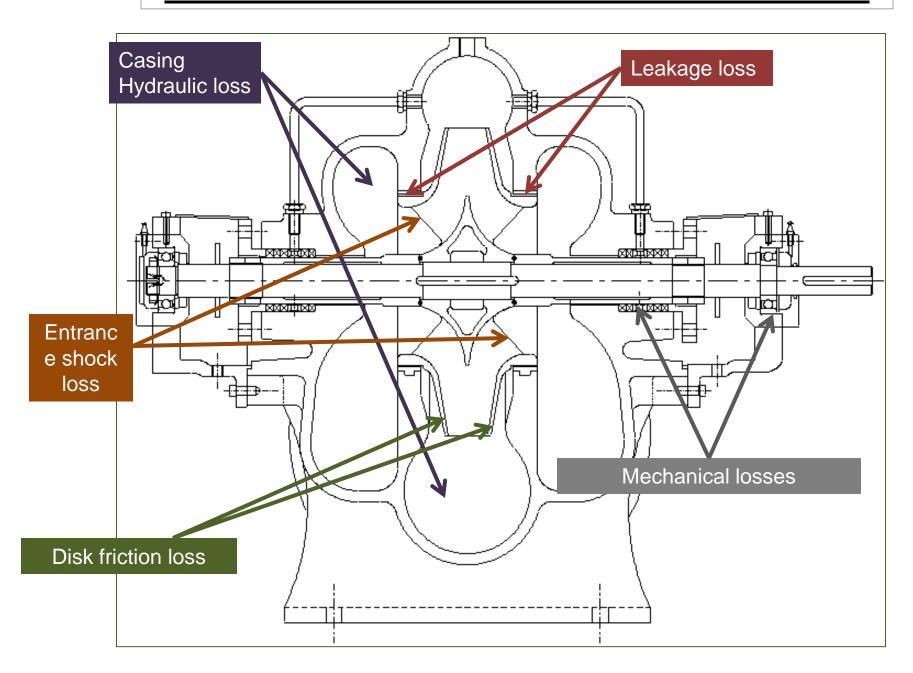




Figure 5.2: Increase in power consumption due to losses.

LOCATIONS OF VARIOUS LOSSES IN A CENTRIFUGAL PUMP

LOCATIONS OF VARIOUS LOSSES IN A CENTRIFUGAL PUMP

Mechanical losses

The pump shaft consists of bearings, shaft seals ,gear depending on pump type. These components all causes mechanical friction losses.

P losses, mechanical = P losses , bearing + P loss, shaft seal

P losses ,bearing - Power loss in bearing (W)
P loss, shaft seal - Power loss in shaft (W)

Hydraulic Losses

Hydraulic losses arise on the fluid path through the pump. The losses occur because of friction or because the fluid must change direction and velocity on its path through the pump

IMPELLER HYDRAULIC LOSSES

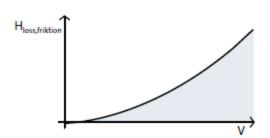
- I) Shock losses at inlet to the impeller
- ii) Shock losses <u>leaving the impeller</u>
- iii) Losses during conversion of mechanical energy to kinetic energy

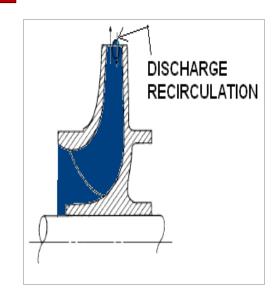
CASING HYDRAULIC LOSSES

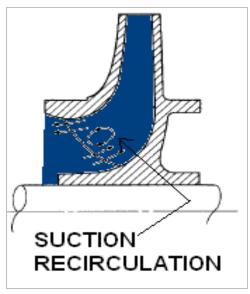
- I) **RECIRCULATION** LOSSES
- II) LOSSES DURING CONVERSION OF K.E TO P.E
- III) LOSSES DUE TO SKIN FRICTION IN CASING

GENERAL EXPRESSION FOR DEFINING FRICTIONAL LOSSES:

 $H_f = f \times v^2/2g \times L/D_H$

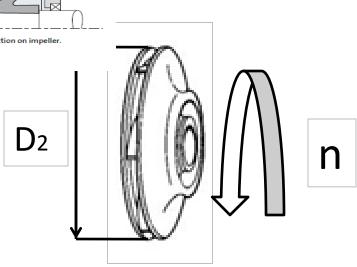

WHERE, H_f = FRICTIONAL HEAD LOSS


f = FRICTION CO-EFFICIENT


v = FLUID VELOCITY

L = PASSAGE LENGTH

 D_{H} = HYDRAULIC DIA. OF THE PASSAGE



DISK FRICTION LOSSES

Secondary vortex Figure 5.14: Disk friction on impeller.

FRICTIONAL LOSSES AT THE IMPELLER SHROUDS

The disk friction is the increased power consumption which occurs on the shroud and hub of the impeller because it rotates in a fluid filled pump casing. The size of the disc friction depends primarily on the speed the impeller diameter as well as the dimensions of the pump housing in particular the distance between impeller and pump casing.

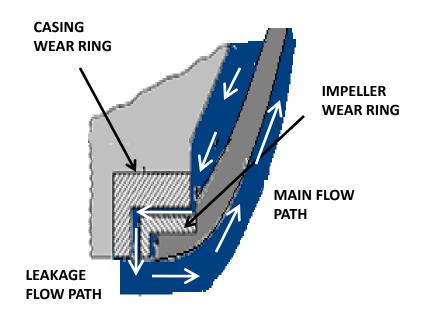
General expression for disk friction power consumption:

$$P_{D} = k x n^{3} x D_{2}^{5}$$

WHERE, **P**_D = POWER ABSORBED BY DISK FRICTION

 $\mathbf{k} = \mathsf{CONSTANT}$

n = SPEED (R.P.M)


D₂ = IMPELLER OUTER DIA.

$$k = 7.3 \cdot 10^{-4} \left(\frac{2v \cdot 10^6}{U_2 D_2} \right)^m$$

M= exponent equals 1/6 for smooth surface , 1/7 to 1/9 for rough surface, v- kinematic viscosity -m/sec , U2 = Peripheral velocity [m/s], D2 = Impeller diameter [m]

LEAKAGE LOSSES

Caused by liquid flowing past wear rings, inter-stage bushes, mechanical seals, glands & balancing devices, Leakage losses results in a loss in efficiency because the flow in a impeller is increased compared to the flow through the entire pump.

→ FLOW PATH

The general expression for determining the amount of leakage across an annular clearance is

 $Q_L = \mu \times A_{cl} \times \sqrt{(2.g.\Delta H_{cl})}$

HERE, \mathbf{Q}_{L} = LEAKAGE FLOW

 μ = LEAKAGE GAP LOSS CO-EFFICIENT

g = GRAVITATIONAL ACCELERATION

 ΔH_{cl} = HEAD LOSS ACROSS ANNULAR PATH

 \mathbf{A}_{cl} = AREA AT CLEARANCE ZONE

Pump selection method

Pump selection method

Available data's,

Type - double suction split casing pump

Application - Water

Capacity - 750 cum/hr

Head - 35 Meters

Suction lift - 3 Meters

(Can be estimated

NPSH A,NPASHR

Pump speed,

motor rating

Calculate Available NPSH A in the system

NPSH for open system = ATM head - (suction head + friction losses + vapor losses)

Assumed,

Friction losses = 0.5 M

Vapour losses = 0.6 M

NPSH A = 10.3 - (3 + 0.5 + 0.6) = 6.2 Meters

Maximum permissible speed and actual speed of the motor

$$NSS = \frac{Ns \times Q^{0.5}}{NPSHr ^ 0.75}$$

Speed (NS) =
$$\frac{\text{Nss x NPSH A }^{0.75}}{\text{Q}^{0.5}}$$

NSS = 7500 TO 10000

Assumed - 8500 in US units

(1651)^0.5

2004

Speed = RPM

The recommended motor speed is - 1450 RPM /4 Pole

3. Motor Power

BKW = <u>Capacity in cum/hr X Head M X sp.gravity</u> 367 X Eff.at duty

BKW = $750 \times 35 \times 1$

367 X 0.86

85.54 KW

ADD 15% Margin = 85.54 x 1.15 = 98 KW ,So recommendable is 110 KW/1450 RPM/50 Hz

(Efficiency is taken from the HI chart)

4. NPSH Required for the pump

$$NSS = NS \times Q^{0.5}$$

NPSHr ^ 0.75

$$NPSH^{0.75} = \underbrace{Ns \times Q ^{0.5}}_{Nss}$$

8500

NPSH R = 7.17 FT

NPSH R = 2.1 Meters

NPSH A is greater than NPSH R

5. Minimum shaft diameter at coupling area.

Shear stress formula = HP = S N(D)^3 / 321000

S- Permissible shear stress in shaft- PSI = 8500 (SS410)

D = 1.577 Inches = 39.55 mm at coupling area

6.Suction and delivery nozzle size:

Velocity at inlet (assume) - 4 m/sec.

Capacity = Area X velocity

Area
$$(3.147/d^2)$$
) = capacity / velocity
4
 $d^2 = (750 \times 4)/4 \times 3600$
d= 0.456 meters = 456 mm ,So =450 mm.(wetted area)
For discharge this can be one size lower - 400 mm say 16 inches.

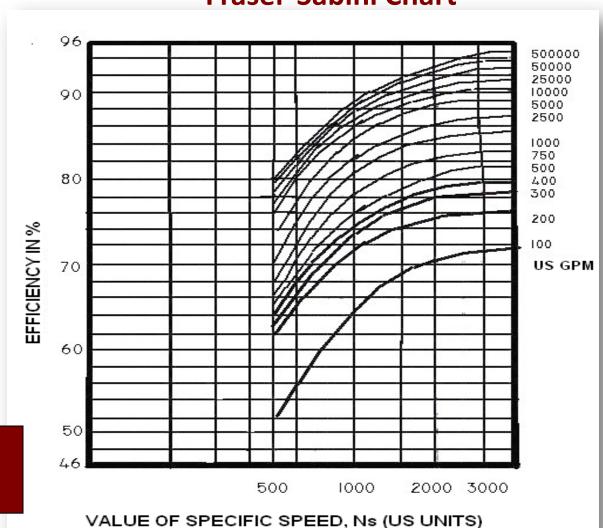
7. Selecting Impeller Diameter:

$U2 = KU (2 X g X H) ^0.5$

KU = Co efficient related to specific speed -refer to the chart for 2004 specific speed the KU value is 1.1

Impeller diameter can be calculated by using the below formula,

U2 = 3.147 X D2 X N /60


D2 =(28.82 X 60)/ 3.147 X 1500

D2= 0.366 MTRS = 366 MM.

Efficiency Chart - II

Optimum Efficiency as a Function of Specific Speed & Flow-rate

Fraser-Sabini Chart

Specific Speed & Efficiency

Specific Speed K,	K _{m2}	Г	D1/D2 K ₃	
·			3	
400	0.965	0.040	0.380	0.555
800	1.000	0.073	0.430	0.490
1200	1.035	0.100	0.470	0.425
1600	1.065	0.120	0.510	0.375
2000	1.100	0.140	0.550	0.335
2400	1.135	0.160	0.590	0.300
2800	1.165	0.175	0.620	0.275
3200	1.200	0.193	0.640	0.260
3600	1.235	0.205	0.650	0.265

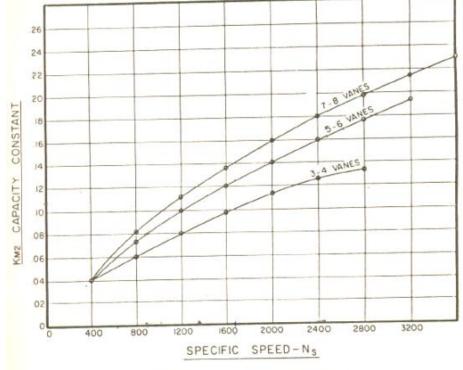
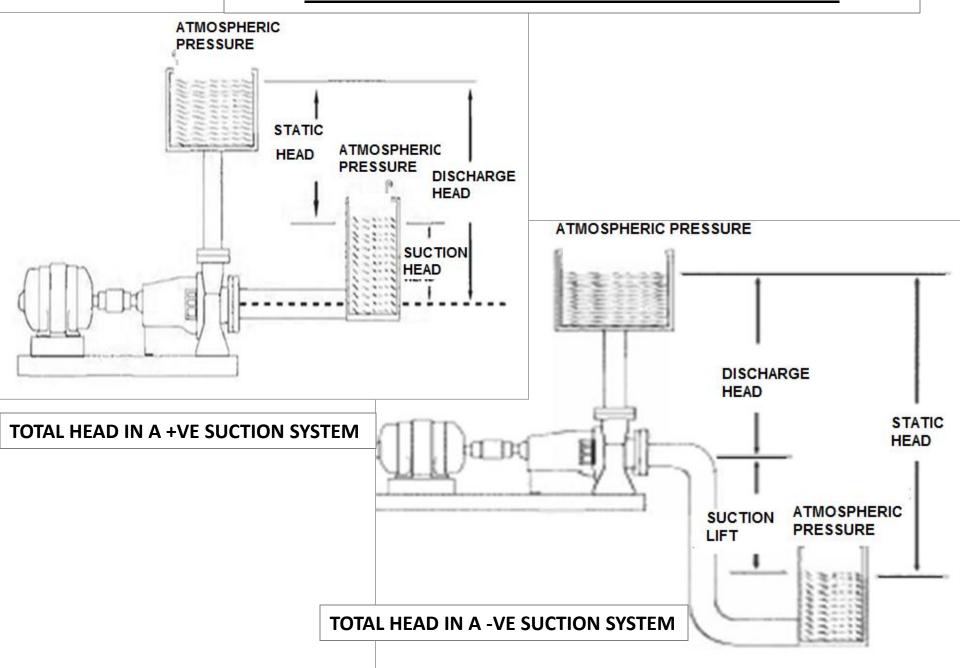
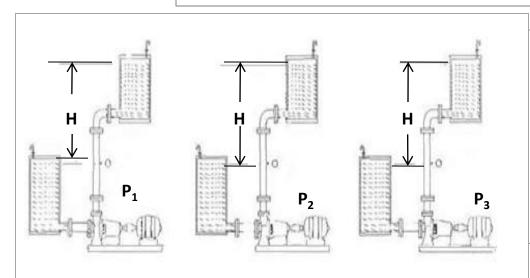
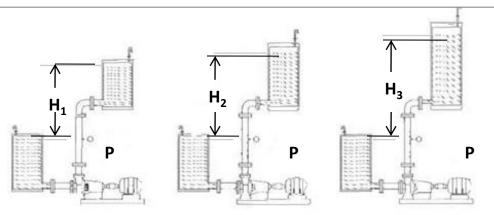




Figure 3-4. Capacity constant.

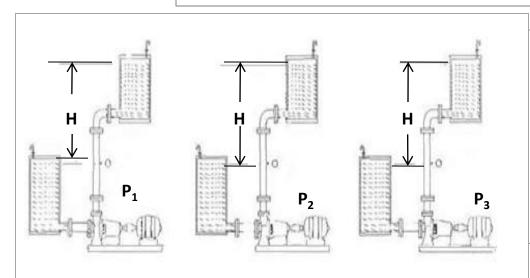
DIFFERENT HEAD TERMS IN A PUMPING SYSTEM


UNDERSTANDING PRESSURE & HEAD IN A PUMPING UNIT

☐ ALL PRESSURES CAN BE VISUALIZED AS BEING CAUSED BY THE WEIGHT OF A COLUMN OF LIQUID AT ITS BASE.

$$PRESSURE(PSI) = \frac{HEAD(FT) \times S.P. GRAVITY}{2.31}$$

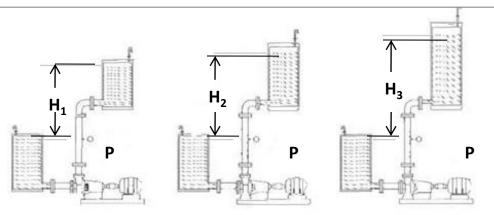
■ THREE IDENTICAL PUMPS DESIGNED TO DEVELOP SAME HEAD PRODUCES DIFFERENT PRESSURES WHICH VARY IN PROPORTION TO THEIR SPECIFIC GRAVITY.


 $PRESSURE(Kgf/CM^{2}) = \frac{HEAD(M) \times S.P. GRAVITY}{10}$

OR

☐ PUMPS SHOULD BE SPECIFIED IN TERMS
OF HEAD AND NOT IN TERMS OF
PRESSURE TO AVOID AMBIGUITY.

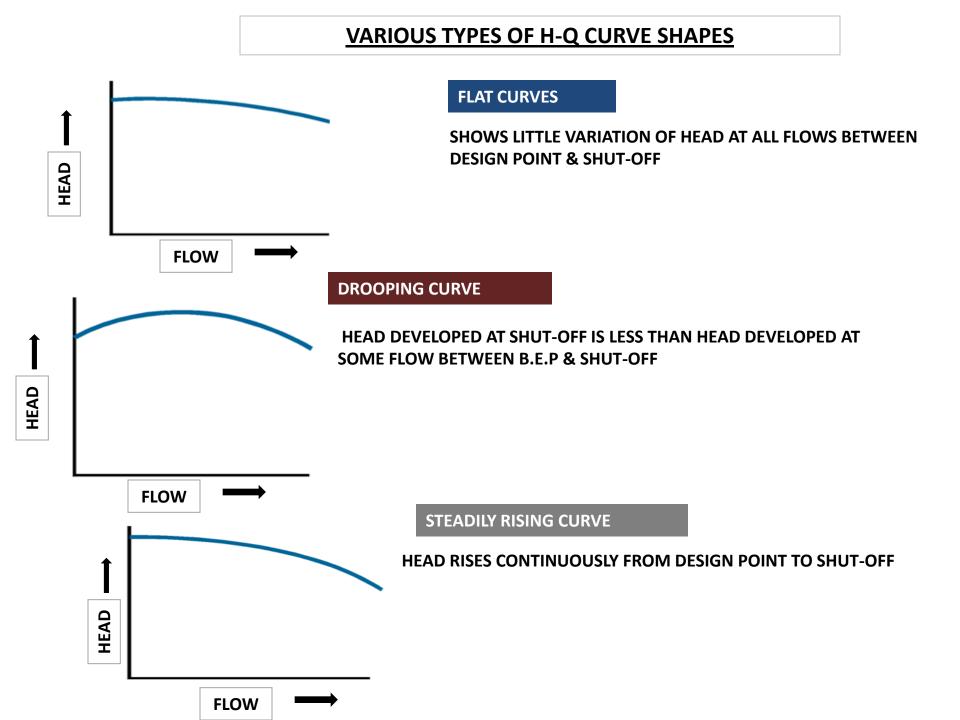
■ THREE PUMPS PRODUCE SAME DISCHARGE PRESSURE BUT DEVELOP HEADS INVERSELY PROPORTIONAL TO THEIR SPECIFIC GRAVITY.

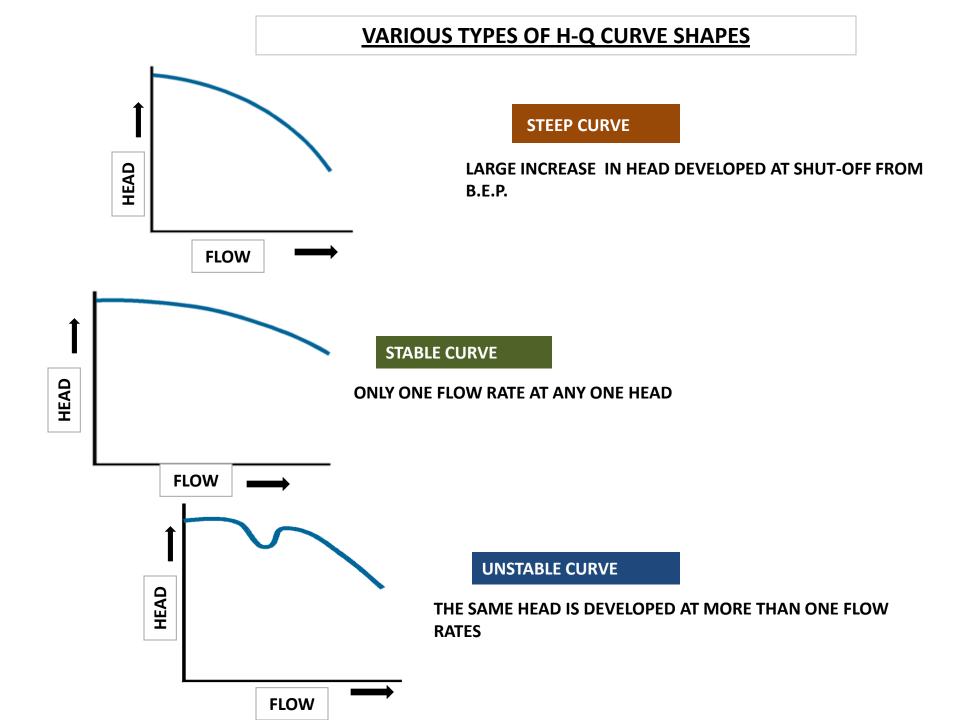

UNDERSTANDING PRESSURE & HEAD IN A PUMPING UNIT

☐ ALL PRESSURES CAN BE VISUALIZED AS BEING CAUSED BY THE WEIGHT OF A COLUMN OF LIQUID AT ITS BASE.

$$PRESSURE(PSI) = \frac{HEAD(FT) \times S.P. GRAVITY}{2.31}$$

■ THREE IDENTICAL PUMPS DESIGNED TO DEVELOP SAME HEAD PRODUCES DIFFERENT PRESSURES WHICH VARY IN PROPORTION TO THEIR SPECIFIC GRAVITY.

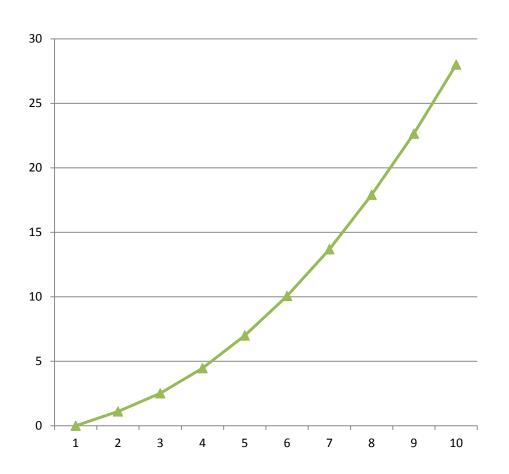



 $PRESSURE(Kgf/CM^{2}) = \frac{HEAD(M) \times S.P. GRAVITY}{10}$

OR

☐ PUMPS SHOULD BE SPECIFIED IN TERMS
OF HEAD AND NOT IN TERMS OF
PRESSURE TO AVOID AMBIGUITY.

■ THREE PUMPS PRODUCE SAME DISCHARGE PRESSURE BUT DEVELOP HEADS INVERSELY PROPORTIONAL TO THEIR SPECIFIC GRAVITY.



System Curve

 A system curve describes the relationship between the flow in a pipeline and the head loss produced.

- The essential elements of a system curve include:
- A) The static head of the system,
- B) The friction or head loss in the piping system.
- C) Pressure head

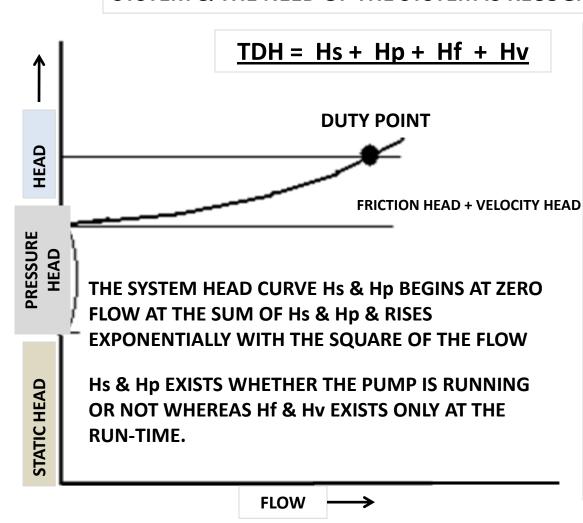
Calculation method

System curve 944@28M

L/s	M	RL/S			
	944	28	0	0	0%
	944	28	188	1.110529	10%
	944	28	283	2.516442	20%
	944	28	377	4.465774	30%
	944	28	472	7	50%
	944	28	566	10.06577	60%
	944	28	660	13.6868	70%
	944	28	755	17.91051	80%
	944	28	849	22.64798	90%
	944	28	944	28	100%

Designed flow – 944 L/s

Designed Head – 28 Meters


Head at 50 % flow (472 l/s) -????

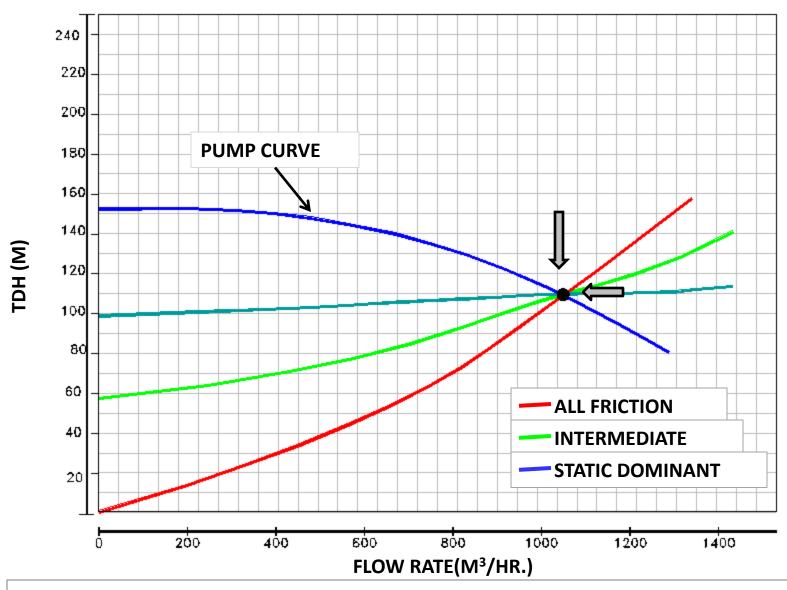
H2 =(Q2 ^2)x HI
Q1^2

H2= (472)^2 x 28 = 7 Meters
= (944) ^2

IT'S YOUR SYSTEM THAT CONTROLS YOUR PUMP.

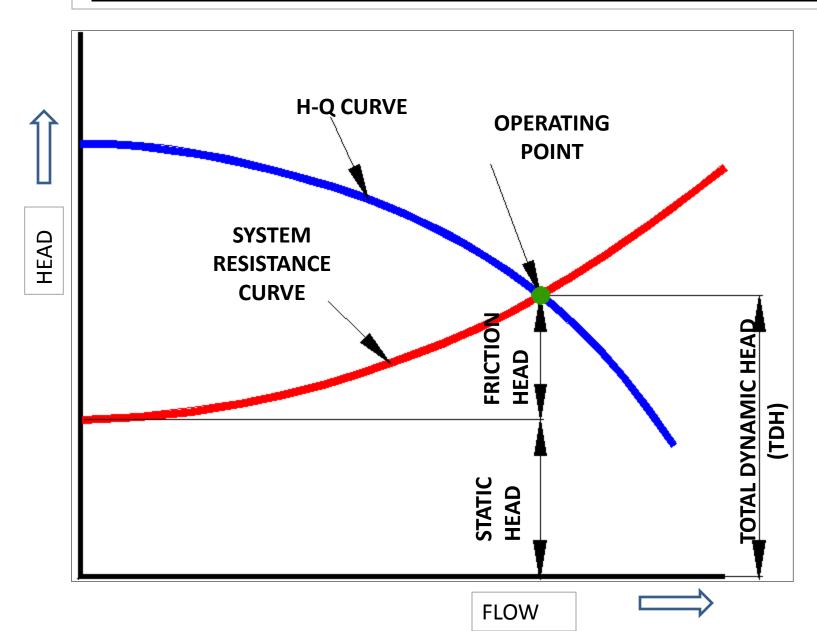
ALL PUMPS MUST BE DESIGNED TO COMPLY WITH OR MEET THE NEEDS OF THE SYSTEM & THE NEED OF THE SYSTEM IS RECOGNIZED USING THE TERM 'TDH'

HERE, TDH = TOTAL DYNAMIC HEAD

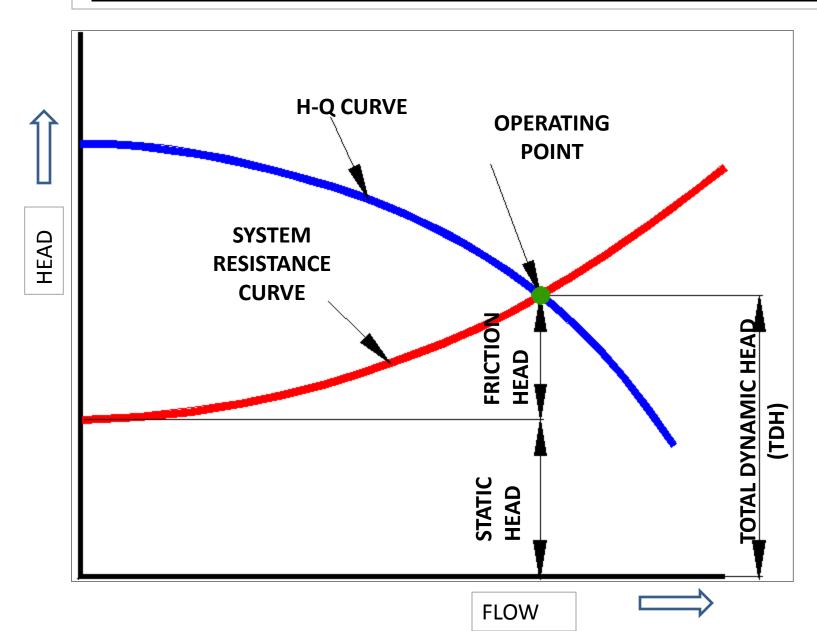

Hs = STATIC HEAD (DIFFERENCE IN THE LIQUID SURFACE LEVELS AT SUCTION SOURCE & DISCHARGE TANK

Hp = PRESSURE HEAD (CHANGE IN PRESSURE AT SUCTION & DELIVERY TANK)

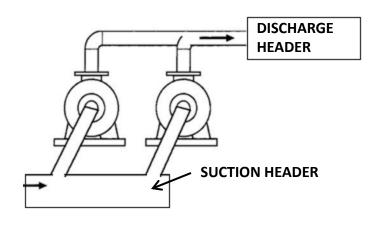
Hv = VELOCITY HEAD

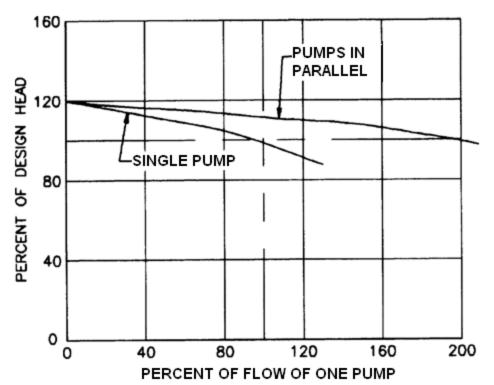

Hf = FRICTION HEAD (HEAD LOSS DUE TO FRICTION ACROSS PIPES, VALVES, CONNECTIONS & SUCTION & DELIVERY ACESSORIES).

NATURE OF SYSTEM CURVES



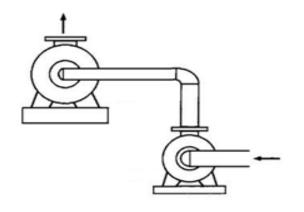
THREE DIFFERENT TYPES OF SYSTEM CURVES WITH A SINGLE COMMON FLOW RATE/HEAD POINT

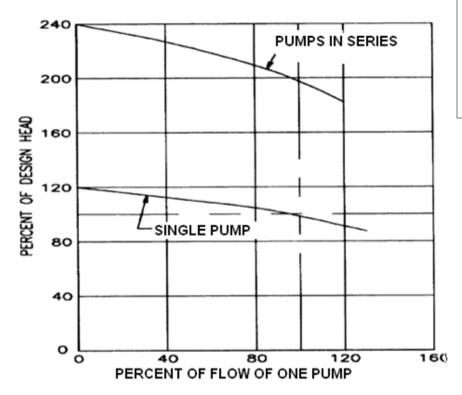

SYSTEM HEAD CURVE SUPERIMPOSED ON H-Q CURVE OF THE PUMP



SYSTEM HEAD CURVE SUPERIMPOSED ON H-Q CURVE OF THE PUMP

PARALLEL OPERATION

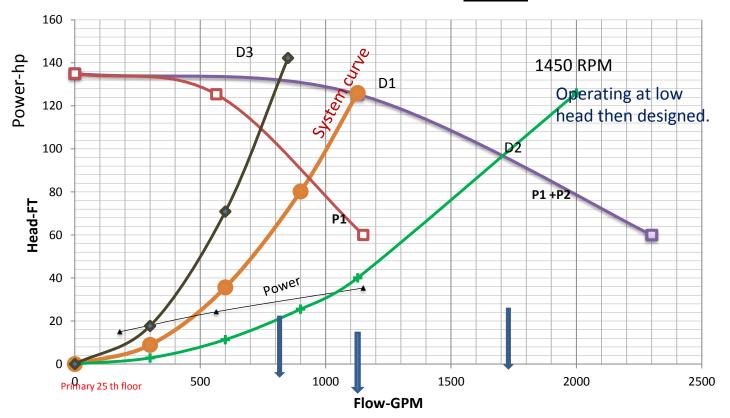




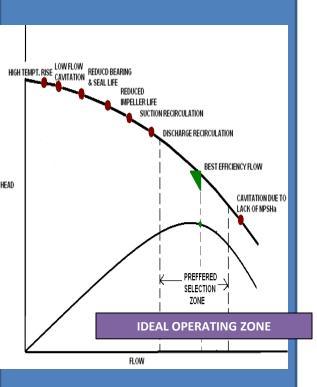
WHEN THE SYSTEM FLOW DEMAND VARIES OVER A WIDE RANGE, PARALLEL OPERATON OF SEVERAL SMALL PUMPS INSTEAD OF A SINGLE LARGE ONE MAY BE EMPLOYED.

COMBINED H-Q CURVE IS OBTAINED BY ADDING THE DISCHARGES GENERATED BY INDIVIDUAL PUMPS AT THE SAME HEADS.

SERIES OPERATION OF PUMPS

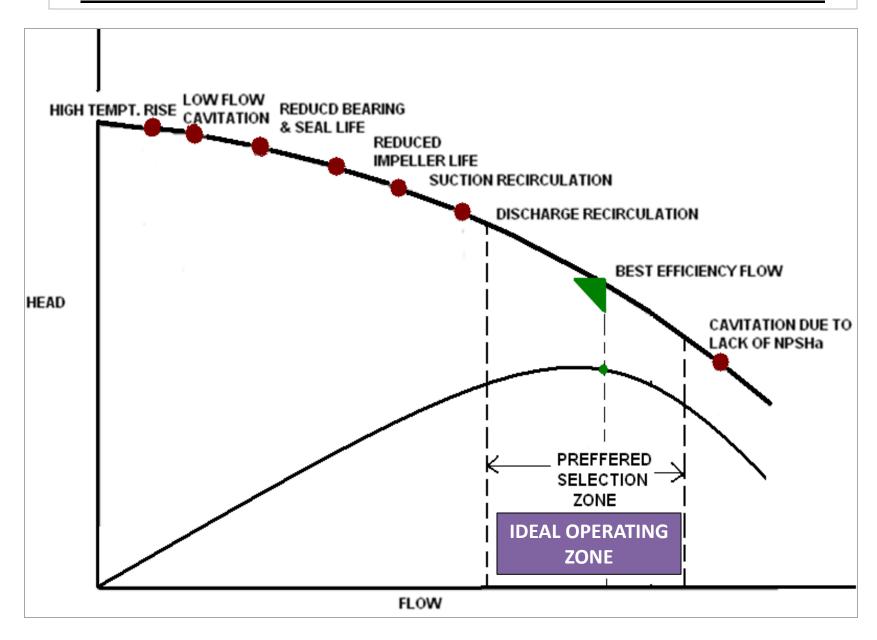

SERIES OPERATION FOR SYSTEMS WITH HIGH HEAD REQUIREMENT

❖ COMBINED CURVE OBTAINED BY ADDING THE HEADS DEVELOPED BY INDIVIDUAL PUMPS AT THE SAME FLOW RATES.


Parallel operation two pumps systems (constant speed)

• (P1 +P2)

<u>Dynamic losses dominated system</u>
 <u>curve</u>.


OPERATION FAR TO THE LEFT OF B.E.P — POSSIBLE PROBLEMS

OPERATION AT LOW FLOW MAY RESULT IN

- ☐ CASES OF HEAVY LEAKAGE FROM THE CASING, SEAL OR STUFFING BOX.
- DEFLECTION & SHEARING OF SHAFT.
- □ SEIZURE OF PUMP INTERNALS.
- □ CLOSE CLEARENCE EROSION.
- □ SEPERATION / LOW-FLOW CAVITATION.
- □ PRODUCT QUALITY DEGRADATION.
- EXCESSIVE HYDRAULIC THRUST.
- PREMATURE BEARING FAILURE.
- VIBRATION & NOISE
- ☐ HEATING OF LIQUID PUMPED.

ONSET OF ADVERSE EFFECTS WHEN OPERATING AWAY FROM B.E.P

OPERATIONTO TO THE RIGHT OF B.E.P — PROBABLE PROBLEMS

SHAFT STRESS – TORSION & BENDING

COMBINED TORSIONAL & BENDING STRESSES OR SHAFT DEFLECTION IN SINGLE VOLUTE PUMPS MAY EXCEED PERMISSIBLE LIMITS.

SHAFT DEFLECTION

DUE TO HIGH THRUST VALUES SHAFT DEFLECTION IN SINGLE VOLUTE PUMPS MAY EXCEED PERMISSIBLE LIMITS.

NPSHr > NPSHa

NPSH REQUIRED MAY BE IN EXCESS OF NPSH AVAILABLE FOR THE SYSTEM.

EROSION, NOISE & VIBRATION

EROSION DAMAGE, NOISE & VIBRATION MAY OCCUR DUE TO HIGH LIQUID VELOCITIES.

CONTROL POSSIBILITIES FOR CENTRIFUGAL PUMPS

PUMP OUTPUT
CAN BE
CONTROLLED BY
THE FOLLOWING
METHODS

FIVE VANE IMPELLER

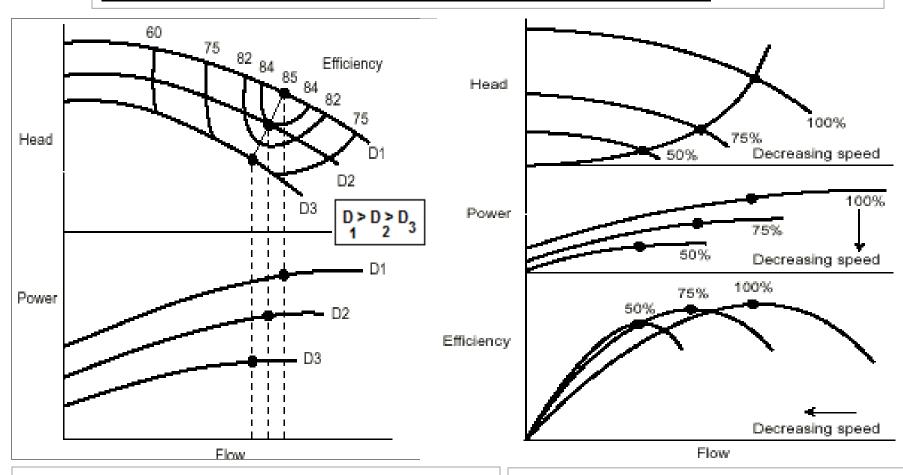
THROTTLING

- CONNECTION OR DISCONNECTION OF PUMPS
 - RUNNING IN PARALLEL
 - RUNNING IN SERIES
- BYPASS REGULATION
- AFFINITY LAW IMPELLER TRIM, SPEED REGULATION
- IMPELLER VANE & WIDTH ADJUSTMENTS
- PREROTATION CONTROL
- CAVITATION CONTROL

SIX VANE IMPELLER

AFFINITY LAWS

FOR A PARTICULAR PUMP THE HEAD DEVELOPED & THE DISCHARGE CAN BE CONTROLLED, WITHIN CERTAIN LIMITS, ACCORDING TO THE AFFINITY LAWS:


WHEN ONLY IMPELLER DIA. CHANGES & SPEED REMAINS THE SAME	WHEN ONLY SPEED CHANGES & IMPELLER DIA. REMAINS THE SAME	WHEN BOTH DIA & SPEED CHANGE
$Q_2 = Q_1 \times (D_2/D_1)$	$Q_2 = Q_1 \times (N_2/N_1)$	$Q_2 = Q_1 \times (D_2/D_1) \times (N_2/N_1)$
$H_2 = H_1 \times (D_2/D_1)^2$	$H_2 = H_1 \times (N_2/N_1)^2$	$H_2 = H_1 \times \{ (D_2/D_1) \times (N_2/N_1) \}^2$
$BKW_2 = BKW_1 x$ $(D_2/D_1)^3$	$BKW_2 = BKW_1 \times (N_2/N_1)^3$	BKW ₂ = BKW ₁ x { (D_2/D_1) $x(N_2/N_1)$ } ³

- Q1, H1, BKW1, D1 & N1 ARE CAPACITY, HEAD, INPUT POWER IN KW, IMPELLER DIA. & SPEED AT INITIAL CONDITION.
- Q2, H2, BKW2, D2 & N2 ARE CAPACITY, HEAD, INPUT POWER IN KW, IMPELLER DIA. & SPEED AT CHANGED CONDITION.

APPLICATION OF AFFINITY LAWS

ONE PUMP IS USED TO SERVICE DIFFERENT DUTIES

REDUCING THE DIAMETER OF THE IMPELLER MAKES AN EXISTING PUMP RUN MORE EFFICIENTLY AT LOWER FLOWS WITHOUT THE NEED FOR THROTTLING.

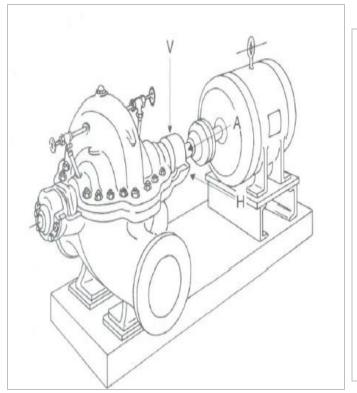
SAME PUMP WITH A RANGE OF IMPELLER DIAMETERS TO MEET DIFFERENT DUTY H & Q.

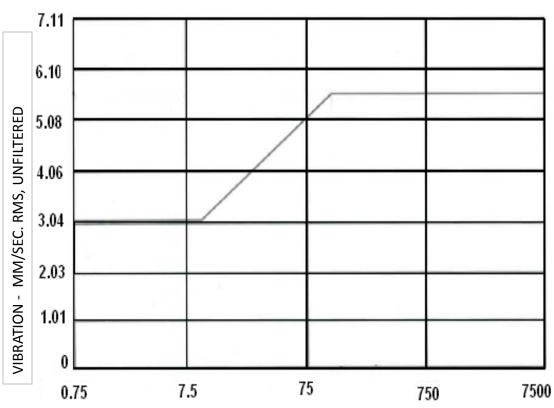
SAME PUMP WITH DIFFERENT MOTOR SPEEDS
THROUGH VSD TO ALLOW ONE PUMP TO BE USED
OVER A MUCH WIDER RANGE OF DUTIES.

VIBRATION IN A CENTRIFUGAL PUMP

TYPICAL PUMP

OR PUMP ELEMENT VIBRATIONS

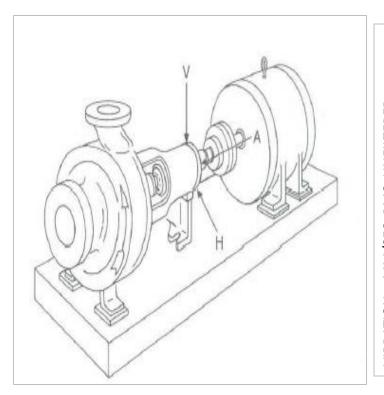

TYPES OF VIBRATION

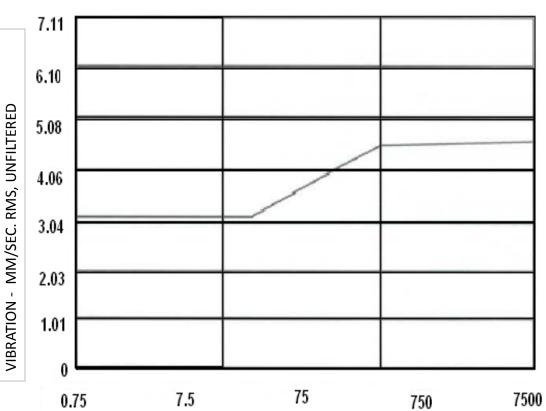

- **LATERAL SHAFT**VIBRATION
- VIBRATION IN THE SYSTEM PUMP BASE PLATE
 - BEARING HOUSING VIBRATION

PROBLEM RELATED TO SYSTEM

- MISALIGNMENT BETWEEN PUMP & DRIVE
- EXCITATION FROM THE DRIVE
- EXCITATION FROM COUPLING
- EXCITATION FROM THE COMPONENTS OF PIPING SYSTEM
- EXCESSIVE PIPING LOAD ON THE CASING (DISCHARGE PIPE-STRESS)
- INADEQUATE LEVELLING OF THE PUMP FOUDATION BOARD & PUMP-BASEPLATE
- LOOSE FOUNDATION
- POOR FLOW QUALITY IN THE SUMP/ UNFAVOURABLE PUMP INLET CONDITIONS (NPSH, INLET VORTICES, ETC.)
- WATER HAMMER

TYPICAL VIBRATION CHART FOR SPLIT-CASE PUMP





BETWEEN BEARING
SINGLE
OR
MULTI-STAGE

INPUT POWER AT TEST CONDITIONS - KW

TYPICAL VIBRATION CHART FOR SPLIT-CASE PUMP

END-SUCTION FOOT-MOUNTED

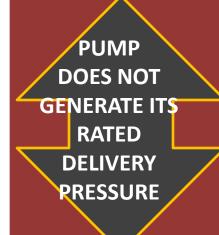
INPUT POWER AT TEST CONDITIONS - KW

		PROBABLE FAULT			REMEDY	
	Air	vapour lock in suction line	Stop pump and re-prime			
		et of suction pipe insufficion	Ensure adequate supply of liquid			
	Pu	mp not up to rated speed		Increase speed		
G		Air leaks in suction line or gland arrangement		Make good any leaks or repack gland		
PUMP DOES NOT DELIVER		Foot valve or suction strainer choked		Clean foot valve or strainer		
RATED QUANTITY	Res	striction in delivery pipe-w e-work incorrect	vork or	Clear obstructio pipe-work	n or rectify e	rror in
	Не	ad underestimated		Check head loss bends and valve required	•	
	Un	observed leak in delivery		Examine pipe-w	r leak	
	Blc	Blockage in impeller casing		Remove half casing and clear obstruction		
		cessive wear at neck rings aring plates	or	Dismantle pump and restore clearances to original dimensions		

Dismantle pump and renew impeller

Renew defective gasket

Impeller damaged


Pump gaskets leaking

PROBABLE FAULT

PUMP DOES NOT DELIVER LIQUID

REMEDY Reverse direction of rotation Impeller rotating in wrong direction Pump not properly primed – air or Stop pump and re prime vapour lock in suction line Inlet of suction pipe insufficiently Ensure adequate supply of submerged liquid Air leaks in suction line or gland Make good any leaks or repack gland arrangement Pump not up to rated speed Increase speed

PROBABLE FAULT

PROBABLE FAULT	REMEDY		
Impeller rotating in wrong direction	Reverse direction of rotation		
Pump not up to rated speed	Increase speed		
Impeller neck rings worn excessively	Dismantle pump and restore clearances to original dimensions		
Impeller damaged or chocked	Dismantle pump and renew impeller or clear blockage		
Pump gaskets leaking	Renew defective gaskets		

PUMP LOSES LIQUID AFTER STARTING

PROBABLE FAULT	REMEDY
----------------	--------

Suction line not fully primed – air or vapour lock in suction line	Stop pump and reprime
Inlet of suction pipe insufficiently submerged	Ensure adequate supply of liquid at suction pipe inlet
Air leaks in suction line or gland arrangement	Make good any leaks or renew gland packing
Liquid seal to gland arrangement logging ring (if fitted) chocked	Clean out liquid seal supply
Logging ring not properly located	Unpack gland and locate logging ring under supply orifice

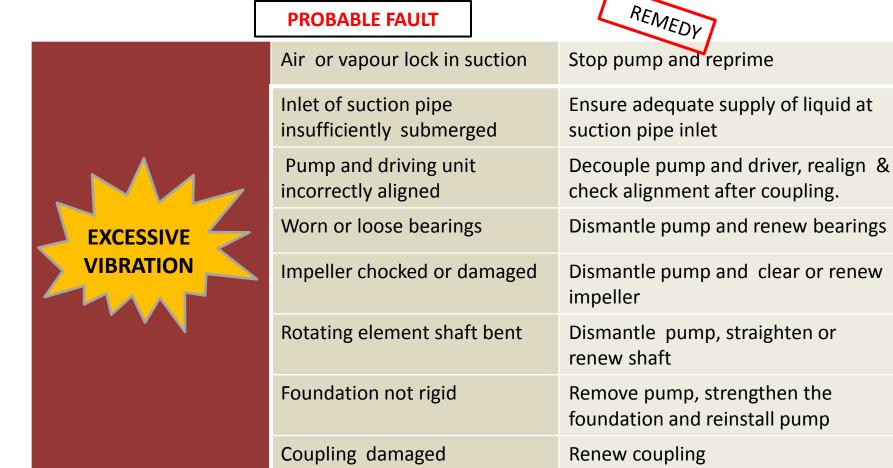
	PROBABLE FAULT	REMEDY		
IRREGULAR DELIVERY	Air or vapour lock in suction	Stop pump and reprime		
	Fault in driving unit	Examine driving unit and make good any defects		
	Air leaks in suction line or gland arrangement	Make good any leaks or repack gland		
	Inlet of suction pipe insufficiently immersed in liquid	Ensure adequate supply of liquid at suction pipe inlet		

PROBABLE FAULT

REMEDY

Air or vapour lock in suction line	Stop pump and reprime
Inlet of suction pipe insufficiently submerged	Ensure adequate supply of liquid at suction pipe inlet
Air leaks in suction line or gland arrangement	Make good any leaks or repack gland
Worn or loose bearings	Disconnect coupling and realign pump and driving unit
Rotating element shaft bent	Dismantle pump, straighten or renew shaft
Foundation not rigid	Dismantle pump and driving unit, strengthen foundation

PROBABLE FAULT

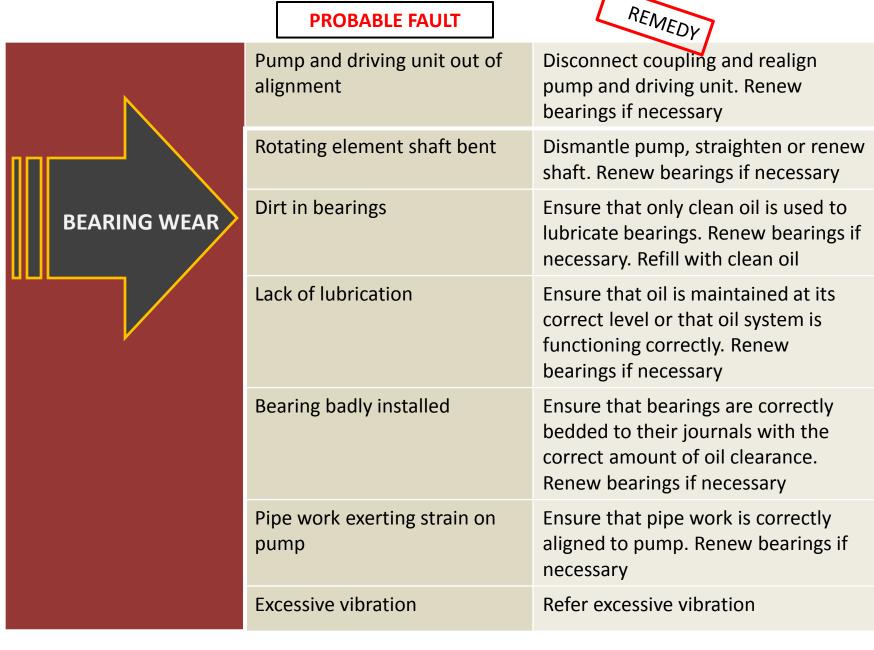

	PROBABLE FAUL	г	REMEDY		
	Pump gaskets leaking		Renew defective gasket		
PUMP OVERLOADS	Serious leak in delivery li delivering more than its quantity		Repair leak		
DRIVING UNIT	Speed too high		Reduce Speed		
	Impeller neck rings worn	excessively	Dismantle pump and restore clearances to original dimensions		
	Gland packing too tight		Stop pump, close delivery valve to relieve internal pressure on packing, slacken back the gland nuts and retighten to finger tightness		
	Impeller damaged		Dismantle pump and renew impeller		
	Mechanical tightness of internal components	oump	Dismantle pump, check internal clearances and adjust as necessary		
	Pipe work exerting strain	on pump	Disconnect pipe work and realign to pump		

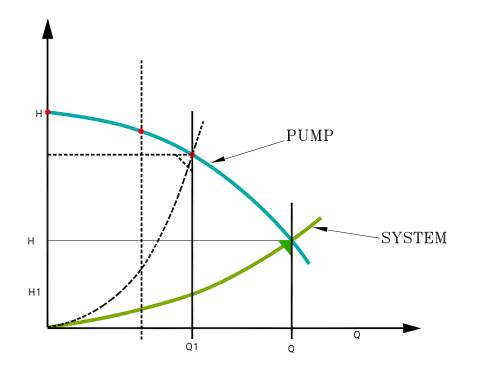
		\frown		•			Ε	_	A I		-	_
u	ĸ		к	/\	к		-	-	/ . .			
Г	ı v	J	u	_	u	-	_	.,	¬\	u		

REMEDY

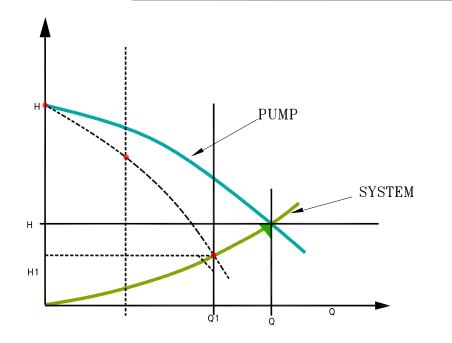
			KEIVIEUY				
	Pump and driving unit out of alignment		Disconnect coupling and realign pump and driving unit				
	Oil level too low or too high		Replenish with correct grade of oil of drain down to correct level				
BEARING OVERHEATING	Wrong grade of oil		Drain out bearing, flush throubearings; refill with correct groil				
	Dirt in bearing	thro	Dismantle, clean out and flush through bearings; refill with correct grade of oil				
	Moisture in oil	refil Det	Drain out bearing, flush throug refill with correct grade of oil. Determine cause of contamination and rectify				
	Bearings too tight	bed corr	Ensure that bearings are correctly bedded to their journals with the correct amount of oil clearance. Renew bearings if necessary				
	Too much grease in bearing		Clean out old grease and repack with correct grade and qty of greas				
	Pipe work exerting strain or pump	n Disc pun		vork and realign to			

PROBABLE FAULT

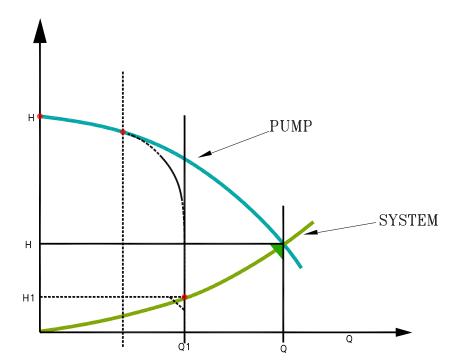

Pipe work exerting strain on

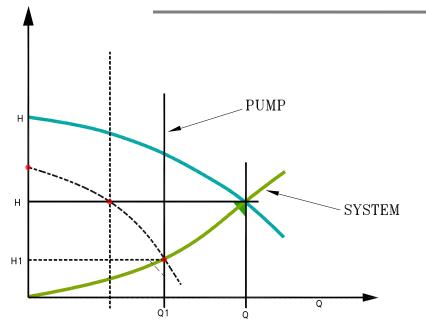

pump

Disconnect pipe work and realign to


pump

PROBABLE FAULT




Symptom	Diagnosis
CV As per pump curve Open valve	Changed system condition –
Q1 <q, h1=""> H</q,>	blockage pipe
Q1, H1 on pump curve	friction, filters, strainers,
	etc

Symptom	Diagnosis
CV As per pump curve Open valve Q1 <q, h1=""> H</q,>	Pump fault – Blockage in impeller, increased leakage loss

Symptom	Diagnosis
CV As per pump curve	Insufficient
Open valve Head lower	NPSH leading to
in vicinity of the system	cavitation break-
curve.	down
Sudden break down of	
H-Q	

Symptom	Diagnosis
CV Lower than pump curve Lower Q, Lower H	Incorrect speed Incorrect diameter of impeller Wrong direction of rotation

SYMTOMPS	COMMON CAUSES	REMEDY
	> PUMP NOT PRIMED	 ➢ FILL THE PUMP & SUCTION LINE COMPLETELY WITH LIQUID ➢ REMOVE AIR/GAS ➢ ELIMINATE HIGH POINTS IN SUCTION PIPING ➢ CHECK FOR FAULY FOOT VALVE, CHECK VALVE INSTALLATION
NO DELIVERY OR DELIVERY NOT UPTO THE	> AIR-POCKET IN SUCTION LINE	 ➤ CHECK FOR GAS, AIR IN SYSTEM/SUCTION LINE ➤ INSTALL GAS SEPERATION CHAMBER ➤ CHECK FOR AIR-LEAKAGE ➤ OPEN AIR-VENT VALVE IF ANY
EXPECTATION	> INSUFFICIENT IMMERSION OF SUCTION PIPE, VORTEXING	> LOWER SUCTION PIPE OR RAISE SUMP WATER LEVEL
	> SPEED OF PUMP TOO LOW OR WRONG DIRECTION OF ROTATION	➤ CORRECT SPPED, CHECK RECORDS FOR PROPER SPEED ➤ CHECK ROTATION WITH ARROW ON CASING - REVERSE POLARITY ON MOTOR ➤ CHECK IMPELLER
	> SYSTEM HEAD HIGHER THAN PUMP DESIGN HEAD	 DECREASE SYSTEM RESISTANCE CHECK DESIGN PARAMETERS INCREASE PUMP SPEED INSTALL PROPER SIZE PUMP

SYMTOMPS	COMMON CAUSES	REMEDY
	>WRONG IMPELLER SELECTION	> VERIFY PROPER IMPELLER SIZE
	> WRONG IMPELLER INSTALLATION	> CHECK IF THE IMPELLER IS INSTALLED BACKWARD(DOUBLE SUCTION PUMP)
	> AIR-GAS ENTRAINMENT IN LIQUID	 CHECK FOR GAS, AIR IN SYSTEM/SUCTION LINE ► INSTALL GAS SEPERATION CHAMBER ► CHECK FOR AIR-LEAKAGE ► OPEN AIR-VENT VALVE IF ANY
INSUFFICIENT DISCHARGE PRESSURE	> SPEED OF PUMP TOO LOW OR WRONG DIRECTION OF ROTATION	 ➤ CORRECT SPPED, CHECK RECORDS FOR PROPER SPEED ➤ CHECK ROTATION WITH ARROW ON CASING - REVERSE POLARITY ON MOTOR ➤ CHECK IMPELLER
	>IMPELLER CLOGGED	> CHECK FOR DAMAGE & CLEAN
	> IMPROPER PUMP SELECTION	 DECREASE SYSTEM RESISTANCE CHECK DESIGN PARAMETERS INCREASE PUMP SPEED INSTALL PROPER SIZE PUMP

SYMTOMPS	COMMON CAUSES	REMEDY
	> MISALIGNMENT	 ➤ CHECK ANGULAR & PRALLEL ALIGNMENT BETWEEN PUMP & DRIVER ➤ ELIMINATE STILT-MOUNTED BASE-PLATE ➤ CHECK FOR LOOSE MOUNTING ➤ CHECK FOR UNUNIFORM THERMAL EXPANSION OF PUMP PARTS
CHOPT CEAL LIFE	> BENT SHAFT	 ➤ CHECK TIR AT IMPELLER END (SHOULD NOT EXCEED 0.002") ➤ REPLACE SHAFT OR BEARING IF NECESSARY
SHORT SEAL LIFE	> CASING DISTORSION DUE TO PIPE STRAIN	> CHECK ORIENTATION OF BEARING ADAPTER > CHECK FOR PIPE ALIGNMENT & ANALYZE PIPE LOADS & SUPPORTS
	> PUMP CAVITATING	 CHECK FOR NPSHa/NPSHr MARGIN & TAKE NECESSARY STEPS CHECK FOR FLASH POINT MARGIN CHECK FOR GAS ENTRAINMENT
	> IMPROPER OPERATING CONDITION	> INSTALL PROPER SEAL THAT SUITS PUMP OPERATING CONDITIONS
	> UNBALANCE DRIVER	> RUN DRIVER DISCONNECTED FROM PUMP UNIT - PERFORM VIBRATION ANALYSIS

SYMTOMPS	COMMON CAUSES	REMEDY
	> BEARING FAILURES	 ➤ CHECK FOR PROPER LUBRICATION & CONTAMINATION OF LUBRICANT ➤ CHECK FOR PROPER BEARING INSTALLATION ➤ CHECK FOR THE SUITABILITY OF BEARING SELECTED
	> MISALIGNMENT	 ➤ CHECK ANGULAR & PRALLEL ALIGNMENT BETWEEN PUMP & DRIVER ➤ ELIMINATE STILT-MOUNTED BASE-PLATE ➤ CHECK FOR LOOSE MOUNTING ➤ CHECK FOR UNUNIFORM THERMAL EXPANSION OF PUMP PARTS
SHORT BEARING LIFE	➤ BENT SHAFT	➤ CHECK TIR AT IMPELLER END (SHOULD NOT EXCEED 0.002") ➤ REPLACE SHAFT OR BEARING IF NECESSARY
	> CASING DISTORSION DUE TO PIPE STRAIN	> CHECK ORIENTATION OF BEARING ADAPTER > CHECK FOR PIPE ALIGNMENT & ANALYZE PIPE LOADS & SUPPORTS
	> PUMP CAVITATING	➤ CHECK FOR NPSHa/NPSHr MARGIN & TAKE NECESSARY STEPS ➤ CHECK FOR FLASH POINT MARGIN ➤ CHECK FOR GAS ENTRAINMENT
	> UNBALANCE DRIVER	> RUN DRIVER DISCONNECTED FROM PUMP UNIT - PERFORM VIBRATION ANALYSIS

SYMTOMPS	COMMON CAUSES	REMEDY
	➤ MOTOR TRIPPING-OFF	➤ CHECK STARTER ➤ CHECK RELAY SETTING ➤ CHECK FOR THE SUITABILITY OF MOTOR SELECTED FOR CURRENT OPERAING CONDITION
	>SPEED TOO HIGH	 ➤ CHECK FOR SPEED OR PREVIOUS RECORDS FOR PROPER SPEED ➤ ELIMINATE STILT-MOUNTED BASE-PLATE ➤ CHECK FOR LOOSE MOUNTING ➤ CHECK FOR UNUNIFORM THERMAL EXPANSION OF PUMP PARTS
EXCESSIVE POWER DEMAND	> ROTOR IMPELLER RUBBING ON CASING	 ➤ LOOSE IMPELLER FIT ➤ WRONG ROTATION ➤ REPLCE IF SHAFT IS BENT ➤ HIGH NOZZLE LOADS ➤ VERY SMALL INTERNAL RUNNING CLEARANCES - CHECK FOR NECK RING DIMENSIONS
	> PUMP NOT DESIGNED FOR LIQUID DENSITY & VISCOSITY BEING PUMPED	➤ CHECK DESIGN SP. GRAVITY ➤ CHECK MOTOR SIZE — USE LARGER DRIVER OR CHANGE PUMP TYPE ➤ HEAT UP THE LIQUID TO REDUCE VISCOSITY
	> BEARING FAILURES	 ➤ CHECK FOR PROPER LUBRICATION & CONTAMINATION OF LUBRICANT ➤ CHECK FOR PROPER BEARING INSTALLATION ➤ CHECK FOR THE SUITABILITY OF BEARING SELECTED
	➤ IMPROPER COUPLING SELECTION	> CHECK COUPLING SIZE

SYMTOMPS	COMMON CAUSES	REMEDY
	> PUMP IS CAVITATING	➤ CHECK FOR NPSHa/NPSHr MARGIN & TAKE NECESSARY STEPS ➤ CHECK FOR FLASH POINT MARGIN ➤ CHECK FOR GAS ENTRAINMENT
	>SUCTION OR DISCHARGE VALVE CLOSED OR PARTIALLY CLOSED	> CHECK FOR VALVE CONDITION > OPEN THE VALVES
NOISE & VIBRATION	> MISALIGNMENT	 ➤ CHECK ANGULAR & PRALLEL ALIGNMENT BETWEEN PUMP & DRIVER ➤ ELIMINATE STILT-MOUNTED BASE-PLATE ➤ CHECK FOR LOOSE MOUNTING ➤ CHECK FOR UNUNIFORM THERMAL EXPANSION OF PUMP PARTS
	> INADEQUATE GROUTING OF BASE PLATE	> CHECK GROUTING, CONSULT PROCESS INDUSTRY PRACTICE RE-IE-686 > IF STILT MOUNTED, GROUT BASEPLATE
	> BEARING FAILURES	 ➤ CHECK FOR PROPER LUBRICATION & CONTAMINATION OF LUBRICANT ➤ CHECK FOR PROPER BEARING INSTALLATION ➤ CHECK FOR THE SUITABILITY OF BEARING SELECTED
	> IMPROPER COUPLING SELECTION	> CHECK COUPLING SIZE, GRAESING, ALIGNMENT