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1. FOUNDATION UNDERSEEPAGE

1.1 GENERAL Without control, underseepage in pervious foundations beneath levees
may result in (&) excessive hydrostatic pressures beneath an impervious top stratum on
the landside, (b) sand boils, and (c) piping beneath the levee itself. Underseepage
problems are most acute where a pervious substratum underlies a levee and extends
both landward and riverward of the levee and where a relatively thin top stratum exists on
the landside of the levee. Principal seepage control measures for foundation
underseepage are (a) cutoff trenches, (b) riverside impervious blankets, (c) landside
seepage berms, (d) pervious toe trenches, and (e) pressure relief wells. These methods

will be discussed generally in the following paragraphs.

1.2 CUTOFFS A cutoff beneath a levee to block seepage through pervious foundation
strata is the most positive means of eliminating seepage problems. Positive cutoffs may
consist of excavated trenches backfilled with compacted earth or slurry trenches usually
located near the riverside toe. Since a cutoff must penetrate approximately 95 percent or
more of the thickness of pervious strata to be effective, it is not economically feasible to
construct cutoffs where pervious strata are of considerable thickness. For this reason
cutoffs will rarely be economical where they must penetrate more than 12.2 m (40 ft).
Steel sheet piling is not entirely watertight due to leakage at the interlocks but can
significantly reduce the possibility of piping of sand strata in the foundation. Open trench
excavations can be readily made above the water table, but if they must be made below
the water table, well point systems will be required. Cutoffs made by the slurry trench
method (reference Appendix A) can be made without a dewatering system, and the cost
of this type of cutoff should be favorable in many cases in comparison with costs of

compacted earth cutoffs.

1.3 RIVERSIDE BLANKETS. Levees are frequently situated on foundations having
natural covers of relatively fine-grained impervious to semipervious soils overlying
pervious sands and gravels. These surface strata constitute impervious or semipervious

blankets when considered in connection with seepage control. If these blankets are
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continuous and extend riverward for a considerable distance, they can effectively reduce
seepage flow and seepage pressures landside of the levee. Where underseepage is a
problem, riverside borrow operations should be limited in depth to prevent breaching the
impervious blanket. If there are limited areas where the blanket becomes thin or pinches
out entirely, the blanket can be made effective by placing impervious materials in these
areas. The effectiveness of the blanket depends on its thickness, length, distance to the
levee riverside toe, and permeability and can be evaluated by flow-net or approximate

mathematical solutions.

1.4 LANDSIDE SEEPAGE BERMS

1.4.1 GENERAL. If uplift pressures in pervious deposits underlying an impervious top
stratum landward of a levee become greater than the effective weight of the top stratum,
heaving and rupturing of the top stratum may occur, resulting in sand boils. The
construction of landside berms (where space is available) can eliminate this hazard by
providing (a) the additional weight needed to counteract these upward seepage forces
and (b) the additional length required to reduce uplift pressures at the toe of the berm to
tolerable values. Seepage berms may reinforce an existing impervious or semipervious
top stratum, or, if none exists, be placed directly on pervious deposits. A berm also affords
some protection against sloughing of the landside levee slope. Berms are relatively
simple to construct and require very little maintenance. They frequently improve and
reclaim land as areas requiring underseepage treatment are often low and wet. Berms
can also serve as a source of borrow for emergency repairs to the levee. Because they
require additional fill material and space, they are used primarily with agricultural levees.
Subsurface profiles must be carefully studied in selecting berm widths. For example,
where a levee is founded on a thin top stratum and thicker clay deposits lie a short
distance landward, as shown in Figure 1, the berm should extend far enough landward to
lap the thick clay deposit, regardless of the computed required length. Otherwise, a
concentration of seepage and high exit gradients may occur between the berm toe and

the landward edge of the thick clay deposit.
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Figure 1

Example of incorrect and correct berm length per existing foundation conditions

1.4.2 TYPES OF SEEPAGE BERMS. Four types of seepage berms have been used,
with selection based on available fill materials, space available landside of the levee

proper, and relative costs.

1.4.2.1 IMPERVIOUS BERMS. A berm constructed of impervious soils restricts the
pressure relief that would otherwise occur from seepage flow through the top stratum,
and consequently increases uplift pressures beneath the top stratum. However, the berm
can be constructed to the thickness necessary to provide an adequate factor of safety

against uplift.

1.4.2.2 SEMIPERVIOUS BERMS. Semipervious material used in constructing this type
of berm should have an in-place permeability equal to or greater than that of the top
stratum. In this type of berm, some seepage will pass through the berm and emerge on
its surface. However, since the presence of this berm creates additional resistance to

flow, subsurface pressures at the levee toe will be increased.
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1.4.2.3 SAND BERMS. While a sand berm will offer less resistance to flow than a
semipervious berm, it may also cause an increase in substratum pressures at the levee
toe if it does not have the capacity to conduct seepage flow landward without excessive
internal head losses. Material used in a sand berm should be as pervious as possible,
with a minimum permeability of 100 x 10-4 cm per sec. Sand berms require less material
and occupy less space than impervious or semipervious berms providing the same

degree of protection.

1.4.2.4 FREE-DRAINING BERMS. A free-draining berm is one composed of random fill
overlying horizontal sand and gravel drainage layers (with a terminal perforated collector
pipe system), designed by the same methods used for drainage layers in dams. Although
the free-draining berm can afford protection against underseepage pressures with less
length and thickness than the other types of seepage berms, its cost is generally much

greater than the other types, and thus it is rarely specified.

1.4.3 BERM DESIGN. Design equations, criteria, and examples are discussed in the

technical literature.

1.4.4 COMPUTER PROGRAMS TO USE FOR SEEPAGE ANALYSIS.

1.4.4.1 IF THE SOIL CAN BE IDEALIZED with a top blanket of uniform thickness and
seepage flow is assumed to be horizontal in the foundation and vertical in the blanket,

then assumptions in the technical literature could be used.

1.44.2 IF THE SOIL PROFILE IS CHARACTERIZED by a top blanket and two
foundation layers of uniform thickness, and seepage flow is assumed to be horizontal in
the foundation, horizontal and vertical in the transition layer, and vertical in the blanket,
then LEVEEMSU or the finite element method (CSEEP) could be used.

1.4.4.3. IF THE IDEALIZED SOIL PROFILE includes irregular geometry (slopes greater
than 1 vertical to 100 horizontal), more than three layers and/or anisotropic permeability
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it is recommended that FastSEEP, a graphical pre- and post-processor, be used for mesh

generation, assigning boundary conditions and soil properties, and viewing the results.

1.5 PERVIOUS TOE TRENCH

1.5.1 GENERAL. Where a levee is situated on deposits of pervious material overlain by
little or no impervious material, a partially penetrating toe trench, as shown in Figure 2,
can improve seepage conditions at or near the levee toe. Where the pervious stratum is
thick, a drainage trench of any practicable depth would attract only a small portion of the
seepage flow and detrimental underseepage would bypass the trench. Consequently, the
main use of a pervious toe trench is to control shallow underseepage and protect the area
in the vicinity of the levee toe. Pervious toe trenches may be used in conjunction with
relief well systems; the wells collect the deeper seepage and the trench collects the
shallow seepage. Such a system is shown in Figure 3. The trench is frequently provided
with a perforated pipe to collect the seepage. The use of a collector system is dependent
on the volume of seepage and, to some degree, the general location of the levee.
Collector systems are usually not required for agricultural levees but find wider use in

connection with urban levees.

WATERSIDE H LANDSIDE

PERVIOUS TOE TRENCH

" . PERVIOUS STRATUM

. . A .

Figure 2

Typical partially penetrating pervious toe trench
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Typical pervious toe trench with collector pipe (Figure 5 shows trench details)

1.5.2 LOCATION. As seen in Figures 2 and 3, pervious drainage trenches are generally
located at the levee toe, but are sometimes constructed beneath the downstream levee
slope as shown in Figure 4. Here the trench is located at the landward quarter point of
the levee, and discharge is provided through a horizontal pervious drainage layer. Unless
it is deep enough, it may allow excessive seepage pressures to act at the toe. There is
some advantage to a location under the levee if the trench serves also as an inspection

trench and because the horizontal pervious drainage layer can help to control

embankment seepage.

RIVERSIDE LANDSIDE
£
3 L
Lz 1
HORIZONTAL
DRAINAGE LAYER\ \
H . D . . s :_ﬁ . ) .

Figure 4
Pervious toe trench located beneath landward slope
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1.5.3 GEOMETRY. Trench geometry will depend on the volume of expected
underseepage, desired reduction in uplift pressure, construction practicalities, and the
stability of the material in which it is being excavated. Trench widths varying from 0.61 to
1.83 m (2 to 6ft) have been used. Trench excavation can be expedited if a ditching
machine can be used. However, narrow trench widths will require special compaction
equipment. One such piece of equipment, which is a vibrating-plate type of compactor

specially made to fit on the boom of a backhoe, has apparently performed satisfactorily.

1.5.4 BACKFILL. The sand backfill for trenches must be designed as a filter material in
accordance with criteria given. If a collector pipe is used, the pipe should be surrounded
by about a 305-mm (1-ft) thickness of gravel having a gradation designed to provide a
stable transition between the sand backfill and the perforations or slots in the pipe. A
typical section of a pervious drainage trench with collector pipe is shown in Figure 5.
Placement of trench backfill must be done in such a manner as to minimize segregation.
Compaction of the backfill should be limited to prevent breakdown of material or over

compaction resulting in lowered permeabilities.

1.6. PRESSURE RELIEF WELLS

1.6.1 GENERAL. Pressure relief wells may be installed along the landside toe of levees
to reduce uplift pressure which may otherwise cause sand boils and piping of foundation
materials. Wells accomplish this by intercepting and providing controlled outlets for
seepage that would otherwise emerge uncontrolled landward of the levee. Pressure relief
well systems are used where pervious strata underlying a levee are too deep or too thick
to be penetrated by cutoffs or toe drains or where space for landside berms is limited.
Relief wells should adequately penetrate pervious strata and be spaced sufficiently close
to intercept enough seepage to reduce to safe values the hydrostatic pressures acting
beyond and between the wells. The wells must offer little resistance to the discharge of
water while at the same time prevent loss of any soil. They must also be capable of
resisting corrosion and bacterial clogging. Relief well systems can be easily expanded if

the initial installation does not provide the control needed. Also, the discharge of existing
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wells can be increased by pumping if the need arises. A relief well system requires a
minimum of additional real estate as compared with the other seepage control measures
such as berms. However, wells require periodic maintenance and frequently suffer loss
in efficiency with time, probably due to clogging of well screens by muddy surface waters,
bacteria growth, or carbonate incrustation. They increase seepage discharge, and means

for collecting and disposing of their discharge must be provided.
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Figure 5

Pervious toe trench with collector pipe
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1.6.2 DESIGN OF WELL SYSTEMS. The design of a pressure relief well system involves
determination of well spacing, size, and penetration to reduce uplift between wells to

allowable values. Factors to be considered are

1.6.2.1 DEPTH, STRATIFICATION, and permeability of foundation soils,

1.6.2.2 DISTANCE TO THE EFFECTIVE source of seepage,

1.6.2.3 CHARACTERISTICS OF THE LANDSIDE top stratum, if any, and degree of
pressure relief desired. Where no control measures are present, relief wells for
agricultural and urban levees should be designed so that imax midway between the wells
or landward from the well line should not exceed 0.50 (equivalent to FS = 1.7 for an
average soil saturated unit weight of 1840 kg/m3 (115 pet)). Many combinations of well
spacing and penetration will produce the desired pressure relief; hence, the final selected
spacing and penetration must be based on cost comparisons of alternative combinations.
After the general well spacing for a given reach of levee has been determined, the actual
location of each well should be established to ensure that the wells will be located at

critical seepage points and will fit natural topographic features.

1.6.3 DESIGN OF INDIVIDUAL WELLS. The design of the well involves the selection of
type and length of riser pipe and screen, design of the gravel pack, and design of well
appurtenances. A widely used well design that has given good service in the past is

shown in Figure 6.

1.6.3.1 RISER PIPE AND SCREEN. The well screen normally extends from just below
the top of the pervious stratum to the bottom of the well, with solid riser pipe installed from
the top of the pervious strata to the surface. In zones of very fine sand or silt, the screen
is replaced by unperforated (blank) pipe. The type of material for the riser and screen
should be selected only after a careful study of the corrosive properties of the water to be
carried by the well. Many types of metals, alloys, fiberglass, plastics, and wood have been

used in the past. At the present time, stainless steel and plastic are the most widely used,
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primarily because of their corrosion resistant properties. Plastic risers should be
considered with caution, being susceptible to damages during mechanical treatment or

chemical treatment which develop excessive heat or cold.
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Figure 6
Typical relief well

1.6.3.2 FILTER. The filter that surrounds the screen must be designed in accordance with
criteria given in Appendix D using the slot size of the screen and the gradation of

surrounding pervious deposit as a basis of design. No matter what size screen is used, a
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minimum of 152.4 mm (6 in.) of filter material should surround the screen and the filter
should extend a minimum 0of610.8 mm (2ft) above the top and 1.2 m (4 ft) below the
bottom of the well screen. Above the filter to the bottom of the concrete or impervious

backfill, sand backfill may be used.

1.6.3.3 WELL APPURTENANCES. In selecting well appurtenances, consideration must
be given to ease of maintenance, protection against contamination from back flooding,
damage by debris, and vandalism. To prevent wells from becoming backflooded with
muddy surface water, which greatly impairs their efficiency when they are not flowing, an
aluminum check valve, rubber gasket, and plastic standpipe, as shown in Figure 6, can
be installed on each well. To safeguard against vandalism, accidental damage, and the
entrance of debris, the tops of the wells should be provided with a metal screen or flap-
type gate. The elevation of the top of any protective standpipes must be used in design
as the well discharge elevation.

1.6.3.4 WELL INSTALLATION. Proper methods of drilling, backfilling, and developing a

relief well must be employed or the well will be of little or no use.
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2. SEEPAGE THROUGH EMBANKMENTS

2.1 GENERAL. Should through seepage in an embankment emerge on the landside
slope (Figure 7a), it can soften finegrained fill in the vicinity of the landside toe, cause
sloughing of the slope, or even lead to piping (internal erosion) of fine sand or silt
materials. Seepage exiting on the landside slope would also result in high seepage forces,
decreasing the stability of the slope. In many cases, high water stages do not act against
the levee long enough for this to happen, but the possibility of a combination of high water
and a period of heavy precipitation may bring this about. If landside stability berms or
berms to control underseepage are required because of foundation conditions, they may
be all that is necessary to prevent seepage emergence on the slope. On the other hand,
if no berms are needed, lands ide slopes are steep, and floodstage durations and other
pertinent considerations indicate a potential problem of seepage emergence on the slope,
provisions should be incorporated in the levee section such as horizontal and/or inclined
drainage layers or toe drains to prevent seepage from emerging on the landside slope.
These require select pervious granular material and graded filter layers to ensure
continued functioning, and therefore add an appreciable cost to the levee construction,
unless suitable materials are available in the borrow areas with only minimal processing
required. Where large quantities of pervious materials are available in the borrow areas,
it may be more practicable to design a zoned embankment with a large landside pervious
zone. This would provide an efficient means of through seepage control and good

utilization of available materials.

2.2 PERVIOUS TOE DRAIN. A pervious toe (Figure 7b) will provide a ready exit for
seepage through the embankment and can lower the phreatic surface sufficiently so that
no seepage will emerge on the landside slope. A pervious toe can also be combined with
partially penetrating toe trenches, which have previously been discussed, as a method
for controlling shallow underseepage. Such a configuration is shown in Figure 7c.
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Embankment with through seepage

2.3 HORIZONTAL DRAINAGE LAYERS. Horizontal drainage layers, as shown in Figure
8a, essentially serve the same purpose as a pervious toe but are advantageous in that
they can extend further under the embankment requiring a relatively small amount of
additional material. They can also serve to protect the base of the embankment against
high uplift pressures where shallow foundation underseepage is occurring. Sometimes
horizontal drainage layers serve also to carry off seepage from shallow foundation

drainage trenches some distance under the embankment.
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2.4 INCLINED DRAINAGE LAYERS. An inclined drainage layer as shown in Figure 8b
is one of the more positive means of controlling internal seepage and is used extensively
in earth dams. It is rarely used in levee construction because of the added cost, but might
be justified for short levee reaches in important locations where landside slopes must be
steep and other control measures are not considered adequate and the levee will have
high water against it for prolonged periods. The effect of an inclined drainage layer is to
completely intercept embankment seepage regardless of the degree of stratification in
the embankment or the material type riverward or landward of the drain. As a matter of
fact, the use of this type of drain allows the landside portion of a levee to be built of any
material of adequate strength regardless of permeability. When used between an
impervious core and outer pervious shell (Figure 8c), it also serves as a filter to prevent

migration of impervious fines into the outer shell.

RIVERSIDE

LANDSIDE
a. Horizontal drainage layer
RIVERSIDE
LANDSIDE
b. Inclined drainage layer-homogeneous embankment
RIVERSIDE
T PERVIOUS
LANDS I OE

¢. Inclined drainage layer-zoned embankment

Figure 8

Use of horizontal and inclined drainage layers to control seepage via an embankment
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If the difference in gradation between the impervious and pervious material is great, the
drain may have to be designed as a graded filter. Inclined drains must be tied into
horizontal drainage layers to provide an exit for the collected seepage as shown in Figures
9b and 9c.

2.5 DESIGN OF DRAINAGE LAYERS. The design of pervious toe drains and horizontal
and inclined drainage layers must ensure that such drains have adequate thickness and
permeability to transmit seepage without any appreciable head loss while at the same
time preventing migration of finer soil particles. The design of drainage layers must satisfy
the criteria outlined in Appendix D for filter design. Horizontal drainage layers should have

a minimum thickness of 457.2 mm (18 in.) for construction purposes.

2.6 COMPACTION OF DRAINAGE LAYERS. Placement and compaction of drainage
layers must ensure that adequate density is attained, but should not allow segregation
and contamination to occur. Vibratory rollers are probably the best type of equipment for
compaction of cohesionless material although crawler tractors and rubber-tired rollers
have also been used successfully. Saturation or flooding of the material as the roller
passes over it will aid in the compaction process and in some cases has been the only
way specified densities could be attained. Care must always be taken to not overcompact
to prevent breakdown of materials or lowering of expected permeabilities. Loading,
dumping, and spreading operations should be observed to ensure that segregation does
not occur. Gradation tests should be run both before and after compaction to ensure that

the material meets specifications and does not contain too many fines.
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3. EMBANKMENT STABILITY

3.1 EMBANKMENT GEOMETRY

3.1.1 SLOPES. For levees of significant height or when there is concern about the
adequacy of available embankment materials or foundation conditions, embankment
design requires detailed analysis. Low levees and levees to be built of good material
resting on proven foundations may not require extensive stability analysis. For these
cases, practical considerations such as type and ease of construction, maintenance,

seepage and slope protection criteria control the selection of levee slopes.

3.1.1.1 TYPE OF CONSTRUCTION. Fully compacted levees generally enable the use of
steeper slopes than those of levees constructed by semicompacted or hydraulic means.
In fact, space limitations in urban areas often dictate minimum levee sections requiring

select material and proper compaction to obtain a stable section.

3.1.1.2 EASE OF CONSTRUCTION. A 1V on 2H slope is generally accepted as the

steepest slope that can easily be constructed and ensure stability of any riprap layers.

3.1.1.3 MAINTENANCE. A 1V on 3H slope is the steepest slope that can be conveniently

traversed with conventional mowing equipment and walked on during inspections.

3.1.1.4 SEEPAGE. For sand levees, a 1V on 5H landside slope is considered flat enough
to prevent damage from seepage exiting on the landside slope.

3.1.1.5 SLOPE PROTECTION. Riverside slopes flatter than those required for stability

may have to be specified to provide protection from damage by wave action.

3.1.2 FINAL LEVEE GRADE. In the past, freeboard was used to account for hydraulic,
geotechnical, construction, operation and maintenance uncertainties. The term and

concept of freeboard to account for these uncertainties is no longer used in the design of
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levee projects. The risk-based analysis directly accounts for hydraulic uncertainties and
establishes a nominal top of protection. Deterministic analysis using physical properties
of the foundation and embankment materials should be used to set the final levee grade
to account for settlement, shrinkage, cracking, geologic subsidence, and construction

tolerances.

3.1.3 CROWN WIDTH. The width of the levee crown depends primarily on roadway
requirements and future emergency needs. To provide access for normal maintenance
operations and floodfighting operations, minimum widths of 3.05 to 3.66 m (10 to 12 ft)
are commonly used with wider turnaround areas provided at specified intervals; these
widths are about the minimum feasible for construction using modern heavy earthmoving
equipment and should always be used for safety concerns. Where the levee crown is to

be used as a higher class road, its width is usually established by the responsible agency.

3.2 STANDARD LEVEE SECTIONS AND MINIMUM LEVEE SECTION

3.2.1 MANY DISTRICTS have established standard levee-sections for particular levee
systems, which have proven satisfactory over the years for the general stream regime,
foundation conditions prevailing in those areas, and for soils available for levee
construction. For a given levee system, several different standard sections may be
established depending on the type of construction to be used (compacted,
semicompacted, uncompacted, or hydraulic fill). The use of standard sections is generally
limited to levees of moderate height (say less than 7.62 m (25 ft)) in reaches where there
are no serious underseepage problems, weak foundation soils, or undesirable borrow
materials (very wet or very organic). In many cases the standard levee section has more
than the minimum allowable factor of safety relative to slope stability, its slopes being
established primarily on the basis of construction and maintenance considerations.
Where high levees or levees on foundations presenting special underseepage or stability
problems are to be built, the uppermost riverside and landside slopes of the levee are
often the same as those of the standard section, with the lower slopes flattened or stability

berms provided as needed.
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3.2.2 THE ADOPTION OF STANDARD LEVEE SECTIONS does not imply that stability
and underseepage analyses are not made. However, when borings for a new levee
clearly demonstrate foundation and borrow conditions similar to those at existing levees,
such analyses may be very simple and made only to the extent necessary to demonstrate
unguestioned levee stability. In addition to being used in levee design, the standard levee

sections are applicable to initial cost estimate, emergency and maintenance repairs.

3.2.3 THE MINIMUM LEVEE SECTION shall have a crown width of at least 3.05 m (10
ft) and a side slope flatter than or equal to 1V on 2H, regardless of the levee height or the
possibly less requirements indicated in the results of stability and seepage analyses. The
required dimensions of the minimum levee section is to provide an access road for flood-

fighting, maintenance, inspection and for general safety conditions.

3.3 EFFECTS OF FILL CHARACTERISTICS AND COMPACTION

3.3.1 COMPACTED FILLS. The types of compaction, water content control, and fill
materials govern the steepness of levee slopes from the stability aspect if foundations
have adequate strength. Where foundations are weak and compressible, high quality fill
construction is not justified, since these foundations can support only levees with flat
slopes. In such cases uncompacted or semicompacted fill, as defined in paragraph 1-5,
is appropriate. Semicompacted fill is also used where fine-grained borrow soils are
considerably wet of optimum or in construction of very low levees where other
considerations dictate flatter levee slopes than needed for stability. Uncompacted fill is
generally used where the only available borrow is very wet and frequently has high
organic content and where rainfall is very high during the construction season. When
foundations have adequate strength and where space is limited in urban areas both with
respect to quantity of borrow and levee geometry, compacted levee fill construction by
earth dam procedures is frequently selected. This involves the use of select material,

water content control, and compaction procedures.
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3.3.2 HYDRAULIC FILL. Hydraulic fill consists mostly of pervious sands built with one or
two end-discharge or bottom-discharging pipes. Tracked or rubber-tired dozers or front-
end loaders are used to move the sand to shape the embankment slopes. Because a
levee constructed of hydraulic fill would be very pervious and have a low density, it would
require a large levee footprint and would be susceptible to soil liquefaction. Hydraulic fill
would also quickly erode upon overtopping or where an impervious covering was
penetrated. For these reasons, hydraulic fill may be used for stability berms, pit fills and
seepage berms but shall not normally be used in constructing levee embankments.
However, hydraulic fill may be used for levees protecting agricultural areas whose failure
would not endanger human life and for zoned embankments that include impervious

seepage barriers.

© J. Paul Guyer 2015 19



4. METHODS OF ANALYSIS. The principal methods used to analyze levee
embankments for stability against shear failure assume either (a) a sliding surface having
the shape of a circular arc within the foundation and/or the embankment or (b) a
composite failure surface composed of a long horizontal plane in a relatively weak
foundation or thin foundation stratum connecting with diagonal plane surfaces up through

the foundation and embankment to the ground surface.
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5. CONDITIONS REQUIRING ANALYSIS. The various loading conditions to which a
levee and its foundation may be subjected and which should be considered in analyses
are designated as follows: Case I, end of construction; Case Il, sudden drawdown from
full flood stage; Case lll, steady seepage from full flood stage, fully developed phreatic
surface; Case IV, earthquake. Each case is discussed briefly in the following paragraphs

and the applicable type of design shear strength is given.

5.1 CASE | - END OF CONSTRUCTION. This case represents undrained conditions for
impervious embankment and foundation soils; i.e., excess pore water pressure is present
because the soil has not had time to drain since being loaded. Results from laboratory Q
(unconsolidated-undrained) tests are applicable to fine-grained soils loaded under this
condition while results of S (consolidated-drained) tests can be used for pervious soils
that drain fast enough during loading so that no excess pore water pressure is present at
the end of construction. The end of construction condition is applicable to both the

riverside and landside slopes.

5.2 CASE Il - SUDDEN DRAWDOWN. This case represents the condition whereby a
prolonged flood stage saturates at least the major part of the upstream embankment
portion and then falls faster than the soil can drain. This causes the development of
excess pore water pressure which may result in the upstream slope becoming unstable.

For the selection of the shear strengths see Table 1.

5.3 CASE lll - STEADY SEEPAGE FROM FULL FLOOD STAGE (FULLY DEVELOPED
PHREATIC SURFACE). This condition occurs when the water remains at or near full
flood stage long enough so that the embankment becomes fully saturated and a condition
of steady seepage occurs. This condition may be critical for landside slope stability.

Design shear strengths should be based on Table 1.

5.4 CASE IV - EARTHQUAKE. Earthquake loadings are not normally considered in
analyzing the stability of levees because of the low probability of earthquake coinciding

with periods of high water. Levees constructed of loose cohesionless materials or founded
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on loose cohesionless materials are particularly susceptible to failure due to liquefaction
during earthquakes. Depending on the severity of the expected earthquake and the

importance of the levee, seismic analyses to determine liquefaction susceptibility may be

required.
Analysis Condition Shear Strength® Pore Water Pressure
Dwring and End-of- Free draining soils - use effective Free draining soils - Pore water pressures can be estimated using
Construction stresses analytical techniques such as hydrostatic pressure computations for
no flow or steady seepage analysis technigues (flow nets, finite
element analyses or finite difference analyses).
Low permeability soils - use Low permeability soils - Total stresses are used; pore water
undrained strengths and total pressures are set to zero in the slope stability computations.
stresses®
Steady State Lise effective siresses. Residual Estimated from field measurements of pore water pressures,
Seepage Conditions strengths should be used where hydrostatic pressure computations for no flow conditions, or steady
previous shear deformation or seepage analysis technigues (flow nets, finite element analyses or
sliding has occurred. finite difference analyses).
Sudden Drawdown Free draining soils - use effective Free draining soils - First stage computations (before drawdown) -
Conditions stresses steady-state seepage pore pressures as described for steady state

seepage condition. Second and third stage computations (after
drawdown) - pore water pressures estimated using same
techniques as for steady seepage, except with lowered water

levels.
Low permeability soils - Three stage Low permeability soils - First stage computations - steady-state
computations: First stage use seepage pore pressures as described for steady stale seepage
effective stresses; second stage condition.
use undrained shear strengths and Second stage computations - Total stresses are used pore water
total stresses; third stage use pressures are set to zero.
drained strengths (effective Third stage computations - Use same pore pressures as free
siresses) or undrained strengths draining soils if drained strengths are being used; where undrained

(total stresses) depending on which strengths are used pore water pressures are sef to zero.
strength is lower - this will vary
along the assumed shear surface.

* Effective siress parameters can be obtained from consolidated-drained (CD, S) tests (either direct shear or triaxial) or consolidated-
undrained (CU, R) tiaxial tests on saturated specimens with pore water pressure measurements. Direct shear or Bromhead ring shear
tests should be used to measure residual strengths. Undrained strengths can be obfained from unconsolidated-undrained (UU, Q) tests.
IUndrained shear strengths can also be estimated using consolidated-undrained (CU, R) tests on specimens consolidated to appropriate
stress conditions representative of field conditions; however, the “R" or “iotal stress” envelope and associated ¢ and 6, from CU, R tests
should not be used.

® For saturated soils use & = 0; total stress envelope with & = 0 is only applicable to partially saturated soils.

Table 1

Summary of Design Conditions
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6. MINIMUM ACCEPTABLE FACTORS OF SAFETY. The minimum required safety
factors for the preceding design conditions along with the portion of the embankment for

which analyses are required and applicable shear test data are shown in Table 2.

Applicable Stability Conditions and Required Factors of Safety

End-of- Long-Term
Type of Slope Construction (Steady Seepage) Rapid Drawdown * Earthguaks®
Mew Levees 13 14 10t012 (see below)
Existing Levees - 14° 10012 (see below)
Other Embankments and dikes® 1.3+ 1.4~ 10to1.2 (see below)

* Sudden drawdown analyses. F. 5. = 1.0 applies to pool levels prior to drawdown for conditions where these water levels are
unlikely to persist for long periods preceding drawdown. F. 5. = 1.2 applies to pool level, likely to persist for long periods prior to
drawdown.

® See ER 1110-2-1806 for guidance. An EM for seismic stability analysis is under preparation.

© For existing slopes where either sliding or large deformation have occurred previously and back analyses have been performed to
establish design shear strengths lower factors of safety may be used. In such cases probabilistic analyses may be useful in
supporting the use of lower factors of safety for design.

® Includes slopes which are part of cofferdams, retention dikes, stockpiles, navigation channels, breakwater, river banks, and
excavation slopes.

* Temporary excavated slopes are sometimes designed for only shor-termn stability with the knowledge that long-term stahility is
not adequate. In such cases higher factors of safety may be required for end-of-construction to ensure stability during the time the
excavation is to remain open. Special care is required in design of temporary slopes, which do not have adequate stability for the
long-term (steady seepage) condition.

" Lower factors of safety may be appropriate when the consequences of failure in terms of safety, environmental damage and
economic losses are small.

Table 2

Minimum Factors of Safety - Levee Slope Stability
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7. MEASURES TO INCREASE STABILITY. Means for improving weak and compressible
foundations to enable stable embankments to be constructed thereon are discussed
elsewhere. Methods of improving embankment stability by changes in embankment

section are presented in the following paragraphs.

7.1 FLATTEN EMBANKMENT SLOPES. Flattening embankment slopes will usually
increase the stability of an embankment against a shallow foundation type failure that
takes place entirely within the embankment. Flattening embankment slopes reduces
gravity forces tending to cause failure, and increases the length of potential failure

surfaces (and therefore increases resistance to sliding).

7.2 STABILITY BERMS. Berms essentially provide the same effect as flattening
embankment slopes but are generally more effective because of concentrating additional
weight where it is needed most and by forcing a substantial increase in the failure path.
Thus, berms can be an effective means of stabilization not only for shallow foundation
and embankment type failures but for more deep-seated foundation failures as well. Berm
thickness and width should be determined from stability analyses and the length should
be great enough to encompass the entire problem area, the extent of which is determined
from the soll profile. Foundation failures are normally preceded by lateral displacement of
material beneath the embankment toe and by noticeable heave of material just beyond
the toe. When such a condition is noticed, berms are often used as an emergency

measure to stabilize the embankment and prevent further movement.
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8. SURFACE SLIDES. Experience indicates that shallow slides may occur in levee slopes
after heavy rainfall. Failure generally occurs in very plastic clay slopes. They are probably
the result of shrinkage during dry weather and moisture gain during wet weather with a
resulting loss in shear strength due to a net increase in water content, plus additional
driving force from water in cracks. These failures require maintenance and could be
eliminated or reduced in frequency by using less plastic soils near the surface of the

slopes or by chemical stabilization of the surface soils.
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9. SETTLEMENT

9.1 GENERAL. Evaluation of the amount of postconstruction settlement that can occur
from consolidation of both embankment and foundation may be important if the settlement
would result in loss of freeboard of the levee or damage to structures in the embankment.
Many districts overbuild a levee by a given percent of its height to take into account
anticipated settlement both of the foundation and within the levee fill itself. Common
allowances are 0 to 5 percent for compacted fill, 5 to 10 percent for semicompacted fill,
15 percent for uncompacted fill, and 5 to 10 percent for hydraulic fill. Overbuilding does
however increase the severity of stability problems and may be impracticable or

undesirable for some foundations.
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10. SETTLEMENT ANALYSES. Settlement estimates can be made by theoretical
analysis. Detailed settlement analyses should be made when significant consolidation is
expected, as under high embankment loads, embankments of highly compressible soil,
embankments on compressible foundations, and beneath steel and concrete structures
in levee systems founded on compressible soils. Where foundation and embankment
soils are pervious or semipervious, most of the settlement will occur during construction.
For impervious solls it is usually conservatively assumed that all the calculated settlement
of a levee built by a normal sequence of construction operations will occur after
construction. Where analyses indicate that more foundation settlement would occur than
can be tolerated, partial or complete removal of compressible foundation material may be
necessary from both stability and settlement viewpoints. When the depth of excavation
required to accomplish this is too great for economical construction, other methods of
control such as stage construction or vertical sand drains may have to be employed,

although they seldom are justified for this purpose.
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