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Abstract

An analytical and experimental study is conducted to investigate the effect of
isolator locations on the effectiveness of vibration isolation systems. The study uses
isolators with fixed properties and evaluates potential improvements to the isolation
system that can be achieved by optimizing isolator locations.

Because the available locations for the isolators are discrete in this application, a
Genetic Algorithm (GA) is used as the optimization method. The system is modeled in
MATLAB and coupled with the GA available in the DAKOTA optimization toolkit
under development at Sandia National Laboratories. Design constraints dictated by
hardware and experimental limitations are implemented through penalty function
techniques. A series of GA runs reveal difficulties in the search on this heavily
constrained, multimodal, discrete problem. However, the GA runs provide a variety of
optimized designs with predicted performance from 30 to 70 times better than a baseline
configuration. An alternate approach is also tested on this problem: it uses continuous
optimization, followed by "rounding" of the solution to neighboring discrete
configurations. Results show that this approach leads to either infeasible or poor designs.

Finally, a number of "optimized" designs obtained from the GA searches are
tested in the laboratory and compared to the baseline design. These experimental results
show a 7 to 46 times improvement in vibration isolation from the baseline configuration.
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1. Introduction

Vibration isolation systems are used in a wide variety of applications to reduce
transmission of mechanical vibrations generated by noisy components or carried by the
environment to a sensitive device. Examples include isolation of a laser table from floor-
borne seismic disturbances, isolation of a car or airplane body from engine vibrations, and
suspension systems of vehicles.

Isolation is achieved by inserting soft mechanical links (“isolators”) between the
subsystem containing the source of the disturbances and the subsystem to be isolated.
Based on the relative sizes of  these subsystems, two classes of isolation systems can be
distinguished (Fig. 1).

 

T

Floor Vibrations

Quiet Device

T

Quiet Floor

Vibrating
Device

Figure 1  Vibration isolation systems.

In the first situation (left side of Fig. 1), the environment is isolated from
vibrations created by a piece of machinery. A typical example is the isolation of a car
body from vibrations caused by the engine. In the other, a sensitive device is protected
from disturbances carried by its supporting structure. Isolation of a laser table from floor
borne vibrations is a common example. In both cases, the effectiveness of the isolation
system can be examined in terms of transmissibility functions, T, in the frequency
domain. In the first class of systems, these transmissibilities can be expressed as ratios of
excitation forces to forces transmitted to the floor. In the second class, they are expressed
as ratios of component of floor motion to component of device motion. Note that mixed
formulations are also possible. Whatever exact definition is used for T, its magnitude
typically resembles the curve shown in Fig. 2.

dB(T)

log(Frequency)

isolation range

suspension
modes

flexible
modes

Figure 2  Typical transmission characteristics of isolation system.
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Three regions can be distinguished in the figure. At “low” frequencies, resonant
peaks corresponding to the suspension modes are observed. There is no isolation in this
band (in fact there is amplification). Damping is usually designed into the isolators to
limit the amplitudes of these peaks and avoid large responses to transients. At the “high”
end of the spectrum, flexible modes of the device and/or supporting structure themselves
produce other resonant peaks. In a properly designed isolation system, those two
frequency ranges are separated by a wide “isolation band” where transmission decays
rapidly with frequency (about -40dB/decade for a lightly damped, single stage system). A
properly designed system will “see” most of the disturbance energy occur in this band.

Because of the sharp decay in the isolation band, the traditional design
methodology focuses primarily on minimizing the stiffnesses of the individual isolators.
This lowers the frequencies of the suspension modes and results in a corresponding drop
in transmission in the isolation band (Fig. 3). The configuration of the complete system,
in particular the number, locations, and orientations of the isolators, receives little
attention in this approach. Actually, the system configuration is often designed to ensure
decoupling between translations and rotations in the suspension modes and simplify the
analysis[1].

Figure 3  Improving isolation by softening the isolators.

This approach is justified for “generic” isolation problems. Namely, when the
location, direction, amplitude, or frequency content of the disturbances are not well
known and/or when no particular point on the isolated device more critically requires
isolation than others. An example of a generic problem is that of isolating a laser table
from floor vibrations: data will often not be available to accurately characterize the
disturbance and the designer of the isolation system has no knowledge of what
experiment will be performed on the table. In such cases, a generic isolation system (with
4 isolators, one in each corner for example) is appropriate.

However, in some applications, the disturbance(s) are very well known (rotating
machinery, for example) and residual motion is critical at one or a few specific
points/directions on the isolated device. As an example, consider an isolation system
designed to prevent excessive transmission of vibrations from a cryocooler to a telescope
mounted on a satellite structure (Fig. 4). Clearly, the source of the disturbance is well
known in direction, amplitude, and frequency content. Also, to minimize jitter, residual
tilting vibrations of the telescope must be minimized. Vibrations at other points/directions
in the system are less critical. In other applications, the critical point/direction might be
the location of a vibration-sensitive component or points/directions of strong dynamic
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coupling with an elastic sub-system. In all such cases, it is expected that locations and
orientations of the isolators will have a substantial effect on the isolation effectiveness[2].

T

 Figure 4  Non-generic isolation problem.

The present study examines this question in more detail. The authors consider the
design of a 3-isolator system to minimize transmission of well characterized floor-borne
perturbations to a specific point and direction on an optical table. The number and type of
isolators used is fixed and their locations under the table are optimized. The optimized
designs are compared to a baseline, generic configuration. These designs are then tested
in the lab to validate the approach.

Because our optical table provides only a discrete grid of mounting holes for the
isolators, the design variables of the optimization problem are discrete and the
optimization is performed with SGOPT’s[3] Genetic Algorithm (GA) available in the
DAKOTA[4] optimization toolkit under development at Sandia National Laboratories.

The goal of the study is twofold: first, investigate the potential of optimization in
improving the performance of vibration isolation systems and second, by exercising the
GA with a real-life problem, hopefully identify critical directions for future GA research
and development efforts.

2. System Description

The experimental vibration isolation setup (Fig. 5) consists of a stainless steel
honeycomb sandwich optical table (Newport[5], model RS4000-36-8) measuring
approximately 48 by 36 by 8.5 inches and weighing approximately 815 lbs. The table is
resting on 3 steel coil spring isolators (custom designed, using springs from Associated
Spring-Raymond[6], model CV2000-2500-365) whose locations under the table are the
focus of the optimization. This system is in turn resting on a large, solid aluminum
seismic mass (custom-made, approximately 70 by 48 by 12 inches, 4085 lb.), itself
isolated from the lab floor by four air bags (Firestone Airmount isolators[7], model
224C). Note that the seismic mass will actually be considered the “floor” in this problem.
The air bag suspension is there to eliminate any unknown disturbances from the
experiment but will not be part of the optimization problem. The suspension frequencies
of the system on these airbags range from about 1.0 to 2.5 Hz.
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 Figure 5  Experimental vibration isolation setup.

The bottom of the optical table and the top of the seismic base are fitted with
identical aluminum adapter plates featuring matching arrays of 6 by 8 threaded holes (on
a 6 in. grid). The spring isolators are attached to those holes with threaded rods and
aluminum end-plates as shown in Fig. 6. Note that because the springs are simply resting
in the end-plates, the isolators can only take compressive forces.

coil spring

end plate

Figure 6  Steel spring isolator.

Four hydro-pneumatic lifters are attached to the seismic block, allowing
convenient  access to the isolators. The four corners of the aluminum adapter plate
attached to the seismic block are machined to provide clearance for the lifters. This
eliminates 4 of the 48 possible isolator mounting locations.
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Both the seismic base and the optical table are fully instrumented for 6 d.o.f.
motion pickup for system identification and model validation purposes (see Section 4.3).
Four sets of 3 accelerometers (Endevco[8], model 7751-500mV/g) are mounted near the
four corners of the seismic base as seen in Fig. 5. The optical table is equipped with 5
triaxial accelerometers (Endevco[8], model 63-500mV/g), embedded in the aluminum
adapter plate near the four corners and the center. All accelerometers are powered by 12-
channel signal conditioners (PCB[9], model 483A10). In addition, a high sensitivity
seismic accelerometer (Wilcoxon Research[10], model 731, 10,000 mV/in/sec. in velocity
mode) measures residual vibration at the critical point, near the front left corner of the
optical table.

The “floor” (seismic base) is excited near its front right corner (Figure 4) by an
electromagnetic shaker (MB Dynamics[11], model Modal 50A). The excitation force is
measured by a piezoelectric load cell (PCB[9], model 208A03, 10mV/lb.).

3. Optimization Problem

The vibration isolation problem is shown schematically in Fig. 7. As mentioned
previously, the goal is to find optimal locations for 3 steel spring isolators between the
optical table and the seismic base. The number of isolators was set to 3 to minimize
uncertainties in the experimental setup that would occur due to static indeterminacy with
4 or more isolators. By design, only 6x8=48 discrete locations are available for these
isolators. Four of those locations (at the corners) are not available (see Section 2).

Quiet Location & Direction
( V, vertical velocity)

Perturbation
(F, 50 Hz sine)

Seismic Base (“floor”)

6 x 8 Discrete
Locations

Optical Table

3 Isolators

Lab Floor

T = V / F

 Figure 7  Vibration isolation design problem.

For simplicity, and to reduce computational expenses in the simulations, the
disturbance is a pure sinusoidal vertical force F at a frequency of 50 Hz. This frequency
was chosen to be within the isolation band, i.e. much higher than that of the suspension
modes of the optical table but well below the frequency of the lowest elastic modes (150
to 200 Hz). It will be shown that the use of a single target frequency instead of a wide
band does not limit the improvements to that single frequency. Instead, the optimized
designs actually have improved performance across the isolation range.
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The objective is to minimize the residual vertical velocity V at a target location on
the table (Figure 7), in response to a given amplitude of perturbation force F. This
amounts to minimizing the transfer function T = V/F (µin/sec/lb) from the excitation
force to the residual velocity. This function T will be referred to as transmissibility in the
remainder of this report. The locations of the excitation and the critical point were chosen
to create asymmetry in the problem. This is expected to lead to non-intuitive, asymmetric
optimal locations for the isolators, in sharp contrast to a baseline configuration.

Practical limitations dictate a number of design constraints on this problem (the
implementation of those constraints is explained in more detail in the next section):
• Depending on how the isolator locations are coded into design variables, it may be

necessary to enforce the condition that the 4 locations at the corners of the 6x8 grid
are not used.

• There cannot be more than one isolator at any given grid location.
• The isolators cannot be aligned on a straight line because the table would then be

unstable. Note that, with 3 isolators, this condition also takes care of the previous one:
if any two isolators are at the same location they are also on a straight line with the
third one.

• Also, since softer isolation generally implies better performance (see Section 1) there
may be a tendency for the optimizer to generate designs with very low natural
frequencies (by placing the isolators very close to each other for example). This is
undesirable in practice because such designs would have very large transient
responses to impact and handling loads. To prevent this, a lower limit of 4.0 Hz is
enforced on the first natural frequency of the optical table on its isolators. Note that
this value also ensures decoupling with the suspension modes of the seismic base on
its airbags (1 to 2.5 Hz).

• Because the springs are not attached to their end-plates, the static gravitational load
on each isolator must be compressive.

• The static deflections of the springs cannot exceed an upper limit beyond which the
springs might not be linear or might be compressed to their solid length. This limit
was set to 0.5 in.

The discrete nature of the design variables (isolator locations) calls for the use of
specialized optimization techniques. An approach based on a genetic algorithm will be
examined in this study and compared to other techniques. It will be shown that the use of
classical continuous optimization techniques followed by rounding of the solution is not
appropriate.

4. Modeling

4.1 Suspended Rigid Body Modeling

The lowest “flexible” modes in the system occur at frequencies of about 150 to
200 Hz. They correspond to resonances of tuned vibration absorbers which are embedded
in the optical table. At frequencies well below these flexible modes (say from 0 to
100Hz), the system can be approximated as a set of 2 rigid bodies (seismic base and
optical table) connected by 3-dimensional, linear springs with viscous damping (airbags
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and spring isolators).  Each rigid body is given 6 degrees of freedom and defined by its
mass and inertia tensor. The springs are defined by stiffnesses (kx, ky, kz) and  damping
coefficients (cx, cy, cz) in 3 mutually orthogonal directions, parallel to the global reference
directions X, Y, and Z of Fig. 5. For the system at hand, we have kx=ky=kshear, kz=kaxial,
cx=cy=cshear, and cz=caxial because of axisymmetry of both the airbags and the steel
springs. Bending and torsional stiffnesses of the springs were neglected.

4.2 Mass Properties

Mass properties for most components (seismic base, adapter plates, airbag adapter
blocks, etc.) were obtained from Pro-Engineer[12] models. The lifters were weighed and
their inertia tensors were approximated based on uniform density assumptions in a Pro-
Engineer geometric model. The optical table posed special problems: because of the
presence of embedded tuned vibration absorbers of unknown properties (accurate data
could not be obtained from the manufacturer), the mass properties could not be
determined analytically and were instead measured by the Mass Property Laboratory at
Sandia National Laboratories. The center of mass of the table was found to be offset by
1.72 in. in the negative Y direction from its geometric center (due to uneven distribution
of tuned dampers).

4.3 Stiffness and Damping

4.3.1 Airbags

The stiffness of an airbag is almost exactly proportional to the static axial load
(the natural frequency of a 1 d.o.f. system made of an airbag and a mass is approximately
independent of  the magnitude of the mass). Initial data for axial stiffness versus axial
load was obtained from the manufacturer’s catalog[7] and can be approximated as

kaxial = 66.51 + 0.4047 P,

where P is the axial static load in lb and kaxial is in lb/in. Shear stiffnesses were not
available. Modal tests were then performed on the seismic mass alone, supported by the
airbags (the optical table and springs were removed for this test). Natural frequencies and
modal damping ratios were extracted form those measurements and are listed in Table 1.

Mode # Frequency [Hz] Damping [%]
1 0.961 2.95 shear along X (+ rocking around Y)
2 1.145 3.23 shear along Y (+ rocking around X)
3 1.519 3.36 twist around Z
4 2.161 0.82 symmetric up/down along Z
5 2.464 1.61 rocking around Y
6 2.467 1.28 rocking around X

Table 1  Experimental modes of seismic base on airbags

Mode 4 (pure up and down motion) was used to adjust the axial stiffness and
damping (catalog values for stiffness was scaled by 1.0154) and mode 3 (pure twisting
motion around Z, straining the airbags in pure shear) provided the ratio of shear to axial
stiffness (kshear/kaxial = 0.4611) and the shear damping. With those values, the model
predictions compare reasonably well with the experiment (Table 2).
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Frequency [Hz] Damping ratio [%]
exp. anal. exp. anal.

shear along X (+ rocking around Y) 0.961 1.192 2.95 1.70
shear along Y (+ rocking around X) 1.145 1.333 3.23 2.39
twist around Z 1.519 1.519 3.36 3.36
symmetric up/down along Z 2.161 2.161 0.82 0.82
rocking around Y 2.464 2.489 1.61 2.90
rocking around X 2.467 2.479 1.28 1.97

Table 2  Seismic base on air springs; analytical and experimental modes.

4.3.2 Steel Springs

With the assumption of linearity, the dynamic axial and shear stiffnesses of a coil
spring are independent of static loads. An initial value kaxial = 3816 lb/in was obtained
from the manufacturer[6]. The shear stiffness was not available. Modal tests were
performed on the optical table resting on 4 spring isolators, symmetrically arranged
around its geometric center. The airbags supporting the seismic base were replaced with
stiff support blocks for those tests. Measured natural frequencies and modal damping
ratios are listed in Table 3.

Mode # Frequency [Hz] Damping [%]
1 7.199 0.16 shear along X left side
2 8.007 0.41 shear along X right side
3 8.456 0.22 shear along Y (+ rocking X)
4 12.121 0.15 rocking around Y
5 12.885 0.16 up/down left side
6 14.551 0.21 up/down right side

Table 3  Experimental modes of optical table on 4 spring isolators.

Frequency [Hz] Damping ratio [%]
exp. anal. exp. anal.

shear along X left side 7.199 7.375 0.16 0.22
shear along X right side 8.007 8.020 0.41 0.26
shear along Y (+ rocking X) 8.456 8.279 0.22 0.27
rocking around Y 12.121 12.203 0.15 0.25
up/down left side 12.885 12.897 0.16 0.17
up/down right side 14.551 14.370 0.21 0.16

Table 4  Optical table on 4 spring isolators; analytical and experimental
modes.

The simple analytical technique used to identify airbag stiffnesses and dampings
cannot be used here because of the absence of pure up/down or shear modes. Instead, a
parameter identification optimization problem was formulated that minimizes a weighted
sum of squares of errors on natural frequencies and damping ratios. Four parameters were
adjusted to minimize this error: axial stiffness kaxial and damping caxial, and shear stiffness
kshear and damping cshear. The minimization was performed using OPT++[13] conjugate
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gradient optimizer in DAKOTA. The results lead to a correction factor of 1.04 on the
catalog value for kaxial, a ratio kshear/ kaxial = 0.41, and damping coefficients caxial = 0.13
and cshear = 0.18. These values achieve good analytical-experimental match (Table 4).

4.4 Analysis Code

The rigid body equations of motion were coded into a set of M-files in
MATLAB[14]. For the optimization, interfacing with DAKOTA† was done directly
(without the use of input and output filters[4]) since the MATLAB code could be designed
to exchange information (design variables and objective function) in the DAKOTA
compatible format.

4.4.1 Objective Function Calculation

The transmissibility T at a single frequency of 50 Hz (see Section 2) is calculated
by solving the (12x12) set of linear dynamic equations for that frequency.

4.4.2 Constraint Evaluation

• corner constraints: simple checks are performed for each isolator location. Three
Boolean constraints g1, g2, g3 are defined as

gi = <  is isolator # i at corner? >,  i=1,…,3,     boolean constraints.
• alignment constraint: since natural frequencies are needed for the 4Hz limit in the
stability constraint, alignment was checked by monitoring the value of the first natural
frequency f1 (out of 12) of the system. A value of zero indicates alignment (or more than 1
spring at any location). To account for numerical roundoffs, a threshold value of 0.01 Hz
was used. This defines the 4th Boolean constraint:

g4 = < f1 < 0.01 Hz ? > ,     boolean constraint.
Note that if this constraint is violated, the system’s stiffness matrix is nearly singular and
static equilibrium cannot be computed. Also, there is a switch in the order of the natural
frequencies because the first natural frequency is now associated with the upper system
instead of being a seismic base suspension mode (which is also why the alignment
constraint is treated separately from the stability constraint). For these reasons, all
following constraints g5…g11 are evaluated only if g4 is false.
• stability constraint: As mentioned earlier, the upper system natural frequencies are
required to be above 4 Hz, i.e.

 g5 = 1 - f7 /4.0 Hz < 0,     real constraint,
where f7 is the first natural frequency of the upper half of the system (because the first 6
frequencies correspond to the lower half, i.e. the seismic mass on its airbags).
• compression constraint: with 3 isolators, the upper table is statically determinate so
that reaction loads can be readily computed by solving 3 equilibrium equations. Three
constraints are formulated to guarantee that the loads are compressive:

g5+i = Pi < 0,  i=1,…,3,     real constraints,
where Pi is the static load on spring #i (positive in traction).

                                                
† DAKOTA is an object-oriented C++ toolkit for interfacing broad libraries of optimization methods (e.g.
NLP, GA’s, coordinate pattern search) with engineering applications in a variety of disciplines.
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• static deflection constraint: three constraints enforce that the static deflections δi of
the springs remain below a limit δmax = 0.5 in.:

 g8+i = δi / δmax - 1 < 0,  i=1,…,3 ,     real constraints.

5. Baseline Design

Before optimizing the isolation system, we first define a generic, baseline
configuration. It will be used as a point of comparison to evaluate improvements achieved
by optimization. This baseline configuration is generated following the generic design
approach described in Section 1: the three isolators are placed symmetrically around the
center of mass of the isolated body (the optical table). Because of the coarse discrete grid
of mounting holes for the isolators, perfect symmetry cannot be achieved. The selected
locations are shown in Fig. 8.

V

F

Top View

Figure 8  Locations of isolators in baseline design.

Note that, without prior analysis, a configuration similar to that of Fig. 8 would
probably be used in practice. This study will show that other configurations can be found
that lead to much superior performance.

The transmissibility predicted by the MATLAB model for this design is plotted in
Figure 9. A number of resonant peaks corresponding to suspension modes can be seen at
frequencies up to about 15 Hz. At higher frequencies, the transmissibility decays rapidly
and reaches T = 21.22 µin/sec/lb at the 50 Hz target frequency.

frequency (Hz)

1

100

10000

1000000

0 20 40 60 80 100

f = 50 Hz

T = 21.22

T = V/F
 (µin/sec/lb.)

Figure 9  Transmissibility of baseline design.
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Flexible modes are absent from the figure because first, they are not represented in the
rigid body/spring model and second, they start at frequencies of about 150 Hz.

It should be noted that the performance of this design is very representative of this
particular isolation system: Monte Carlo simulations with 1000 random configurations
show that the average transmissibility of feasible designs is 21.1 µin/sec/lb, almost
exactly equal to that of the baseline design.

6. Optimization Techniques

Three optimization techniques are applied to this discrete problem: random
search, genetic algorithm (GA), and continuous optimization followed by rounding of the
solution. These techniques and their implementation for solving the problem at hand are
presented in the following sections. Particular attention is given to the GA solution.

6.1 Random Search

The random search technique (Figure 10) is used as a point of comparison to
evaluate the efficiency of the GA search. It consists of generating a given number (n) of
random configurations of 3 isolators, eliminating those that violate one or more
constraint(s) and selecting the best remaining design. This process is extremely simple
and general but obviously inefficient.

reject

n configurations

Generate n random combinations of
design parameters

feasibleanalyseinfeasible select best

‘optimized’ design

Figure 10  Random search technique.

6.2 Genetic Algorithm

6.2.1 Description

A genetic algorithm (GA) is a random search technique that mimics some
mechanisms of natural evolution. The algorithm works on a population of designs
(individuals) which is the counterpart of a population of biological creatures. Following
principles of the Darwinian theory, the population evolves from generation to generation,
gradually improving its adaptation to the environment: through natural selection, fitter
individuals have better chances of transmitting their characteristics to later generations
(survival of the fittest).
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In the algorithm (Figure 11), the selection of the natural environment is replaced
by artificial selection based on a computed fitness for each design. This fitness is
essentially the objective function of the optimization problem (possibly augmented with
constraint penalties). The chromosomes that define characteristics of biological beings are
replaced by strings of numerical values representing the design variables. When couples
of selected individuals (designs) reproduce, they combine portions of their genetic
material to create an offspring that shares traits from each parent. In the GA, this
recombination of the parents’ chromosomes is performed by two genetic operators which
are the simplified versions of their natural counterparts: crossover and mutation (several
other operators have been introduced but crossover and mutation are almost always
present). The crossover combines existing features of both parents to exploit the genetic
heritage of the population while the mutation introduces new features to explore new
areas of the design space. In tuning the algorithm, a delicate balance (which unfortunately
is problem-dependent) must be achieved between exploitation and exploration: too little
mutation and the GA will “converge” prematurely, possibly to a local optimum,
destroying the global character of the search; too much and the search will be exceedingly
disrupted, preventing efficient exploitation of existing design features.

Final Population

Initial Population

Analyse & Rank

Reproduction

Select 2 parents

Crossover

Mutation

Clone
Best

Put Child into
New generation

Figure 11  Classical genetic algorithm.

While innumerable variations of genetic algorithms are possible, the following
subsections describe the coding, operators, and constraint enforcement strategies specific
to SGOPT[3] in DAKOTA[4] and this application.

6.2.2 Defining the Chromosome (Coding)

The first and most important step in preparing an optimization problem for a GA
solution is that of defining a particular coding of the design variables and their
arrangement into a string of numerical values to be used as the chromosome by the GA.

The choice of a particular coding has large ramifications on the efficiency of the
search. Although historically GA’s were developed to operate on strings of binary
numbers (design variables would be converted to their binary representations and
concatenated into a long binary chromosome), studies[15,16] have shown that other
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representations (using trinary, decimal, or real alphabets) can be used with similar or
better performance. 

For the problem at hand, a few coding options are illustrated in Fig. 12. The first
three options (a.1 to a.3) are based on a continuous numbering of all available locations
from 1 to 44. The last two (b.1 and b.2) use array indices 1 to 6 and 1 to 8 in the X and Y
directions. The first numbering scheme (a.) presents the disadvantage of not embodying
the physics of the problem: choosing the location of isolators in a plane is a 2-
dimensional problem, calling for a 2-dimensional coding. This numbering also creates
artificial discontinuities in that a small change in code value does not always lead to a
small change in isolator location. For example, changing an isolator location from #6 to
#7 (Fig. 12a) moves it all the way across the adapter plate.
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9 10 11 ... .. .7

. .. ... 36 37 38

39 40 41 43 44

1 2 3 4 6

8

42

5

3 Binary - 6 Bits

44 Logical (spring / no spring)

6 Binary - 3 Bits

3 Integers

42 5 8

6 Integers

6 5 1 6 2 2

a.

b.

a.1

a.2

a.3

b.1

b.2

Figure 12  Various ways of coding isolator locations into a "chromosome"
for a genetic algorithm.

Coding a.3 is particularly inefficient: crossover operations between two such
chromosomes have very little chance of generating an offspring with exactly 3 isolators.
The algorithm would then spend most of its time generating and analyzing designs that do
not have the required number of isolators. This is a manifestation of a more general idea:
a coding should include as many constraints as possible to reduce the probability of
generating infeasible designs. Another example of this is the corner constraint: the first
numbering scheme (a.) implicitly guarantees satisfaction of that constraint.

Despite this last observation, the designs were coded using a string of 6 integer
genes for the X and Y grid indices of the 3 isolator locations, i.e. [x1, y1, x2, y2, x3, y3]
(coding b.1 in Fig. 12). This coding closely represents the physics of the problem and
does
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away with the need for back and forth conversions between integer and binary
representations of the design variables. The alphabet (range) is 1..6 for x genes and 1..8
for y genes.

6.2.3 Selection Operator

The selection operator is in charge of picking individuals for reproduction. It uses
a biased roulette wheel where fitter individuals get larger portions of the wheel and have
therefore better chances of reproducing and transmitting their characteristics.

A ranking technique is used to assign portions on the roulette wheel: the
probability of selection of an individual is a function of its rank in the population - not its
fitness. This avoids the classical problem of the super-individual: if, early in the search, a
single design is - by chance - vastly superior to all others, a fitness-based selection would
almost always pick that super-individual and create a population of clones, leading to
complete loss of genetic diversity. This does not happen with a rank-based selection rule.

SELECT
Probability of Selection

Rank

Selection
Pressure

Figure 13  Ranking selection operator.

Figure 13 illustrates the particular rule used in this application. The selection
pressure is defined as the ratio of the probability of selection of the best individual in the
population to that of the worst. High selection pressures push the search to faster
improvement but also gives it less time to explore the design space. Again, a compromise
must be found. The selection pressure was set to 2 for this application.

6.2.4 Crossover Operator

Once two parents have been selected, their chromosomes undergo a crossover
operation that generates an offspring chromosome. This GA uses a 2-point, non-
averaging crossover illustrated in Fig. 14.
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Parent 2

Child

2 random
cutting
points

Crossover

Figure 14  Non-averaging 2-point crossover operator.

The operator selects two random cutting points and creates a child chromosome
by assembling the inner and outer substrings from either parent. This operation is applied
with a given probability Pc (typically large, 80 to 100%). When crossover is not applied,
one of the 2 parent chromosomes (chosen at random) is simply cloned.

Notice that the child typically has some features from each parent but also some
new characteristics: the (1,6) location in the child’s chromosome in Fig. 14 for example
results from the combination of the x index from one parent and the y index from the
other.

This crossover is called non-averaging because the cutting points are only allowed
to fall between genes. In contrast, an averaging crossover (see
 for example [16]) generates cutting points that can fall anywhere within a gene. When this
happens, the child gene is computed as a weighted average of the parent genes. The
averaging crossover was introduced to improve the GA’s behavior for problems with
large alphabets: when a gene can take a large number of values, the initial population is
unlikely to contain every possible value for that gene. Without averaging crossover, the
generation of new values is left exclusively to the mutation. Artificially large and
disrupting mutation rates are then needed to maintain diversity. The averaging crossover
is also naturally indicated for problems with real-valued genes (which have an infinite
alphabet).

For the current application, the alphabet is limited enough (1 to 6, or 1 to 8) that a
non-averaging crossover may be sufficient, although further testing would clarify this
point.

6.2.5 Mutation Operator

The mutation introduces random changes in the offspring chromosome resulting
from the crossover operation. The role of the mutation is to prevent loss of genetic
diversity by introducing design features that may have never been present in the
population or may have been lost over time.
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1 6 4 1 4 7

1 6 2 1 4 7

Mutation
Pm

Random value

Figure 15  Mutation operator.

Mutation is applied with a small probability Pm to each gene in the chromosome.
Figure 15 illustrates this process. When mutation occurs, the current value of the gene is
replaced by a random value, uniformly distributed in the range of that particular design
variable.

6.2.6 Constraint Enforcement

It is interesting to note that although most realistic engineering design problems
involve numerous constraints, little work has been done to investigate constraint
enforcement strategies for genetic algorithms. One of four approaches is typically used:
data structuring, direct elimination, repair operators, or penalty functions.

Data structuring consists of designing the coding in such a way that constraints
are automatically satisfied because infeasible designs can simply not be represented. In
our problem for example, the requirement to have exactly 3 isolators is automatically
satisfied when using any coding scheme in Fig. 12, except a.3. Satisfaction of the corner
constraint on the other hand is implicit with codings a.1 to a.3 but not with b.1 or b.2.
Although data structuring is always the most efficient technique, it is only applicable for
particular types of constraints and is very problem-specific.

+
+

+
+

+

+

+ O

Figure 16  Design problem with disjoint feasible space.

In the direct elimination technique, each design resulting from selection,
crossover, and mutation is examined for constraint satisfaction before it is included in the
new generation. If any constraint is violated, the offspring is eliminated and a replacement
is created through new selection, crossover and mutation operations. This process is
repeated until a feasible design is found. This creates entirely feasible populations at
every generation, constraining the search exclusively within the feasible regions of the
design space. In cases where the design space contains non-convex and/or disjoint
feasible regions, this makes the search inefficient and unreliable. The reason is best



SAND96-1169
05/17/96

24

explained on a simple example. Figure 16 represents the design space of a 2-dimensional
design problem. The shaded areas represent infeasible regions and the arrow gives the
general direction of improvement of the objective function within the large feasible area
at the upper right of the figure. An initial feasible population for this problem is likely to
reside entirely in the large feasible region of the design space. If direct elimination is

used, the GA will then converge to the local minimum within that area (• in Fig. 16),
missing the global optimum (+). It is clear that convergence to the global optimum is
likely only if the GA population is allowed to migrate through the infeasible “barrier” to
reach the small feasible inclusion. Note that the feasible space does not have to be disjoint
for this problem to occur: if the feasible space is non-convex, the GA may have to
migrate around a constraint barrier instead of short-cutting through it.

Another approach uses repair operators to “fix” infeasible designs before
incorporating them in the new generation. Repair operators use some knowledge about
the problem to try and eliminate constraint violations through “small” modifications of
the design. This approach is inherently problem-specific and is used mostly in research
algorithms or GAs designed specifically for a particular class of problems. A simple
example is shown in Fig. 17 for the corner constraint: an isolator located at a corner could
be moved to one of the neighboring locations (one of three at random for example).

In less trivial cases however, it may be difficult to define design changes that
eliminate given constraint violations. Also, in highly constrained problems, one cannot
guarantee that ‘fixing’ a design for one constraint will not cause violation of another.
Finally and most importantly, repair operators are problem-specific so they cannot be
used in a general purpose optimization package like DAKOTA.

Figure 17  A simple repair operator for the corner constraint.

The fourth constraint enforcement technique uses penalty functions: in a
minimization problem, each constraint violation produces an increase in the objective
function. Because penalty functions were originally introduced to enforce constraints in
the context of gradient-based optimization, classical definitions produce a smooth,
differentiable transition from feasible to infeasible regions. This ‘blurs’ the boundaries of
the feasible design space. A continuous optimization then converges to either slightly
infeasible designs (when using exterior penalty functions[17]) or slightly conservative
designs (with interior penalty functions). To avoid this and since there is no need to
achieve continuity in the penalty functions with a zero order method like a GA, a
combination of step and gradual penalties[18] (as shown in Fig. 18) will be used.
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The steps prevent convergence to slightly infeasible designs while gradual
penalties maintain a logical hierarchy between designs with more or less severe constraint
violations. Gradual penalties are of course applied only to the quantifiable constraints
(stability, compressive spring loads, and static spring deflections); Boolean constraints
(corner constraints and isolator alignment) receive only a step.

Min

Unconstrained
Objective

Step Penalties

Gradual Penalties

T

+ ∑ steps

 + ∑ multipliers x (gi)
2

i

i

Figure 18  Penalty function approach used in this application; the shaded
area is infeasible.

Just like in gradient-based optimization, adjusting penalty multipliers (and steps)
is tricky. Too little penalty leads to infeasible designs, while too much makes the search
inefficient by restricting it to feasible regions. Unfortunately, because GAs are random
searches and necessitate large numbers of function evaluations, trial and error
adjustments are impractical. A study by Richardson et al.[19] indicates that penalties
should be as small as possible, but large enough to prevent frequent convergence to
infeasible solutions and that using harsh penalties leads to poor convergence and/or
premature convergence to a super-individual. However, that study uses proportional
selection (probability of selection based on objective function value); its conclusions do
not hold when using a ranking selection rule. In fact, it appears from limited
experimentation with this problem that the reliability of the search is best with harsh
penalties associated with a weak selection pressure (the selection pressure was set to 2,
see Section 6.2.3). Note again that because of the random character of GA’s and the
interaction between multiple parameters (probabilities of mutation and crossover,
population size and number of generations per search, penalty multipliers and steps, etc.),
statistically significant conclusions can be reached only through extensive (and
expensive) experimentation.

6.3 Rounding of Continuous Optimum

In this approach (Fig. 19), all design variables are temporarily viewed as
continuous and classical gradient-based techniques are used to solve the optimization
problem. The resulting optimal design is infeasible and its parameters must be “rounded”
to discrete values.
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AnalyseFEASIBLE ? OPTIMAL ?

Discrete Design(s)

Solve Optimization Problem in
continuous design space

x ∈ [1...6]   and   y ∈ [1...8]

“Round” to close discrete solution

Continuous Optimum

Figure 19  Using continuous approximation followed by rounding to
nearby discrete solution.

The appeal of this technique is the much smaller number of function evaluations
typically needed to achieve convergence with a gradient based technique than with a
random search method. However, the rounding operation can make the design infeasible
or suboptimal. Also, many different designs can be defined by rounding up or down the
various design variables. To increase the chances of optimality, all these “direct
neighbors” must be considered and analyzed. When the number of discrete design
variables is large, this may require a substantial number of additional function evaluations
(2n if n is the number of design variables) so that the computational advantage may be
lost. These points are further discussed in Section 7.2.

7. Optimization Results

7.1 Genetic Algorithm and Random Search

The GA in DAKOTA provides a number of options and adjustments. The
following choices were made for this application:

• population of 10 individuals (designs). The initial population is random. With 10
individuals, the probability of representation of any gene value (1 to 6, or 1 to 8) at any
gene location is close to 1, which should ensure good performance with a non-averaging
crossover

• probability of crossover: 0.80
• probability of mutation: 0.10. This gives a 60 to 80% probability for any

offspring to be affected by mutation.
• elitist strategy always clones the best individual of the current generation into

the next generation. This guarantees that the best found design is never lost in future
generations.

• number of generations : 15 (experiments with smaller numbers of generations
did not achieve sufficient reliability)

• moderate selection pressure: the probability of selection of the best individual is
twice that of the worst (i.e. selection pressure=2).
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Penalty multipliers and steps were adjusted somewhat arbitrarily. Limited trial and
error experimentation was performed and lead to the following values:

• corner constraints g1, g2, g3: step = 5.0.
• alignment constraint g4: step = 20.
• stability constraint g5: step = 2, multiplier = 20.
• compression constraints g6, g7, g8: step = 5, multiplier = 0.05.
• static deflection constraints g9, g10, g11: step = 5, multiplier = 200.
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Random Search GA Search

10 Runs - 105 Function evaluations each

T
[µin/sec/lb]

Figure 20  Comparison of genetic algorithm and random search results
using the same number of function evaluations (105). Designs shown are

the best found for each run.

The design space for this problem is relatively small: 6×8 locations for each of 3
isolators gives 483 ≅ 110,000. With 15 generations of 10 individuals, each search
evaluates up to 150 designs, or 0.14% of the design space. Note that because this GA
keeps track of previously analyzed designs, the actual number of function evaluations
averages around 105 per search (0.1%). To get an idea of the reliability of the search, a
series of 10 runs were performed and the results are compared to a series of 10 random
searches. The number of designs in the random search is set to 105 so the computational
expense is the same as in the GA. Typical results are shown in Fig. 20. The figure shows
only the best design found in each run of the GA or the random search. The random
searches generate some good designs and many mediocre ones. In contrast, all 10 designs
obtained from the GA represent significant improvements from the baseline case.
However, the GA occasionally "converges" to a relatively poor design (T=3.23 in Fig.
20). This implies that more reliable results can be obtained by running a small number of
short searches: if the probability that the best found design is "poor" is 0.1 for a one run,
then it is only 0.01 for the best of 2 runs, 0.001 for the best of 3, etc. Because GA’s are
most efficient in the initial phases of the search and further "convergence" is usually slow,
this approach is often preferable to running a single longer search[18].

It is interesting to note that the classical argument that a GA provides a choice
between several good designs in the final population does not hold in this application.
Instead, final populations typically contain only one or two feasible design(s). In fact, all
generations in the search are composed mostly of infeasible designs. This shows that the
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search is taking place primarily in infeasible regions of the design space. Under these
conditions, it is particularly crucial to allow the search to migrate through infeasible
regions. This may also explain why a weak selection pressure provides better results with
this problem.

21.22

0.30 0.34 0.41

0.41 0.47 0.49

0.59 0.59 0.67

Baseline

Figure 21  GA optimized designs and their transmissibilities at 50 Hz (in
Pin/sec/lb), compared to baseline configuration.

Several sets of 10 runs each were performed in the course of this study. Nine of
the best designs obtained form those runs are shown in Fig. 21 and compared to the
baseline design. The transmissibilities at 50 Hz are also listed in the figure. Clearly, all 9
optimized designs represent very significant improvements from the baseline case:
transmissibilities are reduced by factors 32 to 70 compared to baseline.

Note also that the 9 optimized designs do not have any apparent similarities
although they provide very similar performances. This indicates the existence of multiple
local optima for this problem.

Figure 22 shows frequency response functions (FRF’s) for all designs of Fig. 21.
They show that the GA is seeking out an anti-resonance condition in the vicinity of 50
Hz. The fact that the anti-resonances “miss” the 50 Hz target is due to the discrete isolator
locations. In fact, the continuous optimum of the next section places the antiresonance
almost exactly at 50Hz, achieving a transmissibility of 0.2 µin/sec/lb. Another important
observation is that there is significant broad-band improvement in the transmissibilities of
the optimized designs compared to the baseline design. That is, the improvement is not
confined only to the 50 Hz target frequency. This is an especially important observation
since it indicates that performance is not seriously degraded for off-nominal excitation
inputs and more sophisticated objective function formulations minimizing broad band
transmissibility are probably unnecessary.
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Figure 22  Transmissibility curves of optimized designs compared to
baseline configuration (model predictions).

7.2 Rounding of Continuous Optimum

DOT’s[20] modified method of feasible directions (accessible through DAKOTA)
was used to solve the constrained, non-linear continuous problem. A continuous solution
(+ in Fig. 23) was found at (2.22, 1.56, 2.49, 4.94, 4.29, 3.79) with a transmissibility
T=0.20 µin/sec/lb at 50 Hz. Rounding to the closest discrete solution (O in Fig. 23) leads
to (2,2,2,5,4,4), which is infeasible (violates the 4Hz stability limit). If we consider all
immediate neighbors of the continuous solution (all combinations of O and O in Fig. 23),
we find that out of the 64 designs, only 12 are feasible and the best of these (2,1,3,5,5,3)
gives T=3.67 µin/sec-lb. This transmissibility is 22 times higher than that of the best GA
solution (T=0.30) and only 6 times better than the baseline configuration (T=21.22).

Continuous optimum

Closest discrete design

Immediate neighbors

(2.22, 1.56, 2.49, 4.94, 4.29, 3.79) . . . . .

(2, 2, 2, 5, 4, 4) . . . . . . . . . . . . . . . . . . .

64 designs: - 52 infeasible

- 12 feasible . . . . . . . .

T = 0.20

infeasible

best  T = 3.67

Figure 23  Results from continuous optimization and rounding.
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Continuous approximation leads - for this problem - to many infeasible designs
and a few sub-optimal solutions. Although this particular application is particularly
difficult for continuous approximation (because of the low density of feasible designs and
the very coarse discrete grid), two general observations can be made:
• continuous solutions for constrained problems tend to make one or more constraint(s)

active. Rounding those solutions is likely to produce violations of the active
constraint(s).

• optimal regions in the continuous problem may not contain any discrete solution. The
discrete optimum may then be very different from the continuous one. This is
particularly true when the discrete grid is coarse compared to the shortest wavelengths
in the objective function response surface.

Discrete
optimum

Continuous
Optimum

closest
discrete

best neighbor

Objective

Design Variable

Constraint boundary

Figure 24  Rounding a continuous optimum to neighboring discrete
solutions.

Figure 24 illustrates these points for a one-dimensional constrained problem. The
curve represents the variation of the objective function in a continuous design space.
Dotted vertical lines show the discrete grid of the actual problem and the solid line gives
the constraint boundary. If appropriate starting points are used for the continuous
optimization, the global continuous optimum will be found at + (the global optimum in
the continuous sense). This design makes the constraint active. The closest discrete
solution (O) violates the constraint while the other direct neighbor solution is far from
optimal. The discrete optimum (shown by the arrow in the figure) does not “resemble” its
continuous counterpart.

7.3 A Look at the Design Space

To understand the behavior of the optimizers, it is interesting to take a look at the
topography of the design space. In particular, the relative sizes of feasible and infeasible
regions and the rates of variation of the objective function are critical factors that
influence the efficiency of optimization algorithms.

To answer the first question, a Monte Carlo simulation was performed in which
1000 random combinations of isolator locations were selected at random and their
objective function and constraints were calculated. The results show that only 12.7% of
the designs are feasible, indicating a heavily constrained problem. The mean objective
function value for the feasible designs is equal to T=21.1 µin/sec/lb. As mentioned
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earlier, this value is almost exactly equal to the transmissibility of the baseline
configuration which can therefore be considered representative (in other words, the
baseline design is not exceptionally poor). Also, the distribution of isolator locations
among the feasible designs does not depart significantly from uniform (except for the 4
corners which are never used). This indicates that “good” designs do not tend to use
particular locations on the grid. It is only the combination of 3 locations that determines a
design’s feasibility.
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Figure 25  Two-dimensional cut through the design space obtained by
moving one isolator in both directions; for clarity, the constrained

objective plot only shows step penalties.

The 6-dimensional design space of this problem cannot be visualized easily.
However, 2-dimensional cuts can be obtained by fixing the locations of 2 of the isolators
and moving the third one in the X and Y directions. The GA design (1,6,2,8,5,3) with
T=0.47 from Fig. 21 is used as a starting point. The locations of the two isolators near the
top right corner (1,6) and (2,8) are fixed while the third one is moved across the plane,
ignoring the grid. This generates the 2-dimensional cut (1,6,2,8,x,y with x,y∈ℜ ) in the
design space. Figure 25 shows both unconstrained and constrained (steps penalties only)
response surfaces. Note that —in the continuous sense— there is not a unique optimum
but rather a infinity of locations (the dotted curve in Fig. 26) for the third isolator that
achieve a small transmissibility (0.2) by designing an anti-resonance at the exact location
of the pickup point.
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Figure 26  Design space cross section showing unconstrained objective,
discrete grid, contour lines, constraint boundaries, feasible domain

(shaded), and feasible discrete designs with their transmissibilities; the +
shows the discrete optimum.

The same cut is represented in Fig. 26: here, contour lines of the unconstrained
objective function are plotted together with constraint boundaries. Discrete isolator
locations are shown with small circles. Note the small size of the feasible domain
(shaded). Only 5 discrete designs are contained in that area; their transmissibilities T at 50
Hz are listed in the figure.

Note also that the location (5,3) found by the GA for the 3rd isolator is the discrete
optimum (+) for the given locations of the other 2 isolators. It was found that this is the
case of almost all locations used in the designs of Fig. 21, which indicates that they
correspond to various local optima and confirms the strong multi-modality of this
problem.

The small size of the feasible regions (12.7% of design space) and the coarse
discrete grid create small feasible “pockets”, each containing few discrete solutions. This
explains the difficulties encountered in the GA searches. The search has to take place
almost entirely in the infeasible design space because the number of designs in each
“pocket” is too small to allow efficient exploitation by the GA. This also leads to mostly
infeasible populations so that each run provides only one or two feasible design(s).

Also, there is very strong coupling between design variables: it is only specific
combinations of 3 locations that enable the small transmissibilities of Fig. 21. In Fig. 26
for example, the locations of the 2 fixed isolators selected by the GA are such that there is
a feasible discrete location almost exactly on the anti-resonance line (dotted curve in the
figure).

8. Experimental Results

The baseline configuration and all 9 optimized designs of Fig. 21 were tested in
the laboratory. Because of the limited load capability of the shaker, the very large inertia
of the seismic base, and the effectiveness of the optimized isolation systems, residual
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velocities proved difficult to measure because of marginal signal to noise ratio and the
presence of acoustic disturbances. To “clean up” the velocity signal, about 200 samples
triggered on the 50Hz sinusoidal excitation signal were averaged in the time domain. The
results are shown in Fig. 27 and compared to analytical predictions. The figure also shows
predicted ranges of transmissibilities with ±5% scatter in the spring stiffnesses. Those
ranges were obtained from Monte Carlo simulations using uniform distributions of spring
stiffnesses with ±5% variations; the stiffnesses of the 3 spring isolators were varied
independently from each other.
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Figure 27  Experimental transmissibilities at 50 Hz of  baseline and
optimized designs, compared to analytical predictions.

The analytical-experimental agreement is qualitatively excellent: the dramatic
improvement in performance achieved through optimization as predicted by the analysis
is confirmed by the experiment. All 9 optimized designs perform between 7 and 46 times
better than the baseline configuration (predicted ratios were between 32 and 70).

9. Conclusions

9.1 Optimum Isolation System Design

Our results confirm that in cases where vibration isolation must be provided at
specific points/directions on a device and sufficient information is available about the
disturbances, very significant improvements in performance can be achieved by explicitly
optimizing the locations of the isolators. In the particular application, the performance of
the optimized designs was predicted between 32 to 70 times better than that of a baseline
configuration. Those improvements were also observed in the laboratory, with
performance ratios between 7 and 46. It was also shown that, even though the
optimization was formulated to “target” transmissibility at a single frequency, significant
broad-band improvement was obtained in the optimized designs compared to the baseline
configuration.
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9.2 Discrete Optimization

•  Applying constraints through penalty functions in a GA problem is a delicate
operation. A balance must be achieved between the desire to obtain a feasible final design
and the need to allow the search to cross infeasible regions of the design space.
Surprisingly little research has been devoted to this aspect. One reason is that, in research
GA’s, problem-specific repair operators are often introduced to enforce constraints. This
approach is more efficient but is highly application-specific and cannot be included in
general purpose codes like DAKOTA.

•  The combination of multi-modality, large number of constraints, and limited
design options (coarse discrete grid in this case) makes the problem difficult to handle,
even for a zero-order random search technique like the GA.

•  The classical argument that a GA provides multiple design alternatives in its
final population does not hold in heavily constrained discrete problems with small design
spaces. Instead, each run provides only one or two acceptable designs.

•  Multiple design options and improved reliability of the search can be obtained
by running a few short searches, rather than a single long search.

•  Continuous optimization followed by rounding to neighboring discrete solutions
does not generally lead to an optimal design. For problems with coarse discrete grids,
heavily constrained design space, and rapidly varying objective function, this approach
leads to few, relatively poor feasible designs.

These observations have uncovered the need for further research if discrete
optimization is to become a practical, easy to implement technique for use in real life
design problems. In particular, techniques for efficient implementation of multiple
constraints in genetic algorithm optimization need further exploration and development.
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