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Introduction

There are fundamental principles that the automotive bearing Application Engineer
uses to evaluate the forces (loads) that are imposed on bearings and how they
affect the operating life of a bearing in a mechanical device. Following are some of
the basic principles that are used.

The loads on bearings are either radial or thrust. The sketch at the top of Figure 1
shows that radial loads act perpendicular to the bearing axis of rotation and thrust
loads act parallel to the axis of rotation. In some applications there are two radial
loads acting 90 degrees apart, as shown on the second sketch of Figure 1. The
Pythagorean Theorem is then used to calculate the resultant radial load.

In most applications, there are two bearings supporting a rotating shaft in a piece of
mechanical equipment. The third sketch on Figure 1 shows an applied load straddle
mounted between two shaft support bearings. The radial loads on bearings | and 11
are calculated as follows:

L, =Load b/ (a+b) L, =Load a/ (ath)

L is the radial load on bearings | and Il in pounds. a and b are bearing locating
dimensions in inches shown on the third sketch of Figure 1. It can be seen that,
because the applied load is closer to bearing 11, it supports the greater portion of
the load. The fourth sketch on Figure 1 shows an overhung applied load acting on a
shaft supported by two bearings. Overhung loads put a heavy force on the adjacent
bearing. The following equations are used to calculate the radial load on bearings
[l and IV:
Ly =Load (d/c) L,y =Load (c+d)/c

It can be seen that the load on adjacent bearing IV is greater than the applied load
itself. The loads acting on a bearing (in pounds) and its speed of rotation
(revolutions per minute) are used to calculate bearing B10 life. Bearing B10 life
predicts how many hours of operation 90% of the bearings will endure. The
equation is as follows:

Lg1o = 3000(C/P)13 (500/S)

Lgio IS the bearing B10 life. C is the bearing capacity in pounds found in industry
catalogs. P is the equivalent radial load which takes into account both radial and
thrust loads and is also found in industry catalogs. S is the speed in revolutions per
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minute (rpm). Should a bearing operate under a number of different loads and
speeds, the following equation is used to calculate B10 life:

Lgio = 1/[(t1 /L1)+(t2 /L2)+(t3 /L5 )+etc.]

Lgio Is the bearing B10 life in hours. t is the time spent at each different life (L)
level. Bearing life calculations are necessary to determine if predicted values meet
actual design requirements. The following table gives approximate bearing life
levels for other survival rates should the application require something other than

B10 life:

% Survival B-Life % ofB10 Life

99 B-1 21
98 B-2 33
95 B-5 62
90 B-10 100
50 B-50 400
40 B-60 500

The information above will be used in the automotive topics that are discussed
later in this course.
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Automotive Front Wheel Bearings

Wheel bearings and associated equipment are classified as safety items in the
automotive industry because of the consequences involved if a failure occurs and a
wheel leaves the vehicle. Because of the seriousness of the situation, extensive
engineering development and testing is a never ending task in order to ensure that
these products perform without failure for their entire design life or, if a failure
should occur, passenger safety is not endangered.

Front wheel bearings on the traditional rear drive automotive vehicles are used in
closely mounted pairs with one bearing referred to as the inner (inboard) bearing
and the other, the outer (outboard) bearing. (See Figure 2.) Each bearing pair is
installed on a spindle located on each side of the vehicle. There are three things
that have to be known before the correct bearings can be chosen for this
application:

1) Bearing loads during straight ahead driving
2) Bearing loads during cornering
3) Spindle stress

For straight ahead driving each bearing pair supports a radial load equal to one-half
the vehicle front weight. In addition, for angular contact ball bearings (or tapered
roller bearings), the smaller outer bearing supports an induced thrust load produced
by the larger more heavily loaded inner bearing which, for a typical bearing pair,
equals .454 x (the radial load on the inner bearing minus the radial load on the
outer bearing). Using the information above and the information in the
introduction, the equations for the load on the inner and outer bearings are as
follows:

L| =.5W|: (C/B) Lo =.5W|: (A/B) LOT :227W|: (C-A)/B

L, is the inner bearing radial load in pounds. Lo is the outer bearing radial load. Lot
Is the outer bearing thrust load. We is the vehicle front weight. C, B, and A are
bearing locating dimensions in inches shown on Figure 2. The speed of the
bearings in revolutions per minute (rpm) = 168 x (miles per hour/tire radius in
inches). Now that loads and speeds are known, bearing life can be calculated for
straight ahead driving according to the information given in the introduction and
compared to design requirements.



When cornering, there are two factors that produce radial loads on the inner and
outer bearings. The first is a radial load on each bearing shown on Figure 3 as G,
and Go which equals the amount calculated above for straight ahead driving plus a
second increment due to a moment load created by centrifugal force CF acting on
the front center of gravity CG when the vehicle is in a turn. The second is a radial
load on each bearing shown on Figure 3 as S, and So created from a moment load
produced by the horizontal skid reaction S at the tire to pavement contact area. The
equations are as follows:

L, = G+S Lo = Go-So Lot =.454(L|-Lo)

L, is the radial load in pounds on the inner bearing. Lo is the radial load on the
outer bearing. Lot is the thrust load on the outer bearing. The equations for G,, Go,
S, and Sp are in Appendix A. Bearing loads during cornering can be very high
compared to bearing loads during straight ahead driving.

The spindles or shafts that the front wheel bearings mount on are relatively small,
highly stressed tapered components that support the entire front weight of the
vehicle. They are manufactured using quality steel and are machined to close
precision tolerances. The spindles are considered to be stressed to a maximum
when the vehicle is in a turn at such speed that the entire front weight is carried by
the outer wheel. The equation for spindle stress is as follows:

S=MC/l = M/.0982d = W (.6R-A)/.0982d

S is the spindle stress in pounds per square inch. M is the maximum bending
moment around the center of the inner bearing in inch-pounds. C is the distance in
inches from the center of the spindle to the outermost point which is the radius. | is
the spindle moment of inertia in inches to the fourth power. d is the diameter of the
spindle in inches. W is the vehicle front weight in pounds. W (.6R)) is a
clockwise moment around the center of the inner bearing produced by the skid
reaction .6Wg (shown on Figure 3 as S) times the tire radius R,. W (A) is a
counterclockwise moment produced by We (shown on Figure 3 as G) times A the
distance from the center of the wheel to the center of the inner bearing. The
maximum stress must be less than the allowable for the material that is to be used.
The spindle outer end must be large enough to prevent excessive bending. A safe
outer to inner diameter ratio is 0.63.
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Figure 3
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Automotive Rear Wheel Bearing

Before the bearing for the rear-drive automotive axle shaft can be selected, the
diameter of the shaft at the wheel bearing location must be determined. The axle
shafts are considered to be stressed to a maximum when a vehicle is traveling
around a curve at such a speed that the entire loaded vehicle rear weight Wk is
supported by the outer wheel. (See Figure 4.) The moment load acting on the
center of the rear wheel bearing D is calculated as follows:

M = (WrB)-(.6WrR))

M is the moment load at the center of the rear wheel bearing D in inch-pounds.
(WRB) is a counterclockwise moment produced by the loaded rear end weight Wk
times the distance (B) from the center of the wheel to the center of the bearing.
(.6WRrRy) is a clockwise moment load produced by the side skid reaction (.6Wg)
times the tire radius R,. The same equation is used for the bending stress as was
used for the front spindle as follows:

S=MC/l  or d=2.168(M/S)

S is the axle stress in pounds per square inch. M is the net bending moment as
calculated above in inch-pounds. C is the distance from the center of the axle to the
outermost point which is the radius. | is the axle moment of inertia in inches to the
fourth power. d is the diameter of the axle at the rear wheel bearing D center. The
equation can now be used to calculate the diameter of the shaft needed to produce a
given stress level which must be less than the allowable for the material that is to
be used. Once the diameter of the shaft has been calculated, it is standard practice
to increase it to the next standard size bearing inside diameter (bore). The loads on
the rear axle wheel bearing are due to the vertical rear end weight and the
horizontal tractive force on each wheel. The equations follow:

W =5Wgr(B+C)/B F =.05Wg(B+C)/B
W is a vertical radial load from the loaded vehicle rear weight in pounds. B and C
are bearing locating dimensions in inches shown on Figure 4. F is horizontal radial

load from the rear wheel tractive force in pounds which equals (.1x.5Wg) or
(.05WR). The total radial load on the rear wheel bearing equals:

L = (W2+ FZ) 172
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The bearing speed = 168 x (miles per hour) / (tire radius in inches). Now that load,
speed, and bore are known, the correct bearing can be selected.

A new concept in automotive rear wheel bearings is the "drawn cup” roller bearing.
Roller bearings normally have machined, hardened, and ground inner and outer
rings. In an automotive rear bearing application, the bearing inner ring is a press fit
on the axle and the outer ring is a loose push fit in the tube that surrounds the axle.
As a cost saving measure, the drawn cup bearing outer ring is made on a press out
of surfaced-hardened sheet steel instead of being machined, hardened, and ground.
Figure 5 shows the steps in forming the outer ring and installing the rollers. The
drawn cup bearing is a press fit in the tube and having no inner ring. It is run
directly on the rear axle which is a hardened and ground part. When introduced
into production, the drawn cup bearing has a significant cost savings over standard
roller bearings when you apply the cost savings of a pair of bearings over the
millions of cars manufactured every year. The drawn cup bearing also replaced a
standard design bearing in automotive alternators resulting in further cost savings.
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Figure 4

Automotive Rear Axle Shaft and Bearing
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Figure 5

Drawn Cup Roller Bearing

Sheet metal blank
on top of die.

Cup drawn into

Press die with press.

Die

Top trimmed.
Hole put in bottom.

Rollers inserted.

Top folded down.

13



Integral Spindle Wheel Bearings

One of the more recent automotive wheel bearing advances has been the design,
development, and mass production of the "Integral Spindle Wheel Bearing" by one
of the major U.S. car companies. It was put into production at the same time that
the auto companies started manufacturing light-weight front wheel drive vehicles.
The new design combines the spindle, hub, and bearings into one lubricated-for-
life and sealed package that bodes well for the new concept of "modular
assembly", as it is a one piece unit that bolts to the vehicle and the vehicle wheels
bolt to it. The unit is assembled, adjusted, lubricated, sealed, and tested on
automated equipment at the bearing manufacturing plant. Prior to that time, wheel
bearings and associated parts were individually hand assembled at the automobile
manufacturing plants. Figure 6 shows a drawing of an integral spindle drive wheel
assembly and Figure 7 shows a drawing of an integral spindle non-drive wheel
assembly. The drive wheel assembly has an internal spline into which the drive
shaft male spline is inserted. Both designs incorporate integral speed sensing
devices for anti-lock braking systems (ABS).

Figure 8 shows a drawing of the front wheel bearing assembly that was used when
rear wheel drive vehicles were the prime manufacturing mode in the U.S. Separate
tapered roller bearings were assembled onto a spindle and into a hub, lubricated,
sealed, and adjusted by hand. Figure 9 shows a drawing of a double row tapered
roller bearing design that was used on low production front drive vehicles before
the arrival of the new, light-weight front drive vehicles.

It can be seen when comparing the two designs that cost savings are realized with
the new integral spindle designs because ball bearing pathways are ground directly
into hubs and onto spindles eliminating pieces and simplifying assembly. Also, in
the previous design, tapered bearings were hand adjusted in the auto assembly
plant while, in the new design, ball bearings are precisely adjusted on automated
equipment at the bearing plant eliminating human error which is an important
consideration for safety related items.

One of the biggest reasons for using balls as the rolling element in the new design
Is safety. Numerous tests were run comparing balls to tapered rollers in wheel
bearings in vehicles. It was found when ball bearings fail, they make such a loud
noise that the vehicle is stopped and is not driven further. When tapered roller
bearings fail, the noise is not nearly as loud and the vehicle is continued to be
driven. In some instances, if the vehicle is continued to be driven for a long time,
catastrophic failure occurs. The resulting heat generation is so great that parts melt,
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wheels leave the vehicle, and there is a possibility that the vehicle will overturn.

Ordinarily, tapered roller bearings have more load carrying capacity than similar
sized ball bearings. For that reason, in the new integral spindle designs, extra-large
balls were incorporated so that the resulting product would match the load carrying
capacity of tapered roller bearings. Integral wheel spindle bearings have been
designed and produced with load carrying capacities for most automotive products
being manufactured today. Past and present performance has shown that the new
design will continue to be used for the foreseeable future.
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Figure 6

Integral Spindle Drive Wheel Assembly




Figure 7

Integral Spindle Non-Drive Wheel Assembly




Figure 8

Front Non-Drive Wheel Bearing Assembly

Non-Drive Wheel
Tapered Bearing Arrangement
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Figure 9

Front Drive Wheel Bearing Assembly

Drive Wheel Tapered Bearing Arrangement
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Integral Shaft Waterpump Bearings

The integral shaft waterpump bearing was invented by an American bearing
company in 1935 and has been in continuous use in automotive vehicles ever
since. At the top of Figure 10 is a sketch of an integral shaft bearing in a traditional
waterpump. The inner pathways are ground directly onto a hardened steel shaft
permitting the use of a larger shaft for increased strength and durability. The two
ball rows are spread apart providing increased stability and resistance to moment
loading. A variety of seals can be used at each end to exclude contaminants and
contain a large amount of lubricant that is deposited between the spread-apart ball
rows. In the automotive application, as seen at the top of Figure 10, the engine
cooling fan is a press fit on the bearing front shaft extension and the waterpump
impeller is a press fit on the rear shaft extension.

At the bottom of Figure 10 is a sketch of a later version automotive waterpump
with a stamped housing and a stepped shaft waterpump bearing. This design
features not only ground-on shaft inner pathways but outer pathways that are
ground on the housing of the waterpump for additional cost savings. This design
has proven to be lighter and less costly than cast designs previously used. It is
incorporated on new light-weight front drive vehicles with transverse mounted
engines.
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Figure 10

Automotive Waterpumps
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Automotive Differential Bearings

The automotive differential is located in the front transaxle in front drive
automobiles and in the rear axle of rear drive vehicles. The differential is a
necessity in the drive line of vehicles so that when cornering, each drive wheel can
rotate at a different speed since the outer wheel travels further than the inner wheel.
The differential was patented in 1885 by German engineer Karl Benz and hasn't
had any significant changes since. Figure 11 has a sketch of a differential which is
located in the center section of a drive axle. The smaller pinion gear drives the
larger ring gear which drives the shaft on which the two sets of differential bevel
gears are mounted. The driven members of the two differential gearsets are
connected to the axles that drive the vehicle wheels. This arrangement allows
power to be supplied to both wheels even though one wheel may be rotating faster
than the other.

One type of gearset used in differential pinion and ring gears is the spiral bevel
gear which is shown on Figure 12. It can be seen that the input force component E
Is divided into three vectors: P is the tangential driving force, Tp is the pinion gear
thrust, and T is the ring gear thrust. The radial loads on bearing | due to the above
three forces are as follows:

P =P (a/b) Ta=Tg (a/b) U=Tp (rl /b)
Pi, Tai, and U, shown on Figure 12 are in pounds and are calculated in Appendix
A. a and b are bearing locating dimensions in inches shown on Figure 12. r; is the
mean pinion pitch radius in inches and is calculated in Appendix A. The total
radial load on bearing I is as follows:

I—I - [P|2+ (TGI'UI )2 ]1/2

There is also a thrust load on bearing | equal to Ts. The radial loads on bearing Il
are as follows:

P, =P (a+b)/b Ten=Tg (a+b)/b Uy =Tp (rl /b)
The total radial load on bearing Il is as follows:

Li = [Pu?+ (Ton -Uy )2 142
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The loads on bearings Il and IV are calculated in a similar manner except
substitute bearing locating dimensions ¢ and d for a and b and mean pinion pitch
radius with mean gear pitch radius which is calculated in Appendix A. The rpm of
the ring gear = rpm of the pinion x (number of teeth in pinion) / number of teeth in
gear). Now that loads and speeds are determined, the bearing life can be calculated.
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Figure 11

Drive Axle Differential

Drive Axle Bearing and Gear Arrangement
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Figure 12

Spiral Bevel Gears
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Automotive Transmission Bearings

Planetary gears are very versatile design tools that are used in automotive
transmissions. Figure 13 has the sun gear driving the planet carrier with the ring
gear (outer) held stationary. In this mode, the output is a reduction and is used in
automatic transmissions as one of the intermediate gears. When the planet carrier is
used to drive the ring gear with the sun gear stationary, the output is an increase in
speed and is used in vehicles as an overdrive gear. When the sun gear is used to
drive the ring gear with the planet carrier stationary, the output is in the opposite
direction as the input and is used in vehicles for reverse gear. Compound planetary
gearsets with one ring gear, two sun gears, and two sets of planets, are used to
provide the complete number of gears needed to propel automotive vehicles.

In a simple planetary gearset as shown in Figure 13, all the tangential and
separating forces due to the input torque counteract each other resulting in no loads
on bearings I, Il, 1V, and V. However, bearing Il will be loaded because of the
torque transmitted to the three planet gears through their diametrically opposed
meshes. The load on each planet bearing is as follows:

L =2P/3
where P is the tangential driving force calculated as follows:
P = HP 63025/Nr

P is the tangential driving force in pounds. HP is the input horsepower. N is the
speed in revolutions per minute (rpm) of the driving sun gear. r is the sun gear
pitch radius in inches which equals one-half the number of teeth divided by the
diametral pitch. The rpm of each planet bearing around its own center is calculated
as follows:

N = EN/2d [1- (d/E)?]

E is the diameter of the circle drawn through the center of the three planets in
inches. N is the rpm of the sun gear. d is the pitch diameter of the planet gear in
inches. The pitch diameter equals the number of teeth divided by the diametral
pitch. Now that the load and speed of each planet bearing has been determined,
service life can be calculated and compared to design requirements.
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Figure 13

Planetary Gears
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Appendix A

A) Equations for front wheel bearing loads when a vehicle is turning an average
corner with a 140-foot radius at 25 miles per hour are as follows:

CF=.5Wr V2/rg=Wg(25x5280/3600)/(140x32.2)=.298W

CF is the centrifugal force acting on the vehicle front center of gravity (CG) in
pounds. WE is the vehicle front weight. V is the vehicle velocity in feet per second.
r is the turning radius in feet. g is the acceleration due to gravity in feet per second
per second. The centrifugal force radial load increment is as follows:

F=.298Wgxh/E
WE is the vehicle front weight. h is the distance from the front center of gravity to
the ground. E is the distance from front wheel to front wheel. The total front
vertical ground reaction G, G inner, and G outer are as follows:
G=5Wr+(.298Wxh/E) G=G(C/B) Go=GA/B)

The horizontal skid reaction S, S inner, and S outer are as follows:

S=G/W x.298W=.298G S, = Sp =S(R/B)
B) Spiral bevel gear loads:
P=Q/r1 Tp=P(tan a sin b/cos y)+(tany cos b) Tg=P(tan a cos b/cos y)-(tan y sin b)
Q is the input torque in inch-pounds. r; is the mean pinion pitch radius in inches
which equals Y2(pinion pitch diameter — tooth face x sin b). b = tan* (number of
teeth in pinion / number of teeth in gear). a is the tooth pressure angle. y is the
spiral angle. For gear shaft bearing loads, bearing locating dimensions ¢ and d

replace a and b and r, replaces r;. r, equals r; X (number of teeth in gear / number
of teeth in pinion).
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