Programmable Logic Controllers
Fundamentals

Course No: E01-008
Credit; 1 PDH

Tracy Adams, P.E.

CER

engineering»com

Continuing Education and Development, Inc.
22 Stonewall Court
Woodcliff Lake, NJ 07677

P: (877) 322-5800
info@cedengineering.com

Programmable Logical Controllers Fundamentals

Programmable Logic Controllers (PLC) impacted automation the way the Internal
Combustion Engine impacted horse drawn wagons. A programmable logic controller is an
electronic system that receives input signals, analyzes them according to a user-generated
program commonly known as a LADDER diagram. and produces output signals for process
control.

Prior to PLC’s controls were done via hardwired logic. This consisted of electrical or
pneumatic relays, drum sequencers and cam timers. If a manufacturer needed to change a
production line, it meant taking the line down to change or relocate controllers, rewire all the
control signals, and add new instruments or relays if new functions were required. This was
a very labor intensive process.

When digital computers were developed, they were added to the manufacturing process but
they required special environments and very costly programmers. In 1968 GM put out a
request for proposal for the electronic replacement of hardwired relay control systems. The
winner was Bedford and Associates and the first PLC was the result. Bedford and Associates
started a new company, MODICON, to manufacture PLCs. MODICON stands for MOdular
DIgital CONtrollers. MODICON is still manufacturing PLC’s today.

A PLC is a programmable digital system such as a personal computer or PC. Of course, there
are differences but there are many similarities.

. Each PLC contains a central processing unit or CPU, which is a single chip such as a
Pentium or an 80486 etc.

. Each PLC contains a pre-written program for determining the systems behavior known
as a BIOS in the PC and as FIRMWARE in the PLC.

. Each PLC contains a certain amount of RAM or random access memory for the storage
of data and program instructions.

. Each PLC contains some sort of intelligent I/O hardware, which supports the reading
and writing of data.

. Many PLC's contain a Boolean co-processor to perform logic functions whereas the
PC may have a math co-processor to perform mathematical calculations.

. Each PLC contains methods of communicating with the outside world such as
specialized modules in keyboards, monitors, serial ports and mice in the PC.

. Each has a bus that allows the addition of devices with special behavior. These devices

© Tracy A. Adams 2014

must adhere to some pre-determined scheme in order to be known to the system. An
example in the PLC would be the addition of a digital input module in the back plane
or rack. In the PC perhaps would be the addition of a modem in an ISA slot for
connection to the Internet etc. Some PLC's even support the Plug and Play concept
for many of their I/O modules.

. Each PLC is capable of executing or running user programs or algorithms that
manipulate the system hardware and or behavior in some manner.

A CPU can be thought of as a software machine. It has no moving parts; however, it can
perform the tasks it was designed for. A language was created along with the CPU that allows
a user to manipulate it. This is the lowest level of programming and is known as MACHINE
CODE programming or ASSEMBLY LANGUAGE.

In order for a CPU to function, it needs other specialized chips around it to do certain tasks.
These chips all make up a system that requires a set of procedures to function. A BIOS or
Basic Input Output System is such a set. A user needs an easy way to manipulate this I/O
system. DOS and Windows are examples of an OPERATING SYSTEM with a user interface.
DOS uses the command line (C:\) with built-in functions such as "DIR" and Windows uses
the GUI or Graphical User Interface.

A PLC already knows to update 1/O values, communicate with others of its kind, and execute
the user’s ladder diagram. Its manufacturer created an I/O operating system or FIRMWARE
to make it do so.

The user creates a ladder that directs the PLC on what to do with the data and 1/0O
values and whento do it. The manufacturer of the PLC has created several tools to do
this such as the programming software that runs on a computer and possibly a hand held
programmer that plugs directly into the PLC.

The ladder appears as an electrical control schematic with typical parallel power rails, one
hot and one return with interconnecting links called RUNGS. These rungs contain items
such as COILS, CONTACTS, TIMERS and COUNTERS and use a concept called POWER
FLOW.

This simplified view may cause a false impression of what is actually going on inside the
PLC and what the ladder really is.

Let’s look into the PLC's CPU or, more to the point, any DIGITAL or BINARY device. Only
two logical states or BIT VALUES exist. These are ((ON) (1) (TRUE) (HIGH) (+XVDC))
and ((OFF) (0) (FALSE) (LOW) (0VDC)). Everything is represented using 1's & 0's because
that's all the CPU can use.

In programming binary systems, the idea of Boolean logic is applied. Two bits are
compared with a resulting single bit result.

© Tracy A. Adams 2014

The Boolean functions:
- AND The resulting bit is a 1 only if BOTH compared bits are 1.

IAND 1 =1
1 ANDO0=0
0ANDO=0

- OR The resulting bit is a 1 if ANY compared bitis 1
IOR1=1
I1OR0=1
OOR0=0

EXCLUSIVE OR The resulting bit is a 1 if ONE OR the other compared bit is 1,
BUT NOT BOTH
I1XOR1=0
1 XOR0=1
0XORO0=0

« NOT Acts on a single bit as follows
NOT1=0
NOTO0=1

Think about a control systems operating ALGORITHM:

IF the motor start pushbutton is pressed OR the motor is running AND the motor
stop pushbutton is NOT pressed THEN start the motor ELSE stop the motor. (We'll
analyze this later).

These Boolean functions are so basic and important that individual chips can be obtained
that contain nothing but AND, OR, XOR and NOT gates. These were some of the first
IC's available. CPU'sand other complex logic circuits are made up of these basic tools.

A PLC deals with a switch wired to its input card or a relay wired to an output card as a
bit.

These bit values are stored in an IMAGE TABLE. There is an INPUT and an OUTPUT
image table as well as others. Think of each location in these tables as a CUBBYHOLE.
If the input switch is closed, the input cubbyhole contains a 1 if open a 0. If the output
cubbyhole contains a 1 then the output relay is on; if 0 it's off.

© Tracy A. Adams 2014

BISITAL INPUT

START
PUSHBUTTON MODULE
A
__...-.-. ._
STOP B THE PLC's 1/0 SYSTEM TAKES
PUSHEUTTON CARE OF COPYIMG ALL INPUT
e o°¢ "¢y, MODULE BITS INTO THE
vy INFUT IMAGE TABLE
.‘
.I
..
INPUT IMAGE
]
“I" TABLE
. A B C D E
4
OUTPUT IMAGE INPUTMODULE (O |0 |0 | 0| O
"O"TABLE ., . p ¢ IMPUTMOBULE |0 |0 | oo o
OUTPUTMODULE |0 |0 o oo INPUT MODULE |0 [0 | n
OUTPUTMODULE (o |ofo oo \
L]
*
OUTPUTMODULE |0 | o | ., AIBBYHOLES
4‘..
-
THE PLE's I/O SYSTEM '-‘*
TAKES CARE OF COPYIMNG .,
THE OUTPUT IMAGE + DIGITAL OUTPUT
-
TABLE BITS TO ALL *, MODULE MOTOR
OUTPUT MODULES . A O

. B

Here's an example ALGORITHM. Referencing the previous diagram, IF the motor start
pushbutton is pressed OR the motor is running AND the motor stop pushbutton is NOT
pressed THEN start the motor ELSE stop the motor.

Get MOT the value in

INPUT cubbyhole € then Place the resulting bit value

et the kit value in

TMPUT cubbyhale A apply AND logic. in QUTPUT cubbyhole A
."_3___..---------..,__ - "'=""'-~\.__~ ‘__.-"':"'x
. . IA "\\ ._..-' IC \'__ __.'.' GA)
{ MOTOR START ' / MOTOR sTOP | moTor
1 It '" -:, i Il/r-"-s\l-
. - . | '_/r/;'
OA ||
/ motor | DT o
A Find the resulting bit
. ,-/' ! value applying OR logic

Mote:

The references used IA,
IB efc. are for example
and don't represent any
real PLC products.

Get the bit value in
COUTPUT cubbyhole A

© Tracy A. Adams 2014

Above is a display you might see using programming software for a PLC. If you were to
view the program using a hand held device you might see the following:

STR IA store input image table location A

OR OA OR with output image table location A

AND NOT IC AND with NOT input image table location C
OUTOA placeresult in output image table location A
END end of listing

A program will probably contain more than one rung. The CPU SCANS EACH RUNG
SEPARATELY TOP TO BOTTOM, in other words it does any OR logic.
RIGHT doing any AND logic.

Then LEFT to

Remember that the CPU has firmware that controls it. It performs a preset sequence of events

over and over. You can depend on this sequence and become familiar with it.

Here is a typical SCAN sequence:

DO CHORES: (COMMUNICATE WITH WORLD IF REQUIRED)
(CALCULATE CHECK SUM AND COMPARE)
(RESET WATCH DOG TIMER (200 msecs typically))

A 4

UPDATE INPUTS: (GET ALL INPUT VALUES FROM ALL INPUT
MODULES KNOWN ABOUT AND PLACE IN
PROPER INPUT CUBBYHOLES)

DO LOGIC: (EXECUTE THE USERS LADDER DIAGRAM OR
PROGRAM TOP TO BOTTOM LEFT TO RIGHT FOR
EACH RUNG)

L 4

UPDATE OUTPUTS: (MOVE OUTPUT CUBBYHOLES TO ALL
OUTPUT MODULES KNOWN ABOUT)

© Tracy A. Adams 2014

| ONE
SCAN

Now let’s change the motor stop pushbutton from normally open "NO" to normally closed
"NC" (which by the way is the proper application for safety) and see how the logic changes:

START LISITAL IMPUT

PUSHBUTTON | MODULE
- ®
STOP THE PLC's I/0 SYSTEM TAKES
PUSHEUTTOM . CARE OF {EGWIW ALLTNF[':UT
*, MODULE BITS INTO THE
¢le "+, INPUT TMAGE TABLE
-
‘*'
.“
*
INPUT IMAGE
"I" TABLE
L]
e, - A B ¢ D EI
OUTPUT IMAGE IMPUTMODULE (O |0 |1 |o o
W
O"TABLE ., ., . , ¢ INPUTMODULE [0 |0 oo o
OUTPUTMOBULE (o |0 |0 |0 |0 IMPUT MODULE |LO | O [n
OUTPUTMODULE |0 |0 oo |0 \
-
L]
OUTPUTMODULE |0 |0 | n ., AUBEYHOLES
"*‘
"
THE PLCS T/0 SYSTEM %,
TAKES CARE OF COPYING %,
THE OUTPUT IMAGE *DIGITAL OUTPUT MOTOR
TABLE BITS TO ALL *s, MODULE
OUTPUT MODULES Q A O

'B
OE

Now the algorithm changes to:

IF the motor start pushbutton is pressed OR the motor is running AND the motor stop
pushbutton is NOT pressed THEN start the motor ELSE stop the motor.

© Tracy A. Adams 2014

Get the value in INPUT

Get the bit value in cubbyhole C then apply Place the resulting bit value
INPUT cubbyhole A AND logic. in QUTPUT cubbyhele A
T IA ."‘"‘-‘__\ -’,-' = IC o . .;..- GA
/ MOTOR START /' MOTOR STOP ! MOTOR
\ i I_-'H\.__ | ! 1 ﬁ i
. -.__/ ::' '! . | . ;) U ,
MOTOR -
Find the resulting bit
. value applying OR logic
P

Ge.fr the bit value in Mote:

OUTPUT cubbyhole A The references used IA,
IB etc. are for example
and don't represent any
real PLC products.

Notice that the type of instruction used in reference to MOTOR STOP "IC" depends on the
way you want the logic interpreted and the type of switch (NO, NC) actually used.

What we have been using within these logic (LADDER) diagrams is known as
INSTRUCTIONS and REFERENCES:

Thiz is a T e This iz usually a
REFERENCE . IC .~ NICKNAME

This is an .~ :
INSTRUCTION

NICKNAMES which are supported in most but not all brands of PLC's are user created ID's

for a cubbyhole. When the program is being created and a reference to IC is needed you could
instead type MOTOR STOP.

The INSTRUCTION is what action the PLC is to perform. Don't forget that "LINES" known
usually as SHUNTS (VERTICAL and HORIZONTAL) are instructions also:

Bits are all that a CPU can manipulate. But there must be some way of representing things
other than discrete items. What if the PLC must know how many of something to make? Bits
are grouped into WORDS to represent VALUES. These words are usually 16 bits in length.

© Tracy A. Adams 2014

The BINARY (TWO SYMBOLS) numbering system is used to put values into bit patterns
for words. Remember our only symbols are 0 & 1. Another way of referring to this is BASE2.

We use a system known as DECIMAL (ten symbols) every day. Our symbols are
0123456789. This is a BASE10 system. If you are counting and get to a value of 9 you are
out of symbols and start over with 10. We call this TEN but actually it's ONE ZERO base10.
We would say TWENTY-FIVE for 25 but again this is really TWO FIVE basel0. This
probably seems a little simplistic but it's the basis for what follows.

If you were counting items, before any count you have [0 base10] or [0 base2]. After the first
count you have [1 basel0] and [1 base2]. After the second count you have [2 base10] and
[10 base2]. After ten counts you have [10 base10] and [1010 base2]. So knowing the base is
important when a looking at a number.

What does [10 base10] mean? The 1 indicates that all of the symbols have been used once,
and the 0 indicates that no additional symbols were used. And [99 base10] means that all of
the symbols were used 9 times and 9 additional symbols have been used. If an additional
count is added then [100 base10] is the new number. Again this means that all ten symbols
have been used ten times or ONE TIMES ONE HUNDRED PLUS ZERO TIMES TEN PLUS
ZERO TIMES ONE = ONE HUNDRED.

Applying this principle to base2 you will see that [10 base2] means that all of the symbols
were used once and no additional symbols were used. So if you want to convert this to our
basel0 system you would say ONE TIMES TWO PLUS ZERO TIMES ONE = TWO or [2
basel0]. Also [100 base2] means that all of the symbols were used twice with no additional
symbols. So ONE TIMES FOUR PLUS ZERO TIMES TWO PLUS ZERO TIMES ONE =
FOUR [4 basel0].

Each place to the left holds a value equal to the previous position times the base of the system:

Base10 (decimal): | 10000 | 1000 | 100 | 10 |1 |

base2 (binary): [16 | 8 | 4 | 2 |1]

|

base8 (octal): | 4006 | 512 | 64 | 8 | 1|

Notice that the value accumulates from right to left and not from left to right. We say that the
least significant symbol or bit (LSB) is on the right and the most significant (MSB) is on the
left. Notice also that the number of places for symbols determines the maximum count that
can be manipulated and or displayed.

There is another form of bit pattern that is used for value input and display that needs to be
understood. This system is known as BINARY CODED DECIMAL or BCD. Each a word

© Tracy A. Adams 2014

contains 16 bits. A BYTE contains 8 bits and is half a word, and a NIBBLE contains 4 bits
and is one quarter of a word.

WORD
1

| :
l|1|1|111][1Imlilllllll;lllllllllllllJ

I
BYTE NIBBLE
IOTE: BIT

|

A word is made up of 4 nibbles. If you analyze any nibble (4 bits) you will see that the
maximum value that it can represent is 15 base10. That is:

(1 X8) +(1 X4)+(1X2)+1=15. (1111 base2)

Before Human Machine Interfaces (HMI) were around, BCD thumbwheels and displays were
commonly used for value input and display in control systems.

A single thumbwheel has one digit that can display 0 to 9 and controls 4 wires in a binary
format. The wires will indicate from 0000 base2 to 1001 base2. Four thumbwheels side by
side indicate from 0000 to 9999 controlling 16 wires as four separate groups. So 9876
displayed is sent as 1001 1000 0111 0110.

The thumbwheels were usually wired to a 16 point digital input card and the 16 input
cubbyholes are read as a word. But note:

9999 BCD =1001 1001 1001 1001 base2
And
9999 base10=00100111 0000 1111 base2

Math in a PLC is performed using the base10 values of words. Most PLC's include a function
to convert BCD to base10 or vice versa. This shows the importance of keeping track of where
data comes from and what type it is.

One final format extends the idea of BCD to include all possible 4-bit values 0 to 15. Words
are not always used as numeric values in programming. Many times the bit pattern in a word
is what is being used. It would be difficult to enter a 16 bit pattern if you always had to
convert it into a basel0 value. So the HEXADECIMAL numbering system is used. In this
format 0 to 9 basel10 [0000 to 1001 base2] are as in BCD; however, 10 to 15 [1010 to 1111
base2] are indicated using the letters A through E. In other words the bit pattern 1111 1100
1010 0011 base2 would be FCA3 HEX. This format only requires using these 16 symbols

© Tracy A. Adams 2014

and bit patterns. Thumbwheels and displays are available that use the HEX format.

Here is an example of using a bit pattern in programming. There are two BCD thumbwheels.
The thumbwheel can send binary values from 00 to 99 using eight wires connected to the first
eight points on a PLC's 16 point input module.

To get the BCD value into a usable format, the following algorithm might be used:
Thumbwheel indicates 77 (0111 0111)

Move the 16 input bits into WORDI: 0000 0000 0111 0111
Convert WORD1 BCD to base2: 0000 0000 0100 1101
Use WORDI as gallonsto pump: 77 basel0

Up to now "word" has been used to represent a group of bits taken together. The proper term
is REGISTER. As in a word a single register is assumed to be 16 bits wide. Registers are
contained in a table just like bit data with the difference being that the each uses 16
cubbyholes.

REGISTER TABLE

reezsTER 1 |1 |11l alalafalalalalafa]1]1]
REGISTER 2 |1 |1 |11 fa|a|afafa]a]afa]a]1]1]1
REGISTER 3 |1 |1fa1 |1 fafaa|afa]1|af1]2]1]1]1
REGISTER.. |1 |1 |1 /1|1 |1 |11 [1|1|a|1f1/1][1]1

Most PLC's perform math using INTEGERS or WHOLE numbers such as 12, -3, 2124 etc.
There are no fractional or decimal parts and the numbers can be SIGNED negative or positive.
We already know that a register contains sixteen bits and if all bits were 1 the basel0 value
would be 65535. The PLC uses the most significant bit (bit 16) to indicate the sign. If
the bit value is 1 the number is considered to be negative. Because only fifteen bits are
left to indicate value, the range of 16 bit integers is limited to +32767 to -32768. Usually
two registers can be used together then the range is +2147483647 to -2147483648. This
is called DOUBLE INTEGER.

Negative numbers are stored in TWOS COMPLEMENT NOTATION. To find the twos
complement of a bit pattern, you first NOT all of the bits then add 1. The twos
complement of 0000 0000 0000 0001 is 1111 1111 1111 1111. This means that 1000
0000 0000 0000 base2 is actually -32768 baselO, and 1111 1111 1111 1111 base2 is
actually -1 basel0. See the number line below for an example.

© Tracy A. Adams 2014

-32768 N 0. 1...... 32767
l 0000 0000 0000 0000 l
1111 1111 1111 1111 0000 0000 0000 0001
1000 0000 0000 0000 0111 1111 1111 1111

Real or floating point numbers commonly known as FLOATS use a different encoding
scheme altogether. A float is a number that contains a fractional part such as 2.789623.
Looking at 32 bits that were encoded to indicate a single precision float, you would only
see 1's and 0's.

To show numbers in the basel0 system we just extend our positional notation. 123.45 is
the same thing as saying:

1 X100 +2 X10+3 X1 +4 X 1/10 +5X 1/100
An example in the base2 system, 1010.10 would indicate:
1 X8+0 X4 +1X2+0X1+1X12+0X"%

Real numbers are encoded in 32 bit SINGLE PRECISION as follows:

EXPONENT MANTISSA

* There are different formats for controlling the

SIGN encoding and decoding of real numbers. A common
1 = NEGATIVE one is described in IEEE-754. In this format the
0 = POSITIVE exponent contains 8 bits and the mantissa 23.

Because there are different formats, let’s create an imaginary 9 bit system to see how one
might work. Our system uses one sign bit, four exponent bits and 4 mantissa bits. The
mantissa will always be normalized to contain one digit to the left of the decimal point. The
exponent is 4 bit and the MSB indicates the sign.

Some examples follow:

© Tracy A. Adams 2014

0| 0000 | 1100

1.100 base2 X1 =1+ 1/2 = 1.5 basel0

1.101 base2 X 27 = 11010000 base2
128 + 64 + 16
208 baselO

0| 0111 | 1101

.0000000101 base2
1/256 + 1/1024
.0048828125 basel0

Things to note are that the mantissa and exponent are contained in a fixed number of bits
so the range of values as well as the precision is limited. Floating points come in 32 bit
SINGLE PRECISION and 64 bit DOUBLE PRECISION. As with all other data types, the
program creator is responsible for proper usage.

1.01 base2 X 28

0| 1000 | 1010

]

Data registers are used for analog values. A PLC can usually handle any of the standard
industrial formats for instrumentation signals. These include 0 to 10 VDC, -10 to +10 VDC,
1to 5 VDC, 4 to 20 ma and -20 to +20 ma. In order to handle these analog values specialized
modules or cards are used.

An analog input module contains an ANALOG to DIGITAL CONVERTER(s) or ADC
which converts lets says 4 to 20 ma into a bit pattern. An analog output card contains a
DIGITAL to ANALOG CONVERTER(s) DAC which does exactly the opposite.

A standard data register is sixteen bits wide. Converter circuits are characterized by how
many bits they can deal with. A typical converter would be 12 BIT. There are 14, 16 and
others available but the following discussion is on 12 bit circuits. In base2 12 bits give a
numeric range of 0 base 10 to 4095 base10. This is known as the RESOLUTION capability
of the module.

An analog input card is serviced by the CPU just like digital inputs in a manner that it has
certain pre-configured cubbyholes where its values are copied. The difference being is
that words are used instead of bits. There are two general formats that an analog card uses
to provide these values to the CPU.

In the first mode, data is provided channel by channel and is copied cubbyhole word by
cubbyhole word. The CPU stops by the analog card and gets all 8 words before moving
on:

© Tracy A. Adams 2014

ANALOG INPUT

MODULE
TRANSMITTER
A=12 ma
THE PLC's I/O SYSTEM TAKES
CARE OF COPYING ALL
ANALOG INPUT VALUES INTO
TRANSMITTER THE AT TMAGE TABLE
C=20ma
‘4 AT TABLE
CHANNELA |0|0|0|0|1/0|0|0|0O0|0O|0O|0|0|0]|0]|O0
CHANNEL B 0/0/0|0|O|O|/0O|0O|0O|0 O|0O0|Of0O0|0]O
CHANNELC |O0|0O0O/0O|O|1}|1|1 1|11 111|111
CHANNEL .. (1|1 |1]|1)1/|1|1(1|]1|1)|1|1]1(|1 1]|1

In the second mode, the CPU gets only two words on each scan. One word contains the
converted value and the other contains the ID of the channel that was converted. This is
known as MULTIPLEXING and means multiple things passed through a common point. This
mode is used most commonly on cards that can handle different input signal types and
different resolutions at the same time.

Most analog input cards provide at least one additional word that uses individual bits to
indicate whether a particular channel should be considered good or VALID. This word is
also copied into an image table by the CPU. In most cases a 1 bit indicates a bad channel.

ARALOE IMFUT
MODULE
TRAMSMITTER A 7
Az 2 ma _ﬁ
+¥ Chornel B is open which puts its
o ﬁ 'h_' nput below 4 mo. The module
| || *a ., considers fo be a failure and
TRAMSMITTER £l | e mabcates this in its status bits weed.
C=155ma JQ 'r.”
e
MSE ‘& AI TABLE LS8

status (o|o|o|ojolololololololololol1 o

© Tracy A. Adams 2014

MSB AO TABLE Lse
CHAMMEL A O (O[O0 |0 /0 0|0 |/0(0|0|0|0|0 0[|0]|0
CHANNELE |oOfo|ofo|1 1|22 |11 f21]|1[1/1/1[1
CHAMMEL ¢ O[O f(O0jO/1 10|11 |0j1|0|1 Q|11
CHAMNMEL . 1|11 |1/2/1)2 /2|2 |1|21|2|1/1]|1]1

THE PLCs T/0 SYSTEM. %
TAKES CARE OF COPYIRG +*¢f”'"'-"j'3 OQUTPUT
THE AMALOS OUTPUT *s MODULE
IMAGE TABLE VALUES TO ,‘_ A AUTPUT A = 4 ma
ALL AMALOS OUTPUTS

8 OUTPUT B = 20 ma

®
IK?:-'?— CUTPUT € = 1747 ma

For example, a temperature transmitter measures the temperature of a room and converts
it into a 4 to 20 mA signal. What is the transmitter signal current level to the PLC?

‘ ROOM *actual temperature varies between

50 and BS degrees faranheight,])
Room = 77 degrees F |

TRANSMITTER |
4-20ma =0 to 100 deg F |

Signal span =20 - 4 mA = 16 mA
Temperature Span = 100 — 0 deg = 100 deg
Slope = 16 mA/100 deg = 0.16 mA per degree
77 deg x 0.16mA per deg = 12.32 mA
12.32mA +4 mA = 16.32 mA

For an input card using a 12 bit resolution, what would the COUNT or value be in this input
image table location that the PLC program will be using?

Count span = 4095 - 0 = 4095 (12 bit)

Signal span =20 - 4 ma =16 mA

Slope = 4095/16 ma = 255.9375 counts per mA
Count = 12.32 ma X 255.9375 counts per mA = 3153

© Tracy A. Adams 2014

PLC’s give the means to use existing instruments and controls on different manufacturing and
industrial processes by changing the program instead of tearing down and rebuilding
conveyors, control panels, etc. They are made for use in industrial environments with high
temperatures that a standard computer would not last in very long. They are simple to modify
for adding new signals or different types of signals from initial construction. They are built
around the concept of using very simple programming languages and mathematical functions
that are easy to learn.

PLC’s changed the world of automation, and they continue to evolve improving processor
speed, adding new functionality, and providing the ability to use the latest methods of
communication.

© Tracy A. Adams 2014

