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Preface 

Many Non-engineering professionals as well as engineers who are not 

electrical engineers tend to have a phobia related to electrical engineering. 

One reason for this apprehensiveness about electrical engineering is due to the 

fact that electrical engineering is premised concepts, methods and 

mathematical techniques that are somewhat more abstract than those 

employed in other disciplines, such as civil, mechanical, environmental and 

industrial engineering. Yet, because of the prevalence and ubiquitous nature of 

the electrical equipment, appliances, and the role electricity plays in our daily 

lives, the non-electrical professionals find themselves interfacing with systems 

and dealing with matters that broach into the electrical realm. Therein rests the 

purpose and objective of this text. 

This text is designed to serve as a resource for exploring and 

understanding basic electrical engineering concepts, principles, analytical 

strategies and mathematical strategies.  

If your objective as a reader is limited to the acquisition of basic 

knowledge in electrical engineering, then the material in this text should 

suffice. If, however, the reader wishes to progress their electrical engineering 

knowledge to intermediate or advanced level, this text could serve as a useful 

platform.   

As the adage goes, “a picture is worth a thousand words;” this text 

maximizes the utilization of diagram, graphs, pictures and flow charts to 

facilitate quick and effective comprehension of the concepts of electrical 

engineering. 

In this text, the study of electrical engineering concepts, principles and 

analysis techniques is made relatively easy for the reader by inclusion of most 

of the reference data, in form of excerpts from different parts of the text, 

within the discussion of each case study, exercise and self-assessment 
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problem solutions. This is in an effort to facilitate quick study and 

comprehension of the material without repetitive search for reference data in 

other parts of the text.  

Due to the level of explanation and detail included for most electrical 

engineering concepts, principles, computational techniques and analyses 

methods, this text is a tool for those engineers and non-engineers, who are not 

current on the subject of electrical engineering. 

The solutions for end of the segment self-assessment problems are 

explained in just as much detail as the case studies and sample problem in the 

pertaining segments. This approach has been adopted so that this text can 

serve as an electrical engineering skill building resource for engineers of all 

disciplines. Since all segments and topics begin with the introduction of 

important fundamental concepts and principles, this text can serve as a “brush-

up,” refresher or review tool for even electrical engineers whose current area 

of engineering specialty does not afford them the opportunity to keep their 

electrical engineering knowledge current.  

In an effort to clarify some of the electrical engineering concepts 

effectively for energy engineers whose engineering education focus does not 

include electrical engineering, analogies are drawn from non-electrical 

engineering realms, on certain complex topics, to facilitate comprehension of 

the relatively abstract electrical engineering concepts and principles. 

Each segment in this text concludes with a list of questions or 

problems, for self-assessment, skill building and knowledge affirmation 

purposes. The reader is encouraged to attempt these problems and questions. 

The answers and solutions, for the questions and problems, are included under 

Appendix A of this text. 

Most engineers understand the role units play in definition and 

verification of the engineering concepts, principles, equations, and analytical 

techniques. Therefore, most electrical engineering concepts, principles and 

computational procedures covered in this text are punctuated with proper 

units. In addition, for the reader’s convenience, units for commonly used 

electrical engineering entities, and some conversion factors are listed under 

Appendix C.  
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Most electrical engineering concepts, principles, tables, graphs, and 

computational procedures covered in this text are premised on SI/Metric 

Units. However, US/Imperial Units are utilized where appropriate and 

conventional. When the problems or numerical analysis are based on only one 

of the two unit systems, the given data and the final results can – in most cases 

- be transformed into the desired unit system through the use of unit 

conversion factors in Appendix B. 

Some of the Greek symbols, used in the realm of electrical 

engineering, are listed in Appendix C, for reference.  

What readers can gain from this text:  

 Better understanding of some of the electrical engineering terms, 

concepts, principles, laws, analysis methods, solution strategies and 

computational techniques.   

 

 Greater confidence in interactions with electrical engineering design 

engineers, electricians, controls engineers and electrical engineering 

experts. 

 

 A number of skills necessary for succeeding in electrical engineering 

portion of various certification and licensure exams, i.e. CEM, 

Certified Energy Manager, FE, Fundamentals of Engineering (also 

known as EIT, or Engineer in Training), PE, Professional Engineering 

and many other trade certification tests.  

 

An epistemic advice to the reader: if you don’t understand some of the 

abstract concepts the first time, don’t give up. Read it again! Such is the 

nature, intrigue and challenge of engineering, physics, science and other 

subjects that require thinking, reflection and rumination. 

 

 

 

 



5 

 

 

 

 

Table of Contents 

Segment 1 

Electrical Engineering Basics and Direct Current 

Fundamental of electrical engineering concepts, terms, principles, laws and 

equations. Introduction to basic electrical engineering instruments and their 

use. 

 

Segment 2 

Basic DC electrical circuit analysis 

Basic DC circuit analyses techniques, basic electronic devices and their 

applications. Electronic device recognition and their common functions on 

printed circuit boards – a pictorial tour.  

 

 

Appendix A 

Solutions for self-assessment problems 

 

Appendix B 

Common units and unit conversion factors 

 

Appendix C 

Greek symbols commonly used in electrical engineering 

 

 

 

 

 

 

 

 

 



6 

 

 

 

 

 

 

Segment 1 

Electrical Engineering Basics  

 

Introduction 

In this first segment of the Electrical Engineering for Non-Electrical 

Engineers text, we will explore the basics of electrical engineering terms 

concepts, principles, and analytical techniques. Many readers who embark on 

investing time and effort in studying this text are likely to do so for the key 

purpose of gaining an introduction into the field of electricity. Many others, 

on the other hand, might be interested in refurbishing prior knowledge of 

electrical engineering terms, concepts, principles and basic analytical 

techniques. Regardless of whether you belong to one of these two groups  – or 

are simply in pursuit of electrical engineering at the intermediate or associates 

degree level – in this this segment we will lay the foundations in the electrical 

engineering realm by covering basic electrical engineering terms, concepts 

and principles, without the understanding of which, discussion and study of 

terms that bear important practical significance, such as power factor, real  

power, reactive power, apparent power, load factor, etc. would not be feasible.  

Most of the material in this segment pertains to DC, or Direct Current, 

electricity. However, some entities we will discuss in this segment, such as, 

capacitive reactance, inductive reactance and impedance are fundamentally 

premised in the AC, alternating current, realm.  

Electrical engineering is rooted in the field of physics. Physics, and 

electrical engineering, as most other fields in science, depend on empirical 

proof of principles and theories. Empirical analysis and verification requires 

measurement tools or instrumentation. So, after gaining a better understanding 

of the basic electrical concepts, we will conclude this segment with an 

introduction to two of the most common and basic electrical instruments, i.e. 

multi-meter and clamp-on ammeter.  
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Voltage 

Voltage is defined as an electromotive that moves or pushes 

electrically charged particles like electrons, holes, negatively charged ions or 

positively charged ions. The term “electromotive” force stems from the early 

recognition of electricity as something that consisted, strictly, of the 

movement of “electrons.” Nowadays, however, with the more recent 

breakthroughs in the renewable and non-traditional electrical power 

generating methods and systems like microbial fuel cells, and hydrocarbon 

fuel cells, electrical power is being harnessed, more and more, in form of 

charged particles that may not be electrons.  

 

Two, relatively putative, analogies for voltage in the mechanical and 

civil engineering disciplines are pressure and elevation. In the mechanical 

realm – or more specifically in the fluid and hydraulic systems – high pressure 

or pressure differential pushes fluid from one point to another and performs 

mechanical work. Similarly, voltage – in form of voltage difference between 

two points, as with the positive and negative terminals of an automobile 

battery – moves electrons or charged particles through loads such as motors, 

coils, resistive elements, lamps, etc. As electrons or charged particles are 

pushed through loads like motors, coils, resistive elements, light filaments, 

etc., electrical energy is converted into mechanical energy, heat energy or 

light energy. In equipment like rechargeable batteries, during the charging 

process, applied voltage can push ions from one electrode (or terminal) to 

another and thereby “charge” the battery. Charging of a battery, essentially, 

amounts to the restoration of battery terminals’ or plates’ chemical 

composition to “full strength.” So, in essence, the charging of a battery could 

be viewed as the “charging” of an electrochemical “engine.” Once charged, a 

chemical or electrochemical engine, when presented with an electrical load, 

initiates and sustains the flow of electrical current, and performs mechanical 

work through electrical machines. 

 

Common symbols for voltage are:  E, V, VDC, VAC, VP, VM, VEff, 

VRMS. Symbols “E” and “V” are synonymous, and both represent voltage. The 

symbol E stands for electromotive force, while V, simply, denotes voltage. In 

the absence of further specification through a subscript, these symbols can be 

somewhat ambiguous, in that, they could be construed to represent either AC 

or DC voltage. 
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The symbol VAC represents AC voltage. When dealing with AC 

voltage, one needs to be specific about whether one is referring to “peak” 

voltage, VP, or RMS voltage, VRMS. Note that peak voltage, VP, is 

synonymous with maximum voltage VM. In addition, VEff, the effective (AC) 

voltage, is the same as, RMS voltage, VRMS. The term RMS stands for Root 

Mean Square Value of AC Voltage. The RMS or effective value of AC 

voltage is the work producing portion of the AC voltage. This implies that AC 

voltage, current and power, all, have the “work producing” components and 

the” non-work producing” components. The work producing components, in 

essence, transform into - or contribute toward the production of – various 

forms of energy, mechanical work and break horsepower – or, to be more 

accurate, break horsepower-hour.  

 

Even though detail discussion on the mathematical composition of 

RMS voltage is outside the scope of this text, the formula for RMS voltage is 

as follows: 

  

 

Eq. 1.1 

 

AC voltage VRMS, VEff, VP, and VM are inter-related through the following 

equations: 

 

Eq. 1.2 

 

Eq. 1.3 

 

 

Voltage is measured in volts, or V’s; named after the Italian physicist 

Alessandro Volta (1745–1827), who invented the first chemical battery. 

 

Current  

Current consists of movement of electrons, ions, or simply charged 

particles. Movement of electrons can be oscillatory, vibratory or linear. When 

electrons vibrate or oscillate, the resulting current is AC current. AC current is 

established and sustained by AC voltage. When DC voltage is applied in an 

electrical circuit, electrons, ions or charged particles move in one direction. 

Such linear, unidirectional, movement of charged particles or electrons is DC 

p m RMS EFFV  = V = 2V = 2V  

p m
RMS

V V
V  =  = 

2 2

T

2
RMS EFF

0

1
V  = V  = V (t). d(t)   

T 
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current. DC electrical current is analogous to fluid flow in mechanical or 

hydraulic systems. Just as pressure, or pressure differential, cause fluid to flow 

from point A to point B, DC voltage drives electrically charged particles to 

move from one point to another.  

 

Common symbols for current are: I, IDC, IAC, IP, IM, IEff, and IRMS. 

Similar to the voltage symbols, the symbols of current assume a more specific 

meaning through associated subscripts.  

 

IAC represents AC current. When dealing with AC current, one needs 

to be specific about whether one is referring to “peak” current, IP, or RMS 

current, IRMS. Note that peak current, IP, is synonymous with maximum 

current IM. In addition, IEff, the effective (AC) current, is the same as, RMS 

current, IRMS. The term RMS current stands for Root Mean Square Value of 

AC current. The RMS or effective value of AC current is the work producing 

portion of the AC current. AC current, like AC voltage and AC power, has a 

“work producing” component and a “non-work producing” component. The 

work producing component of AC current contributes toward the production 

of mechanical work and break horsepower.  

 

The formula for RMS current is as follows: 

 

 

Eq. 1.4 

 

AC Current IRMS, IEff, IP, and IM are inter-related through the following 

equations: 

 

Eq. 1.5 

 

Eq. 1.6 

 

 

The unit for current is Ampere named after André-Marie Ampère 

(1775–1836), a French mathematician and physicist. André-Marie Ampère is 

revered as the father of electrodynamics. One amp of current is said to flow 

when electrical charge is flowing at the rate of one Coulomb per second. This 

leads to the following mathematical definition: 

p m RMS EFFI  = I = 2I = 2I  

p m
RMS

I I
I  =  = 

2 2

T

2
RMS EFF

0

1
I  = I  = I (t). d(t)   

T 

http://en.wikipedia.org/wiki/Andr%C3%A9-Marie_Amp%C3%A8re
http://en.wikipedia.org/wiki/Andr%C3%A9-Marie_Amp%C3%A8re
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1 - Coulomb of Charge
1 Amp of Current = 

Second
  Eq. 1.7 

 

This definition of current is analogous to flow rate of fluid quantified in terms 

of mass flow rate ṁ or volumetric flow rate Q


. 

 

Example 1.1 

In an AC system, a voltage source V(t) = 156Sin(377t + 0°) volts sets up a 

current of I(t) = 15Sin(377t + 45°) amps. The peak voltage and the peak 

current, in accordance with convention, are 156 V and 15 A, respectively. 

Calculate the RMS values of voltage and current. 

 

Solution: 

According the Eq. 1.3: 

 

 

 

 

 

 

 

Note: This is the voltage indicated by a true RMS voltmeter when measuring 

the AC voltage at a typical household or workplace wall receptacle. See more 

discussion toward the end of this segment. 

 

According the Eq. 1.6: 

 

 

 

 

 

 

 

Note: This is the current indicated by a true RMS clamp-on ammeter when 

measuring AC current. See more discussion toward the end of this segment. 

 

p m
RMS

V V
V  =  = 

2 2

p m
RMS

I I
I  =  = 

2 2

p

RMS rms

V 156
 V  =  =  = 110 V

2 2


RMS RMS

15
  I  =  = 10.6 A

2

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Resistance 

Property of a material that opposes or resists the flow of current is 

known as electrical resistance, or simply, resistance. Electrical resistance is 

analogous to friction in mechanical systems; for instance, friction between the 

surfaces of two objects that slide against each other. In a fluid flow scenario, 

electrical resistance is analogous to friction between the fluid and the walls of 

the pipe.  In electrical systems, resistance in conductors (wires) is an 

undesirable characteristic and results in wasted heat or heat losses. This is not 

unlike frictional head losses in fluid systems – frictional head losses governed 

by Darcy’s equation and Hazen-William’s equations. The symbol for 

electrical resistance is “R.” Resistance is measured in ohms, or simply, s. 

The ohm symbol  is often prefixed with letters, such as, k for kilo or M for 

Mega. Where, 1k would represent 1,000 Ohms and 1M would represent 

1,000,000 ohms.  

V
  R =  or,  V = I.R

I
      Eq. 1.8 

An ohm can also be defined on the basis of the Ohm’s Law. The 

Ohm’s Law and its application in AC and DC systems are discussed in greater 

depth in Segment 2. At this point, upon examination of Ohm’s Law, in form 

of Eq. 1.8, we can define 1 ohm as the amount of resistance that would permit 

the flow of only 1-amp of current when a voltage of 1-volt is applied across a 

specific length of that conductor. In other words: 

1-volt
  1  = 

1-amp


        

The Ohm’s Law equation stated above also stipulates that as the 

increase in electrical “demand” manifests itself in form of an increase in 

current, I, and as resistance, R, of the conductor increases, the voltage – or 

voltage drop – across the conductor increases; resulting in lower voltage at the 

point of delivery of power to the consumers. This is similar to the pressure 

drop, or loss, experienced in a long compressed air pipe or header due to 

frictional head loss.  

 

From physical characteristic and physical composition point of view, 

we could define resistance as being directly proportional to the length of the 

conductor and inversely proportional to the area of cross-section of the 
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conductor. This proportional relationship can be transformed into a 

mathematical relationship or equation as follows: 

L
R = ρ.

A
       Eq. 1.9 

Where,  = Resistivity of the Conductor,  

L = Length of the Conductor and  

A = Area of Cross-section of the Conductor. 

copper  = 17.2 n m; where, n = Nano = 10
-9

 

aluminum  = 28.2 n m 

 

Example 1.2 

A cubic block of electrically conductive material measures 0.02 on each side. 

The resistivity of this material is 0.01 Ω
 • 

m.  What is the resistance between 

opposite sides of this block?   

 

Solution: 

2

ρL (0.01 Ω-m)(0.02 m)
R =  =  = 0.5 Ω

A (0.02 m)
 

 

Example 1.3 

A phase conductor of a power distribution line spans, approximately, 500 ft 

and has a diameter of 1.5 inch. The conductor is composed of copper. 

Calculate the electrical resistance of this conductor, per phase. 

 

Solution:  

Solution Strategy: Since the resistivity value of copper, as stated above, is in 

metric or SI unit system, the length and diameter specifications stated in this 

problem must be streamlined in metric units before application of Eq. 1.9 for 

determination of resistance in ohms (s).   

 

L = 500 ft = 152.4 m 

Diameter = 1.5 inch = 0.0381m; R = Radius = D/2 = 0.019 m 

A = Area of cross-section = π.R
2
 = (3.14)( 0.019)

 2
 = 0.00113m

2
 

copper  = 17.2 n m = 17.2x10
-9

 m 

L
R = ρ.

A
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9L 152.4

 R = ρ.  = 17.2x10 0.00232
A 0.00113

  
   

 
 

As described earlier, in electrical systems, resistance in conductors 

(wires) is an undesirable characteristic and results in wasted heat or heat 

losses. This energy lost, as heat, as the current flows through a conductor can 

be quantified through Eq. 1.10 below.  

 

        Eq. 1.10 

 

In an effort to illustrate the substantial impact of resistance on heat 

losses and design challenges associated with power transmission, let’s 

continue examination of long transmission lines used to transport electrical 

power from power generating plants to power consumers.  On a hot summer 

afternoon, those power transmission lines that we notice crisscrossing the 

country side are not only carrying higher currents due to the higher air 

conditioning loads, but experience an increase in resistance due to increases in 

resistivity, ρ, of the conductor in accordance with Eq. 1.11. In other words, the 

resistivity of aluminum, stated above as aluminum  = 28.2 n m, serves as a 

constant only at standard temperature of 20°C or 68°F.  

 

         Eq. 1.11 
 

In Eq. 1.11: 

ρ = Resistivity at current temperature “T” 

ρo = Resistivity at standard temperature “To” 

To = Standard temperature in °C 

T = Current temperature °C 

α = Thermal coefficient of resistance, in 1/°C 

 

In addition, it’s common knowledge that as temperature rises, most 

metals or conductors expand. So, with exposure to elevated summer season 

solar radiation, during those hot afternoons, the transmission lines elongate to 

a certain extent, resulting in higher “L.” As those transmission lines elongate, 

the diameter of the conductors drops, resulting in lower area of cross-section 

A. So, the perceptible “sag” in the transmission lines during the hot summer 

afternoons is not simply an optical illusion or a myth.  

 

    0 0 01  1T T T         

2
2Heat Loss = , in Watts

V
P VI I R

R
  



14 

 

As we account for the increase in L, reduction in A and the rise in ρ 

collectively, in accordance with Eq. 1.9, we see that all of these factors result 

in escalation of resistance. Furthermore, if we consider resistive heat loss 

equation, Eq. 1.10, the exponential effect of the rise in load current I and the 

increase in R precipitate in a “cascading,” unfavorable, physical and electrical 

impact on the transmission line conductors.   

 

Resistors in series 

When electrical circuits, AC or DC, consist of multiple resistors, 

circuit analyses require simplification of such network of resistors into one, 

equivalent, resistor or resistance, REQ. Often, this equivalent, resistance is 

referred to as a “total” resistance. When “n” number of resistors are connected 

in a “daisy chained" or concatenated fashion as shown in Figure 1.1, they are 

said to be connected in series.  

 
 

Figure 1.1: n –Resistors in series 

 

When resistors are connected in series, they can be combined in a 

“linear addition” format, as stipulated in Eq. 1.12 below, for “n” number of 

resistors. 

         . 

Eq. 1.12 

 

When multiple resistors are combined into an equivalent resistor, with 

resistance value REQ, the simplified version of the original series circuit 

would appear as pictured in Figure 1.2.  

 

 

 

1 2 3  = ...EQ T nR R R R R R    
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Figure 1.2: Equivalent resistance for n –resistors in series 

 

Resistors in Parallel 

When electrical circuits, AC or DC, consist of multiple resistors, 

connected in a parallel fashion, as shown in Figure 1.3, circuit analysis would 

require simplification of the parallel network of resistors into one, equivalent 

resistor REQ. Figure 1.3 shows “n” number of resistors connected such that 

the “heads” of all resistors are “bonded” are connected together, with and 

electrical connection to the anode (positive terminal) of the DC power supply. 

In addition, the “tails” of all resistors are connected together and to the 

cathode of the DC power source.  

 

When multiple parallel resistors are combined into an equivalent 

resistor, with resistance value REQ, the simplified version of the original series 

circuit would appear as pictured in Figure 1.4. In parallel resistor networks, 

the calculation of REQ involves addition of the inverses of all resistors in the 

parallel network, and taking the inverse of the sum as stipulated in Eq. 1.13. 

 

 
 

Figure 1.3: n –Resistors in parallel 

 

 

         Eq. 1.13 

 
1 2 3

1

1 1 1 1
...

EQ

n

R

R R R R



   
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In case of a simple two parallel resistor circuit, the equivalent 

resistance REQ could be calculated using the simplified equation, Eq. 1.14.  

 

Eq. 1.14 

 

 

 
         

Figure 1.4: Equivalent resistance for n –resistors in parallel 

 

 

As a special case, assume that the parallel resistor network shown in 

Figure 1.3 consists of “n” equal parallel resistors. Because, the resistors are 

assumed to be equal, calculation of REQ, or REQ-n, boils down to Eq. 1.15. 

 

 

         Eq. 1.15 
 

Electrical Short and Open Circuit 

When a conductor, wire or bus-bar, is used to pass current between 

two or more points in an electrical circuit - with smallest resistance feasible - 

such a connection is referred to as a “short.” A short segment of wire, 

assembled with an “alligator clip” on each end, is used by electrician and 

electrical engineers to establish a temporary short circuit between points in an 

electrical circuit. Such a specially fabricated pieces of wire are sometimes 

referred to as a “jumper leads,” in electrical jargon. 

 

A short circuit between two points implies zero or negligible 

resistance. The opposite of an electrical short is an “open circuit.” Examples 

of open circuits would be a switch that is open, a breaker that is turned off, or 

simply a wire that has been cut or “clipped.” An open circuit between two 

points implies an infinite (∞) resistance. The concepts of open and short 

1 2

1 2
EQ

R R
R

R R




EQ EQ-n

R
R  = R =

n
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circuits are illustrated in Figure 1.5. Figures 1.5 (a) and (b) represent electrical 

circuit segments between points A and B.  When the switch between points 

(1) and (2) is open, as depicted in Figure (a), we have an open circuit, and no 

current flows between points A and B. However, closure of the same switch, 

as shown in Figure (b), constitutes a short circuit. The closed switch scenario 

depicted in Figure (b) also represents “continuity.” The term “continuity” is 

used commonly by electrical engineers and electricians during trouble 

shooting of equipment. When trouble shooting electrical or electronic 

equipment failures, engineers and technicians often perform continuity tests 

on fuses to determine if they have cleared or opened. The instrument used for 

performing continuity checks is a multi-meter. A continuous piece of wire, 

shown in Figure 1.5 (c), represents continuity between terminals A and B. 

 

 
(a) 

 

 
(b) 

 

 
 

(c) 

 

    Figure 1.5:  Open and short circuits   
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Example 1.4 

Determine the equivalent resistance for the DC circuit shown below if R1 = 

5, R2 = R3= 10, and R4 = R5= 20. 

 

 
 

Solution: 

The resistances need to be combined in a multistep process in order to 

determine Req for the overall circuit.  

Combination of R2 and R4 = R2,4 = R2 + R4 = 10 + 20 = 30 

Combination of R3 and R5 = R3,5 = R3 + R5 = 10 + 20 = 30 

Combination of R2,4 and R3,5: 

  

2 5

eq

(30 ).(30 ) 900
R =  =  = 15

(30 30 ) 60

 R  = 15  + 5  = 20



 


 

   
 

 

Capacitor and Capacitance  

A capacitor is a charge storage device, capable of storing charge in DC 

and AC applications. A charged capacitor stores electrical charge on two 

electrodes; one of the two electrodes is negative and the other one is positive. 

The negative electrode is called a cathode and the positive electrode is 

referred to as an anode. This separation of charge and the quantity of charge 

separated determine the electrical potential - or voltage - developed across the 

electrodes of the capacitor. The electrical potential difference between the 

capacitor plates, or electrodes, signifies the storage of electrical energy in the 

capacitor. Therefore, as an energy storage device -with a potential difference – 

capacitors are analogous to air receivers and pneumatic cylinders that store 
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pressure energy - in form of higher pressure relative to the atmospheric 

pressure – which can be used to perform mechanical work.  

 

Construction of a simple capacitor is depicted in Figure 1.6. As shown 

in Figure 1.6, a simple capacitor can be constructed with two parallel square 

plates, of equal size, separated by a dielectric substance like glass, mica, etc. 

The separation between the two plates (electrodes), “r,” in conjunction with 

the area of the plates determines the “capacitance” of the capacitor. 

Capacitance, “C,” of a capacitor is defined as the charge storage capacity of 

the capacitor. 

 
     Figure 1.6: A simple parallel plate capacitor 

 

Capacitance can be defined, mathematically, through Eq. 1.16, below. 

A
C = 

r
        Eq. 1.16 

Where,  

C = Capacitance is quantified or specified in farads.  

A = The area of cross-section – or simply area – of the capacitor electrode 

plates.  

Є = Permittivity of the dielectric medium between the plates. 

And, Є = Єr . Є0 

Where, Єr = Relative permittivity of a specific dielectric medium 

And, Є0 = permittivity in vacuum or in air = 8.854 x 10
−12 

farads per 

meter (F·m−1). 

 

One farad is rather a large amount of capacitance for most common capacitor 

applications. Therefore, many capacitors – especially, at the circuit board 

level – are specified or labeled in terms of smaller units, such as, mF (milli-

http://en.wikipedia.org/wiki/Farad
http://en.wikipedia.org/wiki/Meter
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Farad), F (micro-Farad), or nF (nano-Farad).  The capacitor shown in Figure 

1.7 is rated 470F and designed to operate at a maximum of 35V.  

 
Figure 1.7: A cylindrical 470 Micro-Farad Capacitor 

 

The mathematical relationship stated as Eq. 1.16 stipulates that 

capacitance is directly proportional to the area A of the capacitor plates and 

inversely proportional to the separation r between the plates. In other words, if 

larger capacitance or charge storage capacity is desired, one must increase the 

area of the plates and/or decrease the separation between the capacitor plates. 

In addition to serving as a “constant of proportionality” for the equation, 

permittivity Є injects the property or characteristic of the dielectric medium 

into the computation of capacitance through the dielectric medium’s 

characteristic Єr value. Although, for the sake of simplicity, the discussion on 

capacitance in this text is limited to flat plate capacitors, many capacitors have 

cylindrical construction such as the one shown in Figure 1.7. 

 

Electrical energy stored in a capacitor can be determined through 

application of Eq. 1.17   

21
Energy (joules)= CV  

2
    Eq. 1.17 

Charge storage characteristic of the capacitor should not be confused 

with the charge storage and power source function of a battery. One difference 

between capacitors and batteries is that when capacitors are charging or 

discharging, charge flows through a “dielectric” medium; while most batteries 

consist of electrolytes (i.e. sulfuric acid) that ionize readily and the ions 

sustain the flow of current. Capacitors allow the charge to move between 

electrode plates through a dielectric medium.  

 

The dynamics of how a capacitor stores and dissipates charge are 

somewhat different between the DC and AC realms. Unlike resistive circuits, 

current and voltage associated with capacitors vary in a non-linear fashion. A 

common, series, RC circuit is shown in Figure 1.8, consisting of a capacitor, 

resistor and a switch that can be used to control the charging and discharging 
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of the capacitor. The graphs in Figure 1.9 through 1.11 below compare 

voltage and current responses in circuits that are purely resistive versus a 

series RC circuit, the type illustrated in Figure1.8. This “non-linear” charging 

and discharging of capacitors is referred to as transient behavior of RC 

circuits. 

 
 

Figure 1.8: A series RC circuit  

 

The straight line graph in Figure 1.9 illustrates and validates the Ohms 

law. This graph shows that voltage and current are directly proportional, with 

the “constant” resistor serving as the constant of proportionality. In a purely 

resistive circuit, the current would respond, instantaneously and linearly, to 

the application of voltage across a resistor. 

 

 
Figure 1.9: Linear, voltage vs. current, response in a purely resistive circuit. 

 

Voltage vs. Time, transient response in series RC circuit:  Contrary to 

linear and instantaneous response in a purely resistive circuit, the current and 

voltage response in a common RC circuit is non-linear and non-instantaneous.  

 

 

Eq. 1.18 ( )  (0) (1 -  )

t t

RC RC
c cv t v e V e

 

 
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The voltage response - or voltage variation - of a capacitor can be predicted 

through Eq. 1.18.  

    

Where,  

R = Resistance in series with the capacitance 

C = Capacitance  

vc(0) = Voltage across the capacitor, at time t = 0 

vc(t) = Voltage across the capacitor, at a given time t  

V = Voltage of the power source 

RC =  = Time constant of an RC circuit 

 

If the voltage variation or response of a capacitor were graphed, with respect 

to time, it would be resemble the vc versus t graph shown in Figure 1.10. 

 

 
Figure 1.10: Non-linear, transient, voltage response in a circuit consisting of 

capacitance and resistance 

 

Current vs. Time, transient, response in series RC circuit:  The current 

response - or current variation - in a capacitor-resistor circuit can be predicted 

through Eq. 1.19.  
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(0)
i (t) =  e

t

c RC
c

V v

R

 
 
 

                                      Eq. 1.19 

Where,  

R = Resistance in series with the capacitance 

C = Capacitance, in farads 

vc(0) = Voltage across the capacitor, at time t = 0 

ic(t) = Current through the capacitor-resistor circuit, at a given time t  

V = Voltage of the power source 

 

If the current response of a capacitor were graphed, with respect to 

time, it would resemble the ic versus t graph shown in Figure 1.11. Note that 

the capacitor current versus time curve in Figure 1.11 validates Eq. 1.19. For 

instance, the graph shows that at t = ∞, or when steady state is achieved, 

current ic(t) through the RC circuit diminishes to zero; and if you substitute t = 

∞ in Eq. 1.19, ic(t) becomes zero. In other words, at steady state, the capacitor 

transforms into an open circuit and the current ceases to flow. 

 
Figure 1.11: Non-linear, transient, current response in a circuit consisting of 

capacitance and resistance 

 

The presence of resistance R in capacitive circuits results in what is 

referred to as a time constant “.” The relationship between, R and C is 

stipulated by Eq. 1.20. The physical significance of time constant  is that it 

represents the time it takes to charge a capacitor to 63.2% of the full value, or 
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63.2% of the full voltage of the source. Time constant  also represents the 

time it takes to discharge a given capacitor to 36.8% of the full voltage, or 

the voltage of the source. 

 

  = RC       Eq. 1.20 

 

Example 1.4 

Consider the RC circuit shown in the diagram below. The source voltage is 

12V. The capacitor is in a discharged state before the switch is closed. The 

switch is closed at t = 0. What would the capacitor voltage be at t = 2?  

 
 

Solution: 

This particular case represents a capacitor charging scenario. Given the value 

of R, C, vc(0) and the source voltage V, Equation 1.18 allows us to calculate 

the voltage after and elapsed time “t,” during the capacitor charging phase. 

    

 

 

 

In this case,  

R = 1 k = 1,000  

C = 5F = 5x10
-6 

F  

vc(0) = 0V = Voltage across the capacitor at t = 0 

vc(t) = Voltage across the capacitor, at a given time t = ? 

V = Voltage of the power source = 12V 

RC =  = RC circuit time constant 

t = 2 = 2RC 

 

Substitution of the given values, stated above, Eq. 1.18 can be expanded and 

simplified as follows: 

 

( )  (0) (1 -  )

t t

RC RC
c cv t v e V e

 

 
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Capacitors in Series 

When a number of capacitors are connected in a “daisy- chained," or 

concatenated fashion, as shown in fig.1.12, they are said to be connected in 

series. In Figure 1.12, “n” number of capacitors, C1 through Cn, are shown 

connected in series. 

 

 
 

Figure 1.12: Capacitors in series 

 

When electrical circuits, AC or DC, consist of multiple capacitors, 

circuit analyses require simplification – or combination - of such network of 

capacitors into one, equivalent, capacitor or capacitance, CEQ. This 

equivalent, capacitance can also be referred to as a “total” capacitance.  

 

Unlike series combination of resistors, when capacitors are connected 

in series, they can be combined in an “addition of inverses” format, as 

stipulated in Eq. 1.21 below, for “n” number of capacitors. 

 

 

 

         Eq. 1.21 

 

When multiple capacitors are combined into an equivalent capacitor, 

with capacitance value CEQ, the simplified version of the original series 

circuit can be drawn as shown in Figure 1.13.  

1 2 3

1

1 1 1 1
...

EQ

n

C

C C C C



   

2 2

 2

( ) (0) . 12.(1 -  )

         0 + (12).(1 - ) = 12(0.865) 

         = 10.38V

c cv t v e e

e

 

 
 



 


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Figure 1.13: Equivalent capacitance for capacitors in series.  

 

As a special case, suppose that the series capacitor network shown in 

Figure 1.12 consists of “n” series capacitors, with equal capacitance. Because 

the capacitors are assumed to be equal, calculation of CEQ, or CEQ-n, and 

application of Eq. 1.21 can be simplified to Eq. 1.22. 

 

 

         Eq. 1.22 
 

If a series capacitive circuit consists of only three capacitors, as shown 

in Figure 1.14, Eq. 1.21 can be reduced to Eq.1.23.  Further simplification of 

Eq. 1.23 would result in a, simplified, three capacitor series equivalent 

capacitance equation, Eq. 1.24. 

 
 

Figure 1.14: Equivalent capacitance for capacitors in series.  

 

 

Eq. 1.23 

 

 

 

Eq. 1.24 

 

1 2 3

1

1 1 1EQC

C C C



 

1 2 3

1 2 2 3 1 3
EQ

C C C
C

C C C C C C


 

EQ EQ-n
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C  = C =

n
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Example 1.5 

Determine the equivalent capacitance for the DC circuit shown Figure 1.14 if 

C1 = 5F, and C2 = C3= 10F. 

 

Solution: 

Application of Eq. 1.24 to the three series capacitor circuit shown in Figure 

1.14 yields: 

 

 

 

 

 

 

 

 

Capacitors in Parallel 

When electrical circuits consist of capacitors connected in parallel, as 

shown in Figure 1.15, circuit analyses – as with a network of series connected 

capacitors - would require simplification of the parallel network of capacitors 

into one, equivalent capacitor CEQ. Figure 1.15 shows “n” number of 

capacitors connected such the “heads” of all capacitors are (electrically) 

“bonded” or are connected together, with an electrical connection to the anode 

(or positive terminal) of the DC power supply, and the “tails” of all capacitors 

are connected together to the cathode (or negative terminal) of the power 

source.  

 

 
 

Figure 1.15: Equivalent capacitance for capacitors in series.  

 

Simplification of a network of capacitors is parallel is similar to the 

approach utilized in the combination of resistors in series. When multiple 

6 6 6

6 6 6 6 6 6

(5 10 )(10 10 )(10 10 )

(5 10 )(10 10 ) (5 10 )(10 10 ) (10 10 )(10 10 )
EQ

x x x
C

x x x x x x

  

     


 

EQC 2.5μF
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parallel capacitors are combined into an equivalent capacitor, CEQ, the 

simplified or condensed equivalent of the original parallel circuit could also 

be represented by the equivalent circuit diagram in Figure 1.13.  

 

For a parallel capacitor circuit consisting of “n” number of parallel 

capacitors, equivalent capacitance can be calculated by applying equation Eq. 

1.18 

 

Eq. 1.25 

 

Example 1.6 

Determine the equivalent capacitance for the DC circuit shown below if C1 = 

C2 =5F, and C3 = 10F. 

 

 
 

 

Solution: 

Applying Eq. 1.25 to the three parallel capacitor circuit shown in diagram 

above yields: 

 

 

 

 

 

 

 

 

Example 1.7 

Determine the equivalent capacitance in series and parallel combination 

circuit shown below. The capacitance values are: C1 = C2 = 5F, C3 = C4 = 

10F. 

6 6 6 6 6 6
EQ

6

C  (5 10 )(10 10 ) (5 10 )(10 10 ) (10 10 )(10 10 ) 

       =  20 10  F, or 20 F

x x x x x x

x 

     



  

1 2 3EQC C C C  

1 2 3 ...EQ nC C C C C    
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Solution: 

Similar to the parallel and series combination approach described in 

the resistor section, our aim would be to simplify the circuit by first 

combining the linearly additive segment (or segments), followed by reciprocal 

combination of the remaining capacitors. 

 

The capacitors in this circuit that lend themselves to linear combination are C3 

and C4. Therefore, the combined capacitance, C3-4, would be:  

 

C3-4  = C3 + C4  =10F +10F = 20F 

 

Then, by applying Eq.1.24 to this special hybrid capacitor combination case, 

with the 3
rd

 capacitance being C34 instead of C3:  

 

 

 

 

 

 

 

 

 

Capacitive Reactance 

When a capacitor is incorporated into an AC circuit, its impact in that 

circuit is quantified through an entity referred to as the capacitive reactance. 

The symbol for capacitive reactance is Xc . Capacitive reactance can be 

defined, mathematically, as: 

1 1
X   = 

ωC 2πfC
c        Eq. 1.26 

1 2 3 4

1 2 2 3 4 1 3 4
EQ
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Where,  

f = frequency of the AC power source, i.e., 60 Hz in the US and 50 Hz 

in some other parts of the world.  

ω = Rotational speed, in radians per second 

C = Capacitance in farads 

 

Capacitive reactance is measured in ohms, or, ’s. It is important to note that 

Xc is often misrepresented as Zc. To the contrary, as explained in the 

impedance section, Zc is the impedance contribution by the capacitor, and is 

represented as: 

Zc = - jXc,         

  Zc ≠ Xc   

 

Example 1.8 

Assume that the circuit in Example 1.7 is powered by a 60 Hz, AC source 

instead of the DC source. Determine the total capacitive reactance, Xc, seen by 

the AC source. 

 

Solution: 

If the DC source is replaced by an AC source, the circuit would appear as 

follows: 

 
 

As computed in Example 1.4, the combined or net capacitance contributed to 

the circuit by the parallel and series network of capacitors is CEQ = 2.22F. 

Then, by applying Eq.1.26: 

6

1 1 1
X   =  =  1194  

ωC 2πfC 2(3.14)(60)(2.22 10 )
c

x 
    
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Inductor and Inductance  

Similar to capacitor, an inductor can be viewed as an energy storage 

device, which can be applied in DC or AC applications. Unlike a capacitor – 

where energy is stored in form of separation of charges, resulting in a 

potential difference - in an inductor, the energy is stored in the magnetic field 

that is produced through the flow of electric current. This phenomenon was 

first discovered by Michael Faraday in 1831. The magnetic field – which can 

be referred to as magnetic flux – is not established instantaneously upon flow 

of current through an inductor. Instead, much like a “time constant, ” based 

charge build up in a capacitor, the current change and magnetic field build up 

in an inductor ramps up, or down, at a non-linear rate. This non-linear rate is a 

function of the inductor’s time constant, . Inductor’s time constant concept 

will be explained later in this segment.  

 

Since the energy stored in the magnetic field of an inductor is due to 

the flow of current – and, ultimately, due to the movement of electrons – we 

could view an inductor as being analogous to a rotating “flywheel,” in the 

mechanical realm – where the energy is stored in a rotating mass. As with a 

flywheel - where any attempt to stop the rotation of the flywheel is opposed 

by momentum and kinetic energy in the rotating mass of the flywheel - any 

attempt to change the flow of current in an inductor is opposed by the 

“inductance” of the inductor. It is due to the inductance of an inductor that if 

you, for instance, have 10 amps flowing in an electrical circuit, and you try to 

“break” the circuit by opening a switch, current flow is maintained briefly 

through an electric arc, where permitted, across the opening switch. Where 

the electric arc – which is, in essence, plasma or ionized air – serves as a 

temporary “channel” for the flow of current. Conversely, when a switch – in a 

de-energized inductive circuit - is closed to connect a power source to an 

inductive device, no current flows through the circuit, initially, as inductance 

of the inductor in the electrical circuit opposes the change in the flow of 

current from “zero” to some measurable “non-zero” level. Therefore, 

inductance is defined as the capacity or tendency of an inductor to resist the 

change in flow of current. 

 

In addition, it is worth noting that just like the kinetic energy stored in 

a rotating flywheel can be “tapped” to perform mechanical work, the energy 

stored in the magnetic field of a “charged” inductor can be released to push a 

ferromagnetic cylindrical core, in one direction or another, to open or close a 
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valve, or to open or close an electrical switch. The former application is an 

example of a solenoid operated valve, while the later represents the operation 

of a contactor or a relay. 

 

The principle of inductance and physical aspects of inductors (or coils) 

are illustrated in Figure 1.16 (a) and (b). Basically, if you take a straight piece 

of wire, as shown in Figure 1.16 (a), and wind it around a cylindrical core, the 

final product would be a coil or an inductor. As shown in the Figure 1.16 (a), 

current flowing through a straight wire produces a “weak” magnetic field. 

While, current flowing through a “coiled” conductor produces a stronger and 

denser magnetic field, capable for conducting “work,” such as, pushing of a 

“plunger” against the restraint of a spring’ to open or close a valve or to open 

or close an electrical circuit in a relay or a contactor. 

 
    (a) 

 

 
Figure 1.16: (a) Straight current carrying conductor (b) “Coiled” current 

carrying conductor.  

 

Figure 1.16 (b) represents a conceptual view of a solenoid or a coil, 

illustrating the fundamental principle of electromagnetism. On the other hand, 

physical construction of a simple solenoid or inductor is depicted in Figure 
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1.17, in a diametrical cross-sectional view. When the coil of the solenoid is 

energized, the plunger – or core – responds to the magnetic flux by moving to 

the left. As the plunger moves to the left - against the spring - with a force that 

is proportional to the magnetic flux, the “pin” attached to the tip of the 

plunger pushes mechanical devices such as relay contacts or valves, etc., to 

change their state from open to closed, or vice and versa.   

 
Figure 1.17: Construction of a solenoid.  

 

Inductance is denoted by “L,” and it can be defined, mathematically, through 

Eq. 1.27, below. 

2μ.N .A
L = 

l
      Eq. 1.27 

Where,  

 = Permeability of the medium, in H/m 

N = Number of turns of coil (unit-less) 

A = Cross-sectional area of the core (in m
2
) 

l = Mean length through the core (in m) 

Unit for Inductance: H (henry) 

 

The mathematical relationship stated as Eq. 1.27 stipulates that 

inductance is directly proportional to the area of cross-section “A” of the core. 

This equation also states that the inductance is directly proportional to “N
2
,” 

the “square” of the number of turns in the coil, and is inversely proportional to 

the mean length “l” of the core. In other words, if larger inductance or energy 

storage capacity is desired, one must increase the area of cross-section of the 

core, increase the number of turns, or reduce the mean length of the core and 

the coil. Of course, the values of these variables can be increased or 

decreased, simultaneously, to achieve the desired results. In addition to 
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serving as a “constant of proportionality” for the equation, permittivity “” 

injects the physical characteristics of the core into the computation of 

inductance. So, if a material with higher relative permeability, r, is chosen, 

the inductance of a coil would be greater. The permeability  of a specific 

medium can be defined, mathematically as follows: 

 

  = r . o  

Where,  

r = Relative permeability of the core material. Relative permeability 

of steel is 100 and that of an insulating materials like wood and Teflon 

is 1.0; which is the same as free space, vacuum or air.  

o = Permeability of free space or vacuum = 4π×10−7 = 1.257 x 10
-6 

H/m 

 

Electrical energy stored in an inductor can be determined through Eq. 

1.28, below:   

      Eq. 1.28 

 

Where, the energy is measured in joules (or N-m), L in H (henry) and 

I in amps. 

 

Most inductive electrical systems - that is electrical circuits with 

inductance - and inductive devices like motors and transformers, contain 

inductance L, as well as resistance, R. In order to understand the current and 

voltage response in inductive circuits – or to understand current and voltage 

variation in inductive systems – we will examine a simple series RL circuit 

diagram in Figure 1.18. 

 
 

Figure 1.18: Series RL circuit  
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In a typical inductive-resistive circuit, as the one shown in Figure 1.18, the 

voltage and current relationships, as a function of time, are governed by 

Equations 1.29, 1.30 and 1.31.  

(t)  L
L

di
v L

dt
       Eq. 1.29 

 

 

Eq. 1.30 

 

Eq. 1.31 

 

 

Equations 1.30 and 1.31 hold greater practical significance, in that, 

they can be used to predict the changes in voltage and current - with respect to 

time - for given values of source voltage, V, series resistance R and series 

inductance L. The relationship between resistance R and inductance L, or the 

relative size of R and L, determine the charging and discharging rate of the 

inductor via the time constant “ .” The time constant  can be defined, 

mathematically, in terms of R and L, in form of Eq. 1.32. 

 

       Eq. 1.32 

 

It is ostensible from examination of Eq. 1.30 and 1.31 that in circuits 

that consist of inductance and resistance, unlike purely resistive circuits - but 

similar to RC circuits - current and voltage associated with inductors vary in a 

non-linear fashion. This “non-linear” charging and discharging of an inductor 

in an RL circuit – similar to RC circuits - is referred to as transient behavior. 

The graphs in Figures 1.19 and 1.20 compare voltage and current responses - 

on the basis of Eq. 1.30 and 1.31, respectively. 
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Figure 1.19: Non-linear voltage response in a circuit consisting of inductance 

and resistance. 

 

Voltage vs. Time, transient, response in Series RL Circuit:  Examination 

of Eq. 1.30 and Figures 1.18 and 1.19 reveals the following facts: 

 

a) At time, t = 0, which is when the switch in the circuit is closed, i(0) = 

0; so the first segment of Eq. 1.30 becomes zero and drops out. Also, 

at t = 0, the exponent of “e” becomes zero, which makes e
-Rt/L

 = 1. 

This results in vL(t) = V, (i.e., the source voltage) at t = 0. In other 

words: 

vL(t) = V at the instant the switch is closed in the series RL 

circuit. 

 

b) On the other end of the time spectrum, where t = , or when steady 

state condition has been achieved: 

 

 

 

 

 

 

The analyses above support the following basic tenets of series RL 

inductive circuits: 
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           -(0).  = 0
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i. The voltage across the inductor, at the instant the switch in a 

series RL circuit is closed, is the same as the source voltage, 

implying that no current flows through the inductor. 

 

ii. The voltage across the inductor, after a large amount of time 

has elapsed, diminishes to zero. And, with voltage drop across 

the inductor zero, the inductor acts as a short in a series RL 

circuit under steady state conditions - with steady state current, 

V/R, flowing through it.    

 

 
Figure 1.20: Non-linear current response in a circuit consisting of inductance 

and resistance 

 

Current vs. Time, transient, response in series RL Circuit:  Examination 

of Eq. 1.31 and Figures 1.18 and 1.20 reveals the following facts associated 

with current versus time response in a series RL circuit: 

 

a) At time, t = 0, which is when the switch in the circuit is closed, i(0) = 

0; so the first segment of Eq. 1.31 becomes zero and drops out. Also, 

at t = 0, the exponent of “e” becomes zero, which makes e
-Rt/L

 = 1. 

This results in iL(t) = 0 + V/R(1-e
0
) = 0,  this means that at t = 0, or at 

the instant the switch is closed, the inductance of the inductor resists 

the initiation of current flow, hence, no current flows through the 

inductor at t = 0.  
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b) On the other end of the time spectrum, when t = , or when steady 

state condition has been achieved: 

 

 

 

 

 

 

 

 

 

 

The analyses stated above support the following basic characteristics 

of inductive circuits: 

 

i. No current flows through the inductor and resistor combination 

at the instant the switch is closed, or at t = 0, which is 

congruent with one of the fundamental characteristics of an 

inductor described earlier. In other words, at the outset, the 

inductance of the inductor, successfully, resists the rise of the 

current to a non-zero value. 

 

ii. Current through the inductor and resistor combination develops 

to the maximum level after a long span of time. The maximum 

level of current in the inductor and resistor combination is 

equal to V/R. This also implies that the inductor acts as a 

“short” when steady state condition is achieved or after 10 

amount of time.    
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Example 1.9 

Consider the series RL circuit shown in the diagram below. The source 

voltage is 12V and R = 10. The switch is closed at t = 0. What would be 

magnitude of current flowing through this circuit at t = ?   

 
 

Solution: 

In most series RL cases, the current value at a certain time “t” can be 

predicted through Eq. 1.31.  

 

 

 

Note: In this case, the value of L is not given, but the elapsed time is given as 

a function of time constant as, “1.” 

Since  = L/R, Eq. 1.31 can be rewritten, in  form as: 

 

 

 

Then, by substituting t = , and given the fact that i(0) = 0, the iL(t) equations 

simplifies into the following form: 

 

 

 

 

 

 

 

 

This analysis of current response validates a characteristic fact about 

inductors: current develops to 63.2% of its full potential in “one time 

constant” or 1 worth of time. 
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Example 1.10  

Consider the series RL circuit given in Example 1.9, in discharge mode, with 

voltage source removed. Inductor L = 10mH. The switch has been closed for 

long period of time, such that the current has developed to the maximum or 

steady state level 1.2 A. How much time would need to elapse for the current 

to drop to 0.8A after the switch is opened. 

 
 

Solution: 

Apply series RL current equation, Eq. 1.31.  

 

 

 

Given: 

t = ? 

L = 10 x 10
-3

H 

R = 10 

V = 0 

i(0) = 1.2A 

iL(t) = 0.8A 
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Series Inductor Combination 

When analyzing dc circuits with inductors connected in series, 

derivation of equivalent inductance, Leq, can accomplished by, simply, adding 

the inductance values linearly as represented by Eq. 1.33. Figure 1.21 depicts 

“n” inductors, L1 through Ln, connected in series. 

 

Eq. 1.33 

 

 
 

Figure 1.21: Series combination of “n” inductors 

 

Derivation of the combined equivalent inductance LEQ, permits us to 

represent Figure 1.21 in form of a condensed version depicted in Figure 1.22. 

 

 

 

 
 

Figure 1.22: LEQ, equivalent inductance representing series combination of 

“n” inductors. 

 

Example 1.11 

Determine the equivalent inductance for three inductors connected in a series 

combination circuit shown below. The inductance values of the three 

inductors are: L1 = 5mH, L2 = 5mH, and L3 = 10mH. 

EQ 1 2 3 nL = L + L + L  ....... + L
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Solution: 

Apply Eq. 1.33: 

 

 

 

 

 

Parallel Combination of Inductors 

The circuit depicted in Figure 1.23 shows “n” number of inductors 

connected in parallel. The formula for determining the equivalent inductance 

Leq for this circuit is represented by Eq. 1.34. 

 

 

 
 

Figure 1.23: Parallel combination of “n” inductors 

 

 

 

 

Eq. 1.34 

 

If a parallel resistor circuit or network consists of only three inductors, 

the circuit would appear as shown in Figure 1.24 and the Leq equation for this 

circuit would reduce to Eq. 1.36.  

 

EQ

1 2 3 n

1
L =

1 1 1 1
+ + +...+

L L L L

EQ 1 2 3L = L + L +L  

      = 5mH + 5mH + 10 mH

      = 20mH
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Figure 1.24: Combination of three parallel inductors 

 

 

Eq. 1.35 

 

 

Eq. 1.36 

 

 

Example 1.12 

Determine the equivalent inductance LEQ for three parallel inductor DC circuit 

shown Figure 1.24 if L1 = 1H, and L2 = 5H and L3= 10H. 

 

Solution: 

Apply Eq. 1.36 to compute LEQ for the three parallel inductor circuit shown in 

Figure 1.24: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L
2 
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3
  

 

L
1 
  

 

 

 

 
+ 
- 

EQ

1 2 3

1
L =

1 1 1
+ +

L L L

1 2 3
EQ

1 2 2 3 1 3

L L L
L =

L L + L L + L L

1 2 3
EQ

1 2 2 3 1 3

L L L
L =

L L + L L + L L

(1H)(5H)(10H)
      = 

(1H)(5H) + (5H)(10H) + (1H)(10H)

      =  0.77H
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Example 1.13 

Calculate the net or total inductance as seen from the 24V source vantage 

point in the circuit shown below. 

 

 

 

 

 

 

 

 

 

 

 

Solution: 

We need to focus on the parallel combination of L2, L3, and L4 first. Apply 

Eq. 1.36 to calculate the equivalent inductance L234 for the three parallel 

inductors: 

 

 

 

 

 

 

 

 

This reduces the circuit as shown below: 

 
 

Inductors L1 and L234, in this reduced circuit, lend themselves to a linear 

combination. Therefore, the equivalent inductance LEQ for the entire parallel 

and series inductor hybrid circuit would be: 

 

L
3 

= 

20mH 

L
4 

= 

30mH 

 

 

L
2 

= 

10mH 

L
1 

= 5mH 

 

 

 

 

 
+ 
- 24V 

2 3 4
234

2 3 3 4 1 4

L L L
L =

L L + L L + L L

(10mH)(20mH)(30mH)
       =

(10mH)(20mH) + (20mH)(30mH) + (10mH)(30mH)

      = 5.45mH



45 

 

LEQ  = L1 + L234  = 5mH +5.45mH = 10.45mH 

 

Inductive Reactance 

When an inductor is incorporated into an AC circuit, its impact in that 

circuit is quantified through an entity referred to as the inductive reactance. 

The symbol for inductive reactance is XL. Inductive reactance can be defined, 

mathematically, as: 

X  ωL = 2πfL L        Eq. 1.37 

Where,  

f = frequency of the AC power source, i.e., 60 Hz in the US and 50 Hz 

in some other parts of the world.  

ω = Rotational speed, in radians per second 

L = Inductance in henry, or H. 

 

Inductive reactance is measured in ohms, or, ’s. It is important to 

note that, XL is often misconstrued as ZL. To the contrary, as explained in the 

impedance section, ZL is the impedance contribution by the inductor, and is 

represented as: 

 

ZL = jXL,         

  ZL ≠ XL    

 

Example 1.14 

Assume that the circuit in Example 1.13 is powered by a 60 Hz AC source. 

Calculate the inductive reactance, XL, as seen by the AC voltage source. 

 

Solution: 

If the DC source is replaced by an AC source, the circuit would appear as 

follows: 
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LEQ, as seen by the AC voltage source, is shown in the simplified equivalent 

circuit below: 

 

 
 

As computed in Example 1.13, the combined or net inductance contributed to 

the circuit by the parallel and series network of inductors is LEQ = 10.45mH. 

Then, by applying Eq.1.37, the inductive reactance, XL-EQ as seen by the AC 

voltage source VAC, would be: 

 

XL-EQ = ω.L = (2πf).LEQ = 2(3.14)(60Hz)(10.45mH) = 3.94  

 

Impedance 

The narrative definition of impedance would be that it is the current 

resisting and impeding characteristic of load or conductor, in an AC circuit. 

As implied in the definition of this term, impedance is an alternating current 

entity. While in DC circuits the factor that opposes the flow of DC current is 

resistance, the entity that influences the flow of AC current, in AC circuits, is 

impedance. Impedance, like AC current, voltage and power, is a vector entity. 

By definition, a vector can be completely defined by two key characteristics, 

namely, the magnitude and the direction. Therefore, impedance and other 

entities in AC circuits, such as current, voltage and power, can be defined 

completely through specification of their magnitude and direction.  

 

Symbol for impedance is Z. When typewritten, as with most AC 

entities, the symbol Z for impedance is represented in bold font. When 

handwritten, most AC entities are denoted by the respective symbol with a 

half arrow. So, impedance would be denoted by “ Z .” The unit for impedance 

is ohm, or, ; similar to the unit for resistance, R, capacitive reactance Xc and 

Inductive reactance XL. Consistency of units between R, XL, XC and Z is one 

justification for the following mathematical definition for Z: 

 

Z = R + jXl  - jXc       Eq. 1.38 

Where, 



47 

 

 jXl = Zl        Eq. 1.39 

              = Impedance contribution by the inductance in the circuit.  

 

And,  

-jXc = Zc         Eq. 1.40 

    = Impedance contribution by the capacitance in the circuit. 

 

Magnetic Circuits vs. Electrical Circuits 

The two diagrams shown in Figure 1.25 below illustrate similarities 

and differences between a basic electrical circuit and a magnetic circuit. In 

depth discussion on the subject of magnetism is beyond the scope of this text. 

Nevertheless, a contrast between the basic magnetic and electric circuits 

below will allow the reader an opportunity to gain basic understanding of 

magnetism, more specifically, electromagnetism. 

 

The circuit shown in Figure 1.25 (a) represents a basic DC electrical 

circuit. This circuit consists of a DC voltage source labeled “V.” As explained 

earlier, voltage is synonymous to the term electromotive force. So, we can 

explain the phenomenon in the electrical circuit as the electromotive force 

“V” driving DC current “I” through the load or resistor “R.” Note the 

direction of the current is from the left to right, in a clockwise loop, emerging 

from the positive electrode of the DC voltage source and terminating into the 

negative electrode of the voltage source. This clockwise current flow is 

assigned on the   basis of an electrical convention that stipulates that the 

current flow consists of “holes,” or positively charged particles, being repelled 

or driven out of the positive terminal. This convention also affirms the fact 

that electrical current is not necessarily, always, due to the flow or movement 

of electrons. Electrical current, as explained in the section on the topic of 

current, can be due the flow or movement of negatively or positively charged 

particles. The positively or negatively charged particles, at the atomic or 

molecular level are referred to as ions.  

 

The relationship between V, I and R in the electrical circuit is 

governed by the Ohms Law. The Ohms Law, in conjunction with other basic 

electrical laws - used to analyze electrical circuits – will be explained in more 

detail in Segment 2. For now, note that the Ohms Law is stated 

mathematically in the form of Eq. 1.41. In other words, according to Ohms 

Law, electromotive force is equal to the product of current and resistance. 
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Electromotive Force, V = I.R = (Current) x (Resistance)    Eq. 1.41 

 

The circuit shown in Figure 1.25 (b) represents a basic electromagnetic 

circuit. This circuit consists of a toroid or donut shaped core – typically 

constructed out of iron. In this magnetic circuit, a conductor, or wire, is 

wrapped in four turns around the left side of the toroid core. When current is 

passed through wound conductor, magnetic field is established in the core as 

represented by the dashed circular line, with an arrow pointing in clockwise 

direction. This magnetic field is referred to as magnetic flux, ф. Magnetic flux 

is measured in weber. The unit weber is named for the German physicist 

Wilhelm Eduard Weber (1804–1891). In the magnetic realm, the flux serves 

as a counterpart to the current, I, from the electrical realm. Just like the 

electromotive force, EMF, or voltage, drives the current through the resistor, 

R, the magnetomotive force (MMF), , drives the magnetic flux, ф, through 

the toroid magnetic core. Magnetomotive force is measured in ampere-turns. 

In electrical systems, load is represented by the resistor R. In the magnetic 

circuit, the flow of magnetic flux is opposed by reluctance, . Just as the 

Ohm’s Law, represented by Eq. 1.41, governs the relationship between 

electromotive force (voltage), current and resistance in the electrical realm, 

Eq. 1.42 represents the relationship between the magnetomotive force, , the 

magnetic flux, ф, and the reluctance, , in the magnetic domain. 

  

= ф.  = (Magnetic Flux) x (Reluctance)   Eq. 1.42 

 

Equation 1.42 is referred to as the Hopkinson’s Law. 
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(a)                                                    (b) 

 

Figure 1.25: Magnetic and electrical circuit comparison 

 

Magnetic reluctance can also be perceived as magnetic resistance; a 

resistance that opposes the flow of magnetic flux. Like resistance, reluctance 

is a scalar entity, but unlike electric resistance, it stores magnetic energy 

instead of dissipating it. Reluctance is measured in ampere-turns per weber, or 

turns per henry. Ferromagnetic substances such as iron have low reluctance 

while dielectric substances like air and vacuum offer high reluctance to 

magnetic flux. That is the reason why transformers, contactors, relays and 

other similar electromagnetic devices utilize iron – or iron alloy – cores. 

 

Analogous to Eq. 1.1, which represents the relationship between 

resistance, resistivity, length and area of cross-section, the reluctance of a 

uniform magnetic circuit can be calculated as: 

r o

1
 = .

μ μ A

l 
  
 

R        Eq. 1.43 

Or, 

1
 = .

μ A

l 
 
 

R
       Eq. 1.44 

Where, 

l is the mean length of the circuit or core, in meters. 

o is the permeability of free space or vacuum = 4.π.10
-7

 henry per 

meter.   
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r is the relative magnetic permeability of the core material. This is a 

dimensionless number.  

 is the permeability of the core material in henry per meter. 

A is the area of cross-section of the core or the magnetic circuit 

defined in m
2
. 

 

Basic Electrical Instruments 

Two of the most fundamental instruments used to make electrical 

measurements and perform electrical system trouble shooting are as follows: 

 

I. Multi-meter, or a VOM, Volt-Ohm-Meter 

II. Clamp-on Ammeter 

 

Multi-meter 

The modern multi-meter, sometimes just written as “multimeter,” has 

evolved from its basic predecessor, the Ohm-meter. The original Ohm-meters 

ware designed to measure resistance of electrical components and to verify 

continuity and integrity of electrical or electronic circuits. Voltage measuring 

feature was later added to the basic resistance measuring function of the Ohm-

meter in the form of a more versatile instrument called the Volt-Ohm-Meter, 

or VOM. Due to the miniaturization of electronic components, additional 

functions were added to the basic VOM resulting in the contemporary multi-

meter that transitioned from analog to digital format. See the diagram of a 

digital multi-meter in Figure 1.26. Some of the following features and 

functions are common among most multi-meters available on the market 

today: 

 

a) Voltage measurement, AC and DC 

b) Resistance measurement 

c) Current measurement 

d) Temperature measurement 

e) Capacitor testing 

f) Diode testing  

g) Transistor testing 
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Figure 1.26: VOLTCRAFT  Digital Multi-meter 

 

Standard accuracy of a portable digital multi-meter is, approximately, 

0.3%. Bench top and lab grade multi-meters are known to offer accuracy that 

is better than ±0.1%. Many multi-meters include the “Peak-Hold” feature, 

which allows one to capture peak reading when the measured parameter is not 

steady. Some of the more sophisticated multi-meters have the ability to 

interface with PC’s for direct data transfer, plotting and storage.  

 

When used for measuring voltage, multi-meters operate in “high 

impedance” mode. In other words, when multi-meters are used to measure 

voltage, the circuit being tested “sees’ high impedance between the probes. 

This allows for the application of a multi-meter to be a non-invasive to the 

circuit being tested. This means that for most voltage measurements, a multi-

meter can be applied to an electrical circuit without turning off the power to 

the system being tested. On the other hand, if a multi-meter is being used for 

measuring current, the circuit must be turned off, interrupted and severed at 

the point of measurement, and the meter must be injected in series to route the 

current through the multi-meter for measurement.   

 

One must consider certain important safety measure associated with 

the application of multi-meters. Multi-meters, similar to other electrical 
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instrumentation, are designed to operate within specified voltage range. Most, 

commonly used, multi-meters are rated for low voltage applications. Low 

voltage category ranges from 0 to 600 VAC or VDC. Application of a low 

voltage instrument on higher voltages can result in a potentially catastrophic 

failure of the instrument and a potentially lethal arc flash incident. In addition, 

from safety point of view, it is important to inspect the instrument, 

periodically, for signs of mechanical or electrical damage. The probes must 

always be inspected for signs of wear, fraying, and signs of “mechanical 

stress or strain.” The outermost surface of the cathode and anode probes is, 

essentially, insulation. Therefore, if the insulation is damaged or atrophied, a 

person handling the probes could be exposed to an electrical shock hazard. In 

most cases, prudent and safe course of action would be to decommission and 

discard faulty probes, and replace them with, suitable, manufacturer 

recommended replacements. 

 

The Clamp-on Ammeter 

When current in an electrical or electronic circuit must be measured 

without interruption of an electrical or electronic circuit, a clamp-on ammeter, 

sometimes referred to as “clamp meter,” can be used. Current measurement 

with a clamp-on ammeter, unlike a multi-meter, requires no probes. See 

Figure 1.27. When measuring current, the rotary selector switch on the face of 

the ammeter is switched to AC current measurement setting. The spring 

loaded “clamping” current transformer is opened by pressing the knob on one 

side of the ammeter. The current carrying conductor is surrounded by the open 

current transformer clamp and the current transformer clamp is allowed to 

close around the conductor. As the current transformer closes or loops around 

current carrying conductor, it develops magnetic flux that is proportional to 

the flow of current through the conductor. This magnetic flux is transduced 

into voltage that is subsequently scaled and displayed, digitally. The current 

indicated on the display of a typical AC ammeter is an RMS value. In single 

phase AC applications, the clamp-on ammeter should be clamped around the 

ungrounded or energized conductor. If the neutral and the energized 

conductors are clamped together, the currents through the two conductors 

cancel each other resulting in null or zero readout on the display. Similarly, 

while measuring line currents in multiphase AC systems, only one phase must 

be enclosed in the clamp-on ammeter current transformer. Some clamp-on 

ammeters are equipped with auxiliary features like voltage measurement; such 

is the case with the clamp-on ammeter shown in Figure 1.27. The ports for 
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connecting the voltage measuring anode and cathode probe leads are located 

at the bottom of the ammeter.  

 

The voltage rating related safety precaution, advised in the use of multi-

meters, applies to clamp-on ammeters, as well. The clamp-on ammeter 

depicted in Figure 1.27 is a low voltage (0 – 600 VAC) device. Use of low 

voltage clamp-on ammeters on Medium or High Voltage electrical circuits is 

unsafe and can result in catastrophic failures, such as, arc flash incidents. 

Proper precaution must also be exercised concerning the maximum current 

rating of a clamp-on ammeter. Current and voltage ratings of a clamp-on 

ammeter must not be exceeded. Miss-application of test instrumentation can 

result in catastrophic faults or arc flash incidents. 

 
 

Figure 1.27: Fluke  Digital Clamp-on Ammeter 

 

As noted earlier, most clamp-on ammeters used routinely by electrical 

engineers and electricians are designed to detect and measure AC current. 

Although uncommon, DC clamp-on ammeters, operating on Hall Effect 

Principle, are available for “non-invasive” DC current measurement.  
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Self-assessment Problems & Questions - Segment 1 

 

1. In an AC system, a voltage source V(t) = 120Sin(377t + 0°) volts, RMS, 

sets up a current of I(t) = 5Sin(377t + 45°) amps, rms. Calculate the 

maximum values of voltage and current in this case. 

 

2. A phase conductor of a transmission line is one mile long and has a 

diameter of 1.5 inch. The conductor is composed of aluminum. Calculate the 

electrical resistance of this conductor. 

 

3. What is the resistance of the following circuit as seen from the battery? 

 

 
 

4. Consider the RC circuit shown in the diagram below. The source voltage is 

12V. The capacitor voltage before the switch is closed is 2V. The switch is 

closed at t = 0. What would the capacitor voltage be at t = 5 sec?  
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5. Determine the equivalent capacitance for the DC circuit shown in the 

circuit diagram below if C1 = 5F and C2 = 10F. 

 

 

 

 

 

 

 

 

 

 

6. Determine the equivalent capacitance for the DC circuit shown below if this 

circuit consists of twenty 100F capacitors in series. 

 

   
 

7. Determine the equivalent capacitance in series and parallel combination 

circuit shown below. The capacitance values are: C1 = 10F, C2 = 10F, C3 = 

20F, C4 = 20F. 

 
 

8. Assume that the circuit in problem 4 is powered by a 60 Hz AC source 

instead of the DC source. Determine the total capacitive reactance, Xc, seen by 

the AC source. 

 

 
+ 
- V 

C
1
 C

2
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9. Consider the series RL circuit shown in the diagram below. The source 

voltage is 12V, R = 10 and L = 10mH. The switch is closed at t = 0. What 

would be magnitude of current flowing through this circuit at t = 2ms?   

 
 

10. Consider the series RL circuit given in problem 9, in discharge mode, with 

voltage source removed. Parameters such as R = 10 and L = 10mH, are the 

same. The switch has been closed for long period of time, such that the current 

has developed to the maximum or steady state level 1.04 A. How much time 

would need to elapse for the current to drop to 0.5 A after the switch is 

opened. 

 
 

11. Determine the equivalent inductance LEQ for three parallel inductor DC 

circuit shown in the diagram below if L1 = 2mH, and L2 = 5mH and L3= 

20mH. 

 

 

 

 

 

 

 

12. Calculate the net or total inductance as seen from the 24V source vantage 

point in the circuit shown below. 

L
2 
 L

3
  

 

L
1 
  

 

 

 

 
+ 
- 
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13. Assume that the circuit in Problem 12 is powered by a 60 Hz AC source. 

Calculate the inductive reactance, XL, as seen by the AC voltage source. 
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Segment 2 

DC Circuit Analysis and Basic Electronic Devices 

 

Introduction 

In this segment, we will review three fundamental laws of physics and 

electrical engineering, namely, (1) Ohms Law, (2) Kirchhoff’s Voltage Law 

and (3) Kirchhoff’s Current Law. These three laws are instrumental in 

performing basic circuit analysis. Laws serve a vital purpose in electrical 

engineering analysis and problem solving; in DC as well as AC domains. 

Most engineering problems entail determination of unknown values of key 

parameters, under certain known circumstances or conditions. Laws allow us 

the opportunity to formulate equations that can be solved for values of 

unknown parameters. Solving for one unknown variable requires a minimum 

of one equation. Solution for determination of the values of two unknown 

variables requires two equations, and so on. Therefore, laws afford us the 

opportunity to model an engineering problem or scenario in form of set of 

equations that can be solved to adequately define and identify unknowns. 

Similar to the three basic laws of static equilibrium, i.e. Fx = 0, Fy = 0, and 

M = 0 - laws that a civil or mechanical engineer might employ to solve for 

unknown forces in a static equilibrium beam or truss scenario - the Ohms law, 

the Kirchhoff’s voltage law and the Kirchhoff’s current law are used to solve 

for important electrical parameters like current, voltage, resistance, power, 

energy, reactance, impedance, reactance, etc.  

 

In addition to the basic laws, important electrical circuit principles and 

circuit simplification techniques, such as, voltage division and current division 

will be discussed and their application will be illustrated through sample 

problems in this segment. Note that there are many other principles and 

methods that are at electrical engineer’s disposal to solve or analyze complex 

circuits, such as, the conversion of Y load (or resistor) configuration to Delta 

“” load configuration, or vice and versa; conversion of complex circuits to 

Thevenin equivalent, Norton equivalent, two port networks, etc. However, 

these and many other advanced circuit analysis methods are outside the scope 

of this text.  

 

We will introduce the reader to two basic electronic devices, namely, a 

diode and a transistor, their basic characteristics and some of their 

applications. We will conclude this segment with a pictorial “tour” of a typical 
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electronic printed circuit board to allow the reader an opportunity to gain a 

measure of familiarity with basic electronic devices. 

 

Ohms Law 

Ohm’s law was introduced, briefly, in Segment 1. Ohm’s law 

stipulates that voltage, or voltage drop, in a DC (or AC) circuit is equal to the 

product of current flowing in the circuit and the resistance (or impedance) in 

the electrical circuit. In other words, voltage or voltage drop in an electrical 

circuit is directly proportional to the resistance (or impedance) of the circuit 

and the current flowing through it. Ohm’s law can, therefore, be stated 

mathematically as follows:  

V V
  V  = IR,  I = ,  or R =    for DC Circuits

R I
    Eq. 2.1  

  
V V

  V = IZ,  I = ,  or Z =   for AC Circuits
Z I

     Eq. 2.2  

The first mathematical representation of Ohm’s law, in form of Eq. 

2.1, pertains to DC circuits, and in this statement of Ohm’s law, all three 

parameters – V, I and R - are scaler. On the other hand, mathematical 

representation of Ohm’s law, in form of Eq. 2.2 applies to AC circuits, where 

voltage “V” and current “I” are vectors or complex entities and R, as always, 

is scalar. Note that the symbols with “half-arrows” above them denote 

complex AC, or vector, entities. These half arrows are shown here to 

introduce the reader to this method for representing vector or complex entities. 

Later in this text, vector or complex entities will be represented mostly in bold 

fonts. As one examines the statement of Ohm’s law in form of Equations 2.1 

and 2.2, it becomes obvious that the Ohm’s law can be interpreted and applied 

in several ways. This fundamental aspect of Ohm’s law, its versatility and 

wide application will become more evident through various circuit analysis 

problems in this segment, and others in this text, beginning with Example 2.1.   

 

Example 2.1 

The DC circuit shown below consists of a hybrid, parallel-series, network or 

resistors: R1 = 10 Ω, R2 = 5 Ω, R3 = 1 Ω, and R4 = 10 Ω. Calculate the 

following parameters in this circuit: (a) Req or Rtotal for the entire circuit. (b) 

The amount of current “i” flowing through resistor R1.   
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Solution: 

a) Req or Rtotal for the entire circuit:  

Req = R1 + R4 + (R2 . R3)/(R2 + R3)  

= 10 Ω + 10 Ω + (5/6 Ω) = 20.833 Ω 

 

b) The amount of current “i” flowing through resistor R1: 

By Ohms Law: V = I .R, or, I = V/R.  

Therefore, i = 12V/Req  

= 12V/20.833 Ω = 0.576 Amps.  

 

 

Kirchhoff’s Voltage Law (KVL)                                                                                     

Kirchhoff’s Voltage Law stipulates that the algebraic sum of voltage 

drops around any closed path, within a circuit, is equal to the sum of voltages 

presented by all of the voltage sources. The mathematical representation of 

KVL is as follows: 

 VDrops =  VSource      Eq. 2.3 

 

Kirchhoff’s voltage law can also be stated as:  

Sum of ALL voltages in a circuit loop = 0, or: 

  V = 0       Eq. 2.3a 

 

Some electrical engineers find the later representation of Kirchhoff’s 

voltage law somewhat easier to apply when performing circuit analyses 

because, with this version, once the voltages and respective polarities have 

been identified, you simply sum up all the voltage values with appropriate 

signs, as observed, while going around the loop in the chosen direction. This 

importance of this approach, and alternative approaches, is illustrated through 

the Example 2.2 below. 
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Example 2.2 – KVL 

Variation of current in the circuit shown below needs to be studied as a 

function of the three resistors and the voltage source, Vs. Using the Ohm’s 

Law and KVL, develop an equation that can be used to compute the value of 

current I for various values of R1, R2, R3 and Vs. 

 
 

Solution:  

Similar to other engineering disciplines, in most electrical engineering 

problems, multiple methods can be employed to derive the solution. The 

suitability of one method over another depends on the known parameters and 

the complexity of the circuit.  

 

Approach I:  

Reduce or simplify the given circuit to a “net” voltage source and equivalent 

resistance Req. Since R1, R2 and R3 are in series: 

 

Req = R1 + R2 + R3 

 

Based on the assumption that Vs is indeed the source driving this circuit, by 

electrical convention, the current in this circuit would flow “out” of the 

positive terminal, or anode, of the voltage source. Hence, the current would 

flow in the clockwise direction as shown in the diagram, below. 
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By the same token, application of the electrical current convention to the 

voltage device, or load voltage, VL would mean that it would try to set up 

current in the counter-clockwise direction. However, because we assumed that 

voltage source Vs is driving the net flow of current through the circuit, its 

dominance over VL is implied, and the net voltage in the circuit would be: 

 

VNet = VS – VL 

 

This results in the simplification of the circuit as depicted below: 

 
 

Then, application of Ohm’s law yields: 

 

s L s L

eq 1 2 3

(V  - V ) V  - V
I =  or,  I = 

R  R +R +R  

 

Approach II:  

This approach is premised on the application of KVL to the given circuit after 

the circuit has been annotated with voltage designations, voltage polarities and 

current direction.  

 

According to another electrical convention, voltage polarities are assigned 

such that the current enters the resistances (or loads, in general) on the positive 

side and exits from the negative side. The voltage sources, or existing 

“voltage loads” retain their stated polarities. The aforementioned steps result 

in the transformation of the original (given) circuit as follows: 
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Apply the Ohm’s law to define the voltages, or voltage drops, across the three 

resistors. 

 

R1 1 R2 2 R3 3V  = IR    V  = IR    V  = IR    

 

With all voltages – voltage source, voltage load and voltage drops across the 

resistors – identified and their polarities noted, apply KVL by “walking” the 

annotated circuit beginning at the cathode or negative electrode of the voltage 

source, Vs. Note the voltages and respective polarities as you make a complete 

loop around the circuit in the clockwise direction of the current. This results in 

the following equation: 

 

V = 0     

s R1 L R2 R3- V  + V  + V  + V  + V  = 0    

 

Expansion of this KVL based equation through substitution of the resistor 

voltage drop formulas, derived earlier, yields: 

 

s 1 L 2 3- V  + IR  + V  + IR  + IR  = 0    

 

Further rearrangement and simplification results in: 

 

    1 2 3 s L I (R +R +R ) = (V  -  V )  

s L

1 2 3

V  - V
 I =   

 R + R + R   
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Kirchhoff’s Current Law (KCL)                                                                                   

According to Kirchhoff’s Current Law, total current flowing into a 

node is equal to the total current that flows out of the node. The mathematical 

representation of KCL is as follows: 

 

 iin =  iout       Eq. 2.4 

 

Proper identification of a node before application of KCL is pivotal in 

application of KCL. The concept of a node is not unique to electrical circuit. 

Intersections and junctions in fluid piping systems are sometimes referred to 

as nodes, by Mechanical Engineers and Technicians. The term finds its use in 

disciplines as diverse as human anatomical “lymph node” system and the 

algorithm nodes in computer systems. In the electrical realm, a node is 

sometimes construed as a point where two conductors merge or get connected. 

However, as illustrated through application of KCL in Example 2.3, a more 

meaningful definition of a node in electrical circuits is that it is a point where 

three or more conductors are electrically terminated or connected together. 

Just as significance and effectiveness of KVL was illustrated through Example 

2.2, we will demonstrate the utility of KCL, Kirchhoff’s current law, and 

selection of a meaningful node in a “parallel” electrical circuit through 

Example 2.3 below. 

 

Example 2.3  

Determine the value of voltage source current in the parallel circuit below. 

 
 

Solution:  

Similar to Example 2.2, we will present two different approaches for 

determining the value of unknown source current. The first approach simply 

utilizes the Ohm’s law and the parallel circuit simplification method. The 

second approach, on the other hand, utilizes KCL and “nodal” analysis 

technique.  
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Approach I:  

Reduce or simplify the given circuit to a voltage source and equivalent 

resistance Req. Since R1, R2 and R3 are in parallel, application of Eq. 1.13 

yields: 

 

 

 

 

 

 

 

This simplifies the given parallel DC circuit as follows: 

 
 

Next, Ohm’s law is applied to determine the source current: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

eq

1 2 3

1
R

1 1 1
+ +

R R R



1 2 3
eq

1 2 2 3 1 3

R R R
R

R R R R R R


 

1 2 2 3 1 3
s

1 2 3

R R R R R R
I = V   

R R R

  
 
 
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Approach II:  

This approach is premised on the application of KCL to the given circuit after 

the node had been identified, circuit has been annotated with voltage 

designation, voltage polarity, branch currents and current directions. See 

circuit diagram below: 

 
 

Subscribing to the definition of a node as a point where three or more 

conductors merge, the shaded segment in the diagram above is designated as 

the node for this circuit. Next, before KCL can be applied to determine the 

source current, the individual currents, through each of the resistors, need to 

be defined – using the Ohm’s law - in terms of the specific resistance values 

and the voltages around them:  

 

31 2
1 2 3

1 2 3

VV V
 I  =     I  =    I  = 

R R R  

Then, application of KCL at the designated node yields the following 

equation: 

1 2 3I = I  + I  + I   

Substitution of the values of branch currents, as defined earlier, yields: 

31 2

1 2 3

VV V
I =  +   + 

R R R  

At this juncture, it is important to note that when circuit elements are in 

parallel – as is the case with R1, R2 and R3 – their voltages (or voltage drops 

around them) are equal. In fact, not only are the voltages around the parallel 

circuit elements equal to each other but they are the same as the source 

voltage, Vs. In other words: 
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s 1 2 3V = V  = V  = V   

 

Therefore, the current equation can be rewritten as: 

 

s s s
s

1 2 3 1 2 3

V V V 1 1 1
I =  +  +  V  +  +   

R R R R R R

 
  

 
 

And the source current would be: 

 

1 2 1 3 2 3
s

1 2 3

R R + R R  + R R
I = V   

R R R

 
 
 

 

Which is the same as the answer derived through Approach 1. 

 

Voltage Division 

Voltage division is a shortcut for determination of voltage across a 

series resistor. According to the voltage division rule, the voltage across 

resistance R, in a DC circuit, with total resistance Rtotal, and a voltage source 

V, can be determined through the following formula: 

 

R
total

R
V = V

R      Eq. 2.5 

 

For AC circuits, the voltage on impedance Zi, in a loop with total impedance 

Ztotal, with a voltage source V, would be: 

 

i
i

total

Z
V = .V

Z

 
 
 

     Eq. 2.6 

 

Example 2.4  

Determine the following for the DC circuit shown below: 

a) Equivalent resistance for the entire circuit, if R1 = 5, R2 = R3= 10, and 

R4 = R5= 20 

b) Current flowing through resistor R1 

c) Voltage across resistor R5 
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Solution: 

 

 
 

a) Combination of R2 and R4 = R2,4 = R2 + R4 = 10 + 20 = 30 

Combination of R3 and R5 = R3,5 = R3 + R5 = 10 + 20 = 30 

Combination of R2,4 and R3,5 =  

2 5

(30 ).(30 ) 900
R =  =  = 15

(30 30 ) 60


 


 
 

Req = R1 + R 2-5 = 5 + 15 = 20 

 

b) Current through R1 would be the same as the current through the 12V 

supply: 

eq

V 12V
I =  =  = 0.6A

R 20
 

c) One method for determining VR5, voltage across R5, is to first calculate 

VR2-5, the voltage across the combined resistance of resistances R2, R3, R4, 

and R5. Then, by applying voltage division, calculate VR5 as follows: 

 

According to Ohm’s law, 

VR2-5 = I.(R2-5) = (0.6A).(15) = 9V 
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Then, by applying the voltage division rule: 

5
R5

5 3

R
V  (9V).( )

R

20
      (9V).( )

20 10

      (9V).(0.67)  6V

R







 

 

 

 

Example 2.5  

What is the voltage across the 6Ω resistor? 

 

 

 
 

Solution: 

The right hand side of the circuit, consisting of the two 10 resistors 

and the 5 resistor, is irrelevant insofar as the determination of voltage across 

the 6 resistor is concerned.  

 

Parallel combination of the two 8 Ω resistors results in an equivalent 

resistance of 4 Ω as follows:  

8 //8

(8 ).(8 )
R  

8 8
 

 


 
 

 

Using voltage division, the voltage across the 6 Ω resistor would be: 

6

6
V  (10V).( )

4 6

       = 6V






   
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Current Division 

The current through a resistor R in parallel, or in shunt, with another 

resistance Rparallel and a current into the node of I is: 

 

parallel

R
total

R
I = .I

R

 
  
 

      Eq. 2.7 

Where,  

Rtotal = The sum of the resistances in parallel (and not the parallel 

combination REQ). 

Rparallel = Resistance value of the resistor opposite the “subject” 

resistor. 

I = Current through the source. 

 

When current division is applied in AC circuits, the formula for 

current through an impedance Z, in parallel with another impedance Zparallel, 

would be:  

 

parallel

R
total

Z
I = .I

Z

 
  
 

      Eq. 2.8 

 

Where,  

I = Current, in its complex AC form, flowing into the node formed by 

the parallel impedances. 

Ztotal = The sum of the impedances in parallel (and not the parallel 

combination ZEQ). 

Zparallel = The impedance of the load opposite to the subject 

impedance. 

I = AC current through the source. 
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Example 2.6  

Determine the current flowing through the 10 resistance in the circuit shown 

below. 

 
 

Solution: 

We must to determine the value of source current I, first. In order to 

determine the value of current I flowing through the source and the 5 

resistor we must consolidate all resistors into an equivalent resistance REQ and 

then apply the Ohm’s law. 

EQ

(10 ).(20 )
R = 5  +  = 5  + 6.67  = 11.67

(10 ) (20 )

  
    

   
 

EQ

V 24V
I =  =  = 2.06 A

R 11.67  

Apply current division formula in form of Eq. 2.7 

 

parallel

10 1
total

R 20
I = I  = I = 2.06A = 1.36 A

R 10 + 20


   
        

 

 

Multi-loop circuit analysis  

As expected, analyses of circuits that consist of more than one current 

loop, tend to be more complex, require formulation of multiple equations and 

utilization of additional conventions and principles. Similar to single loop 

circuit analysis covered earlier, in most cases, there are multiple strategies and 

approaches available for solving multi-loop circuits. We will illustrate one 

approach through Example 2.7.  
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Example 2.7 

Using the KVL method, determine the current flows, I1 and I2 in the circuit 

below. 

 

 
 

Solution: 

Current I1 and I2 are two of the five unknown parameters in the circuit 

above. The other unknown parameters are, V1, V2 and V4. One approach 

for determining the values of I1 and I2 would be to formulate two equations, 

using the Kirchhoff’s Voltage Law, such that each equation includes the same 

two unknown variables, I1 and I2. Then, by applying the simultaneous 

equation technique to the two equation system, with two unknowns, we can 

determine the values of I1 and I2. 

 

Application of KVL requires that voltage around each circuit element 

be defined in terms of known values and the unknown variables. In addition, 

the sign or polarity of each voltage must be assigned. See the diagram below.  

 

 

 

 

 

 

 

 

 

 

 

 

24 V 12 V 

I
1
 I

2
 

1  2  
4  

+ + 

+ + 

+ 

- 

- 
- 

- - 

V
1

 V
2

 V
4

   

I
1
 I

2
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Rules for assuming the current direction and assigning voltage polarities to 

various loads (resistors) and sources (voltage sources) are as follows: 

 

1) As shown in the figure above, by convention, the currents are assumed 

to be emanating from the positive pole (positive electrode or anode) of 

the voltage source and are assumed to be terminating into the negative 

pole (negative electrode or cathode) of the voltage source. 

 

2) As shown in the figure above, the end or side of the resistor or load 

that the current enters from is labeled as positive. 

 

3) The polarity for a voltage source is assumed as encountered in the 

direction of current flow. 

 

Examination of the circuit above reveals that there are three loops in the 

given circuit. The left loop will be referred to as loop 1, the loop on the right 

segment of the circuit is loop 2. The third loop in this circuit is formed by the 

outer perimeter. We will focus on the first two loops to derive two equations 

for the determination of the two unknown currents. Assume that I1 is greater 

than I2. Conventionally, it is acceptable to make such assumptions as long as 

the assumptions are, strictly, adhered to in deriving all equations necessary for 

the solution.    

 

“Walking” loop 1, beginning at the negative terminal of the 24 V dc source, 

yields the following equation: 

 

-24V + V1 + V2 + 12V = 0       Eq. 2.9 

 

“Walking” loop 2, beginning at the negative terminal of the 12 V dc source, 

yields the following equation: 

 

-12V - V2 + V4 = 0        Eq. 2.10 

 

Based on Ohm’s Law: 

 

V1 = (I1).(1) = I1      Eq. 2.11 

V4 = (I2).(4) = 4I2      Eq. 2.12 

V2= (I1 - I2).(2) = 2.(I1 - I2)     Eq. 2.13 
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Then, by substituting Eq. 2.11, Eq. 2.12 and Eq. 2.13 into Eq. 2.9 and 

Eq. 2.10, we get: 

 

-24 + I1 + 2.(I1 - I2) + 12 = 0      

 3I1 - 2I2 = 12       Eq. 2.14 

 

-12 - 2.(I1 - I2) + 4I2 = 0    

 -2I1 + 6I2 = 12       Eq. 2.15 

 

Equations 2.14 and 2.15 represent the two simultaneous equations that 

were needed to solve for currents I1 and I2. These equations will be solved 

simultaneously to determine the values of I1 and I2.  

 

 3I1  - 2I2  = 12      Eq. 2.14 

-2I1 + 6I2  = 12      Eq. 2.15 

 

For simultaneous equation solution, multiply left hand side and the 

right hand side of Eq. 2.14 by 3 and add it to Eq. 2.15: 

 

 9I1  - 6I2  = 36       

-2I1 + 6I2  = 12 

          7I1  = 48 

 I1  = 6.86 Amps 

 

Then, by substituting this value of I1 into Eq. 2.15 yields: 

-2(6.86) + 6I2  = 12 

Or, 

 I2  = 4.29 Amps 

 

Note: The values of unknown currents I1 and I2 can also be determined 

by applying Cramer’s Rule to Eq. 2.14 and 2.15, in matrix format, and linear 

algebra. 

 

Circuit analysis using Cramer’s Rule and Linear Algebra 

Cramer’s Rule can be applied to solve for unknowns, in lieu of 

simultaneous equations or substitution methods, after set of equations have 

been formulated using the loop analysis method described above. Since the 
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Cramer’s Rule involves matrices and linear algebra, it is the method that 

electrical circuit analysis computer software is premised on. The application 

of Cramer’s Rule is illustrated through Example 2.8 below. 

 

Example 2.8 

The values of all known parameters for the following multi-loop circuit are 

listed in the table below. Find the values of currents I1, I2, and I3. 

 

 

R1 10 

R2 2 

R3 3 

R4 4 

R5 7 

R6 3 

R7 5 

V1 20 

V2 5 

V3 12 
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Solution: 

In this example, the fundamental strategy, conventions and principles 

needed to calculate the three unknown currents I1, I2 and I3 would be the same 

as the ones described in Example 2.4. The obvious difference is that this 

circuit has a total of four loops – including the outermost loop – and has three 

unknown variables in form of currents I1, I2 and I3. Therefore, we will need a 

minimum of three equations. Those three equations, as before, are derived by 

applying the Kirchhoff’s Voltage Law to each of the three inner loops. The 

voltage drops across each of the load components (or resistors) are defined on 

the basis of the Ohm’s law, V = I.R. 

 

Before we embark on the formulation of current computation 

equations, let’s ensure that the circuit is in its most simplified form. In that 

vane, by inspection, we notice that the two series resistors in the bottom loop, 

R2 and R7, can be added together or combined as follows: 

 

R2-7 = R2 + R7 

 

This simplification and assignment of voltage drop polarities results in the 

following circuit schematic: 

 
Application of KVL in loop 1, with the assumptions that I1 > I2 and I3, and 

I2 > I3 yields: 
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I1R1 - V1 + (I1 + I2) R5 + (I1 - I3)R4 = 0 

I1R1 - V1 + I1R5 + I2R5 + I1R4 - I3R4 = 0 

(R1 + R5 + R4) I1 + I2R5  - I3R4  = V1    Eq. 2.16 

 

Application of KVL in loop 2, maintaining the assumption that I1 > I2 and 

I3, and I2 > I3 yields:    

 

- V2 + I2R3  + (I1 + I2)R5  – V3 + (I2 + I3)R6  = 0 

- V2 + I2R3  + I1 R5 + I2R5  – V3 + I2R6+ I3R6  = 0 

R5I1  + (R3 + R5 + R6)I2  + I3R6  = V2 + V3   Eq. 2.17 

 

Application of KVL in loop 3, maintaining the assumption that I1 > I2 and 

I3, and I2 > I3 yields:    

 

I3R2-7  - (I1 - I3)R4 –V3 + (I2 + I3)R6 = 0 

I3R2-7  - I1R4 + I3R4 –V3 + I2 R6 + I3R6  = 0 

- R4 I1+ R6 I2 + (R4 + R6 + R2-7) I3 = V3     Eq. 2.18 

 

The three simultaneous equations thus derived are: 

(R1 + R5 + R4)I1  + R5I2 - R4I3  = V1    Eq. 2.16 

R5I1  + (R3 + R5 + R6)I2  + R6I3  = V2 + V3   Eq. 2.17 

- R4 I1+ R6I2 + (R4 + R6 + R2-7) I3 = V3     Eq. 2.18 

 

Substitution of the given resistor and voltage source values into Eq. 2.16, 

Eq. 2.17, and Eq. 2.18 yields the following simultaneous equations: 

 

21I1  + 7I2 - 4I3  = 20     

7I1  + 13I2  + 3I3  = 17    

- 4 I1 + 3I2 + 14 I3 = 12    

 

Apply the Cramer’s rule to solve for the three unknown currents I1, I2 and 

I3. The augmented matrix thus developed would be: 

 

  21 7 -4 20  

  7 13 3 17  

  -4 3 14 12  
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The coefficient matrix, denoted as A, would be: 

 

 

 

  21 7 -4 

  7 13 3 

  -4 3 14 

 

The determinant of the coefficient matrix, denoted as A, would be: 

 

A = 21{(13x14) - (3x3)} – 7{(7x14) - (-4x3)} - 4{(7x3) - (-4x13)} = 2571 

 

The determinant of the substitutional matrix, A1, for determining the 

value of I1, is denoted as A1, and  

 

  20 7 -4 

 A1 = 17 13 3 

  12 3 14 

 

A1 = 20{(13x14) - (3x3)} – 7{(17x14) - (12x3)} - 4{(17x3) - (12x13)} = 

2466 

 

The determinant of the substitutional matrix, A2, for determining the 

value of I2, is denoted as A2, and  

 

  21 20 -4 

 A2 = 7 17 3 

  -4 12 14 

 

A2 = 21{(17x14) - (12x3)} – 20{(7x14) - (-4x3)} - 4{(7x12) - (-4x17)} = 

1434 
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The determinant of the substitutional matrix, A3, for determining the 

value of I3, is denoted as A3, and  

 

  21 7 20 

 A3 = 7 13 17 

  -4 3 12 

 

 

A3 = 21{(13x12) - (3x17)} – 7{(7x12) - (-4x17)} + 20{(7x3) - (-4x13)} 

 = 2601 

 

Applying the Cramer’s rule, the unknown variables, currents I1, I2 and 

I3, can be calculated by dividing the determinants of substitutional matrices 

A1, A2 and A3, respectively, by the determinant of the coefficient matrix A.  

 

Therefore,  

1
1

A 2466
I    = 0.959 A

A 2571
   

2
2

A 1434
I    = 0.558 A

A 2571
   

3
3

A 2601
I    = 1.012 A

A 2571
   

 

Diodes 

A diode, unlike its “functional” predecessor - the vacuum tube rectifier 

- is constructed out of semiconductor materials such as silicone, germanium, 

gallium arsenide, etc. While a semiconductor is not a good conductor at room 

temperature, it doesn’t fall distinctly in the category of insulators, such as, 

glass, ceramics, urethanes, plastics, PVC’s, etc. A semiconductor can, 

however, be transformed into a “partially” or “selectively” conductive 

substance through a process called “doping.” The term doping implies 

addition of “impurities” into a pure substance like silicone. If these impurities 

are added to create a region with a predominant concentration of negative 

charge carriers, or electrons, the end result would be the formation of a region 

called n-type semiconductor. At the same time, if impurities are added 
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adjacently, to create a region with predominant positive charge carriers, or 

holes, a p-type semiconductor is formed. The plane where the p and n doped 

materials interface with each other is called the p-n junction. A p-n junction 

is where the essential function of a diode takes place in response to the 

application of proper voltage. 

 

A diode can be viewed as a device that functions as an electronic 

“check valve.” As we know, the function of a check valve, in mechanical or 

hydraulic systems, is to permit the flow of fluids in one specific direction. In 

other words, an attempt by the fluid to move in the reverse direction is 

blocked by a check valve. A diode performs the same function in the flow of 

current. A diode permits the flow of current only from a higher voltage (or 

electrical potential) point in an electrical circuit to a lower voltage or ground 

potential point. This unidirectional behavior is called rectification, and this 

function of a diode finds a common application in the conversion of 

alternating current (AC) to direct current (DC). Common application of diodes 

in rectifiers and other equipment are discussed later in this segment.  

 

The symbol and drawing of common circuit board type diode are shown in 

Figure 2.1. 

 
Figure 2.1: Symbol, diagram and schematic of a basic diode circuit. 

 

The left side of the diode, labeled “Anode” is normally connected to the 

positive or higher voltage point in the circuit. The right side of the diode, 

labeled “cathode,” on the other hand, is normally connected to the ground, 

negative, or lower potential point in the circuit. When a diode is connected in 

this manner, it is said to be forward biased. As apparent from the diagram of a 

typical diode in Figure 2.1, a band on one side of the diode denotes the 

cathode side of the diode. If, however, the voltage is reversed such that the 

anode of the diode is connected to the negative voltage potential and the 
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cathode is connected to the positive potential, the diode is said to be reverse 

biased.  The current response of a diode in forward and reverse bias modes of 

operation is depicted in Figure 2.2. 

 

 
 

Figure 2.2: Current response of a diode in forward and reverse bias modes 

 

In Figure 2.2, VD represents the forward bias voltage. Forward bias voltage of 

a diode is the voltage at which the diode begins to conduct current; or is the 

voltage where the diode is said to be “turned on.” A diode can be perceived as 

a “self-actuating” electronic switch, as well. The forward bias voltage, VD, is 

approximately, 0.7V for silicone type diodes and 0.3 volts for germanium 

diodes.  

 

As depicted in Figure 2.2, when a diode is reverse biased the amount of 

current (or reverse current) it conducts is negligible, until the magnitude of the 

reverse bias voltage approach approaches VBR, breakdown voltage. The 

breakdown voltage is also called the VPIV, Peak Inverse Voltage or VPRV, 

Peak Reverse Voltage. The reverse voltage is considerably higher than the 

forward bias voltage; approximately ten times the magnitude of VD. Although, 

technically, all diodes are capable of rectifying AC, the term “rectifier” is 

essentially reserved for diodes designed to operate at currents in excess of 1A, 

and therefore, utilized frequently to convert AC into DC. Conventionally, the 

term diode refers to applications involving currents less than or equal to 1A. 
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Special Purpose Diodes 

Two of the most common, special purpose, diodes that find 

applications in mainstream electrical or electronic equipment, i.e. Variable 

Frequency Drives, Inverters or Converters are SCR’s and Zener Diodes. 

 

SCR: The acronym “SCR” stands for “Silicone Controlled Rectifier,” or 

“Semiconductor Controlled Rectifier.” These specialty diodes are also 

referred to as “thyristors.” Schematic of an SCR is shown in Figure 2.3. 

 

 
Figure 2.3: Symbol or diagram for an SCR or Thyristor 

  

As apparent in Figure 2.3, an SCR differs from a regular diode, 

mainly, due to an added feature called the “gate.” The gate serves as “trigger” 

or “firing” mechanism for an SCR. Specific voltage application at the gate 

triggers or “pulses” the SCR on, and allows the current to flow. The diode 

portion of the SCR continues to conduct after the gate voltage dissipates. The 

SCR, or diode portion of the SCR, stops conducting once the forward bias 

voltage drops below the threshold voltage, VD.  

 

SCR’s are mainly used in devices associated with the control of high 

power and high voltage. Their innate characteristic and mode of operation 

makes them suitable for use in medium to high-voltage AC power control 

applications, such as lamp dimming, regulators and motor control. Thyristors 

are also commonly used for rectification of high power AC in high-voltage 

direct current power transmission applications. They are also used in the 

control of welding machines. 

 

Zener Diode: Zener diodes are similar, in construction, to basic diodes. The 

key difference is that Zener diodes, unlike regular diodes, are capable of 

recovering from avalanche reverse bias break down mode when the reverse 

bias is removed. Therefore, as a mechanical analogy, one could compare zener 
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diodes to “relief valves” that open under abnormally high pressure, and 

reinstate their normal blocking function once the pressure subsides to a 

nominal level. The Zener diode is named after Clarence Zener, who 

discovered its electrical property. The symbol or electronic representation of a 

Zener diode is depicted in Figure 2.4. 

 

 
 

Figure 2.3: Symbol and diagram for Zener diode 

 

A Zener diode allows current to flow in the forward direction in the same 

manner as an ideal diode, but will also permit it to flow in the reverse 

direction when the voltage is above the breakdown voltage. The breakdown 

voltage is also referred to as the "zener knee voltage," "zener voltage" or 

"avalanche point". Because of this basic characteristic of a Zener diode, it is 

commonly used to provide a reference voltage for voltage regulators, or to 

protect other semiconductor devices from momentary voltage pulses or 

excessive voltage “spikes.” The current response of a Zener diode is shown in 

Figure 2.4. 

 
 

 Figure 2.4: Current Response of a Zener diode 
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Common Applications of Diodes 

Some common applications of diodes are as follows: 

 

1) Half wave rectifier 

2) Full wave rectifier 

3) Clamping circuit 

4) Base clipper 

5) Peak clipper 

 

Among the diode applications listed above, the two most common ones 

are (1) Half Wave Rectifier and (2) Full Wave Rectifier. These two 

applications are explored below. 

 

Half Wave Rectifier 

Half wave rectifier is a circuit consisting of two core components, a 

diode and resistor. See Figure 2.5(a). As shown in Figure 2.5(a), the 

sinusoidal AC waveform is applied to the input side of the diode-resistor 

circuit. The diode, as shown in Figure 2.5(b), is the core “active” component. 

A half wave rectifier circuit banks on the innate characteristic of a diode to 

allow current to flow only “one-way,” in the forward biased direction. In other 

words, the diode permits the current to flow only during the positive half of 

the AC cycle. When the AC voltage “dives” into the negative realm - acting as 

a “check valve” - the diode shuts off the flow of current. This response of the 

diode is plotted graphically in Figure 2.5 (c), in form of a series of positive 

wave crests; average of which, represents the DC voltage produced. 
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Figure 2.5: Half wave rectifier 

 

Note, however, that half wave rectifiers only produce one positive DC 

crest per AC cycle. The DC output of a half wave rectifier can be computed 

through Eq. 2.19. 

 

p

dc

V
V  

π
       Eq. 2.19 

 

Full Wave Rectifier 

Common full wave rectifier is a circuit consisting of four diodes and a 

resistor. See Figure 2.6.The sinusoidal AC waveform applied to the input side 

of the four diode bridge and resistor circuit is shown in Figure 2.6(a). The 

four diode bridge configuration shown in Figure 2.6(b) is the essential power 
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conversion segment of the overall full wave bridge rectifier circuit. When AC 

voltage is applied between terminals A and B on the input side of the diode 

bridge, as Vin, the positive crest of the sinusoidal waveform drives current 

through terminal A, diode CR1, resistor R, diode CR4 to terminal B. During 

this positive crest initiated flow of current, diodes CR1 and CR4 are forward 

biased. As the current assumes this course, it “drops” a positive “half” wave 

across the resistor, or terminals C and D. This positive DC crest is the first 

crest from the left, in Figure 2.6(c). During the positive half of the AC cycle, 

diodes CR2 and CR3 are reverse biased; therefore, they do not conduct, and 

no current flows through the CR2, R and CR3 path.  

 

During the negative half of the AC cycle, diodes CR1 and CR4 are reverse 

biased and no current flow through them. However, because terminal A is 

negative during the negative half of the AC cycle, diodes CR2 and CR3 are 

forward biased and the current flow is driven from terminal B, through diode 

CR3, resistor R, diode CR2. This path of current flow also results in a positive 

voltage drop, or positive voltage crest across terminals C and D. This positive 

DC crest is represented by the second crest in Figure 2.6(c). Therefore, one 

AC cycle on the Vin side results in two positive crests on the Vout side. The 

average value of the positive crests shown in Figure 2.6(c) represents the DC 

output of this full wave bridge rectifier circuit. Of course, the DC output in 

most DC power supplies is refined or corrected into a straight line form 

through application of resistors, capacitors and inductors. The formula for full 

wave rectified DC voltage is represented by Eq. 2.20. 

 

p

DC

V
V  2.

π

 
   

 
     Eq. 2.20 
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Figure 2.6: Full wave rectifier 

 

Transistors: 

Similar to diodes, transistors are semiconductor devices. The approach 

to constructing transistors is similar to the approach used for fabrication of 

diodes. The “n and “p” doping approach employed with the construction of 

transistors is shown in Figure 2.7. As somewhat evident from Figure 2.7, a 

transistor – functionally, and from a construction point of view – appears as a 

set of two diodes connected “back to back.” There are many types of 

transistors. In this text, we will focus on the type of transistors referred to as 

the “bipolar” or FET, Field Effect Transistors. Within the bipolar junction 

transformer category, there are two sub-categories: The “npn” and the “pnp” 
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transistors. We will limit our discussion to the introduction of npn type 

transistors in this text.  

 
Figure 2.7: Bipolar (FET) junction, npn transistor 

 

Unlike the diode, an npn transistor consists of three “doped” zones: (a) An 

n-doped segment that known as the “collector,” (b) A center p-doped segment 

referred to as the “base,” and (c) A second n-doped segment known as the 

“emitter.” See the bottom section of Figure 2.7 for the relative location and 

the construction of an npn transistor. The interface lines where the collector 

base and the base to emitter regions meet are referred to as the n-p, collector 

to base junction, and the p-n, base to emitter junction, respectively. As shown 

in Figure 2.7, in a normal npn transistor application, the collector to base 

junction is reverse biased and the base to emitter junction is forward biased. 

As shown in Figure 2.7, common configuration and application of a transistor 

resembles a back to back connection of two diodes; the one on the left being 

reverse biased and the one on the right, forward biased. 

 

The symbol used to represent a transistor in an electrical or electronic 

circuit is depicted in the top segment of Figure 2.7, with proper labeling of the 

three terminals of the transistors, in terms of collector, base and emitter. 
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Common application of FET, bipolar junction transistors 

Application of a transistor in a typical “output module” of a PLC: A 

transistor can be applied as an “electronic switch” to execute a PLC 

microprocessor command in the field. This is illustrated in form of a transistor 

based PLC output, operating a solenoid valve, as shown in Figure 2.8. 

Applying ample positive bias to the left of R1 will turn “on” the npn transistor, 

causing a “short” to ground. This permits the current to flow through the 

solenoid coil. Flow of current through the solenoid coil generates magnetic 

flux through the core of the coil, thus applying magnetic force on the 

“plunger” or “pin” in the core of the solenoid coil. Depending on the design of 

the solenoid, the magnetic force can either open or close the solenoid valve.  

 

 
 

Figure 2.8: Bipolar (FET) junction application in a PLC output module 

 

Electronic device applications on printed circuit boards 

This section is designed to provide a brief introduction to a common 

printed circuit (PCB) board and an assortment of common electronic devices 

typically installed on a PCB to perform control, monitoring and data 
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collection functions. Some of the electronic and electrical devices identified 

on this board are explained in greater detail in the preceding and subsequent 

segments.  

 

The devices pin pointed in Figure 2.9 are listed below, in clockwise order, 

beginning from the top right corner: 

 

1. A toroid type inductor or coil applied for DC power refining and filtering 

purpose. 

2. DC voltage regulator applied for voltage regulation purposes.  

3. Solid state logic gate integrated circuit micro-chip applied to perform 

logic, algorithm and computations for control purposes. This type of IC 

consists of logic gates such as OR gates, NOR gates, Exclusive OR gates, 

AND gates, NAND gates, Flip Flops, etc. 

4. A typical, low voltage electrical fuse for protection of the board and 

upstream power source against faults and shorts. 

5. A transistor, with collector, base and emitter pins visible to the right.  

6. A diode, labeled using the conventional “CR” prefix based nomenclature. 

7. A typical “proprietary” integrated circuit (IC) device. While the 

functional specifications of such devices are made available to electronic 

control engineers for application purposes, the contents and design of such 

devices are, typically, kept confidential and are not published. 
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Figure 2.9: Electrical and electronic devices on a printed circuit board- I 

 

Figure 2.10 depicts another segment of the same printed circuit control 

board. The devices noted in this segment of the control board, in clockwise 

order, beginning from the top right corner are: 

 

1. Power transistor, npn (or NPN); with collector current rating of 30A at 

40V, capable of switching at a maximum frequency 200kHz. Maximum 

power rating of 150W DC. The black heat dissipating fins surrounding the 

power transistor are designed to radiate waste heat and to protect the 

transistor against overheating. 

2. A low wattage resistor with visible color coded bands identifying the 

resistance value and the tolerance specification of the resistor.  

3. Higher wattage ceramic resistor. Notice the remarkable difference in the 

physical size and construction of this higher wattage and higher operating 

temperature ceramic resistor and its lower wattage counterpart described 

above. The ceramic resistor in Figure 2.10 is encased in a ceramic 

enclosure to withstand higher temperature and heat. 

4. A capacitor. 

5. A row of LED’s designed to annunciate the state of various inputs 

received and outputs transmitted to electrical and electronic equipment 

in the field. Each of the output terminals represents a hardware based 

command from on-board controls out to the field. 
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Figure 2.10: Electrical and electronic devices on a printed circuit board- II 

 

An important feature that is instrumental in minimizing the time it takes to 

replace a control board, in case of board malfunction, is the “quick 

connect/disconnect” type terminal strip – labeled as (1) – shown on the right 

side to the control board (PCB), as shown in Figure 2.11. Prior to the advent 

of this quick connect/disconnect type terminal strip, board replacement 

required meticulous examination and care in reading the electrical drawings, 

identification of each wire and terminal, and finally, exercise of proper 

craftsmanship in termination of wires to ensure correct and reliable electrical 

connections. The lack of such diligence resulted in miswiring, electrical faults, 

extensive troubleshooting period, prolonged commissioning time, etc. 

 

When disconnecting a control board, the quick connect/disconnect 

terminal strip, shown in Figure 2.11, allows technicians and engineers to 

simply pull off the connector, with reasonable certainty that wires will remain 

securely intact for quick reinstallation. Since all wires normally remain 

terminated in the connector, once the new (replacement) board is physically 

secured in place, the connector is pushed or plugged onto the connecting edge 

of the new board. Note that the circuit boards and respective connectors are, 

typically, equipped with an interlocking feature to prevent incorrect 
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orientation of the connector. As obvious, incorrect insertion of the connector 

onto the board can result in electrical faults and damage to the electrical 

devices. 

 

The picture of the circuit board in Figure 2.11 also shows a set of two 

LED’s, labeled as item (2). These LED’s serve as indicators of certain control 

conditions or signals. 

 

 
 

Figure 2.11: Electrical and electronic devices on a printed circuit board- 

III 

 

Three devices pointed out on the circuit board pictured in Figure 2.12 are 

as follows: 

 

1. A large size circuit board capacitor  

2. Higher wattage ceramic resistor. Notice the legend on the right side of the 

resistor. Typically, this legend includes the resistance value and power 

capacity specifications. 

3. Metal oxide varistor, rated 100J (100 Joules) and 1kVA. Metal oxide 

varistor, also referred to as MOV, serves as stray energy arresting device 

on electronic circuits and electrical systems, in general. In this capacity, an 

MOV serves to absorb voltage spikes and rogue energy that might 

otherwise spread around various parts of a circuit board or electrical 
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control system. Stray energy or voltage spikes, left unchecked, can 

damage integrated circuits, or IC semiconductor chips. IC’s are relatively 

sensitive. They operate at low voltages, typically, at around 5 volts DC.  

The MOV in this particular case, as visible in the picture, is designed to 

absorb a maximum of 100 Joules of electrical energy. The “rate of 

absorption of this energy,” or the power absorption capacity, is labeled on 

the MOV as 1kVA; to be exact, the apparent power (S) rating of this 

MOV is 1,000 volt amperes. 

 

 
 

Figure 2.12: Electrical and electronic devices on a printed circuit board- IV 
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Self-assessment Problems & Questions – Segment 2 

 

1. Determine the following for the DC circuit shown below if R1 = 5, R2 = 

R3=10, and R4 = R5 = 20: 

a) Current flowing through resistor R1    

b) Voltage across resistor R5 

 

 

 

 
 

2. What is the current through the 6 Ω resistor in the circuit shown below? 

 

 
 

3. Find the current through the 0.5 Ω resistor in the circuit shown below. 
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4. Determine the value of currents I1, I2 and I3 in the circuit shown below if the 

voltage source V3 fails in short circuit mode. The specifications of all 

components are listed in the table below: 
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Resistor Specifications: 

 

R1 10 

R2 2 

R3 3 

R4 4 

R5 7 

R6 3 

R7 5 

V1 20 

V2 5 

V3 12 

 

 

5. Use current division to determine the value of current I1 in the circuit 

below: 

 
 

6. Using Kirchhoff’s voltage law, calculate the current circulating in the series 

resistor network below:  
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7. Determine the value of voltage source current in the parallel circuit below 

using KCL, Kirchhoff’s Current Law. 

 

Ancillary question: If one of the 5 resistors is removed (or replaced with an 

open circuit) and the other one is replaced with a short circuit, what would be 

the source current? 
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APPENDICES 
 

Appendix A 

Solutions for Self-Assessment Problems 
 

This appendix includes the solutions and answers to end of segment self-

assessment problems and questions.  

 

MADE AVAILABLE UPON PURCHASE OF COURSE 

 

 

 

Appendix B  

Common Units and Unit Conversion Factors 
 

MADE AVAILABLE UPON PURCHASE OF COURSE 

 

 

 

Appendix C 

Greek Symbols Commonly Used in Electrical 

Engineering 
 

MADE AVAILABLE UPON PURCHASE OF COURSE 


