

Basic PLC Programming

program-plc.blogspot.com Page 1

Table of Contents

Cover eBook

Table of Contents …………………………………………………………………………1

Chapter 1 PLC Introduction

1.1 Introduction …………………………………………………………………………….4

1.2 Areas of application of a PLC ………………………………………………………….5

1.3 Basic design of a PLC ………………………………………………………………….7

1.4 The new PLC standard EN 61131 (IEC 61131) ……………………………………….9

Chapter 2 Design and mode of operation of a PLC

2.1 Structure of a PLC …………………………………………………………………….10

2.2 Function mode of a PLC …………….......…………………………………………….13

2.3 Application program memory …………………………………………………………13

2.4 PLC and IO Devices ……………..............……………………………………………14

Chapter 3 Programming of a PLC

3.1 Systematic solution finding …………………………………………………………..16

3.2 EN 61131-3 (IEC 61131-3) structuring resources ……………………………………18

3.3 Programming languages ………………………………………………………………19

Chapter 4 PLC Programming Language

4.1 Function block diagram ………………………………………………………………23

4.2 Ladder diagram ………………………………………………………………………26

4.3 Instruction list ………………………………………………………………………..28

4.4 Structure text …………………………………………………………………………30

4.5 Sequential function chart …………………………………………………………….32

Chapter 5 Omron PLC Programming

5.1 Introduction to Omron PLC Programming ………………………………………….34

 5.1.1 What is Control System? ………………………………………………….34

Basic PLC Programming

program-plc.blogspot.com Page 2

 5.1.2 The Role of the Programmable Controller ……………………………….34

 5.1.3 Input and output devices ………………………………………………….35

 5.1.4 What is Programmable Controller? ……………………………………….36

 5.1.5 PLC Panel and their Advantages …………………………………………37

5.2 CP1L Overview

 5.2.1 CP1L Models ……………………………………………………………..39

 5.2.2 System Components ………………………………………………………42

5.3 Creating Programs

 5.3.1 Creating Ladder Programs ………………………………………………..43

 5.3.2 Using CX-Programmer ……………………………………………………47

Chapter 6 Mitsubishi MELSEC-F Programmable Controller

6.1 Introduction to FX Series Programmable Controller

 6.1.1 Overview …………………………………………………………………51

 6.1.2 FXon CPU versions ………………………………………………………51

 6.1.3 Programming equipment ………………………………………………….52

6.2 Basic Program Instructions

 6.2.1 What is a program? ………………………………………………………53

 6.2.2 Start Programming GX Developer ……………………………………….54

 6.2.3 Outline of basic devices used in programming …………………………..56

 6.2.4 How to read ladder logic …………………………………………………57

6.3 STL Programming

 6.3.1 What are STL, SFC and IEC1131 ……………………………………….57

 6.3.2 How STL operates ……………………………………………………….58

 6.3.3 How to start and end an STL program …………………………………..59

Chapter 7 Siemens PLC Programming

7.1 Installing the S7-200 CPU 210 ……………………………………………………62

7.1.1 Installing a CPU 210 ……………………………………………………62

Basic PLC Programming

program-plc.blogspot.com Page 3

 7.1.2 Installing the STEP 7-Micro/WIN Version 2.0 Software ………………64

 7.1.3 Creating a Program ……………………………………………………66

Chapter 8 GE Fanuc Series 90 Micro PLC

8.1 Functional Description …………………………………………………………..73

8.2 Configuration and Programming ……………………………………………......79

8.3 Fault Reporting ………………………………………………………………….84

8.4 Specifications ……………………………………………………………………84

Chapter 9 Allen Bradley MicroLogix 1000 PLC Programming

9.1 Using Basic Instructions ………………………………………………………..89

9.2 Using Comparison Instructions …………………………………………………100

References …………………………………………………………………………104

Support Me ..105

Basic PLC Programming

program-plc.blogspot.com Page 4

Chapter 1

PLC Introduction

1.1 Introduction

A group of engineers General Motors in 1968 was developed the first Programmable Logic

Controller (PLC), when the companies were in search of an alternative to substitute complex

relay control systems. The new control system had to meet the following requirements:

 Simple programming

 Program changes without system intervention and there is no internal rewiring

 Simple, low cost maintenance

 Smaller, cheaper and more reliable than corresponding relay control systems

Consequent development resulted in a system, which allowed the binary signals simple

connection. The conditions as to how these signals were to be linked were identified in the

control program. It became feasible for the first time to plan signals on a display and to file

these in electronic memories in this new systems.

Three decades have left behind, during which the massive progress developed in the

microelectronics development did not stop short of PLC. For example, even if program

Basic PLC Programming

program-plc.blogspot.com Page 5

optimization and hence a reduction of required capacity of memory firstly still characterized

a vital key task for the programmer, currently this is hardly of any importance.

Furthermore, the functions range has grown significantly. Some years ago, analogue

processing, process visualization or even the PLC utilization as a controller, were considered

as Utopian. Presently, these functions support forms a fundamental part of many PLCs.

1.2 Areas of application of a PLC

Every machine or system has a controller. Dependent on the technology type used,

controllers can be separated into hydraulic, pneumatic, electronic and electrical controllers.

Often, a mixture of different technologies is applied. Moreover, differentiation is created

between hard-wired programmable (e.g. wiring of electro-mechanical or electronic

components) and PLCs. The initial is utilized principally in cases, where any reprogramming

by the user is out of the query and the task size guarantees the development of a special

controller.

Characteristic applications for such controllers can be found in cars, video cameras, and

automatic washing machines. Nevertheless, if the task size does not guarantee the

development of a special controller or if the user is to include the facility of setting timers

and counters, or of making easy or independent program changes, then a universal controller

use, where the program is written to a memory of electronic, is the ideal option? The PLC

Basic PLC Programming

program-plc.blogspot.com Page 6

stands for such a universal controller. It can be applied for different applications and, through

the program installed in its memory, offers the user with an easy means of changing,

expanding and optimizing control processes.

The creative task of a PLC engaged the input signals interconnection along with a specified

program and, if "true", to switch the corresponding output. Boolean algebra forms the basis

of mathematical for this operation, which recognizes accurately two defined statuses of one

variable: "0" and "1". Consequently, an output can only think these two statuses. For

example, a linked motor could thus be either switched on or off, i.e. controlled.

This function has coined the name PLC: Programmable logic controller, i.e. the behavior of

input/output is related to that of a pneumatic switching valve or electromagnetic relay

controller; the program is saved in a memory of electronic. However, the PLC tasks have

quickly multiplied: the functions of timer and counter, setting and resetting of memory,

mathematical computing operations all stand for functions, which can be implemented by

practically any of PLCs nowadays.

The requirement to be met by PLC‘s continued to grow up in line with their speedily

spreading usage and the automation technology development. Visualization is the

representation statuses of machine for instance the control program being executed, through

display or monitor. Also controlling, i.e. the facility to intervene in control processes or,

alternatively, to make such intervention by unauthorized persons impossible. It also became

required to interconnect and harmonize individual systems controlled via PLC by means of

automation technology. Therefore a master computer makes easy the means to issue higher-

level commands for program processing to some PLC systems.

The networking of some PLCs as well as that of a master computer and PLC is affected

through special communication interfaces. To this effect, a lot of the more current PLCs are

well-matched with open, standardized bus systems, for instance Profibus to EN 50170.

Basic PLC Programming

program-plc.blogspot.com Page 7

End of the seventies, binary inputs and outputs were finally extended with the analogue

inputs and outputs addition, since many of today‘s technical applications need analogue

processing such as speed setting, force measurement, servo-pneumatic positioning systems.

At the same time, the analogue signals acquisition or output allows an actual/set point value

comparison and as a result the automatic control engineering realization functions, a task,

which broadly exceeds the scope suggested by the name as programmable logic controller.

The PLCs presently on offer in the market place have been modified to customer demands to

such an extent that it has become possible to buy a highly suitable PLC for virtually any

application. As such, miniatures PLCs are currently available with a minimum number of

inputs/outputs beginning from just a few hundred Pounds. Also available are larger PLCs

with 28 or 256 inputs/outputs. A lot of PLCs can be extended by means of additional

input/output, positioning, communication and analogue modules. Special PLCs are available

for shipping or mining, safety technology tasks. Yet further PLCs are capable to process

numerous programs concurrently or multitasking. Lastly, PLCs are coupled with other

automation components, accordingly creating significantly wider areas of application.

1.3 Basic design of a PLC

The programmable logic controller (PLC) term is defined by EN 61131-1 (IEC 61131-1): ―A

digitally operating electronic system, designed for use in an industrial environment, which

uses a programmable memory for the internal storage of user-oriented instructions for

implementing specific functions such as logic, sequencing, timing, counting and arithmetic,

Basic PLC Programming

program-plc.blogspot.com Page 8

to control, through digital or analogue inputs and outputs, various types of machines or

processes. Both the PC and its associated peripherals are designed so that they can be easily

integrated into an industrial control system and easily used in all their intended functions."

A PLC is consequently nothing more than a computer, modified specifically for firm control

tasks. The input module function is to convert incoming signals into signals, which can be

processed by the PLC, and to pass these to the central control unit. The reverse task is

executed by an output module. This converts the PLC signal into signals appropriate for the

actuators. The actual signals processing is affected in the central control unit in compliance

with the program saved in the memory. The PLC program can be created in a variety of

methods: through assembler kind instructions in ‘statement list‘, in higher-level, problem-

oriented languages for example structured text or in the form of a flow chart such as

represented by a sequential function chart. In Europe, the use of function block diagrams

based on function charts with graphic symbols for logic gates is extensively used. In

America, the ladder diagram is the chosen language by users.

Depending on how the central control unit is linked to the modules of input and output,

differentiation can be created between compact PLCs (input module, central control unit and

output module in one housing) or modular PLCs.

Basic PLC Programming

program-plc.blogspot.com Page 9

1.4 The new PLC standard EN 61131 (IEC 61131)

Before valid PLC standards focusing mostly on PLC programming were usually geared to

current state of the technology of art in Europe at the end of the seventies. This took into

account non-networked systems of PLC, which mainly perform logic operations on binary

signals. Previously, no comparable, standardized language parts existed for the developments

of PLC and system expansions created in the eighties, for example interconnection of

intelligent modules, processing of analogue signals, networked PLC systems etc.

accordingly, and PLC systems by different manufacturers required totally different

programming. Since 1992, an international standard now exists for programmable logic

controllers and associated peripheral devices (programming and diagnostic tools, testing

equipment, man-to-machine interfaces etc.). In this context, a device built by the user and

consisting of the above components is known as a PLC system.

The new EN 61131 (IEC 61131) standard consists of five parts:

 Part 1: General information

 Part 2: Equipment requirements and tests

 Part 3: Programming languages

 Part 4: User guidelines (in preparation with IEC)

 Part 5: Messaging service specification (in preparation with IEC)

Basic PLC Programming

program-plc.blogspot.com Page 10

Chapter 2

Design and mode of operation of a PLC

2.1 Structure of a PLC

The PLC which is being a device of microprocessor based, has an analogous internal structure to

a lot of embedded computers and controllers. They comprise the devices of CPU, Memory and

I/O. These components are integral to the controller of PLC. In addition the PLC has a

connection for the Programming and Monitoring Unit, Program Recorder and Printer.

This is shown in a block diagram below:

Dependent on the PLC system type i.e. small, medium or large the component parts are all

housed in one compact unit (small PLC) or distributed. The distributed system has the module of

CPU/memory, I/O racks and remote I/O units which may be hundreds of meters away from the

main module of PLC. The larger units of PLC may also have analog units of input/output and

provision for extra complex control programs that support arithmetic and other complex

processes not initially present in relay logic controllers.

Basic PLC Programming

program-plc.blogspot.com Page 11

The key differences between PLCs and other microprocessor based devices are that PLC are

rugged design units for an industrial setting and are shielded for enhanced electrical noise

immunity. Additionally they are modular, allowing simple replacement and addition of units.

They support signal levels and standardized I/O connections are designed for the easy

programming, to let personnel unfamiliar with computer languages to program the PLCs in-

plant.

The capabilities of the systems PLC are not present in previous relay logic systems are the PID

control, analog I/O, and interfaces to a central PLC or a controlling computer.

PLC Components

The CPU utilized in a system of PLC is a standard CPU present in a lot of other microprocessor

controlled systems. The choice of the CPU depends on the process to be controlled. Generally 8

or 16 bit CPUs fulfill the requirements sufficiently.

A PLC system Memory is separated into the program memory which is generally saved in

EPROM/ROM, and the operating memory. The RAM memory is required for the program

operation and the input and output data temporary storage. Typical PLC systems memory sizes

are around 1 kb for small PLCs, few kbs for medium sizes and greater than 10 to 20 kb for larger

PLC depending on the requirements. A lot of PLC would support easy memory upgrades.

Basic PLC Programming

program-plc.blogspot.com Page 12

PLC Operation

The PLC operates internally in a way very similar to computers. The inputs are continuously

monitored and copied from the I/O module into RAM memory which is divided into the input

and output sections. The CPU steps through the control program in another section of the

memory and fetches the input variables from the input RAM. Depending on the program and the

state of inputs, the output RAM is filled with the control variables which are then copied into the

I/O module where they control the processes.

PLC Programming

One of the major benefits of the PLC controller is that it is a programmable device, which builds

it possible, unlike in the relay logic, to simply design and adapt the control program or process

without any changes in the wiring. To create the PLC systems programming easy and efficient,

industry standards defining the programming languages and the programming approach used

were adopted. This reduces the requirement for personnel training by creating a set of languages

standard for all platforms of PLC on the market. Knowing the PLC programming standards and

programming languages is consequently one of the most important considerations for anyone

involved in the area of PLC.

Basic PLC Programming

program-plc.blogspot.com Page 13

2.2 Function mode of a PLC

Modes of operation

A processor has basically 2 modes of operations. They are the program mode or some variation

of the Run mode. Program mode may be used to

 Enter a new program

 Upload and download files

 Edit or update existing program

 Change software configurations

 Document programs.

When the PLC is switched into the program mode, all outputs from PLC are forced off

regardless of their rung logic status and the ladder I/O scan sequence is halted.

Variations of the Run mode

 Run Mode – it is used to execute the user program. Input devices are monitored and

output devices are energized accordingly.

 Test Mode – it used to operate, or monitor the user program without energizing any

outputs.

 Remote Mode – it allows the PLC to be remotely changed between program and run

mode by a personnel computer connected to PLC processor.

2.3 Application program memory

Advanced ladder logic functions such as timers and counters allow controllers to perform

calculations, make decisions and do other complex tasks. They are more complex than basic

input contacts and output coils and they rely upon data stored in the memory of the PLC. The

memory of the PLC is organized to hold different types of programs and data. This chapter will

discuss these memory types.

The memory in a PLC is divided into program and variable memory. The program memory

contains the instructions to be executed and cannot be changed while the PLC is running. (Note:

Basic PLC Programming

program-plc.blogspot.com Page 14

some PLCs allow on-line editing to make minor program changes while a program is running.)

The variable memory is changed while the PLC is running. In ControlLogix the memory is

defined using variable names (also called tags and aliases).

The PLC has a list of ‘Main Tasks‘ that contain the main program(s) run each scan of the PLC.

Additional programs can be created that are called as subroutines. Valid program types include

Ladder Logic, Structured Text, Sequential Function Charts, and Function Block Diagrams.

Program files can also be created for ‘Power-Up Handling‘ and ‘Controller Faults‘. The power

up programs are used to initialize the controller on the first scan. In previous chapters this was

done in the main program using the ‘S:FS‘ bit. Fault programs are used to respond to specific

failures or issues that may lead to failure of the control system. Normally these programs are

used to recover from minor failures, or shut down a system safely.

2.4 PLC and IO Devices

 Main CPU applications can utilize the Atmel SAM9 family, which enables developers to

reduce the cost of the main CPU board without compromising on the system performance

and functionality.

 IO modules (digital, analog or safety module) have a variety of requirements, depending

on the product. The Atmel AVR and ARM-based microcontroller families offer diverse

package, flash size, and peripheral sets to meet a range of needs.

For IO module solutions:

 High-speed serial peripherals for a fast communication with backplane bus interface or

the connection to high resolution external ADC or DAC, with SPI data rates up to

48Mbps on the SAM3U. CAN modules are available on Atmel AVR UC3, megaAVR

and AT91SAM microcontrollers.

 Numerous 16-bit timers with input capture function for time stamping.

 PWM channels support control and dim functions for LEDs.

Basic PLC Programming

program-plc.blogspot.com Page 15

 Atmel supports a rich set of analog functions such as 12-bit ADC and DAC, as well as

analog comparator for monitoring the operation condition of the IO-module.

 Safety functions ease the implementation of Safety Integrity Levels (SIL) IEC61508

standard.

 High performance CPU up to 96MHz with integrated MAC unit supports the growing

demand for signal conditioning on the analog IO-module.

Basic PLC Programming

program-plc.blogspot.com Page 16

Chapter 3

Programming of a PLC

3.1 Systematic solution finding

Control programs must be systematically designed well structured and fully documented in order

to be as error-free low-maintenance cost effective as possible

Phase model of PLC software generation

The procedure for the development of a software program illustrated in figure below has been

tried and tested. The division into defined sections leads to targeted, systematic operation and

provides clearly set out results, which can be checked against the task. The phase model

consisting of the following sections:

The phase model can be applied to control programs of varying complexity; for complex control

tasks the use of such a model is absolutely essential. The individual phases of the model are

described below.

Basic PLC Programming

program-plc.blogspot.com Page 17

Phase 1: Specification (Problem formulation)

In this phase, a precise and detailed description of the control task is formulated. The specific

description of the control system function, formalized as much as possible, reveals any

conflicting requirements, misleading or incomplete specifications. The following are available at

the end of this phase: Verbal description of the control task Structure/layout Macro structuring of

the system or process and thus rough structuring of the solution

Phase 2: Design (Concrete form of solution concept)

A solution concept is developed on the basis of the definitions established in phase 1. The

method used to describe the solution must provide both a graphic and process oriented

description of the function and behavior of the control system and be independent of the

technical realization.

These requirements are fulfilled by the function chart (FCH) as defined in DIN 40 719, Part 6 or

IEC 848. Starting with a representation of the overall view of the controller (rough structure of

the solution), the solution can be refined step by step until a level of description is obtained,

which contains all the details of the solution (refinement of rough structure). In the case of

complex control tasks, the solution is structured into individual software modules in parallel with

this. These software modules implement the job steps of the control system. These can be special

Functions such as the realization of an interface for visualization or communications systems, or

equally permanently recurring job steps. The displacement-step diagram represents another

standard form for the description of control systems apart from the function chart to DIN 40 719.

Phase 3: Realization (Programming of solution concept)

The translation of the solution concept into a control program is effected via the programming

languages defined in IEC 1131-3. These are: sequential function chart, function block diagram,

ladder diagram, statement list and structured text. Control systems operating in a time/logic

process and available in FCH to DIN 40 719, P.6, can be clearly and easily programmed in a

sequential function chart. A sequential function chart, in as far as possible, uses the same

Basic PLC Programming

program-plc.blogspot.com Page 18

components for programming as those used for the description in the function chart to DIN 40

719, T.6.

Ladder diagram, function block diagram and statement list are the programming languages

suitable for the formulation of basic operations and for control systems which can be described

by simple operations logic operations or Boolean signals. The high-level language structured text

is mainly used to create software modules of mathematical content, such as modules for the

description of control algorithms. In so far as PLC programming systems support this, the control

programs or parts of a program created should be simulated prior to commissioning. This permits

the detection and elimination of errors right at the initial stage.

Phase 4: Commissioning (Construction and testing of the control task)

This phase tests the interaction of the automation system and the connected plant. In the case of

complex tasks, it is advisable to commission the system systematically, step by step. Faults, both

in the system and in the control program, can be easily found and eliminated using this method.

3.2 EN 61131-3 (IEC 61131-3) structuring resources

IEC 61131-3 is the first vendor independent standardized programming language for industrial

automation. Established by the International Electro technical Commission (IEC) a worldwide

standard organization founded in 1906 and recognized worldwide for standards in the controls

industry by over 50 countries. The standard is already well established in Europe and is rapidly

gaining popularity in North America and Asia as the programming standard for industrial and

process control.

The adoption of IEC 61131-3 by the industry is driven by the increasing software complexity of

control and automation requirements. The time to create, labor cost, and maintainability of

control software has a major impact on control projects which can be improved using the IEC

61131-3 vendor independent programming language standard. Applying a standard programming

language has a positive impact on the software life-cycle that includes requirements analysis,

design, construction, testing (validation), installation, operation, and maintenance. The impact on

Basic PLC Programming

program-plc.blogspot.com Page 19

maintenance is important since control software maintenance, including upgrades, is generally 2-

4 times the labor of initial programming.

The IEC 61131-3 standard combined with new powerful free scale chip architectures enables an

entire controller to be delivered in an embedded device. Control programs can run distributed

and independently rather than concentrated in large controllers. No longer are thousands of lines

of control programs required running in one controller for complex automation applications. This

increases performance, improves reliability, and simplifies programs.

IEC 61131-3 provides multiple language support within a control program. The control program

developer can select the language that is best suited to a particular task, greatly increasing their

productivity. Plus with a standardized programming interface that is completely independent of

the hardware platform, users can greatly reduce the cost of program maintenance and training

across company wide automation applications.

IEC 61131-3 is hardware independent. The ability to transport automation solutions to other

platforms is vastly improved over PLC applications offering users and System Integrators a level

of reusability never before available. IEC 61131 increases the efficiency and speed of

implementing new automation solutions by using readily available control components

developed on other projects and by outside developers.

Companies that have chosen to implement IEC 61131-3 find that they reduce human resource

costs in training, debugging and maintenance, and improve productivity from the higher

reusability.

3.3 Programming Languages

The languages can be mixed in any way within a PLC project. The unification and

standardization of these five languages represent a compromise of historical, regional and

branch-specific requirements. Provision has been made for future expansion, (such as the

function block principle or the language Structured Text) plus necessary information technology

details (data type etc.) have been incorporated.

Basic PLC Programming

program-plc.blogspot.com Page 20

The language elements are explained with the help of a machining process involved in valve

production. Two sensors are used to establish whether a work piece with correctly drilled holes is

available at the machining position. If the valve to be machined is of type A or type B – this is

set via two selector switches – the cylinder advances and presses the sleeve into the drilled hole.

Ladder Diagram (LD)

Ladder diagram is a graphic programming language derived from the circuit diagram of directly

wired relay controls. The ladder diagram contains contact rails to the left and the right of the

diagram; these contact rails are connected to switching elements (normally open/normally closed

contacts) via current paths and coil elements.

Function Block Diagram (FBD)

In the function block diagram, the functions and function blocks are represented graphically and

interconnected into networks. The function block diagram originates from the logic diagram for

the design of electronic circuits.

Basic PLC Programming

program-plc.blogspot.com Page 21

Instruction List (IL)

Statement list is a textual assembler-type language characterized by a simple machine model

(processor with only one register). Instruction list is formulated from control instructions

consisting of an operator and an operand.

With regard to language philosophy, the ladder diagram, the function block diagram and

instruction list have been defined in the way they are used in today‘s PLC technology. They are

however limited to basic functions as far as their elements are concerned. This separates them

essentially from the company dialects used today. The competitiveness of these languages is

maintained due to the use of functions and function blocks.

Structured Text (ST)

Structured text is high-level language based on Pascal, which consists of expressions and

instructions. Instructions can be defined in the main as: Selection instructions such as

IF...THEN...ELSE etc., repetition instructions such as FOR, WHILE etc. and function block

invocations.

Structured text enables the formulation of numerous applications, beyond pure function

technology, such as algorithmic problems (high order control algorithms etc.) and data handling

(data analysis, processing of complex data structures etc.).

Sequential Function Chart (SFC)

The sequential function chart is a language resource for the structuring of sequence-oriented

control programs. The elements of the sequential function chart are steps, transitions, alternative

and parallel branching. Each step represents a processing status of a control program, which is

Basic PLC Programming

program-plc.blogspot.com Page 22

active or inactive. A step consists of actions which, identical to the transitions, are formulated in

the IEC 1131-3 languages. Actions themselves can again contain sequence structures. This

feature permits the hierarchical structure of a control program. The sequential function chart is

therefore an excellent tool for the design and structuring of control programs.

Basic PLC Programming

program-plc.blogspot.com Page 23

Chapter 4

PLC Programming Language

4.1 Function Block Diagram

Function Block Diagrams (FBDs) are another part of the IEC 61131-3 standard. The primary

concept behind a FBD is data flow. In these types of programs the values flow from the inputs to

the outputs, through function blocks. A sample FBD is shown in figure below. In this program

the inputs A and B are used to calculate a value sin(A) * ln(B). The result of this calculation is

compared to C. If the calculated value is less than C then the output X is turned on, otherwise it is

turned off. Many readers will note the similarity of the program to block diagrams for control

systems.

It is possible to disable part of the FBDs using enables. These are available for each function

block but may not be displayed. Figure 300 shows an XOR calculation. Both of the Boolean

AND functions have the enable inputs connected to ‘enable‘. If ‘enable‘ is true, then the system

works as expected and the output ‘X‘ is the exclusive OR of ‘A‘ and ‘B‘. However if ‘enable‘ is

off then the BAND functions will not operate. In this case the ‘enable‘ input is not connected to

the BOR function, but because it relies on the outputs from the BAND blocks, it will not

function, and the output ‘X‘ will not be changed.

Basic PLC Programming

program-plc.blogspot.com Page 24

A FBD program is constructed using function blocks that are connected together to define the

data exchange. The connecting lines will have a data type that must be compatible on both ends.

The inputs and outputs of function blocks can be inverted. This is normally shown with a small

circle at the point where the line touches the function block, as shown in figure below.

The basic functions used in FBD programs are equivalent to the basic set used in Structured Text

(ST) programs. Consider the basic addition function shown in figure below. The ST function on

the left adds A and B, and stores the result in O. The function block on the right is equivalent. By

convention the inputs are on the left of the function blocks, and the outputs on the right.

Some functions allow a variable number of arguments. In Figure below there is a third value

input to the ADD block. This is known as overloading.

Basic PLC Programming

program-plc.blogspot.com Page 25

The ADD function in the previous example will add all of the arguments in any order and get the

same result, but other functions are more particular. In the first ST function the maximum MX,

minimum MN and test IN values are all used. In the second function the MX value is not defined

and will default to 0. Both of the ST functions relate directly to the function blocks on the right

side of the figure.

Creating Function Block

When developing a complex system it is desirable to create additional function blocks. This can

be done with other FBDs, or using other IEC 61131-3 program types. Figure below shows a

divide function block created using ST. In this example the first statement declares it as a

FUNCTION_BLOCK called divide. The input variables a and b, and the output variable c are

declared. In the function the denominator is checked to make sure it is not 0. If not, the division

will be performed; otherwise the output will be zero.

Basic PLC Programming

program-plc.blogspot.com Page 26

4.2 Ladder Diagram

Ladder Diagram (LD) This programming language, invented in the U.S. decades ago, is probably

the most widely used. Invented to replace hardwired relay control systems, Ladder Diagram

programming is a mainstay in the U.S. today, used in probably 95 percent of all applications.

Visually, this language resembles a series of control circuits, with a series of inputs needing to be

―made‖ or ―true‖ in order to activate one or more outputs.

Ladder Diagram language has experienced such widespread adoption that almost every

programmer in any country or industry can read and write this language. Because it resembles

the familiar electric circuit format, even a non-programmer with an electrical background can

follow the program for purposes of troubleshooting a problem. It‘s also easy to start writing a

program in Ladder Diagram. With just a basic outline of input and output signals, one can sit

down are start churning out code. Most of the other IEC languages require more preparation,

such as flowcharting all the potential process flows.

Finally, most implementations of Ladder Diagram allow a program to be organized into folders

or subprograms that are downloaded to the PLC, allowing for easy segmentation. Ladder

Diagram programming is ideal for a simple material handling application, for example, where a

sensor detects the presence of a box, other sensors check for obstructions, and then an output

fires an actuator to push the box to another conveyor. Digital inputs are checking for various

Basic PLC Programming

program-plc.blogspot.com Page 27

conditions, and a basic program is analyzing the inputs and firing digital outputs in response.

There may be timers in the program, or some basic comparisons or math, but there are no

complex functions involved.

As the complexity of PLC functionality has grown, however, Ladder Diagram language has been

challenged to meet these advances and still maintain the paradigm of easy visualization and

understanding. Functions such as PID, trigonometry and data analysis are commonly required in

many control applications, but difficult to implement. Another challenge is that as program size

grows, the ladder can become very difficult to read and interpret, unless it‘s extensively

documented.

Finally, implementing full processes in Ladder Diagram can be daunting — picture a ladder rung

with an output used in several phases of a process with many input conditions attempting to

control exactly when that output needs to turn on.

Basic PLC Programming

program-plc.blogspot.com Page 28

4.3 Instruction List

Anyone who has experience programming microprocessors or experience with Assembler

language programming will see similarities with Instruction List programming. This language

consists of many lines of code, with each line representing exactly one operation. Thus, it is very

step-by-step in layout and format, which makes the entry of a series of simple mathematical

functions easy. In addition, if the programmer uses only the IEC defined instructions, a program

written in this language can be moved easily between hardware platforms. These advantages

make this language very popular in Europe, a fact that is surprising to many U. S. programmers

who prefer the ease of maintenance in the graphical languages, and place a lower premium in the

transferability of programs.

Instruction List language is a low level language and as such, will execute much faster in the

PLC than a graphical language, like Ladder. This language is also much more compact and will

consume less space in PLC memory. The simple one line text entry method supported by this

language also allows for very fast program entry — no mouse required, no tab to click! In legacy

systems, programs written in this language are easier to display and edit on a handheld

programming unit, with no software or laptop required.

Basic PLC Programming

program-plc.blogspot.com Page 29

Despite the advantages this language provides to a programmer, it seems that maintenance and

service engineers do not prefer Instruction List. Perhaps because it is less visual than Ladder, and

Therefore more difficult to get a sense of what the program is doing and what errors it is

experiencing. Similar to the issues with Ladder Diagram and increasing PLC program

complexity, it can be a struggle to enter complex functions such as PID in Instruction List. This

also applies to complex mathematical computations. Instruction List does not lend itself well to

any form of structured programming, such as state programming or step ladder, further limiting

its usefulness for implementing large programs. It is also arguable that the advantages of speed

and compactness are less relevant, given the processing speeds of modern PLCs and the large

amounts of memory available.

Basic PLC Programming

program-plc.blogspot.com Page 30

4.4 Structure Text

With its IF…THEN loops, CASE selectors, and lines ending in semicolons, Structured Text

language closely resembles a highlevel computer programming language such as PASCAL or C.

Therefore mentioned Control Engineering survey indicated that of all the IEC61131-defined

programming languages, Structured Text has seen the greatest increase in adoption. This

language perhaps best embraces the growing complexity of PLC programming, such as the

process control functions involved in plastics or chemical manufacturing. Trigonometry,

calculus, and data analysis can be implemented far easier in this language than in Ladder or

Instruction List.

Decision loops and pointers (variables used to do indirect addressing) allow for a more compact

program implementation than can be achieved in Ladder. The flexible Structured Text editor that

is common in most programming packages makes it easy to insert comments throughout a

program, and to use indents and line spacing to emphasize related sections of code. This makes

the task of structuring a complex program easier. The text-based, non-graphical nature of

Structured Text, similar to Instruction List, also runs much faster than Ladder. An additional

benefit of Structured Text is that it comes closer than most of the other languages in achieving

the transferability promise of the IEC61131 standard. Copying and pasting Structured Text from

the editor of one programming package to another can often be done with just a few changes,

emancipating a programmer from the hardware platform. A final benefit is that many students

currently graduating from engineering studies have a better background in computer languages

than in the basics of electrical wiring, and therefore can be more proficient in Structured Text

than Ladder programming.

Basic PLC Programming

program-plc.blogspot.com Page 31

A disadvantage is that for many previously experienced programmers or maintenance and

service personnel, the Structured Text language has seen the greatest increase in adoption and

closely resembles a high-level computer programming language such as PASCAL or C. Text

environment is somewhat unfamiliar and unsuitable for troubleshooting. In many ways, the code

and structure necessary to make this code maintenance friendly can reduce some of the

advantages gained from its compactness. As a result, the main tendency is to use Structured Text

―behind the scenes.‖ For example, IEC 61131 allows a programmer to build his or her own

functions in one language, which can then be used in another language. Thus the programmer is

most likely to encapsulate a Structured Text program inside an instruction called on in Ladder.

While this may not necessarily be a disadvantage, the programmer will need to thoroughly test

any code that is ―hidden‖ and make sure it is bug free, since others will not have access to it.

Structured Text (ST) is a high level textual language that is a Pascal like language. It is based on

the IEC 61131-3 standard, which standardizes programming languages for programmable

controllers (PLC). Structured Text is very flexible and intuitive for writing control algorithms.

Structured Text uses operators such as logical branching, multiple branching, and loops. People

trained in computer programming languages often find it the easiest language to use for

programming control logic. When symbolic addressing is used, ST programs resemble sentences,

making it highly intelligible to beginner users as well.

Basic PLC Programming

program-plc.blogspot.com Page 32

4.5 Sequential Function Chart

Sequential Function Chart (SFC) programming resembles the computer flowcharts that many

will remember drawing up in their college days. An initial step ―action box‖ (the starting point of

a flowchart) is followed by a series of transitions and additional action steps. The concept of SFC

Is simple: an action box, with code inside written in any language of the programmer‘s choice, is

active until the transition step below it activates. The current action box is for appropriate

applications which have a repeatable multi-step process or series of repeatable processes, this

form of programming is the easiest to implement. An example would be a pick and place

application, where product is constantly picked up from one area, moved through a specific path,

and placed in another area. While exceptions exist, since there is typically only one active piece

of code and one transition to be concerned with, condition checking and the control of the

process should be achievable without large rungs.

The language is also very friendly to maintenance engineers because the visual nature of the

program plus code segmentation makes it easy to troubleshoot. For example, if the mechanism in

a pick-and place application has moved to the product but not picked it, the troubleshooter could

bring up the program and look at the transition condition between the ―move to product‖ box and

the ―pick product‖ box to see what is holding up the process. On the downside, this style of

programming is not suitable for every application, as the structure that is forced on a program

could add unneeded complexity. A large amount of time must be spent up front preparing and

planning before any programming is attempted or else the functions charts could become

unwieldy and difficult to follow. The overhead required for this type of program causes it to

execute slower than the other languages. A final consideration is the inability to convert to other

languages. Instruction List, Function Block and Ladder programs can easily be converted into

each other, allowing a piece of code to be displayed in the way most comfortable to the user.

Basic PLC Programming

program-plc.blogspot.com Page 33

Structured Text can also be converted into any of these three languages, but SFC stands alone. It

cannot be converted. Therefore, you may want to consider this language only for end users who

are comfortable with the language and are unlikely to display it in a different format or for

applications where the hardware has the speed and memory necessary to store and execute an

SFC program.

Basic PLC Programming

program-plc.blogspot.com Page 34

Chapter 5

Omron PLC Programming

5.1 Introduction to Omron PLC Programming

5.1.1 What is Control System?

In general, a control system is a collection of electronic devices and equipment

hich are in place to ensure the stability, accuracy and smooth transition of a

process or a manufacturing activity. It takes any form and varies in scale of

implementation, from a power plant to a semiconductor machine. As a result of

rapid advancement of technology, complicated control tasks accomplished with a

highly automated control system, which may be in the form of PLC

(Programmable Logic Controller) and possibly a host computer etc. Besides

signal interfacing to the field devices such as, motors, sensors, solenoid valves,

operator panel and etc, capabilities in network communication enable a big scale

implementation and process co-ordination besides providing greater flexibility in

realizing distributed control system.

 5.1.2 The Role of the Programmable Controller

In an automated system, the PLC is commonly regarded as the heart of the control

system. With a control application program in execution, the PLC constantly

monitors the state of the system through the field input devices feedback signal. It

will then based on the program logic to determine the course of action to be

carried out at the field output devices.

The PLC may be used to control a simple and repetitive task, or a few of them

may be interconnected together with other host controllers or host computers

through a sort of communication network, in order to integrate the control of a

complex process.

Basic PLC Programming

program-plc.blogspot.com Page 35

5.1.3 Input and Output Devices

 Input Devices

Intelligence of an automated system is greatly depending on the ability of a PLC

to read in the various types of automatic sensing and manual input field devices.

Push buttons, keypad and toggle switches, which form the basic man-machine

interface, are types of manual input device. On the other hand, for detection of

work piece, monitoring of moving mechanism, checking on pressure and or liquid

level and many others, the PLC will have to tap the signal from the specific

automatic sensing devices like proximity switch, limit switch, photoelectric

sensor, level sensor and so on. Input signal types to the PLC would be ON/OFF

logic or analogue. These input signals are interfaced to PLC through various types

of PLC input module.

Output Devices

An automatic system is incomplete and the PLC system is virtually paralyzed

without means of interface to the field output devices. Some of the most

commonly controlled devices are motors, solenoids, relays indicators, buzzer and

etc. through activation of the motors and solenoids the PLC can control from a

simple pick and place system to a much complex servo positioning system. These

type of output devices are the mechanism of an automated system and so its direct

effect on the system performance.

Basic PLC Programming

program-plc.blogspot.com Page 36

5.1.4 What is Programmable Controller?

A PLC consists of a Central Processing Unit containing an application program

and Input and output Interface modules, which is directly connected to the field

I/O devices. The program controls the PLC, so that when an input signal from an

input device turns ON, the appropriate response made. The response normally

involves turning ON an output signal to some sort of output devices.

Central Processing Unit

The CPU is a microprocessor that coordinates the activities of the PLC system. It

executes the program, processes I/O signals and communicates with external

devices.

Memory

There are various types of memory unit. It is the area that hold the operating

system and user memory. The operating system is acually a system software that

coordinates the PLC, Ladder Program, Timer and Counter Values are stored in the

user memory.

a. Read Only memory (ROM)

ROM is a non-volatile memory that can be programmed only once. It is

therefore unsuitable. It is least popular as compared with others memory type.

b. Random Access Memory (RAM)

Basic PLC Programming

program-plc.blogspot.com Page 37

RAM is commonly used memory type for storing the user program and data.

The data in the volatile RAM would be normally be lost if the power source is

removed.

c. Erasable Programmable Read only Memory (EPROM)

EPROM holds data permanently just like ROM. It doesn‘t require battery

back up. However its content can be erased by exposing it to ultraviolet light.

d. Electrically Erasable Programmable Read Only memory (EEPROM)

EEPROM combines the access flexibility of RAM and the non-volatility

of EPROM in one. Its contents can be erased and reprogrammed

electrically, however, to a limit number of times.

5.1.5 PLC Panel and their Advantages

Conventional control panel and its difficulties

In the beginning of the industrial revolution, especially in the 1960 and 1970, automated

machines were controlled by electromechanical relays. These relays were all hardwired

together inside the control panel was so huge that it could cover the entire wall. Every

connection in relay logic must be connected. Wiring is not always perfect, it takes time to

troubleshoot the system. It is a very time consuming affair.

Disadvantage of conventional control panel

In this panel we can observe the below points:

 There are too many wiring work in the panel.

 Modification can be quite difficult.

 Troubleshooting can be quite troublesome as you may require a skillful person.

 Power consumption can be quite high as the coil consumes power.

 Machine downtime is usually long when problems occur, as it takes longer time to

troubleshoot the control panel.

 Drawings are not updated over the years due to changes. It causes longer downtime in

maintenance and modification.

Basic PLC Programming

program-plc.blogspot.com Page 38

Programmable controller control panel and their advantages

The control design and concept improve tremendously with the arrival of programmable

controllers.

Advntages of PLC control panel

 Here are the major advantages that can be distinguishably realized.

 The wiring of the system is usually reduced by 80% compared to conventional relay

control system.

 The power consumption is greatly reduced as PLC consumes much less power.

 The PLC self diagnostic functions enable easy and fast troubleshooting of the system.

 Modifications of control sequence or application can easily be done by programming

through the console or computer software without changing of I/O wiring, if no

additional Input or Output devices are required.

 In PLC system spare parts for relays and hardware timers are greatly reduced as

compared to conventional control panel.

 The machine cycle time is improved tremendously due to the speed of PLCs operation is

a matter of milliseconds.

Basic PLC Programming

program-plc.blogspot.com Page 39

 It cost much less compared to conventional system in situation when the numbers of I/Os

is very large and control functions are complex.

 The PLC reliability is higher than the mechanical timers and relays.

5.2 CP1L Overview

5.2.1 CP1L Models

 CP1L programmable controller is a PLC package type, available with 10, 14, 20,

 30, 40, or 60 I/O points.

 10-point I/O Units (CP1L-L10D�-�)

a. The CPU Unit has 6 inputs and 4 outputs built in.

b. The PLC cannot use CP-series Expansion I/O Units to expand the

maximum total of I/O points.

 14-point I/O Units (CP1L-L14D�-�/CP1L-J14D�-�)

a. CPU unit has 8 input points and 6 output points.

b. CP-series expansion I/O units can be used to add I/O points, up to a total

of 54 I/O points.

Basic PLC Programming

program-plc.blogspot.com Page 40

 20-point I/O Units (CP1L-L20D�-�/CP1L-J20D�-�)

a. CPU unit has 12 input points and 8 output points.

b. CP-series expansion I/O units can be used to add I/O points, up to a total

of 60 I/O points.

 30-point I/O Units (CP1L-M30D�-�)

a. CPU unit has 18 input points and 12 output points.

b. CP-series expansion I/O units can be used to add I/O points, up to a total

of 150 I/O points.

Basic PLC Programming

program-plc.blogspot.com Page 41

 40-point I/O Units (CP1L-M40D�-�)

a. CPU unit has 24 input points and 16 output points.

b. CP-series expansion I/O units can be used to add I/O points, up to a total

of 160 I/O points.

 60-point I/O Units (CP1L-M60D�-�)

a. CPU unit has 36 input points and 24 output points.

b. CP-series expansion I/O units can be used to add I/O points, up to a total

of 180

Basic PLC Programming

program-plc.blogspot.com Page 42

5.2.2 System Components

This section defines components to be used in the shutter control system. The following

components are to be used.

1. PLC

• CP1L (14-point I/O unit with AC power supply)

2. Equipment and Software for Programming

• CX-Programmer

• Computer

• USB cable (A-B)

3. Inputs

• Shutter OPEN button: PB1

• Shutter STOP button: PB2

• Shutter CLOSE button: PB3

• Car detection sensor: SEN1

• Headlight detection sensor: SEN2

• Limit switch, turned ON when shutter is fully open: LS1

• Limit switch, turned ON when shutter is fully closed: LS2

4. Outputs

• Contact for activating the shutter escalation motor: MO1

Basic PLC Programming

program-plc.blogspot.com Page 43

• Contact for activating the shutter de-escalation motor: MO2

5.3 Creating Programs

 5.3.1 Creating Ladder Programs

A ladder program can now be created for the example introduced in SECTION 2 System

Design. First, however, the functions of the ladder program will be described.

Operation

The ladder program to be created will open and close a garage shutter.

Entering the Garage

Basic PLC Programming

program-plc.blogspot.com Page 44

The component functions and operations will be defined in detail below.

(1) Push-buttons:

 The shutter can be opened, closed, and stopped with buttons.

 The OPEN and CLOSE buttons will continue operating the shutter even when they are

not held down. A self-maintaining bit is used to achieve this.

(2) Limit switches:

 When the shutter is fully opened or fully closed, it will be stopped by a limit switch.

 When the shutter is opening, the de-escalation motor will be interlocked to prevent

damage.

(3) Light detection sensor:

 A light detection sensor detects light from headlights pointed at the garage. When 3

headlight flashes are detected by a counter instruction, the shutter escalation motor is

activated.

 After the first headlight flash, a timer is activated by a timer instruction. After 5 seconds,

a reset command is given to the counter instruction.

 The present value of the counter instruction is retained even when CP1L is powered OFF.

To prevent malfunction, a reset command is given to the counter instruction when CP1L

is powered ON.

Basic PLC Programming

program-plc.blogspot.com Page 45

After Entering the Garage / Exiting the Garage

 (1) Car detection sensor:

 A car detection sensor will detect full car entrance into the garage, and activate the

shutter de-escalation motor.

(2) Push-buttons:

 When pulling the car out of the garage, use the buttons to operate the shutter.

 When pulling the car out of the garage, a differentiated up contact should be used as the

car detection sensor, so that the shutter does not close immediately upon fully opening.

A ladder program will be set forth hereafter based on the description above.

Ladder Program

The ladder program for the example application is shown below.

Basic PLC Programming

program-plc.blogspot.com Page 46

Basic PLC Programming

program-plc.blogspot.com Page 47

5.3.2 Using CX-Programmer

Starting CX-Programmer

1. On the desktop, select [Start] - [All Programs] - [OMRON] - [CX-One] -

[CXProgrammer]

CX-Programmer will start.

The title screen will be displayed, followed by the main window.

Operation Screens

This section explains the functions available on the CX-Programmer main window. For

details on using CX-Programmer.

.

Basic PLC Programming

program-plc.blogspot.com Page 48

 Main Window

(1) Title bar

o Displays the data file name, created in CX-Programmer.

(2) Main menu

o Used to select CX-Programmer functions.

(3) Toolbars

Displays icons for frequently used functions. Place the mouse cursor over an icon

to display the corresponding function name. Select View - Toolbars from the

main menu to show/hide toolbars. Drag the toolbars to change their position.

(4) Project tree / (6) Project workspace

Used to manage programs and settings. Drag & drop items to copy the data.

Select [View] - [Windows] - [Workspace] from the main menu to show/hide the

workspace.

(5) Section

Programs can be split into and managed as multiple parts.

(6) Diagram workspace

Used to create and edit ladder programs.

(7) I/O comment bar

Displays the name, address/value, and I/O comment for the variable selected by

the mouse cursor.

Basic PLC Programming

program-plc.blogspot.com Page 49

 (8) Output window

Select [View] - [Windows] - [Output] from the main menu to show/hide the

output window. Displays the following information:

o Compile:

Displays program check results.

o Find Report:

Displays search results for contacts, instructions, and coils.

o Transfer:

Displays errors which occurred while loading a project file.

(10) Status bar

Displays information such as PLC name, offline/online status, and active cell

position. If an online connection error or other errors occur and are recorded by

the error log while online, a blinking red error message will be displayed. Select

[View] - [Windows] - [Status Bar] from the main menu to show/hide the status

bar.

 Diagram Workspace

(1) Rung number

(2) Program address

(3) Rung header

If a rung is incomplete, a red line will be displayed to the right of its rung

header.

Basic PLC Programming

program-plc.blogspot.com Page 50

(4) Bus bar

 Information Window

Displays basic shortcut keys used in CX-Programmer.

Select [View] - [Windows] - [Information Window] from the main menu to

show/hide the information window.

Basic PLC Programming

program-plc.blogspot.com Page 51

Chapter 6

Mitsubishi MELSEC-F Programmable Controller

6.1 Introduction to FX Series Programmable Controller

6.1.1 Overview

This chapter gives the explanation on all aspects of operation and programming for FX, FX2C,

FX0N, FX0S, FX0, FX2N, and FX2NC programmable controllers (PLCs). This is covers the

functions of the highest specification PLC. For this reason, the following indicator is included to

show which PLCs applies to:

FX Family

This is a generic term which is often used to explain all programmable controllers without

identifying individual types or model names.

6.1.2 FXon CPU versions

Over time Mitsubishi adds newer and better features to develop and enhance the products.

Because of the nature of PLCs, that can be likened to industrial computers, changes sometime

occur within the units main CPU. These changes are similar to those experienced by office and

home computer users, that is going to a version up processor. The following lists identify the

CPU versions that had significant upgrades or new functions and features added.

Basic PLC Programming

program-plc.blogspot.com Page 52

FX0N CPU versions

 CPU Ver 1.20 the folowing features were added: software control for protocol 1 and 4

communications with the FX0N-485ADP, 1:N network.

 CPU Ver 1.40 the following features were added: software control for communications

using the FX0N-485ADP, peer to peer (N:N) network.

FX and FX2C CPU Versions

 CPU Ver 3.07 the following instructions were added: ASCI (FNC82), CCD (FN84), FLT

(FNC49), HEX (FNC83), RS (FNC80), SE (FNC16), SORT (FNC69), SQR (FNC48)

The following device ranges were upgraded: EI (FNC04), BMOV (FNC15), HSCS

(FNC53), PLSY (FNC57), FMOV (FNC16), MEAN (FNC45), ABSD (FNC62), DSW

(FNC72), SEGL(74), PR (FNC77).

The following device ranges were added: input and output devices are independently

addressable up to 256 points in software. Total combined input and output points is 256.

Auxiliary relays increased to 1536 points (M0-M1535)

Data registers increased to 1000 points (D0-D999)

Optional RAM File Registers added 2000 points (D6000-D7999)

Pointers increased to 128 points (P0-P127)

 CPU ver 3.11 The following instructions were added: PID (FNC88)

 CPU Ver 3.2 The following features were added: software control for protocol

communications with the FX-485ADP, 1:N network.

 CPU Ver 3.30 The following features were added: software control for protocol

communications with the FX-485ADP, 1:N network.

The following instructions were removed: ANRD (FNC91), ANWR (FNC92), BLK

(FNC97), MCDE (FNC98), MNET (FNC90).

6.1.3 Programming equipment

Programming tools operating old system software can not access the new features added to the

FX CPU from version 3.07. However, programming certain standard applied instructions in

conjunction with specially auxiliary coils (M coils) can achieve the same effective instructions as

the new instructions. The following tables identify which version of peripheral software will

Basic PLC Programming

program-plc.blogspot.com Page 53

work directly with all of the new features and which peripheral software versions require use of

modified instructions.

6.2 Basic Program Instructions

6.2.1 What is a program?

A program is a connected series of instructions written in a language that the PLC can

understand. There are three forms of program format, instruction, ladder and SFC?STL. not all

programming tools can work in all programming forms. Generally hand held programming

panels only work with instruction format while most graphic programming tools will work with

both instruction and ladder format. Specialist programming software will also allow SFC style

programming.

Basic PLC Programming

program-plc.blogspot.com Page 54

6.2.2 Start Programming GX Developer

After installing GX developer on your PC you can start the program by selecting its entry

Start>Programs>MELSEC Application>GX Developer. This Displays the main program

window:

1. Title bar

The title bar of the GX Developer FX program window shows the path and name of the

current project. The usual buttons for minimizing and resizing the program window and

exiting the program are located at the right hand end of the title bar.

Basic PLC Programming

program-plc.blogspot.com Page 55

2. Menu bar

The menu bar contains the menus that provide access to GX Developer‘s functions.

Clicking on a menu title displays a drop-down menu with a list of options that you can

select.

3. Toolbars

Many of the most frequently used program functions can be accessed directly with the

tools (icons) in the toolbars.

4. Status bar

The status bar displays some useful information, including the current PLC type and

editing mode. You can also activate and deactivate the status bar in the View menu.

5. Editing screen

The editing screen is where you do your programming and documentation work. You can

have multiple editing and dialog windows open at the same time.

6. Project data list

The program, its documentation and the parameters for the FX controller are stored

together in a project. The project data list shows the directories in which the components

of the current project are stored.

Program

Controllers in the MELSEC FX family can only process one program at a time. The

default name assigned to this program is MAIN. You can rename MAIN if you want. To

do this select the MAIN entry and then right click on it to display the context menu and

select Rename.

Device Comment

You can assign a comment to every PLC device. These comments can be displayed in the

program. You can enter and edit these comments by opening the Device comment file in

the project data list.

Parameter

Double-clicking on PLC parameter in the project data list opens a dialog in which you

can enter and adjust all the settings necessary for the operation of the PLC. The PLC

parameters are transferred to the CPU together with the program.

Basic PLC Programming

program-plc.blogspot.com Page 56

Device Memory

The file stored in the Device memory directory can be used to enter default values for

each of the CPU‘s data registers (D) while you are programming. To create a device

memory file select Device memory in the project data list and right-click to display the

context menu. Then select New…and enter the name of the file you want to create.

To open the file containing the device memory values just double-click on its name in the

project data list. You can select between a variety of data display formats and you can

also switch between hexadecimal and decimal modes.

6.2.3 Outline of basic devices used in programming

There are six basic programming devices. Each device has its own unique use. To enable quick

and easy identification each device is assigned a single reference letter;

 X: this is used to identify all direct, physical inputs to the PLC.

 Y: this is used to identify all direct, physical outputs to the PLC.

 T: this is used to identify a timing device which is contained within the PLC.

 C: this is used to identify a counting device which is contained within the PLC.

 M and S: these are used as internal operation flags within the PLC.

All of devices mentioned above are known as ―bit devices‖. This is a descriptive tittle telling the

user that these devices only have two states; ON or OFF, 1 or 0.

Basic PLC Programming

program-plc.blogspot.com Page 57

6.2.4 How to read ladder logic

ladder logic is very closely associated to basic relay logic. There are both contacts and coils that

can be loaded and driven in different configurations. However, the basic principle remains the

same. A coil drives direct outputs of the PLC or drives internal timers, counters or flags. Each

coil has associated contacts. These contacts are available in both ‗Normally open‘ (NO) and

‗Normally Closed‘ (NC) configurations.

The term ‗ norma‘ refers to the status of the contacts when the coil is not energized. Using a

relay analogy, when the coils is OFF, a NO contact would have no current flow, that is, a load

being supplied through a NO contact would not operate. However, a NC contact would allow

current to flow, hence the connected load would be active.

6.3 STL Programming

STL/SFC Programming, although having been available for many years, is still misunderstood

and misrepresented. Mitsubishi tries to correct this oversight as STL/SFC programming

becoming as important as ladder style programming

6.3.1 What are STL, SFC and IEC1131?

In recent years Sequential Function Chart (SFC) style programming have become very popular

throughout Europe and have prompted the creation of IEC1131 part 3.

Basic PLC Programming

program-plc.blogspot.com Page 58

The IEC 1131 SFC standard has been designed to become and interchangeable programming

language. The idea being that a program written to IEC1131 SFC standards on one

manufacturers PLC can be easily converted for use on a second manufacturers PLC.

STL programming is one of the basic programming instructions included in all FX PLC family

members. The abbreviation STL actually means Step ladder programming. STL programming is

a very simple concept to understand yet can provide the user with one of the most powerful

programming technique possible. The key to STL lies in its ability to allow the programmer to

create an operational program which flows and works in almost exactly the same manner as SFC.

One of the key differences to Mitsubishi‘s STL programming system is that it can be entered into

a PLC in 3 formats. These are:

1. Instructions – a word/mnemonic entry system

2. Ladder - a graphical program construction method using a relay logic symbols

3. SFC - a flow chart style of STL program entry (similar to SFC).

6.3.2 How STL operates

STL is a system that allows user to write a program which functions in much the same way as a

flow chart, this can be seen in the diagram opposite. STL derives its strength by organizing a

larger program into smaller more manageable parts. Each of these parts can be transferred to as

either a state or a step. To help identify the states, each is given a unique identification number.

Each step is a program

Each state is completely isolated from all other states within the whole program. A good way to

envisage this is that each state is a separate program and the user puts each of those program

together in the order that they require to perform their task. This means that states can be reused

many times and in different orders. This saves on programming time AND cuts down on the

number of programming errors encountered.

Basic PLC Programming

program-plc.blogspot.com Page 59

Combined SFC Ladder representation

Sometimes STL programs will be written in hardcopy as a combination of both flow diagram

and internal sub-program.

Please note the following convention is used:

O Normally Open contact

 Normally Closed contact

Common alternatives are ‗a‘ and ‗b‘ identifiers for Normally Open, normally Closed dtates or

often a line drawn over the top of the Normally Closed contact name is used, e.g X000.

6.3.3 How to start and end an STL program

Before any complex programming can be used undertaken the basics of how to start and more

importantly how to finish an STL program need to be examined.

Basic PLC Programming

program-plc.blogspot.com Page 60

Embedded STL programs

An STL style program does not have to entirely replace a standard ladder logic program. In fact

it might be very difficult to do so. Instead small or even large section of STL program can be

entered at any point in a program. Once the STL task has been completed the program must go

back to processing standard program instructions until the next STL program block.

Activating new states

Once an STL step has been selected, how is it used and how is the program driven? This is not so

difficult, if it is considered that for an STL step to be active its associated state coil must be ON.

Hence, to start an STL sequence all that has to be done is to drive the relevant state ON.

There are many different methods to drive a state, for example, the initial state coils could be

pulsed, SET or just included in an OUT instruction. However, within Mitsubishi‘s STL

programming language an STL coil which is SET has a different meaning than one that is

included in an OUT instruction.

Terminating an STL Program

Once an STL program has been started the programmable controllers CPU will process all

following instructions as being part of that STL program. This means that when a second

program scan is started the normal instructions at the beginning of the program are considered to

Basic PLC Programming

program-plc.blogspot.com Page 61

be within the STL program. This is obviously incorrect and the CPU will proceed to identify a

programming error and disable the programmable controllers operation.

Returning to Standard Ladder

This is achieved by placing a ERT or RETurn instruction as the last STL step of an STL program

block. This instruction then returns programming control to the ladder sequence.

Basic PLC Programming

program-plc.blogspot.com Page 62

Chapter 7

Siemens PLC Programming

7.1 Installing the S7-200 CPU 210

7.1.1 Installing a CPU 210

The S7-200 CPU 210 is one of the S7-200 series of micro-programmable logic

controllers (Micro PLCs) that can control a variety of automation applications.

Figure below shows an S7-200 CPU 210. The compact design and low cost of the

CPU 210 make a perfect solution for controlling small applications. In addition,

the variety of input and output voltages provides you with the flexibility you need

to solve your automation problems with the maintenance-free operation of the

CPU 210.

The CPU 210 is easy to install. You can use the mounting holes to attach the

module to a panel, or you can use the built-in DIN clips to mount the module onto

a DIN rail. The small size of the CPU 210 allows you to make efficient use of

space.

Basic PLC Programming

program-plc.blogspot.com Page 63

Product Overview

The CPU 210 combines a central processing unit (CPU), power supply, and

discrete I/O points into a compact, stand-alone device.

 The CPU executes the program and stores the data for controlling the

automation task or process.

 The inputs and outputs are the system control points: the inputs monitor the

signals from the field devices (such as sensors and switches), and the outputs

control pumps, motors, or other devices in your process.

 Status lights provide visual information about the CPU mode (RUN) or

whether a system fault (SF) has been detected.

Equipment Requirements

You use the STEP 7-Micro/WIN programming software with a program

development station (the PDS 210) to create and to test your program. The final

program is then loaded onto a memory cartridge, which is then installed in the

CPU 210. You need the following equipment to create programs for the CPU 210:

 Personal computer (PC) running the STEP 7-Micro/WIN programming

software.

 Program development station (PDS 210).

 PC/PPI communications cable.

 Memory cartridge for transferring the program to the CPU 210.

Basic PLC Programming

program-plc.blogspot.com Page 64

7.1.2 Installing the STEP 7-Micro/WIN Version 2.0 Software

Installing and Using the STEP 7-Micro/WINVersion 2.0 Software

This manual describes Version 2.0 of STEP 7-Micro/WIN. Previous versions of

the software may operate differently. STEP 7-Micro/WIN is a Windows-based

software application used for programming the S7-200 Micro PLC

(programmable logic controller). The STEP 7-Micro/WIN programming software

package provides a set of tools required to program the S7-210 in either statement

list (STL) or ladder logic (LAD) programming language. In order to use STEP 7-

Micro/WIN, you must have the following equipment:

 Recommended: a personal computer (PC) with an 80486 or greater processor

and 8 Mbyte of RAM or a Siemens programming device (such as a PG 740);

minimum computer requirement: 80386 with 8 Mbyte of RAM

 A PC/PPI cable connected to your communications port (COM)

 A program development station (PDS 210)

 VGA monitor, or any monitor supported by Microsoft Windows

Basic PLC Programming

program-plc.blogspot.com Page 65

 At least 35 Mbyte of free hard disk space (recommended)

 Microsoft Windows 3.1, Windows for Workgroups 3.11, Windows 95, or

Windows NT 3.51 or greater

 Optional but recommended: any mouse supported by Microsoft Windows

STEP 7-Micro/WIN provides extensive online help. Use the Help menu

command or press F1 to obtain the most current information.

Installing the STEP 7-Micro/WIN Version 2.0 Software Pre-installation

Instructions

Before running the setup procedure, do the following:

 If a previous version of STEP 7-Micro/WIN is installed, back up all

application programs to diskette.

 Make sure all applications are closed, including the Microsoft Office toolbar.

Installation may require that you restart your computer.

Installation Instructions for Windows 3.1

If you have Windows 3.1 (Windows for Workgroups 3.11 or Windows NT) on

your machine, use the following procedure to install the STEP 7-Micro/WIN

software:

 Start by inserting Disk 1 in the disk drive of your computer (usually

designated drive A: or drive B:).

 From the Program Manager, select the menu command File _ Run...

 In the Run dialog box, type a:\setup and click on the ―OK‖ button. This starts

the setup procedure.

 Follow the online setup procedure to complete the installation.

Installation Instructions for Windows 95

If you have Windows 95 on your machine, you can use the following procedure to

install the STEP 7-Micro/WIN software:

Basic PLC Programming

program-plc.blogspot.com Page 66

1. Start by inserting Disk 1 in the disk drive of your computer (usually

designated drive A: or drive B:).

2. Click once on the Start button to open the Windows 95 menu.

3. Click on the Run... menu item.

4. In the Run dialog box, type a:\setup and click on the ―OK‖ button. This starts

the setup procedure.

5. Follow the online setup procedure to complete the installation.

Troubleshooting the Installation

The following situations can cause the installation to fail:

 Not enough memory: you need to have at least 35 Mbyte of free space on your

hard disk.

 Bad diskette: verify that the diskette is bad, and then call your salesman or

distributor.

 Operator error: start over and read the instructions carefully.

 Failure to close any open applications, including the Microsoft Office toolbar.

 7.1.3 Creating a Program

STEP 7-Micro/WIN allows you to create the user program (OB1) with either the

Ladder Editor or the Statement List Editor.

Entering Your Program in Ladder

The Ladder Editor window allows you to write a program using graphical

symbols. See Figure 2-5. The toolbar includes some of the more common ladder

elements used to enter your program. The first (left) drop-down list box contains

instruction categories. You can access these categories by clicking or pressing F2.

After a category is selected, the second drop-down list contains the instructions

specific to that category. To display a list of all instructions in alphabetic order,

press F9 or select the All Instructions category. Each network allows two types of

comments:

Basic PLC Programming

program-plc.blogspot.com Page 67

 Single-line network title comments are always visible in the ladder display.

You can access the network editor by double-clicking anywhere in the

network title region.

 Multi-line network comments are only visible through a dialog box, but can

be printed (if that option has been selected through the Page Setup dialog).

You can access the network comment editor by double-clicking anywhere in

the network title region.

To start entering your program, follow these steps:

1. To enter a program title, select the menu command Edit _ Program Title.

2. To enter ladder elements, select the type of element you want by clicking the

corresponding icon button or selecting from the instruction list.

3. Type the address or parameter in each text field and press ENTER.

To change or replace one of the elements, move the cursor to that element and

select the new element. You can also cut, copy, or paste elements at the cursor

location.

Entering Your Program in Statement List

The Statement List (STL) Editor is a free-form text editor which allows a certain

degree of flexibility in the way you choose to enter program instructions. Figure

2-6 shows an example of a statement list program. You can cut, copy, and paste in

the STL Editor. STEP 7-Micro/WIN also includes search-and-replace functions.

Basic PLC Programming

program-plc.blogspot.com Page 68

To enter an STL program, follow these guidelines:

 Start each comment with a double slash (//). Each additional comment line

must also begin with a double slash.

 End each line with a carriage return.

 Separate each instruction from its address or parameter with a space or tab.

 Do not use a space between the operand type and the address (for example,

enter I0.0, not I 0.0).

 Separate each operand within an instruction with a comma, space, or tab.

 Use quotation marks when entering symbol names. For example, if your

symbol table contains the symbol name Start1 for the address I0.0, enter the

instruction as follows:

LD “Start1”

To be able to view an STL program in ladder, you must divide segments of

code into separate networks by entering the keyword NETWORK. (Network

numbers are generated automatically after you compile or upload the

program.)

Compiling the Program

After completing a network or series of networks, you can check the syntax of

your code by selecting the menu command CPU _ Compile or by clicking the

Compile button:

Basic PLC Programming

program-plc.blogspot.com Page 69

Installing and Using the STEP 7-Micro/WIN Version 2.0 Software

Viewing a Program in Ladder or Statement List

You can view a program in either ladder or STL by selecting the menu command

View _ STL or View _ Ladder. When you change the view from STL to ladder

and back again to STL, you may notice changes in the presentation of the STL

program, such as:

 Instructions and addresses are changed from lower case to upper case.

 Spaces between instructions and addresses are replaced with tabs. You can

accomplish the same formatting of the STL instructions by selecting the menu

command CPU _ Compile while the STL Editor is active.

Downloading A Program

After developing and testing your program on the PDS 210, you must transfer the

program to the CPU 210 using the memory cartridge. In the same manner as you

could use a diskette to transfer files from one computer to another, you use a

memory cartridge to transfer your program from the PDS 210 to the CPU 210.

Downloading the Program to the PDS 210

After completing your program, you can download the project to the PDS 210. To

download your program, select the menu command Project _ Download... or

click the Download button in the main window.

The Download dialog box that appears allows you to specify the project

components you want to download. Select only ―Program Code Block‖ for the

PDS 210: the data block and the CPU configuration are not used by the CPU 210.

Click on the ―OK‖ button to confirm your choices and to execute the download

operation.

Basic PLC Programming

program-plc.blogspot.com Page 70

Copying Your Program to the Memory Cartridge

You can copy your program to the memory cartridge only when the PDS 210 is

powered up and the memory cartridge is installed. (You can install or remove the

memory cartridge while the PDS 210 is powered up.)

To install the memory cartridge, remove the protective tape from the memory

cartridge receptacle and insert the memory cartridge into the receptacle located

under an access cover of the PDS 210. (The memory cartridge is keyed for proper

installation.) After the memory cartridge is installed, use the following procedure

to copy the program:

1. If the program has not already been downloaded to the PDS 210, use the menu

command Project _ Download... to download the program.

2. Use the menu command CPU _ Program Memory Cartridge to copy the

program to the memory cartridge.

3. Remove the memory cartridge from the PDS 210.

Basic PLC Programming

program-plc.blogspot.com Page 71

Transferring the Program to the CPU 210

To transfer the program from the memory cartridge to the CPU 210, follow these

steps:

1. Turn off the power to the CPU 210.

2. Insert the memory cartridge in the CPU 210. (The memory cartridge is keyed

for proper installation.)

3. Turn on the power to the CPU 210.

4. After the RUN LED turns on, remove the memory cartridge from the CPU

210.

As shown in Figure 2-10, the CPU 210 performs the following tasks after you

turn the power on when a memory cartridge is installed in the CPU 210:

 The M, T, and Q areas of memory are cleared.

 The current values for the counters (which are stored in the permanent

memory) are cleared. (The current values for the counters are erased only

when the memory cartridge is installed in the CPU 210. If a memory cartridge

is not installed, the current values are retained.)

 The user program is copied from the memory cartridge to the permanent

EEPROM memory.

Always remove the memory cartridge from the CPU 210 after the program has

been installed. When a valid program is installed, the CPU 210 automatically goes

Basic PLC Programming

program-plc.blogspot.com Page 72

to RUN mode when power is applied. As your program runs, the CPU 210

updates the values stored in the RAM memory (the values stored in M memory,

the current values for the four counters, and the current values for the four timers).

When you turn the power off, the CPU 210 saves the current values of the four

counters to the permanent EEPROM memory. The other values stored in RAM

(such as M memory, current values for the timers, and the copy of the user

program) are cleared. Unless a memory cartridge is installed in the CPU 210, the

current values for the counters are retentive. The current values for the counters

are automatically restored to the RAM memory when you turn power on for the

CPU 210 (with no memory cartridge installed).

Basic PLC Programming

program-plc.blogspot.com Page 73

Chapter 8

GE Fanuc Series 90 Micro PLC

Series 90 Micro PLCs offer an array of useful features, including:

 Compatibility with Logicmaster 90-30/20/Micro programming software

 Support for the 90-30 Hand-Held Programmer (HHP)

 An alarm processor function

 Password protection to limit access to PLC contents

 A built-in High Speed Counter (HSC) function that can be configured as four type A

counters or as one type B counter and one type A counter (DC in/relay out Micro PLCs

only)

 Two potentiometers that provide selectable analog inputs to %AI16 and %AI17 (with

configurable filtering)

 Configurable software filtering of discrete inputs

 Series 90 (SNP) and SNP Extended (SNPX), and RTU slave communication protocols

 A pulse catch input function, selectable on up to four inputs, that detects pulses at least

100 microseconds in width

 Pulse train and Pulse Width Modulation (PWM) outputs (Micro PLCs with DC output

only)

 Compatibility with 14-point expansion unit (23 and 28-point Micro PLCs)

 Pager Enunciation function that can be configured to send a specified byte string from

Serial Port 2 (23 and 28-point Micro PLCs)

 Two analog inputs and one analog output (23-point Micro PLC)

8.1 Functional Description

The Micro PLC contains a CPU circuit board, an I/O board, and a Power Supply board. Figure of

Micro PLC Functional Block Diagram as below, provides an overview of Micro PLC inputs and

outputs and of the functions performed by each circuit board.

Basic PLC Programming

program-plc.blogspot.com Page 74

Figure of Micro PLC Functional Block Diagram

CPU Board

The CPU contains and executes the user program and communicates with the programmer (HHP

or computer running Logicmaster 90-30/90-20/Micro software). The primary capabilities of the

Micro PLC CPU hardware are listed in Table CPU Capabilities as below:

Basic PLC Programming

program-plc.blogspot.com Page 75

Table CPU Capabilities

High Speed Counters (IC693UDR011/002/005, IC693UAL006, IC693UDR010)

The high speed counter (HSC) function consists of four built-in counters. Each counter provides

direct processing of rapid pulse signals up to 5Khz for industrial control applications such as:

meter proving, turbine flow meter, velocity measurement, material handling, motion control, and

process control. Because it uses direct processing, the HSC can sense inputs, count, and respond

with outputs without needing to communicate with the CPU.

The HSC function can be configured to operate in one of two modes:

A4 – four identical, independent, simple (type A) counters that can count up or down

B1–3, A4 – counters 1–3 configured as one type B counter; counter 4 as one type A counter.

In either mode, each counter can be enabled independently. Type A counters can be configured

for up or down counting (default is up) and for positive or negative edge detection (default is

positive). The HSC function is configured using the Series 90-30 and 90-20 Hand-Held

Basic PLC Programming

program-plc.blogspot.com Page 76

Programmer or the Logicmaster 90-30/20/Micro software configurator function. Many features

can also be configured from an application program using the COMM_REQ function block.

Type A Counters

A type A counter accepts a count input that increments a 16 bit accumulator. It also accepts a

preload/strobe input that can either preload the counter accumulator with a user-defined value

(PRELOAD mode) or strobe the accumulator (STROBE mode) into a 16-bit register. The four

type A counters provide 15 words of %AI data or 16 bits of %I data to the PLC. They receive 16

bits of %Q data from the PLC. Each counter has two discrete inputs and one discrete output.

Type B Counter

The type B counter provides an AQUADB counting function. An AQUADB input consists of

two signals (designated A and B). A count occurs for each transition of either A or B. The

counter uses the phase relationship between A and B to determine count direction.

DC Output (IC693UDR005/010, UAL006)

The high-speed DC output (%Q1) can be configured for PWM, pulse train, or HSC output.

Counter channel 1 can be configured for only one of these outputs at a time. Because AQUADB

counting uses channels 1–3, the PWM and pulse train outputs are not available when a type B

counter is configured.

PWM Output

The frequency of the PWM output (19Hz to 2Khz) is selected by writing a value to memory

location %AQ2. A PWM duty ratio (the amount of time that the signal is active compared to the

signal period) within the range of 0 to 100% can be selected by writing a value to memory

location %AQ3.

Basic PLC Programming

program-plc.blogspot.com Page 77

Pulse Output

The frequency (10hz to 2Khz) of the pulse train is selected by writing a value to memory

location %AQ123. The number of pulses to be output (0 to 32767) is selected by writing a value

to memory location %AQ124.

ASCII Output (IC693UDR005/010, UAL006)

This feature allows you to send a specified byte string out the serial port by including a

COMM_REQ (Communications Request) instruction in a ladder diagram. The Micro PLC can

automatically send a message to a remote location that has the ability to display an ASCII string,

such as a pager. As an example of how pager enunciation could be used, when a specific alarm

condition is detected by the PLC, the PLC would execute a COMM_REQ instruction to autodial

the modem attached to the serial port. If the autodial COMM_REQ is successful, a second

COMM_REQ would be executed to send an informative ASCII string to the pager where it can

be viewed by the user. Finally, a third COMM_REQ would be sent to hang up the pager.

I/O Board

The I/O board provides the interface to the front panel input, output, and power supply

connections for the Micro PLC.

Input Circuits

DC Input Circuits (IC693UDR001/002/005/010, UAL006)

The DC input circuits condition and filter 24 VDC input voltages so that they can be properly

detected by the CPU module. The input points can be used in either positive or negative logic

mode. The DC inputs can be used as regular inputs or to supply count and preload/strobe inputs

for HSCs.

AC Input Circuits (IC693UAA003/007)

The AC input circuits accept 120 VAC, 50/60 Hz signals. Input characteristics are compatible

with a wide range of user-supplied input devices, such as pushbuttons, limit switches, and

electronic proximity switches.

Basic PLC Programming

program-plc.blogspot.com Page 78

Potentiometer Inputs (All Models)

Two potentiometers are provided to allow adjustment of the values in analog registers %AI16

and %AI17. The potentiometers can be turned by inserting a small screwdriver through an access

hole in the Micro PLC front panel. A potential use for the potentiometers would be to set

threshold values for use in logical relationships with other inputs/outputs.

Output Circuits

Relay Output Circuits (IC693UDR001/002/005/010, UEX011, UAL006)

The 2-amp, isolated, normally open output circuits allow the low-level signals from the CPU

module to control relay devices. There is no fusing on relay outputs. The user should provide

external fusing to protect the outputs. The outputs can be configured as regular outputs or as

outputs controlled by the HSCs.

AC Output Circuits (IC693UAA003/007)

The AC output points provide 120/240 VAC, 50/60 Hz, 0.5 A signals.

DC Output (IC693UDR005/010, IC693UAL006)

The DC output circuit provides a 24 VDC output voltage. This output can be used as a normal

DC output, HSC-controlled output, pulse train output, or pulse width modulation (PWM) output.

Analog I/O (IC693UAL006)

The 23-point Micro PLC features two analog input channels that map to %AI0018 and %AI0019

in the PLC. In voltage mode, the analog-to-digital (A/D) range of 0-32,000 counts corresponds to

a 0-10 V input signal. In 0-20mA current mode, the A/D range of 0-32,000 counts corresponds to

a 0-20mA input signal. In 4-20mA current mode, the A/D range of 0-32,000 counts corresponds

to a 4-20mA input signal.

The analog output channel maps to %AQ0012. In voltage mode, the output channel digital to

analog (D/A) range of 0 to 32,000 counts corresponds to a 0-10V output. In 0-20mA current

Basic PLC Programming

program-plc.blogspot.com Page 79

mode, a range of 0 to 32,000 counts corresponds to a 0-20mA output signal. In 4-20mA current

mode, the A/D range of 0-32,000 counts corresponds to a 4-20mA output signal.

8.2 Configuration and Programming

The Micro PLC can be configured and programmed using any of the following methods.

 Logicmaster 90-30/20/Micro software on one of the following types of computers:

a. Workmaster™ II or a CIMSTAR™ I industrial computer

b. IBM® PC-AT, PS/2® (Personal System 2®) with 2 Mbyte RAM and an Intel 386 or

higher processor

c. MS-DOS compatible Personal Computer with 2 Mbyte RAM and an Intel 386 or higher

processor

o Logicmaster 90 Micro software with any of the above computers.

o Series 90-30/90-20 Hand-Held Programmer (IC693PRG300).

Configuration and programming can be accomplished off-line from the PLC using the

Logicmaster 90 programmer. If you are using an HHP, configuration and programming can be

done on-line with the HHP attached to and interfacing with the PLC. Programming and

configuration communications must use Port 1. The Micro PLC provides flash memory for non-

volatile user program storage and for system firmware. The user program is always executed

from flash memory. However, the Micro PLC can be configured to read its configuration at

power up from either RAM or flash memory (ROM).

Program Format

Program elements are combined to form rungs of ladder logic. A ladder diagram has a symbolic

power source. Power is considered to flow from the left rail through a contact to the coil or

function block connected to the right. From the main menu, select Program Display/Edit (F1).

The screen displays a list of markers which represent parts of a program.

Basic PLC Programming

program-plc.blogspot.com Page 80

Creating or Editing Program Logic

Program logic consists of various elements such as relays, timers, math functions, and other

functions, placed together to form rungs of logic.

Basic PLC Programming

program-plc.blogspot.com Page 81

Structure of a Ladder Logic Rung

The programmer allows great flexibility in entering program elements; however, it will not allow

you to enter a rung with incorrect format or syntax. Each rung may contain up to eight parallel

lines; each line may have up to ten elements connected in series. Examples of an element include

a normally open contact, a normally closed contact, or a coil. Horizontal and vertical links are

used to carry power around an element, or to place elements in parallel or series with one

another.

The following example shows two separate rungs, which must be entered and accepted

separately.

|

|——| |—————| |—————| |————————————————————————————————

—————————————————————————()—

|

|——| |—————| |—————|/|————————————————————————————————

—————————————————————————()—

|

In the next example, two rung lines are connected by a vertical link, forming only one rung.

|

|——| |——+——| |—————| |—————————————————————————————————

————————————————————————()—

| |

| +——| |—————|/|—————————————————————————————————————

————————————————————()—

|

The last element of a group of rung elements in series must be a coil, a jump, or a function.

Nothing may be to the right of a coil or a jump. The tenth position of a rung line is reserved for

Basic PLC Programming

program-plc.blogspot.com Page 82

coils and jumps. A call instruction may occupy columns 9 and 10. A rung may contain up to

eight coils. A rung line is not required to have elements in each column.

Ladder Logic Language Rules

These guidelines should be followed when creating or editing ladder logic:

1. If a rung has a transitional coil, it must be the only coil in the rung.

2. There can be only one JUMP or MCR per rung. It must be the last instruction in the rung,

and there cannot be a coil in the same rung.

3. A rung must contain at least one contact before any coil, jump, MCR, function, or

vertical link. Contacts must be entered and cannot be left blank. Function blocks cannot

be tied directly into the power rail.

4. Short circuits are not allowed.

5. A rung must be composed of properly nested sub-expressions. There can be no branches

either into or out of another branch. The following examples contain improperly nested

rungs.

A. In this example, the rung line containing the %I0005 contact branches into the middle of

the sub-expression (%I0002 OR (%I0003 AND %I0004)).

|

|%I0001 %I0002 %Q0001
|——| |——+——| |——————————+——————————————()—

| | |

| |%I0003 %I0004 |

| +——| |——+——| |——+

| |

|%I0005 |

|——| |——————————+|

B. In this example, the rung line containing the %I0005 contact branches out of the

 middle of the sub-expression (%I0002 OR (%I0003 AND %I0004)).

|

|%I0001 %I0002 %I0006 %Q0001

|——| |——+——| |——————————+——| |——+——————————————————————

———————————————————————()—

| | | |

| |%I0003 %I0004 | |

| +——| |——+——| |——+ |

| | |

| |%I0005 |

| +——| |——————————+

Basic PLC Programming

program-plc.blogspot.com Page 83

|

6. There can be no branch around (above or below) a function in a rung. The following rung

is not allowed.

|

|%I0001 %I0002 %Q0001

|——| |—————| |——+———————————————————————————————————

————————————————————————()—

| |
| | —————

| —| FUNC|—

| —————

|

7. There can be no sub-paths starting from a vertical in a rung containing a function, except

for sub-paths leading directly to coils.

A. The following rung is allowed because the first sub-path comes directly off the

 power rail and the second leads directly to coils.

|

| _____

|%I0001 %I0002 | | %Q0001

|——| |—————| |———————————| FUNC|———————————————————————

—————————+———————————()—

| | X | |
|%I0001 %I0002 %I0003 | | | %Q0002

|——| |—————| |—————| |———| | +———————————()—

| |_____|

|

B. The next rung is not allowed. It has a sub-path starting from a vertical and leading

 into the function. It also has a sub-path that does not lead directly to coils; it goes

 through contacts first.

|

| _____

|%I0001 %I0002 | | %I0004 %Q0001

|——| |—————| |——+————————| FUNC|————————————————————————
————————+——| |——————()—

| | | X | |

| |%I0003 | | |%I0005 %Q0002

| +——| |———| | +——| |——————()—

| |_____|

|

8. There can be no contacts following a function in a rung. Note that the rung in the last

example above fails this rule, too.

Basic PLC Programming

program-plc.blogspot.com Page 84

9. In general, execution order of rung elements is left-to-right. Within a group of parallel

branches, the first (lowest rung line) parallel branch is executed first. The first of multiple

sub-paths is executed first.

8.3 Fault Reporting

The Micro PLC monitors internal operations for system and user problems. These faults are

reported through the %S references and through an internal fault table. Access to %S information

is available through the Logicmaster 90 software or the HHP. The fault table can only be

accessed by Logicmaster 90 software.

8.4 Specifications

The following tables list ordering information, physical and functional characteristics, and input

power requirements for the Micro PLCs.

I/O Point Configurations

Basic PLC Programming

program-plc.blogspot.com Page 85

Physical and Functional Characteristic (14-point PLC)

Physical and Functional Characteristic (28-point PLC)

Basic PLC Programming

program-plc.blogspot.com Page 86

Physical and Functional Characteristic (23-point Micro PLC, IC693UAL006)

Basic PLC Programming

program-plc.blogspot.com Page 87

AC Power Requirements

Basic PLC Programming

program-plc.blogspot.com Page 88

DC Power Requirements

Basic PLC Programming

program-plc.blogspot.com Page 89

Chapter 9

Allen Bradley MicroLogix 1000 PLC Programming

9.1 Using Basic Instructions

These instructions, when used in ladder programs represent hardwired logic circuits used for the

control of a machine or equipment. The basic instructions are separated into three groups: bit,

timer, and counter. Before you learn about the instructions in each of these groups, we suggest

that you read the overview that precedes the group:

 Bit Instructions Overview

 Timer Instructions Overview

 Counter Instructions Overview

Examine if Closed (XIC)

Use the XIC instruction in your ladder program to determine if a bit is ON. When the instruction

is executed, if the bit addressed is on (1), then the instruction is evaluated as true. When the

instruction is executed, if the bit addressed is off (0), then the instruction is evaluated as false.

Bit Address State XIC Instruction

0 False

1 True

Examples of devices that turn on or off include:

 a push button wired to an input (addressed as I1:0/4)

 an output wired to a pilot light (addressed as O0:0/2)

 a timer controlling a light (addressed as T4:3/DN)

Examine if Open (XIO)

Use an XIO instruction in your ladder program to determine if a bit is Off. When the instruction

is executed, if the bit addressed is off (0), then the instruction is evaluated as true. When the

instruction is executed, if the bit addressed is on (1), then the instruction is evaluated as false.

Basic PLC Programming

program-plc.blogspot.com Page 90

Bit Address State XIO Instruction

0 True

1 False

Examples of devices that turn on or off include:

 motor overload normally closed (N.C.) wired to an input (I1:0/10)

 an output wired to a pilot light (addressed as O0:0/4)

 a timer controlling a light (addressed as T4:3/DN)

Output Energize (OTE)

Use an OTE instruction in your ladder program to turn On a bit when rung conditions are

evaluated as true. An example of a device that turns on or off is an output wired to a pilot light

(addressed as O0:0/4). OTE instructions are reset when:

 You enter or return to the REM Run or REM Test mode or power is restored.

 The OTE is programmed within an inactive or false Master Control Reset (MCR) zone.

Output Latch (OTL) and Output Unlatch (OTU)

OTL and OTU are retentive output instructions. OTL can only turn on a bit, while OTU can only

turn off a bit. These instructions are usually used in pairs, with both instructions addressing the

same bit. Your program can examine a bit controlled by OTL and OTU instructions as often as

necessary.

Output Latch (OTL) and Output Unlatch (OTU)

OTL and OTU are retentive output instructions. OTL can only turn on a bit, while OTU can only

turn off a bit. These instructions are usually used in pairs, with both instructions addressing the

same bit. Your program can examine a bit controlled by OTL and OTU instructions as often as

necessary.

Basic PLC Programming

program-plc.blogspot.com Page 91

Using OTL

When you assign an address to the OTL instruction that corresponds to the address of a physical

output, the output device wired to this screw terminal is energized when the bit is set (turned on

or enabled). When rung conditions become false (after being true), the bit remains set and the

corresponding output device remains energized. When enabled, the latch instruction tells the

controller to turn on the addressed bit. Thereafter, the bit remains on, regardless of the rung

condition, until the bit is turned off (typically by a OTU instruction in another rung).

Using OTU

When you assign an address to the OTU instruction that corresponds to the address of a physical

output, the output device wired to this screw terminal is de-energized when the bit is cleared

(turned off or disabled). The unlatch instruction tells the controller to turn off the addressed bit.

Thereafter, the bit remains off, regardless of the rung condition, until it is turned on (typically by

an OTL instruction in another rung).

One-Shot Rising (OSR)

The OSR instruction is a retentive input instruction that triggers an event to occur one time. Use

the OSR instruction when an event must start based on the change of state of the rung from false

to true. When the rung conditions preceding the OSR instruction go from false to true, the OSR

instruction will be true for one scan. After one scan is complete, the OSR instruction becomes

false, even if the rung conditions preceding it remain true. The OSR instruction will only become

true again if the rung conditions preceding it transition from false to true. The controller allows

you to use one OSR instruction per output in a rung.

Entering Parameters

The address assigned to the OSR instruction is not the one-shot address referenced by your

program, nor does it indicate the state of the OSR instruction. This address allows the OSR

instruction to remember its previous rung state. Use a bit address from either the bit or integer

data file. The addressed bit is set (1) for one scan when rung conditions preceding the OSR

Basic PLC Programming

program-plc.blogspot.com Page 92

instruction are true (even if the OSR instruction becomes false); the bit is reset (0) when rung

conditions preceding the OSR instruction are false.

Timer Instructions Overview

Each timer address is made of a 3-word element. Word 0 is the control word, word 1 stores the

preset value, and word 2 stores the accumulated value.

Entering Parameters

Accumulator Value (ACC)

This is the time elapsed since the timer was last reset. When enabled, the timer updates this

continually.

Preset Value (PRE)

Specifies the value which the timer must reach before the controller sets the done bit. When the

accumulated value becomes equal to or greater than the preset value, the done bit is set. You can

use this bit to control an output device. Preset and accumulated values for timers range from 0 to

+32,767. If a timer preset or accumulated value is a negative number, a runtime error occurs.

Timebase

The timebase determines the duration of each timebase interval. The timebase is selectable as

0.01 (10 ms) second or 1.0 second.

Timer Accuracy

Timer accuracy refers to the length of time between the moment a timer instruction is enabled

and the moment the timed interval is complete. Timing accuracy is –0.01 to +0 seconds, with a

program scan of up to 2.5 seconds. The 1-second timer maintains accuracy with a program scan

of up to 1.5 seconds. If your programs can exceed 1.5 or 2.5 seconds, repeat the timer instruction

rung so that the rung is scanned within these limits.

Basic PLC Programming

program-plc.blogspot.com Page 93

Timer On-Delay (TON)

Use the TON instruction to delay the turning on or off of an output. The TON instruction begins

to count timebase intervals when rung conditions become true. As long as rung conditions

remain true, the timer increments its accumulated value (ACC) each scans until it reaches the

preset value (PRE). The accumulated value is reset when rung conditions go false, regardless of

whether the timer has timed out.

Using Status Bits

When the controller changes from the REM Run or REM Test mode to the REM Program mode

or user power is lost while the instruction is timing but has not reached its preset value, the

following occurs:

 Timer Enable (EN) bit remains set.

 Timer Timing (TT) bit remains set.

 Accumulated value (ACC) remains the same.

On returning to the REM Run or REM Test mode, the following can happen:

Retentive Timer (RTO)

Use the RTO instruction to turn an output on or off after its timer has been on for a preset time

interval. The RTO instruction is a retentive instruction that lets the timer stop and start without

Basic PLC Programming

program-plc.blogspot.com Page 94

resetting the accumulated value (ACC). The RTO instruction retains its accumulated value when

any of the following occurs:

 Rung conditions become false.

 You change controller operation from the REM Run or REM Test mode to the REM

Program mode.

 The controller loses power.

 A fault occurs.

Using Status Bits

When the controller changes from the REM Run or REM Test mode to the REM Program or

REM Fault mode, or user power is lost while the timer is timing but not yet at the preset value,

the following occurs:

 Timer Enable (EN) bit remains set.

 Timer Timing (TT) bit remains set.

 Accumulated value (ACC) remains the same.

Counter Instructions Overview

Each Counter address is made of a 3-word data file element. Word 0 is the control word,

containing the status bits of the instruction. Word 1 is the preset value. Word 2 is the

accumulated value.

Basic PLC Programming

program-plc.blogspot.com Page 95

Entering Parameters

Accumulator Value (ACC)

This is the number of false-to-true transitions that have occurred since the counter was last reset.

Preset Value (PRE)

Specifies the value which the counter must reach before the controller sets the done bit. When

the accumulator value becomes equal to or greater than the preset value, the done status bit is set.

You can use this bit to control an output device. Preset and accumulated values for counters

range from –32,768 to +32,767, and are stored as signed integers. Negative values are stored in

two‘s complement form.

Count Up (CTU)

The CTU is an instruction that counts false-to-true rung transitions. Rung transitions can be

caused by events occurring in the program (from internal logic or by external field devices) such

as parts traveling past a detector or actuating a limit switch. When rung conditions for a CTU

instruction have made a false-to-true transition, the accumulated value is incremented by one

count, provided that the rung containing the CTU instruction is evaluated between these

transitions. The ability of the counter to detect false-to-true transitions depends on the speed

(frequency) of the incoming signal.

The accumulated value is retained when the rung conditions again become false. The

accumulated count is retained until cleared by a reset (RES) instruction that has the same address

as the counter reset.

Basic PLC Programming

program-plc.blogspot.com Page 96

Using Status Bits

The accumulated value is retained after the CTU instruction goes false, or when power is

removed from and then restored to the controller. Also, the on or off status of counter done,

overflow, and underflow bits is retentive. The accumulated value and control bits are reset when

the appropriate RES instruction is enabled. The CU bits are always set prior to entering the REM

Run or REM Test modes..

Count Down (CTD)

The CTD is a retentive output instruction that counts false-to-true rung transitions. Rung

transitions can be caused by events occurring in the program such as parts traveling past a

detector or actuating a limit switch.

When rung conditions for a CTD instruction have made a false-to-true transition, the

accumulated value is decremented by one count, provided that the rung containing the CTD

instruction is evaluated between these transitions. The accumulated counts are retained when the

rung conditions again become false. The accumulated count is retained until cleared by a reset

(RES) instruction that has the same address as the counter reset.

Basic PLC Programming

program-plc.blogspot.com Page 97

Using Status Bits

The accumulated value is retained after the CTD instruction goes false, or when power is

removed from and then restored to the controller. Also, the on or off status of counter done,

overflow, and underflow bits is retentive. The accumulated value and control bits are reset when

the appropriate RES instruction is executed. The CD bits are always set prior to entering the

REM Run or REM Test modes.

RSLogix Micro Starter Lite

Now for the moment we are creating some ladder logic. Open the RSLogix Micro software with

the START > All Programs > Rockwell Software > RSLogix Micro English > RSLogix Micro

English shortcut. Create a brand new project by pulling down the File menu and selecting New.

Every project must start with a designated processor.

Basic PLC Programming

program-plc.blogspot.com Page 98

It has chosen the simplest MicroLogix 1000 and then clicked the OK button. If you ever work

with the purchased version of RSLogix 500 then there will be a lot more items in this hardware

list. A blank project now opens up.

Basic PLC Programming

program-plc.blogspot.com Page 99

Let‘s make a simple rung to test in the emulator. Make sure the cursor is on the rung with the

END on it and then click the New Rung icon in the instruction toolbar.

Now click on the ―Examine if Closed‖ instruction to add it to the rung. Double click on the

question mark above it and enter I:0/0 as its input address. Just leave the description pop up box

empty by clicking OK.

Next, click on the Output Energize instruction to add it to the right side of the rung. Double

click on the question mark above it and enter O:0/0 as its output address. Just leave the

description pop up box empty by clicking OK.

You should now have something like below.

The next very important step is to verify the project with the Edit > Verify Project menu item.

This will compile the project and get it ready for the emulator.

Basic PLC Programming

program-plc.blogspot.com Page 100

Save the project as something like Test.RSS in an easy place to find like My Documents.

9.2 Using Comparison Instructions

Comparison instructions are used to test pairs of values to condition the logical continuity of a

rung. As an example, suppose a LES instruction is presented with two values. If the first value is

less than the second, then the comparison instruction is true. To learn more about the compare

instructions, we suggest that you read the Compare Instructions Overview that follows.

Equal (EQU)

Use the EQU instruction to test whether two values are equal. If source A and source B are

equal, the instruction is logically true. If these values are not equal, the instruction is logically

false. Source A must be a word address. Source B can be either a constant or word address.

Negative integers are stored in two‘s complement form.

Basic PLC Programming

program-plc.blogspot.com Page 101

Not Equal (NEQ)

Use the NEQ instruction to test whether two values are not equal. If source A and source B are

not equal, the instruction is logically true. If the two values are equal, the instruction is logically

false. Source A must be a word address. Source B can be either a constant or word address.

Negative integers are stored in two‘s complement form.

Less Than (LES)

Use the LES instruction to test whether one value (source A) is less than another (source B). If

the value at source A is less than the value of source B the instruction is logically true. If the

value at source A is greater than or equal to the value of source B, the instruction is logically

false. Source A must be a word address. Source B can be either a constant or word address.

Negative integers are stored in two‘s complement form.

Less Than or Equal (LEQ)

Use the LEQ instruction to test whether one value (source A) is less than or equal to another

(source B). If the value at source A is less than or equal to the value of source B, the instruction

is logically true. If the value at source A is greater than the value of source B, the instruction is

logically false. Source A must be a word address. Source B can be either a constant or word

address. Negative integers are stored in two‘s complement form.

Greater Than (GRT)

Use the GRT instruction to test whether one value (source A) is greater than another (source B).

If the value at source A is greater than the value of source B, the instruction is logically true. If

the value at source A is less than or equal to the value of source B, the instruction is logically

false. Source A must be a word address. Source B can be either a constant or word address.

Negative integers are stored in two‘s complement form.

Greater Than or Equal (GEQ)

Use the GEQ instruction to test whether one value (source A) is greater than or equal to another

(source B). If the value at source A is greater than or equal to the value of source B, the

Basic PLC Programming

program-plc.blogspot.com Page 102

instruction is logically true. If the value at source A is less than the value of source B, the

instruction is logically false. Source A must be a word address. Source B can be either a constant

or word address. Negative integers are stored in two‘s complement form.

Masked Comparison for Equal (MEQ)

Use the MEQ instruction to compare data of a source address with data of a reference address.

Use of this instruction allows portions of the data to be masked by a separate word.

Entering Parameters

 Source is the address of the value you want to compare.

 Mask is the address of the mask through which the instruction moves data. The mask can

be a hexadecimal value (constant).

 Compare is an integer value or the address of the reference. If the 16 bits of data at the

source address are equal to the 16 bits of data at the compare address (less masked bits),

the instruction is true. The instruction becomes false as soon as it detects a mismatch.

Bits in the mask word mask data when reset; they pass data when set.

Limit Test (LIM)

Use the LIM instruction to test for values within or outside a specified range, depending on how

you set the limits.

Entering Parameters

The Low Limit, Test, and High Limit values can be word addresses or constants, restricted to the

following combinations:

 If the Test parameter is a constant, both the Low Limit and High Limit parameters must

be word addresses.

 If the Test parameter is a word address, the Low Limit and High Limit parameters can be

either a constant or a word address.

Basic PLC Programming

program-plc.blogspot.com Page 103

True/False Status of the Instruction

If the Low Limit has a value equal to or less than the High Limit, the instruction is true when the

Test value is between the limits or is equal to either limit. If the Test value is outside the limits,

the instruction is false, as shown below.

If the Low Limit has a value greater than the High Limit, the instruction is false when the Test

value is between the limits. If the Test value is equal to either limit or outside the limits, the

instruction is true, as shown below.

Basic PLC Programming

program-plc.blogspot.com Page 104

References

1. GX Developer FX, Programming and Documentation System, Beginner‘s Manual,

Mitsubishi Electric Industrial Automation.

2. GE Fanuc Automation, Programmable Control Products Logicmaster 90 Series 90-

30/20/Micro, Programming Software User‘s Manual, GFK-0466L.

3. Programmable logic controllers, Basic level TP301, Textbook, Festo Didactic, R.

Bliesener, F. Ebel, C. Löffler, B. Plagemann, H. Regber, E. v. Terzi, A. Winter.

4. CP1L CPU Unit, GETTING STARTED GUIDE, Omron.

5. Simatic, S7-200 Programmable Controller, CPU 210, System Manual.

6. GE Fanuc Automation, Programmable Control Products, Series 90™, Micro PLC User's

Manual GFK-1065F.

7. Allen-Bradley MicroLogix 1000, Programmable Controllers, User Manual, (Bulletin

1761 Controllers).

8. FX Series Programmable Controllers, Programming Manual, Revision J, November

1999.

9. SINUMERIK 840D, C-PLC Programming, Description of Functions 03.96 Edition,

Manufacturer Documentation.

10. Basics of PLC Programming, Industrial Control Systems, Fall 2006.

Basic PLC Programming

program-plc.blogspot.com Page 105

Support Me

1. Add to circles on Google+

plus.google.com/107166042091915882790

2. Become a fan on Facebook

facebook.com/plcsimulation

3. Follow us on Twitter

twitter.com/program_plc

http://plus.google.com/107166042091915882790
http://www.facebook.com/plcsimulation
http://twitter.com/program_plc

