BASIC PLC PROGRAMMING

The Fundamental Knowledge of PLC

il IS
program-PLC.blogspot.com..

Basic PLC Programming

Table of Contents

Cover eBook

Table OF CONTENTSe e e 1
Chapter 1 PLC Introduction

00 1 10T 10Tt A T o 4
1.2 Areas of application 0F @ PLC 5
1.3Basic design 0f @ PLC 7
1.4 The new PLC standard EN 61131 (IEC 61131)oiiviiiniiiiiieieeeeeeeaa 9

Chapter 2 Design and mode of operation of a PLC

2.1 Structure OF @ PLC ..o 10
2.2 Function mode 0T @ PLC ..o 13
2.3 Application program MEIMOIYuiuiiei ittt 13
2.4 PLC aNd IO DBVICESueenint it et e et 14

Chapter 3 Programming of a PLC

3.1 Systematic solution fiNdINGo 16
3.2 EN 61131-3 (IEC 61131-3) Structuring reSOUICEScovereeriireneeneaneanenanenns. 18
3.3 Programming langUagEScouiriniiii e 19

Chapter 4 PLC Programming Language

4.1 Function block diagram 23
4.2 Ladder diagram ..o 26
4.3 INSEIUCLION ISt ... e 28
1 (o1 11 N (3 30
4.5 Sequential function chart 32

Chapter 5 Omron PLC Programming

5.1 Introduction to Omron PLC Programmingccoooveeiriiiieniiiieinienenennn. 34
5.1.1 What is Control SYStem?oooiririiii e 34

program-plc.blogspot.com Page 1

Basic PLC Programming

5.1.2 The Role of the Programmable Controllercoiiiii 34

5.1.3 Input and OULPUL DEBVICESveeiieiii e, 35

5.1.4 What is Programmable Controller? ..o, 36

5.1.5 PLC Panel and their Advantagesc.coovvviiiiiiiiiiiiiiieieeeene 37
5.2 CP1L Overview

521 CPIL MOUEIS ...t 39

5.2.2 System COMPONENTSuietitt ettt et et et aeenans 42
5.3 Creating Programs

5.3.1 Creating Ladder Programscooveiiiiiiiiieieeeee e 43

5.3.2Using CX-Programmercooiiuiiiiiiae e 47

Chapter 6 Mitsubishi MELSEC-F Programmable Controller
6.1 Introduction to FX Series Programmable Controller

B.1.1 OVEIVIBW ..ottt et et e e et e e e e e 51
6.1.2 FXON CPU VEISIONSunintitiiit e e et 51
6.1.3 Programming eqUIPMENto.iitiiiii e, 52
6.2 Basic Program Instructions
6.2.1 What 1S @ Program?oouirit it 53
6.2.2 Start Programming GX DeVeloperoooiiiiiiiiiiiiiiiiiiiiee 54
6.2.3 Outline of basic devices used in programmingcc.eeeevennnn.n 56
6.2.4 Howto read ladder 10QiCcooovniiiiiii 57
6.3 STL Programming
6.3.1 What are STL, SFC and IEC1131cooiviiiiiiiiiieieeeeeeae, 57
6.3.2 HOW STL OPBIateS . ..viitiiite e e e e e 58
6.3.3 How to start and end an STL programcoevveniiiiiiiniininnnnn, 59

Chapter 7 Siemens PLC Programming

7.1 Installing the S7-200 CPU 210viriniiiiii e 62
7.1.11Installing @ CPU 210oiniiniii e 62

program-plc.blogspot.com Page 2

Basic PLC Programming

7.1.2 Installing the STEP 7-Micro/WIN Version 2.0 Software 64
7.1.3 Creating a Programc.ooeieiniiiiiie e 66

Chapter 8 GE Fanuc Series 90 Micro PLC

8.1 Functional DesCriPtiONc.iiieiiii e 73
8.2 Configuration and Programmingcooeiieiiiiriiti e 79
8.3 FaUIt REPOITINGvitie it e 84
8.4 SPECIFICALIONSot 84

Chapter 9 Allen Bradley MicroLogix 1000 PLC Programming

9.1 Using BasiC INStIUCLIONS ..ottt 89

9.2 Using Comparison INStrUCLIONSouiiiiniiii e 100
RETEIENCES ...t 104
SUPPOIT IMIB .t r e nn e enee e 105

program-plc.blogspot.com

Page 3

Basic PLC Programming

Chapter 1
PLC Introduction
1.1 Introduction

A group of engineers General Motors in 1968 was developed the first Programmable Logic
Controller (PLC), when the companies were in search of an alternative to substitute complex
relay control systems. The new control system had to meet the following requirements:

e Simple programming

e Program changes without system intervention and there is no internal rewiring

e Simple, low cost maintenance

e Smaller, cheaper and more reliable than corresponding relay control systems

Mechanical Robot Arm Pushbutton & Revolving
structure Selector Switch Light

\

Indicators

Switches

PLC

Relays

-
R

FTET] Temmm—
- mm e w

e o |

Wi e

Terminal

Sensor Magnetic
Block

Contactor

Consequent development resulted in a system, which allowed the binary signals simple
connection. The conditions as to how these signals were to be linked were identified in the
control program. It became feasible for the first time to plan signals on a display and to file
these in electronic memories in this new systems.

Three decades have left behind, during which the massive progress developed in the

microelectronics development did not stop short of PLC. For example, even if program

program-plc.blogspot.com Page 4

Basic PLC Programming

optimization and hence a reduction of required capacity of memory firstly still characterized

a vital key task for the programmer, currently this is hardly of any importance.

Furthermore, the functions range has grown significantly. Some years ago, analogue
processing, process visualization or even the PLC utilization as a controller, were considered

as Utopian. Presently, these functions support forms a fundamental part of many PLCs.

1.2 Areas of application of a PLC
Every machine or system has a controller. Dependent on the technology type used,
controllers can be separated into hydraulic, pneumatic, electronic and electrical controllers.
Often, a mixture of different technologies is applied. Moreover, differentiation is created
between hard-wired programmable (e.g. wiring of electro-mechanical or electronic
components) and PLCs. The initial is utilized principally in cases, where any reprogramming
by the user is out of the query and the task size guarantees the development of a special

controller.

Characteristic applications for such controllers can be found in cars, video cameras, and
automatic washing machines. Nevertheless, if the task size does not guarantee the
development of a special controller or if the user is to include the facility of setting timers
and counters, or of making easy or independent program changes, then a universal controller

use, where the program is written to a memory of electronic, is the ideal option? The PLC

program-plc.blogspot.com Page 5

Basic PLC Programming

stands for such a universal controller. It can be applied for different applications and, through
the program installed in its memory, offers the user with an easy means of changing,
expanding and optimizing control processes.

The creative task of a PLC engaged the input signals interconnection along with a specified
program and, if "true"”, to switch the corresponding output. Boolean algebra forms the basis
of mathematical for this operation, which recognizes accurately two defined statuses of one
variable: "0" and "1". Consequently, an output can only think these two statuses. For
example, a linked motor could thus be either switched on or off, i.e. controlled.

This function has coined the name PLC: Programmable logic controller, i.e. the behavior of
input/output is related to that of a pneumatic switching valve or electromagnetic relay
controller; the program is saved in a memory of electronic. However, the PLC tasks have
quickly multiplied: the functions of timer and counter, setting and resetting of memory,
mathematical computing operations all stand for functions, which can be implemented by

practically any of PLCs nowadays.

The requirement to be met by PLC’s continued to grow up in line with their speedily
spreading usage and the automation technology development. Visualization is the
representation statuses of machine for instance the control program being executed, through
display or monitor. Also controlling, i.e. the facility to intervene in control processes or,
alternatively, to make such intervention by unauthorized persons impossible. It also became
required to interconnect and harmonize individual systems controlled via PLC by means of
automation technology. Therefore a master computer makes easy the means to issue higher-

level commands for program processing to some PLC systems.

The networking of some PLCs as well as that of a master computer and PLC is affected
through special communication interfaces. To this effect, a lot of the more current PLCs are

well-matched with open, standardized bus systems, for instance Profibus to EN 50170.

program-plc.blogspot.com Page 6

Basic PLC Programming

End of the seventies, binary inputs and outputs were finally extended with the analogue
inputs and outputs addition, since many of today’s technical applications need analogue
processing such as speed setting, force measurement, servo-pneumatic positioning systems.
At the same time, the analogue signals acquisition or output allows an actual/set point value
comparison and as a result the automatic control engineering realization functions, a task,

which broadly exceeds the scope suggested by the name as programmable logic controller.

The PLCs presently on offer in the market place have been modified to customer demands to
such an extent that it has become possible to buy a highly suitable PLC for virtually any
application. As such, miniatures PLCs are currently available with a minimum number of
inputs/outputs beginning from just a few hundred Pounds. Also available are larger PLCs
with 28 or 256 inputs/outputs. A lot of PLCs can be extended by means of additional
input/output, positioning, communication and analogue modules. Special PLCs are available
for shipping or mining, safety technology tasks. Yet further PLCs are capable to process
numerous programs concurrently or multitasking. Lastly, PLCs are coupled with other

automation components, accordingly creating significantly wider areas of application.

1.3 Basic design of a PLC
The programmable logic controller (PLC) term is defined by EN 61131-1 (IEC 61131-1): “A
digitally operating electronic system, designed for use in an industrial environment, which
uses a programmable memory for the internal storage of user-oriented instructions for

implementing specific functions such as logic, sequencing, timing, counting and arithmetic,

program-plc.blogspot.com Page 7

Basic PLC Programming

to control, through digital or analogue inputs and outputs, various types of machines or
processes. Both the PC and its associated peripherals are designed so that they can be easily
integrated into an industrial control system and easily used in all their intended functions."

PLC-program

;

Input module j=—=>| Central control unit J=—=">|Output module

I !

Sensors Actuators

A PLC is consequently nothing more than a computer, modified specifically for firm control
tasks. The input module function is to convert incoming signals into signals, which can be
processed by the PLC, and to pass these to the central control unit. The reverse task is
executed by an output module. This converts the PLC signal into signals appropriate for the
actuators. The actual signals processing is affected in the central control unit in compliance
with the program saved in the memory. The PLC program can be created in a variety of
methods: through assembler kind instructions in ’statement list’, in higher-level, problem-
oriented languages for example structured text or in the form of a flow chart such as
represented by a sequential function chart. In Europe, the use of function block diagrams
based on function charts with graphic symbols for logic gates is extensively used. In

America, the ladder diagram is the chosen language by users.

Depending on how the central control unit is linked to the modules of input and output,
differentiation can be created between compact PLCs (input module, central control unit and

output module in one housing) or modular PLCs.

program-plc.blogspot.com Page 8

Basic PLC Programming

1.4 The new PLC standard EN 61131 (IEC 61131)

Before valid PLC standards focusing mostly on PLC programming were usually geared to
current state of the technology of art in Europe at the end of the seventies. This took into
account non-networked systems of PLC, which mainly perform logic operations on binary
signals. Previously, no comparable, standardized language parts existed for the developments
of PLC and system expansions created in the eighties, for example interconnection of
intelligent modules, processing of analogue signals, networked PLC systems etc.
accordingly, and PLC systems by different manufacturers required totally different
programming. Since 1992, an international standard now exists for programmable logic
controllers and associated peripheral devices (programming and diagnostic tools, testing
equipment, man-to-machine interfaces etc.). In this context, a device built by the user and

consisting of the above components is known as a PLC system.

I£C 61131-3

The new EN 61131 (IEC 61131) standard consists of five parts:
e Part 1: General information
e Part 2: Equipment requirements and tests
e Part 3: Programming languages
e Part 4: User guidelines (in preparation with IEC)

e Part 5: Messaging service specification (in preparation with IEC)

program-plc.blogspot.com Page 9

Basic PLC Programming

Chapter 2
Design and mode of operation of a PLC

2.1 Structure of a PLC

The PLC which is being a device of microprocessor based, has an analogous internal structure to
a lot of embedded computers and controllers. They comprise the devices of CPU, Memory and
I/0. These components are integral to the controller of PLC. In addition the PLC has a
connection for the Programming and Monitoring Unit, Program Recorder and Printer.

This is shown in a block diagram below:

Power supply
|
—0 O = : Central : o n
| i processing I
Input. —alo-f8 n o unit (CPU) : u o Output
sensing o—Pdi ! td\/:;aaq
— evices
soose "N | ST | RO - o
e EEEDCER) |
Optical / \Optical
Isolation a i Isolation

Programming device

Dependent on the PLC system type i.e. small, medium or large the component parts are all
housed in one compact unit (small PLC) or distributed. The distributed system has the module of
CPU/memory, 1/0 racks and remote 1/O units which may be hundreds of meters away from the
main module of PLC. The larger units of PLC may also have analog units of input/output and
provision for extra complex control programs that support arithmetic and other complex

processes not initially present in relay logic controllers.

program-plc.blogspot.com Page 10

Basic PLC Programming

The key differences between PLCs and other microprocessor based devices are that PLC are
rugged design units for an industrial setting and are shielded for enhanced electrical noise
immunity. Additionally they are modular, allowing simple replacement and addition of units.
They support signal levels and standardized 1/0O connections are designed for the easy
programming, to let personnel unfamiliar with computer languages to program the PLCs in-
plant.

The capabilities of the systems PLC are not present in previous relay logic systems are the PID
control, analog 1/0, and interfaces to a central PLC or a controlling computer.

PLC Components

The CPU utilized in a system of PLC is a standard CPU present in a lot of other microprocessor
controlled systems. The choice of the CPU depends on the process to be controlled. Generally 8
or 16 bit CPUs fulfill the requirements sufficiently.

A PLC system Memory is separated into the program memory which is generally saved in
EPROM/ROM, and the operating memory. The RAM memory is required for the program
operation and the input and output data temporary storage. Typical PLC systems memory sizes
are around 1 kb for small PLCs, few kbs for medium sizes and greater than 10 to 20 kb for larger

PLC depending on the requirements. A lot of PLC would support easy memory upgrades.

program-plc.blogspot.com Page 11

Basic PLC Programming

PLC Operation

The PLC operates internally in a way very similar to computers. The inputs are continuously
monitored and copied from the 1/0 module into RAM memory which is divided into the input
and output sections. The CPU steps through the control program in another section of the
memory and fetches the input variables from the input RAM. Depending on the program and the
state of inputs, the output RAM is filled with the control variables which are then copied into the
I/0 module where they control the processes.

Process i
Logic :

Programmer

Program
Logic

Memory /
Data Storage

Output Table

Input Tahle

Input System

PLC Programming

One of the major benefits of the PLC controller is that it is a programmable device, which builds
it possible, unlike in the relay logic, to simply design and adapt the control program or process
without any changes in the wiring. To create the PLC systems programming easy and efficient,
industry standards defining the programming languages and the programming approach used
were adopted. This reduces the requirement for personnel training by creating a set of languages
standard for all platforms of PLC on the market. Knowing the PLC programming standards and

programming languages is consequently one of the most important considerations for anyone
involved in the area of PLC.

program-plc.blogspot.com Page 12

Basic PLC Programming

2.2 Function mode of a PLC
Modes of operation
A processor has basically 2 modes of operations. They are the program mode or some variation
of the Run mode. Program mode may be used to
e Enter a new program
e Upload and download files
e Edit or update existing program
e Change software configurations
e Document programs.
When the PLC is switched into the program mode, all outputs from PLC are forced off

regardless of their rung logic status and the ladder 1/0 scan sequence is halted.

Variations of the Run mode
e Run Mode — it is used to execute the user program. Input devices are monitored and
output devices are energized accordingly.
e Test Mode — it used to operate, or monitor the user program without energizing any
outputs.
e Remote Mode — it allows the PLC to be remotely changed between program and run

mode by a personnel computer connected to PLC processor.

2.3 Application program memory

Advanced ladder logic functions such as timers and counters allow controllers to perform
calculations, make decisions and do other complex tasks. They are more complex than basic
input contacts and output coils and they rely upon data stored in the memory of the PLC. The
memory of the PLC is organized to hold different types of programs and data. This chapter will

discuss these memory types.

The memory in a PLC is divided into program and variable memory. The program memory

contains the instructions to be executed and cannot be changed while the PLC is running. (Note:

program-plc.blogspot.com Page 13

Basic PLC Programming

some PLCs allow on-line editing to make minor program changes while a program is running.)
The variable memory is changed while the PLC is running. In ControlLogix the memory is

defined using variable names (also called tags and aliases).

The PLC has a list of "Main Tasks’ that contain the main program(s) run each scan of the PLC.
Additional programs can be created that are called as subroutines. Valid program types include
Ladder Logic, Structured Text, Sequential Function Charts, and Function Block Diagrams.
Program files can also be created for "Power-Up Handling’ and ’Controller Faults’. The power
up programs are used to initialize the controller on the first scan. In previous chapters this was
done in the main program using the ’S:FS’ bit. Fault programs are used to respond to specific
failures or issues that may lead to failure of the control system. Normally these programs are

used to recover from minor failures, or shut down a system safely.

2.4 PLC and 10 Devices

e Main CPU applications can utilize the Atmel SAM9 family, which enables developers to
reduce the cost of the main CPU board without compromising on the system performance
and functionality.

e 10 modules (digital, analog or safety module) have a variety of requirements, depending
on the product. The Atmel AVR and ARM-based microcontroller families offer diverse

package, flash size, and peripheral sets to meet a range of needs.
For 10 module solutions:

o High-speed serial peripherals for a fast communication with backplane bus interface or
the connection to high resolution external ADC or DAC, with SPI data rates up to
48Mbps on the SAM3U. CAN modules are available on Atmel AVR UC3, megaAVR
and AT91SAM microcontrollers.

e Numerous 16-bit timers with input capture function for time stamping.

e PWM channels support control and dim functions for LEDs.

program-plc.blogspot.com Page 14

Basic PLC Programming

o Atmel supports a rich set of analog functions such as 12-bit ADC and DAC, as well as
analog comparator for monitoring the operation condition of the IO-module.

o Safety functions ease the implementation of Safety Integrity Levels (SIL) IEC61508
standard.

e High performance CPU up to 96MHz with integrated MAC unit supports the growing

demand for signal conditioning on the analog 10-module.

PLC Main Bowrd uo
-
S et - Cosmer
"N Serwd / i |
e P Comdiomn | g oyt Contions | g
Cutatans o irvtrcn Saciad KXPROM =
terine m ot NX
MPU |
Sersd LOMNOM ™ » ardware
it Vo Svne | Basrari
i
Ashenscatien | *T* L - 10 Modute
uD
Lovra
g Somee i Cvrver
¢ . L S s
wrlrs Loge
Optinaat 09 Cxtarnal RAM FPGA ¢ ASSP 1
e
1 AN
Seviad CTPROM Micrecostioer -
Ol Pt Bl T
e (Parres e daee
At aon
10 Modute
LD
-~
[A — v e -
-
Cuntorn Logie
r—
St CTPROM Micrecostrofer .
Maudwar
L

program-plc.blogspot.com Page 15

Basic PLC Programming

Chapter 3

Programming of a PLC

3.1 Systematic solution finding

Control programs must be systematically designed well structured and fully documented in order

to be as error-free low-maintenance cost effective as possible

Phase model of PLC software generation

The procedure for the development of a software program illustrated in figure below has been

tried and tested. The division into defined sections leads to targeted, systematic operation and

provides clearly set out results, which can be checked against the task. The phase model

consisting of the following sections:

— Verbal description of control task
— Technology, positional sketch
— Macrostructure of control program

— Function chart to IEC 848

— Function diagrams such as
displacement-step-diagram

— Function table

— Definition of software modules

— Part list and circuit diagram

— Programming in LD, FBD, IL,
ST and SFC

— Simulation of subprograms and
overall program

1.| specification | =)
b 4

2. Design —
.

3.| Realisaion |T=
b 4

4. | Commissioning —

— Design of system
— Testing of subprograms
— Testing of overall program

The phase model can be applied to control programs of varying complexity; for complex control

tasks the use of such a model is absolutely essential. The individual phases of the model are

described below.

program-plc.blogspot.com

Page 16

Basic PLC Programming

Phase 1: Specification (Problem formulation)

In this phase, a precise and detailed description of the control task is formulated. The specific
description of the control system function, formalized as much as possible, reveals any
conflicting requirements, misleading or incomplete specifications. The following are available at
the end of this phase: Verbal description of the control task Structure/layout Macro structuring of

the system or process and thus rough structuring of the solution

Phase 2: Design (Concrete form of solution concept)

A solution concept is developed on the basis of the definitions established in phase 1. The
method used to describe the solution must provide both a graphic and process oriented
description of the function and behavior of the control system and be independent of the

technical realization.

These requirements are fulfilled by the function chart (FCH) as defined in DIN 40 719, Part 6 or
IEC 848. Starting with a representation of the overall view of the controller (rough structure of
the solution), the solution can be refined step by step until a level of description is obtained,
which contains all the details of the solution (refinement of rough structure). In the case of
complex control tasks, the solution is structured into individual software modules in parallel with
this. These software modules implement the job steps of the control system. These can be special
Functions such as the realization of an interface for visualization or communications systems, or
equally permanently recurring job steps. The displacement-step diagram represents another

standard form for the description of control systems apart from the function chart to DIN 40 719.

Phase 3: Realization (Programming of solution concept)

The translation of the solution concept into a control program is effected via the programming
languages defined in IEC 1131-3. These are: sequential function chart, function block diagram,
ladder diagram, statement list and structured text. Control systems operating in a time/logic
process and available in FCH to DIN 40 719, P.6, can be clearly and easily programmed in a

sequential function chart. A sequential function chart, in as far as possible, uses the same

program-plc.blogspot.com Page 17

Basic PLC Programming

components for programming as those used for the description in the function chart to DIN 40
719, T.6.

Ladder diagram, function block diagram and statement list are the programming languages
suitable for the formulation of basic operations and for control systems which can be described
by simple operations logic operations or Boolean signals. The high-level language structured text
is mainly used to create software modules of mathematical content, such as modules for the
description of control algorithms. In so far as PLC programming systems support this, the control
programs or parts of a program created should be simulated prior to commissioning. This permits

the detection and elimination of errors right at the initial stage.

Phase 4: Commissioning (Construction and testing of the control task)

This phase tests the interaction of the automation system and the connected plant. In the case of
complex tasks, it is advisable to commission the system systematically, step by step. Faults, both
in the system and in the control program, can be easily found and eliminated using this method.

3.2 EN 61131-3 (IEC 61131-3) structuring resources

IEC 61131-3 is the first vendor independent standardized programming language for industrial
automation. Established by the International Electro technical Commission (IEC) a worldwide
standard organization founded in 1906 and recognized worldwide for standards in the controls
industry by over 50 countries. The standard is already well established in Europe and is rapidly
gaining popularity in North America and Asia as the programming standard for industrial and

process control.

The adoption of IEC 61131-3 by the industry is driven by the increasing software complexity of
control and automation requirements. The time to create, labor cost, and maintainability of
control software has a major impact on control projects which can be improved using the IEC
61131-3 vendor independent programming language standard. Applying a standard programming
language has a positive impact on the software life-cycle that includes requirements analysis,

design, construction, testing (validation), installation, operation, and maintenance. The impact on

program-plc.blogspot.com Page 18

Basic PLC Programming

maintenance is important since control software maintenance, including upgrades, is generally 2-

4 times the labor of initial programming.

The IEC 61131-3 standard combined with new powerful free scale chip architectures enables an
entire controller to be delivered in an embedded device. Control programs can run distributed
and independently rather than concentrated in large controllers. No longer are thousands of lines
of control programs required running in one controller for complex automation applications. This

increases performance, improves reliability, and simplifies programs.

IEC 61131-3 provides multiple language support within a control program. The control program
developer can select the language that is best suited to a particular task, greatly increasing their
productivity. Plus with a standardized programming interface that is completely independent of
the hardware platform, users can greatly reduce the cost of program maintenance and training

across company wide automation applications.

IEC 61131-3 is hardware independent. The ability to transport automation solutions to other
platforms is vastly improved over PLC applications offering users and System Integrators a level
of reusability never before available. IEC 61131 increases the efficiency and speed of
implementing new automation solutions by using readily available control components

developed on other projects and by outside developers.

Companies that have chosen to implement IEC 61131-3 find that they reduce human resource
costs in training, debugging and maintenance, and improve productivity from the higher

reusability.

3.3 Programming Languages

The languages can be mixed in any way within a PLC project. The unification and
standardization of these five languages represent a compromise of historical, regional and
branch-specific requirements. Provision has been made for future expansion, (such as the
function block principle or the language Structured Text) plus necessary information technology

details (data type etc.) have been incorporated.

program-plc.blogspot.com Page 19

Basic PLC Programming

The language elements are explained with the help of a machining process involved in valve
production. Two sensors are used to establish whether a work piece with correctly drilled holes is
available at the machining position. If the valve to be machined is of type A or type B — this is

set via two selector switches — the cylinder advances and presses the sleeve into the drilled hole.

Ladder Diagram (LD)

Ladder diagram is a graphic programming language derived from the circuit diagram of directly
wired relay controls. The ladder diagram contains contact rails to the left and the right of the
diagram; these contact rails are connected to switching elements (normally open/normally closed

contacts) via current paths and coil elements.

Part_typeA Part_present Drill_ok Sleeve_in

| | | | A |
L
| | | | \ |

Part_TypeB

Function Block Diagram (FBD)
In the function block diagram, the functions and function blocks are represented graphically and
interconnected into networks. The function block diagram originates from the logic diagram for

the design of electronic circuits.

Part TypA —— OR AND
Part TypB —

Sleeve _in

Part_present
Drill_ok

program-plc.blogspot.com Page 20

Basic PLC Programming

Instruction List (IL)
Statement list is a textual assembler-type language characterized by a simple machine model
(processor with only one register). Instruction list is formulated from control instructions

consisting of an operator and an operand.

LD Part_TypeA
OR Part_TypeB
AND Part_present
AND Dnll_ok

ST Sleeve_in

With regard to language philosophy, the ladder diagram, the function block diagram and
instruction list have been defined in the way they are used in today’s PLC technology. They are
however limited to basic functions as far as their elements are concerned. This separates them
essentially from the company dialects used today. The competitiveness of these languages is

maintained due to the use of functions and function blocks.

Structured Text (ST)

Structured text is high-level language based on Pascal, which consists of expressions and
instructions. Instructions can be defined in the main as: Selection instructions such as
IF.. THEN...ELSE etc., repetition instructions such as FOR, WHILE etc. and function block

invocations.

Sleeve_in = (Part_TypeA OR Part_TypeB) AND Part_present AND Drill_ok;

Structured text enables the formulation of numerous applications, beyond pure function
technology, such as algorithmic problems (high order control algorithms etc.) and data handling

(data analysis, processing of complex data structures etc.).

Sequential Function Chart (SFC)
The sequential function chart is a language resource for the structuring of sequence-oriented
control programs. The elements of the sequential function chart are steps, transitions, alternative

and parallel branching. Each step represents a processing status of a control program, which is

program-plc.blogspot.com Page 21

Basic PLC Programming

active or inactive. A step consists of actions which, identical to the transitions, are formulated in
the IEC 1131-3 languages. Actions themselves can again contain sequence structures. This
feature permits the hierarchical structure of a control program. The sequential function chart is
therefore an excellent tool for the design and structuring of control programs.

program-plc.blogspot.com Page 22

Basic PLC Programming

Chapter 4
PLC Programming Language

4.1 Function Block Diagram

Function Block Diagrams (FBDs) are another part of the IEC 61131-3 standard. The primary
concept behind a FBD is data flow. In these types of programs the values flow from the inputs to
the outputs, through function blocks. A sample FBD is shown in figure below. In this program
the inputs A and B are used to calculate a value sin(A) * In(B). The result of this calculation is
compared to C. If the calculated value is less than C then the output X is turned on, otherwise it is
turned off. Many readers will note the similarity of the program to block diagrams for control

systems.

A SIN LES
MUL

LN

C

It is possible to disable part of the FBDs using enables. These are available for each function
block but may not be displayed. Figure 300 shows an XOR calculation. Both of the Boolean
AND functions have the enable inputs connected to ’enable’. If enable’ is true, then the system
works as expected and the output *X’ is the exclusive OR of A’ and ’B’. However if ’enable’ is
off then the BAND functions will not operate. In this case the ’enable’ input is not connected to
the BOR function, but because it relies on the outputs from the BAND blocks, it will not
function, and the output *X” will not be changed.

program-plc.blogspot.com Page 23

Basic PLC Programming

enable

A BAND
& BNOT
¢— EN
m0
ml BOR
mo0 X
BAND m 1
B BNOT
L_| EN |
mo
m 1

A FBD program is constructed using function blocks that are connected together to define the
data exchange. The connecting lines will have a data type that must be compatible on both ends.
The inputs and outputs of function blocks can be inverted. This is normally shown with a small
circle at the point where the line touches the function block, as shown in figure below.

input output input output
& ' D

mverted input inverted output

The basic functions used in FBD programs are equivalent to the basic set used in Structured Text
(ST) programs. Consider the basic addition function shown in figure below. The ST function on
the left adds A and B, and stores the result in O. The function block on the right is equivalent. By

convention the inputs are on the left of the function blocks, and the outputs on the right.

Structural Text Function Function Block Equivalent
A — 0O
O := ADD(A. B): . ADD

Some functions allow a variable number of arguments. In Figure below there is a third value

input to the ADD block. This is known as overloading.

Structural Text Function Function Block Equivalent
: A1 o
O =ADD(A, B. C): B ADD
C

program-plc.blogspot.com Page 24

Basic PLC Programming

The ADD function in the previous example will add all of the arguments in any order and get the
same result, but other functions are more particular. In the first ST function the maximum MX,
minimum MN and test IN values are all used. In the second function the MX value is not defined

and will default to 0. Both of the ST functions relate directly to the function blocks on the right
side of the figure.

Structural Text Function Function Block Equivalent
A MN o
O =LIM(MN :=A IN=B MX:=C): 2 LIM
B IN
C MX
O =LIM(MN = A IN =B): A. MN LIM 0
B IN

Creating Function Block

When developing a complex system it is desirable to create additional function blocks. This can
be done with other FBDs, or using other IEC 61131-3 program types. Figure below shows a
divide function block created using ST. In this example the first statement declares it as a
FUNCTION_BLOCK called divide. The input variables a and b, and the output variable c are
declared. In the function the denominator is checked to make sure it is not 0. If not, the division

will be performed; otherwise the output will be zero.

program-plc.blogspot.com Page 25

Basic PLC Programming

FUNCTION_BLOCK divide
VAR _INPUT
a: INT;
drvide b: INT:
END_VAR
28 VAR _QUTPUT
c +— c: INT:
" END VAR
IF b <= 0 THEN
c:=alb;
ELSE
c:=0:
END IF;
END FUNCTION BLOCK

4.2 Ladder Diagram

Ladder Diagram (LD) This programming language, invented in the U.S. decades ago, is probably
the most widely used. Invented to replace hardwired relay control systems, Ladder Diagram
programming is a mainstay in the U.S. today, used in probably 95 percent of all applications.
Visually, this language resembles a series of control circuits, with a series of inputs needing to be

“made” or “true” in order to activate one or more outputs.

Ladder Diagram language has experienced such widespread adoption that almost every
programmer in any country or industry can read and write this language. Because it resembles
the familiar electric circuit format, even a non-programmer with an electrical background can
follow the program for purposes of troubleshooting a problem. It’s also easy to start writing a
program in Ladder Diagram. With just a basic outline of input and output signals, one can sit
down are start churning out code. Most of the other IEC languages require more preparation,

such as flowcharting all the potential process flows.

Finally, most implementations of Ladder Diagram allow a program to be organized into folders
or subprograms that are downloaded to the PLC, allowing for easy segmentation. Ladder
Diagram programming is ideal for a simple material handling application, for example, where a
sensor detects the presence of a box, other sensors check for obstructions, and then an output

fires an actuator to push the box to another conveyor. Digital inputs are checking for various

program-plc.blogspot.com Page 26

Basic PLC Programming

conditions, and a basic program is analyzing the inputs and firing digital outputs in response.

There may be timers in the program, or some basic comparisons or math, but there are no
complex functions involved.

As the complexity of PLC functionality has grown, however, Ladder Diagram language has been
challenged to meet these advances and still maintain the paradigm of easy visualization and
understanding. Functions such as PID, trigonometry and data analysis are commonly required in
many control applications, but difficult to implement. Another challenge is that as program size

grows, the ladder can become very difficult to read and interpret, unless it’s extensively
documented.

o] Indralogic - Indralogic L10.pro* - [PLC_PRG (PRG-LD)]
'ﬂjw Fdt Projert Insert Extras Ondne Window Help

S| F@ednSISAR &) ¥nR(GE [OF -] EE] il olele| ajs|aja@]| /|5

[000s] orive_belt: BoOL:

' POUs |oooe | Process_code: INT:
£) PLC_PG_SF1| 2007 ProcessZ. BOOL,
P FLC_PRG (P m(CIPF P1: EOOL:
] PLC_PRG_F
§) peraall starc Process 1 stir_cowplete m
8] PLC_PRG_S : Frel o s
! e e 7

poook

Finally, implementing full processes in Ladder Diagram can be daunting — picture a ladder rung
with an output used in several phases of a process with many input conditions attempting to
control exactly when that output needs to turn on.

program-plc.blogspot.com Page 27

Basic PLC Programming

4.3 Instruction List

Anyone who has experience programming microprocessors or experience with Assembler
language programming will see similarities with Instruction List programming. This language
consists of many lines of code, with each line representing exactly one operation. Thus, it is very
step-by-step in layout and format, which makes the entry of a series of simple mathematical
functions easy. In addition, if the programmer uses only the IEC defined instructions, a program
written in this language can be moved easily between hardware platforms. These advantages
make this language very popular in Europe, a fact that is surprising to many U. S. programmers
who prefer the ease of maintenance in the graphical languages, and place a lower premium in the

transferability of programs.

Instruction List language is a low level language and as such, will execute much faster in the
PLC than a graphical language, like Ladder. This language is also much more compact and will
consume less space in PLC memory. The simple one line text entry method supported by this
language also allows for very fast program entry — no mouse required, no tab to click! In legacy
systems, programs written in this language are easier to display and edit on a handheld

programming unit, with no software or laptop required.

program-plc.blogspot.com Page 28

Basic PLC Programming

EY Indral ogic - Indralogic L10.pro* - [PLC PRG IL (PRG-IL)]
-ﬂlrile Cdit Project Insert Cxtras Online Window llelp

S/H| 1@ ES2 R %] %[5]m

o S 0001 1D
£ 1 : =start
|%‘I PLC—PG—SF! 0002 |AND DProcezzl
[0 PLC_PRG (P [oooz|on Manual _stir
i @ PLC_PRG_F|| [nnn& |ammar srir_canplets
E_] 0005 |ST Stir
= e o] 0006 |
""" || PLL_PHE_S)| Faggg |amecw en tenp0
0008
0008 |LD 147
0010 [MOVE
0011 [ST Process_code

UULS [en tempu:

0014 |LD scarc

0015 |AND PrucessZ
0016 |[OR Manual clean
0017 |eT CIP_D1

oolg

nnisg |aMernN Fn_teunl
0020

0021 |LD 247

0022 [MOVE

0023 |ST Process_code

00ZS |en templ:

0026 |LD start

0027 |AND Process3
UUZg (UK Hanual drain
0023 |ANDN Tank_eumprty
0030 |2T Drain

0021

0022 |JMICH cn_toupl
0023

nnz4 (1n 247

0035 [HOVE

0036 |ST Process_code

0038 |en tempZ:

Despite the advantages this language provides to a programmer, it seems that maintenance and
service engineers do not prefer Instruction List. Perhaps because it is less visual than Ladder, and
Therefore more difficult to get a sense of what the program is doing and what errors it is
experiencing. Similar to the issues with Ladder Diagram and increasing PLC program
complexity, it can be a struggle to enter complex functions such as PID in Instruction List. This
also applies to complex mathematical computations. Instruction List does not lend itself well to
any form of structured programming, such as state programming or step ladder, further limiting
its usefulness for implementing large programs. It is also arguable that the advantages of speed
and compactness are less relevant, given the processing speeds of modern PLCs and the large

amounts of memory available.

program-plc.blogspot.com Page 29

Basic PLC Programming

4.4 Structure Text

With its IF...THEN loops, CASE selectors, and lines ending in semicolons, Structured Text
language closely resembles a highlevel computer programming language such as PASCAL or C.
Therefore mentioned Control Engineering survey indicated that of all the IEC61131-defined
programming languages, Structured Text has seen the greatest increase in adoption. This
language perhaps best embraces the growing complexity of PLC programming, such as the
process control functions involved in plastics or chemical manufacturing. Trigonometry,
calculus, and data analysis can be implemented far easier in this language than in Ladder or
Instruction List.

Decision loops and pointers (variables used to do indirect addressing) allow for a more compact
program implementation than can be achieved in Ladder. The flexible Structured Text editor that
IS common in most programming packages makes it easy to insert comments throughout a
program, and to use indents and line spacing to emphasize related sections of code. This makes
the task of structuring a complex program easier. The text-based, non-graphical nature of
Structured Text, similar to Instruction List, also runs much faster than Ladder. An additional
benefit of Structured Text is that it comes closer than most of the other languages in achieving
the transferability promise of the IEC61131 standard. Copying and pasting Structured Text from
the editor of one programming package to another can often be done with just a few changes,
emancipating a programmer from the hardware platform. A final benefit is that many students
currently graduating from engineering studies have a better background in computer languages
than in the basics of electrical wiring, and therefore can be more proficient in Structured Text

than Ladder programming.

program-plc.blogspot.com Page 30

Basic PLC Programming

@ Indralogic - Indrelogic L10.pro® - [PLC_PRG ST (PRG-ST)]

T_zlro- Fdt Projact Insert Extras Ondne Window Help

SE| D@leANSIEAR] X] X %]05%]5%]
0008 Processl: BOOL;
3 POUs 0nn& Drive belr: ROOL,
%) PLC_PG_SFI 10007 | Process_code: INT:
G VWS Nerememuts TNy 4
M PLCPRGIR | <
0 FLC PRG F| [0
1) Pc_Pac_i| |oooz
<l BIER 1F (Processl » TUUE AND start = TIUE OR manual_stir » THUE)AND stir_complete~ FALSE THEN
’.] 10004 | stir 1= TRUE;
0008 Process_code -« 147,
0006 | END_IF
0007
0008
onoa IP (Process? = TOUX AND start « TEUR OR Manual_cleansTHUR)THEN
10010 | CIP_Pli= THUK:
0011 Process_code:=247;
002 BND_T¥
10013 |
0014 1F (Process3=ilUN AND start™ TUUE Ul manval drain=iiUVE) AND tank_empty+* FALUE THEN
0015 | Drain:= TRUE;
ODE Procass_code:=247;
10017] END_1¥
0018
onis
10020
0021)
0022

A disadvantage is that for many previously experienced programmers or maintenance and
service personnel, the Structured Text language has seen the greatest increase in adoption and
closely resembles a high-level computer programming language such as PASCAL or C. Text
environment is somewhat unfamiliar and unsuitable for troubleshooting. In many ways, the code
and structure necessary to make this code maintenance friendly can reduce some of the
advantages gained from its compactness. As a result, the main tendency is to use Structured Text
“behind the scenes.” For example, IEC 61131 allows a programmer to build his or her own
functions in one language, which can then be used in another language. Thus the programmer is
most likely to encapsulate a Structured Text program inside an instruction called on in Ladder.
While this may not necessarily be a disadvantage, the programmer will need to thoroughly test

any code that is “hidden” and make sure it is bug free, since others will not have access to it.

Structured Text (ST) is a high level textual language that is a Pascal like language. It is based on
the IEC 61131-3 standard, which standardizes programming languages for programmable

controllers (PLC). Structured Text is very flexible and intuitive for writing control algorithms.

Structured Text uses operators such as logical branching, multiple branching, and loops. People
trained in computer programming languages often find it the easiest language to use for
programming control logic. When symbolic addressing is used, ST programs resemble sentences,

making it highly intelligible to beginner users as well.

program-plc.blogspot.com Page 31

Basic PLC Programming

4.5 Sequential Function Chart

Sequential Function Chart (SFC) programming resembles the computer flowcharts that many
will remember drawing up in their college days. An initial step “action box” (the starting point of
a flowchart) is followed by a series of transitions and additional action steps. The concept of SFC
Is simple: an action box, with code inside written in any language of the programmer’s choice, is
active until the transition step below it activates. The current action box is for appropriate
applications which have a repeatable multi-step process or series of repeatable processes, this
form of programming is the easiest to implement. An example would be a pick and place
application, where product is constantly picked up from one area, moved through a specific path,
and placed in another area. While exceptions exist, since there is typically only one active piece
of code and one transition to be concerned with, condition checking and the control of the
process should be achievable without large rungs.

The language is also very friendly to maintenance engineers because the visual nature of the
program plus code segmentation makes it easy to troubleshoot. For example, if the mechanism in
a pick-and place application has moved to the product but not picked it, the troubleshooter could
bring up the program and look at the transition condition between the “move to product” box and
the “pick product” box to see what is holding up the process. On the downside, this style of
programming is not suitable for every application, as the structure that is forced on a program
could add unneeded complexity. A large amount of time must be spent up front preparing and
planning before any programming is attempted or else the functions charts could become
unwieldy and difficult to follow. The overhead required for this type of program causes it to
execute slower than the other languages. A final consideration is the inability to convert to other
languages. Instruction List, Function Block and Ladder programs can easily be converted into

each other, allowing a piece of code to be displayed in the way most comfortable to the user.

program-plc.blogspot.com Page 32

Basic PLC Programming

Init

T Seguance

Scirx
start lrocesz2 Drain
T %cir_cox[> —-l : : : {)
Manus=l_drain Hovx
cIp I | X
‘ 347 Process_code

T Cl10_dene
Drain

ﬂ—tank_euxt>

—E} : xq

Init t.m_empt',l;—-

Structured Text can also be converted into any of these three languages, but SFC stands alone. It
cannot be converted. Therefore, you may want to consider this language only for end users who
are comfortable with the language and are unlikely to display it in a different format or for
applications where the hardware has the speed and memory necessary to store and execute an

SFC program.

program-plc.blogspot.com Page 33

Basic PLC Programming

Chapter 5

Omron PLC Programming

5.1 Introduction to Omron PLC Programming
5.1.1 What is Control System?
In general, a control system is a collection of electronic devices and equipment
hich are in place to ensure the stability, accuracy and smooth transition of a
process or a manufacturing activity. It takes any form and varies in scale of
implementation, from a power plant to a semiconductor machine. As a result of
rapid advancement of technology, complicated control tasks accomplished with a
highly automated control system, which may be in the form of PLC
(Programmable Logic Controller) and possibly a host computer etc. Besides
signal interfacing to the field devices such as, motors, sensors, solenoid valves,
operator panel and etc, capabilities in network communication enable a big scale
implementation and process co-ordination besides providing greater flexibility in

realizing distributed control system.

5.1.2 The Role of the Programmable Controller

In an automated system, the PLC is commonly regarded as the heart of the control
system. With a control application program in execution, the PLC constantly
monitors the state of the system through the field input devices feedback signal. It
will then based on the program logic to determine the course of action to be
carried out at the field output devices.

The PLC may be used to control a simple and repetitive task, or a few of them
may be interconnected together with other host controllers or host computers
through a sort of communication network, in order to integrate the control of a

complex process.

program-plc.blogspot.com Page 34

Basic PLC Programming

5.1.3 Input and Output Devices
Input Devices
Intelligence of an automated system is greatly depending on the ability of a PLC
to read in the various types of automatic sensing and manual input field devices.

Push buttons, keypad and toggle switches, which form the basic man-machine
interface, are types of manual input device. On the other hand, for detection of
work piece, monitoring of moving mechanism, checking on pressure and or liquid
level and many others, the PLC will have to tap the signal from the specific
automatic sensing devices like proximity switch, limit switch, photoelectric
sensor, level sensor and so on. Input signal types to the PLC would be ON/OFF
logic or analogue. These input signals are interfaced to PLC through various types

of PLC input module.

Output Devices

An automatic system is incomplete and the PLC system is virtually paralyzed
without means of interface to the field output devices. Some of the most
commonly controlled devices are motors, solenoids, relays indicators, buzzer and
etc. through activation of the motors and solenoids the PLC can control from a
simple pick and place system to a much complex servo positioning system. These
type of output devices are the mechanism of an automated system and so its direct

effect on the system performance.

program-plc.blogspot.com Page 35

Basic PLC Programming

5.1.4 What is Programmable Controller?
A PLC consists of a Central Processing Unit containing an application program
and Input and output Interface modules, which is directly connected to the field
I/O devices. The program controls the PLC, so that when an input signal from an
input device turns ON, the appropriate response made. The response normally

involves turning ON an output signal to some sort of output devices.

| Power Supply |

==
Signu]q > Central > Signals
i‘[{)I_TI Input Processing Output o .
‘_\jmu.hc.\ —> Ierface Unit (CPU) Interface —» Solenoids
Sensor Motors
ete —_— Memory | cic

Central Processing Unit
The CPU is a microprocessor that coordinates the activities of the PLC system. It
executes the program, processes 1/O signals and communicates with external

devices.

Memory
There are various types of memory unit. It is the area that hold the operating
system and user memory. The operating system is acually a system software that
coordinates the PLC, Ladder Program, Timer and Counter Values are stored in the
user memory.
a. Read Only memory (ROM)
ROM is a non-volatile memory that can be programmed only once. It is
therefore unsuitable. It is least popular as compared with others memory type.
b. Random Access Memory (RAM)

program-plc.blogspot.com Page 36

Basic PLC Programming

RAM is commonly used memory type for storing the user program and data.
The data in the volatile RAM would be normally be lost if the power source is
removed.
c. Erasable Programmable Read only Memory (EPROM)
EPROM holds data permanently just like ROM. It doesn’t require battery
back up. However its content can be erased by exposing it to ultraviolet light.
d. Electrically Erasable Programmable Read Only memory (EEPROM)
EEPROM combines the access flexibility of RAM and the non-volatility
of EPROM in one. Its contents can be erased and reprogrammed

electrically, however, to a limit number of times.

5.1.5 PLC Panel and their Advantages
Conventional control panel and its difficulties

In the beginning of the industrial revolution, especially in the 1960 and 1970, automated

machines were controlled by electromechanical relays. These relays were all hardwired

together inside the control panel was so huge that it could cover the entire wall. Every

connection in relay logic must be connected. Wiring is not always perfect, it takes time to

troubleshoot the system. It is a very time consuming affair.

Disadvantage of conventional control panel

In this panel we can observe the below points:

There are too many wiring work in the panel.

Modification can be quite difficult.

Troubleshooting can be quite troublesome as you may require a skillful person.
Power consumption can be quite high as the coil consumes power.

Machine downtime is usually long when problems occur, as it takes longer time to
troubleshoot the control panel.

Drawings are not updated over the years due to changes. It causes longer downtime in

maintenance and modification.

program-plc.blogspot.com Page 37

Basic PLC Programming

Programmable controller control panel and their advantages

The control design and concept improve tremendously with the arrival of programmable

controllers.

cew W

JUE&F‘

[Ty ey 'f '

il

=
| T
}

Advntages of PLC control panel
e Here are the major advantages that can be distinguishably realized.

e The wiring of the system is usually reduced by 80% compared to conventional relay

control system.
e The power consumption is greatly reduced as PLC consumes much less power.
e The PLC self diagnostic functions enable easy and fast troubleshooting of the system.

e Modifications of control sequence or application can easily be done by programming
through the console or computer software without changing of 1/0O wiring, if no

additional Input or Output devices are required.

e In PLC system spare parts for relays and hardware timers are greatly reduced as

compared to conventional control panel.

e The machine cycle time is improved tremendously due to the speed of PLCs operation is

a matter of milliseconds.

program-plc.blogspot.com Page 38

Basic PLC Programming

e |t cost much less compared to conventional system in situation when the numbers of 1/0s

is very large and control functions are complex.

e The PLC reliability is higher than the mechanical timers and relays.

5.2 CP1L Overview
5.2.1 CP1L Models

CP1L programmable controller is a PLC package type, available with 10, 14, 20,

30, 40, or 60 1/0O points.

e 10-point I/O Units (CP1L-L10D[1-17)
a. The CPU Unit has 6 inputs and 4 outputs built in.
b. The PLC cannot use CP-series Expansion 1/O Units to expand the

maximum total of 1/0 points.

3

119,9,9,9
olofolof

)
v, T 1
&)

e 14-point I/O Units (CP1L-L14D(1-1/CP1L-J14D[1-1])
a. CPU unit has 8 input points and 6 output points.
b. CP-series expansion 1/O units can be used to add 1/0 points, up to a total
of 54 1/0 points.

program-plc.blogspot.com Page 39

Basic PLC Programming

)
191

e 20-point I/0 Units (CP1L-L20D1-[1/CP1L-J20D1-[)
a. CPU unit has 12 input points and 8 output points.
b. CP-series expansion 1/O units can be used to add 1/0 points, up to a total
of 60 1/0 points.

e 30-point I/O Units (CP1L-M30D[I-[1)
a. CPU unit has 18 input points and 12 output points.
b. CP-series expansion 1/O units can be used to add 1/0 points, up to a total
of 150 1/0 points.

program-plc.blogspot.com Page 40

Basic PLC Programming

1

=/ lk_J
e 40-point /0 Units (CP1L-M40D(-1)
a. CPU unit has 24 input points and 16 output points.

L

b. CP-series expansion 1/O units can be used to add 1/0 points, up to a total
of 160 1/0 points.
() (9
= %w@@@%%%%%%%@

| BamERY | e wlww | w|w | w]w] wlwlwle]

T S|

. ®

| %%%%@% @W%@@@
o =9

e 60-point I/O Units (CP1L-M60D[1-[1)
a. CPU unit has 36 input points and 24 output points.
b. CP-series expansion 1/O units can be used to add 1/O points, up to a total
of 180

program-plc.blogspot.com Page 41

Basic PLC Programming

(0) ®)

| 1

_

aioinoooiooolonnloloioniclalolaie

B e e e e O e e i e e e e e e e L

—
Li|owM|gow| o1 oo [o® [oF [oe| 11|01 |09 o8 of oo ti|oi|os| ol oF [D@] sb]
- [-17] FF] [T] [i1] [f] Bl an [iF] nd | o8 | GH 10 | oG nF | o0& =n | 0N 15

rovRE B
"o

m}

-

= cooooao coocooo

= cooooo cooooo

=N cooOoO0O 000000

o | ol | oF| o4 08 | OF | 00| OF | o4 J OB | o7 | oo | a8 f 54 | oA | OF
— [com oo [com] oR [Som an [com] e [R ToSm | bon [eod] 60 [&8 TS [BAa

@##IH##IIH##H!B###
¢¢¢¢¢w¢¢¢¢¢¢¢ﬁu¢
\®),

S,

5.2.2 System Components
This section defines components to be used in the shutter control system. The following
components are to be used.
1.PLC
* CP1L (14-point 1/O unit with AC power supply)
2. Equipment and Software for Programming
* CX-Programmer
* Computer
» USB cable (A-B)
3. Inputs
* Shutter OPEN button: PB1
* Shutter STOP button: PB2
* Shutter CLOSE button: PB3
* Car detection sensor: SEN1
* Headlight detection sensor: SEN2
* Limit switch, turned ON when shutter is fully open: LS1
* Limit switch, turned ON when shutter is fully closed: LS2
4. Outputs

* Contact for activating the shutter escalation motor: MO1

program-plc.blogspot.com Page 42

Basic PLC Programming

» Contact for activating the shutter de-escalation motor: MO2

5.3 Creating Programs
5.3.1 Creating Ladder Programs
A ladder program can now be created for the example introduced in SECTION 2 System

Design. First, however, the functions of the ladder program will be described.

Operation
The ladder program to be created will open and close a garage shutter.

Entering the Garage

program-plc.blogspot.com Page 43

Basic PLC Programming

The component functions and operations will be defined in detail below.
(1) Push-buttons:

e The shutter can be opened, closed, and stopped with buttons.

e The OPEN and CLOSE buttons will continue operating the shutter even when they are
not held down. A self-maintaining bit is used to achieve this.

(2) Limit switches:

e When the shutter is fully opened or fully closed, it will be stopped by a limit switch.

e When the shutter is opening, the de-escalation motor will be interlocked to prevent
damage.

(3) Light detection sensor:

e A light detection sensor detects light from headlights pointed at the garage. When 3
headlight flashes are detected by a counter instruction, the shutter escalation motor is
activated.

o After the first headlight flash, a timer is activated by a timer instruction. After 5 seconds,
a reset command is given to the counter instruction.

e The present value of the counter instruction is retained even when CP1L is powered OFF.
To prevent malfunction, a reset command is given to the counter instruction when CP1L

is powered ON.

program-plc.blogspot.com Page 44

Basic PLC Programming

After Entering the Garage / Exiting the Garage

(1) Car detection sensor:
e A car detection sensor will detect full car entrance into the garage, and activate the
shutter de-escalation motor.
(2) Push-buttons:
e When pulling the car out of the garage, use the buttons to operate the shutter.
e When pulling the car out of the garage, a differentiated up contact should be used as the

car detection sensor, so that the shutter does not close immediately upon fully opening.

A ladder program will be set forth hereafter based on the description above.

Ladder Program

The ladder program for the example application is shown below.

program-plc.blogspot.com Page 45

Basic PLC Programming

|
P_First_Cycle First cycle flag *7

0.04 TO000 Wi.00
N
Light detaction Timar *3 Work area "4
sensor ™
Wi0.00
| *1 Refar ta inputting Contacts of 4-5-2 hputting Comacts,
[2 Refer to Inpuiting OF Circuits of 4-5-2 Inputting Corfacts,
Wark area "2 3 Refer o Inputting Closed Contacts of 4-5-2 npulting Contacls,
*4 Rafar to 4-5-3 Inpulting Ouwipwt Coils,
Wi.00
I I TIM
Waork area 0000 |Timer *5
#50
0,04
Light detection sensor 0000 | Courter *8
TO000 #3
| |
|
Tirmer
C0000
|
Counter
*5 Rafer ta 4-54 Inputting Timers,
A00.19 6 Refer to 4-5-5 inputting Courters..
| | *T Refer to 4-5-6 Inputting Auxdiary Areas.

100.01
||

De-ascalation
moteor
0.03
| + [
I

Car defection sansor "8

o000 0.01 0.05 100.01 100.00
e
Counter STOP button Upper Do-ascalation Escalation
limit LS rmctor mctor
0,00
| |
[
OPEN button
100.00
Escalation
mator
0.02 0. 0.06 100.00 100.01
|| | V10
CLOSE buttan | STOR bution Lovwer Escalation De-escalaton
lirmit LS eor motor

*B Refer o 4-5-7 Inputiing Differentiated Up Coracts.

program-plc.blogspot.com Page 46

Basic PLC Programming

5.3.2 Using CX-Programmer
Starting CX-Programmer
1. On the desktop, select [Start] - [All Programs] - [OMRON] - [CX-One] -
[CXProgrammer]

CX-Programmer will start.
The title screen will be displayed, followed by the main window.

Operation Screens

This section explains the functions available on the CX-Programmer main window. For

details on using CX-Programmer.

program-plc.blogspot.com Page 47

Basic PLC Programming

e Main Window

3 g y
OPR o B0 ANM 2 ALT TN 2194 Y
. KA 9 2N LRV | -oomBRLM on ? | 8-
@—/csaa:- waene . % . "
.1-‘-r IIIIIII * . Sibe Suduparty &
o - B — e Sdant
. Bt~ 7= H
@ Pt " ¥
s pr . o
HERY Y ' | we |
@}——}—\'"i"‘...".’;: ek
H r——th B — 2
= = - —@

(1) Title bar
o Displays the data file name, created in CX-Programmer.

(2) Main menu
o Used to select CX-Programmer functions.

(3) Toolbars
Displays icons for frequently used functions. Place the mouse cursor over an icon
to display the corresponding function name. Select View - Toolbars from the
main menu to show/hide toolbars. Drag the toolbars to change their position.

(4) Project tree / (6) Project workspace
Used to manage programs and settings. Drag & drop items to copy the data.
Select [View] - [Windows] - [Workspace] from the main menu to show/hide the
workspace.

(5) Section
Programs can be split into and managed as multiple parts.

(6) Diagram workspace
Used to create and edit ladder programs.

(7) /0 comment bar
Displays the name, address/value, and 1/0 comment for the variable selected by

the mouse cursor.

program-plc.blogspot.com Page 48

Basic PLC Programming

(8) Output window
Select [View] - [Windows] - [Output] from the main menu to show/hide the
output window. Displays the following information:
o Compile:
Displays program check results.
o Find Report:
Displays search results for contacts, instructions, and coils.
o Transfer:
Displays errors which occurred while loading a project file.
(10) Status bar
Displays information such as PLC name, offline/online status, and active cell
position. If an online connection error or other errors occur and are recorded by
the error log while online, a blinking red error message will be displayed. Select
[View] - [Windows] - [Status Bar] from the main menu to show/hide the status
bar.

e Diagram Workspace

q'\
,-".\

et ram M a - HosdPregrasd] j

[Euelien Mama : Euien 1)

‘\/
L

(1) Rung number
(2) Program address
(3) Rung header
If a rung is incomplete, a red line will be displayed to the right of its rung

header.

program-plc.blogspot.com Page 49

Basic PLC Programming

(4) Bus bar

e Information Window

CX-Progrommesy Ink

lil" A
A "
M

Displays basic shortcut keys used in CX-Programmer.

Select [View] - [Windows] - [Information Window] from the main menu to

show/hide the information window.

program-plc.blogspot.com Page 50

Basic PLC Programming

Chapter 6

Mitsubishi MELSEC-F Programmable Controller

6.1 Introduction to FX Series Programmable Controller

6.1.1 Overview

This chapter gives the explanation on all aspects of operation and programming for FX, FX2C,
FXON, FX0S, FXO0, FX2N, and FX2NC programmable controllers (PLCs). This is covers the
functions of the highest specification PLC. For this reason, the following indicator is included to
show which PLCs applies to:

Shaded boxes indicate
the applicable PLC type

|FXn[5|| FXaM| FX |FXIZC!|FXZM[C!‘

“FXo(s)” - All FXo and FXos PLCs

“FXoN" - All FXon PLCs

X - All FX and FX2 PLCs (CPU ver 2.30 or earlier)

“FXizc)” - All FX and FX2 PLCs (CPU versions 3.07 or later)
- All FX2c PLCs (see page 1-4)

“FX2nic)” - All FX2n and FXone PLCs

EX Family
This is a generic term which is often used to explain all programmable controllers without

identifying individual types or model names.

6.1.2 FXon CPU versions

Over time Mitsubishi adds newer and better features to develop and enhance the products.
Because of the nature of PLCs, that can be likened to industrial computers, changes sometime
occur within the units main CPU. These changes are similar to those experienced by office and
home computer users, that is going to a version up processor. The following lists identify the

CPU versions that had significant upgrades or new functions and features added.

program-plc.blogspot.com Page 51

Basic PLC Programming

FXON CPU versions

CPU Ver 1.20 the folowing features were added: software control for protocol 1 and 4
communications with the FXON-485ADP, 1:N network.

CPU Ver 1.40 the following features were added: software control for communications
using the FXON-485ADP, peer to peer (N:N) network.

EX and FX2C CPU Versions

CPU Ver 3.07 the following instructions were added: ASCI (FNC82), CCD (FN84), FLT
(FNC49), HEX (FNC83), RS (FNC80), SE (FNC16), SORT (FNC69), SQR (FNC48)
The following device ranges were upgraded: EI (FNC04), BMOV (FNC15), HSCS
(FNC53), PLSY (FNC57), FMOV (FNC16), MEAN (FNC45), ABSD (FNC62), DSW
(FNC72), SEGL(74), PR (FNCT77).

The following device ranges were added: input and output devices are independently
addressable up to 256 points in software. Total combined input and output points is 256.
Auxiliary relays increased to 1536 points (M0-M1535)

Data registers increased to 1000 points (D0-D999)

Optional RAM File Registers added 2000 points (D6000-D7999)

Pointers increased to 128 points (P0-P127)

CPU ver 3.11 The following instructions were added: PID (FNC88)

CPU Ver 3.2 The following features were added: software control for protocol
communications with the FX-485ADP, 1:N network.

CPU Ver 3.30 The following features were added: software control for protocol
communications with the FX-485ADP, 1:N network.

The following instructions were removed: ANRD (FNC91), ANWR (FNC92), BLK
(FNC97), MCDE (FNC98), MNET (FNC90).

6.1.3 Programming equipment

Programming tools operating old system software can not access the new features added to the

FX CPU from version 3.07. However, programming certain standard applied instructions in

conjunction with specially auxiliary coils (M coils) can achieve the same effective instructions as

the new instructions. The following tables identify which version of peripheral software will

program-plc.blogspot.com Page 52

modified instructions.

Basic PLC Programming

work directly with all of the new features and which peripheral software versions require use of

Peripherals Table
System software version which will.......
Description Model Number ...require the use of |program all instructions
auxiliary M coils directly

proglr—laan::ﬁgrel(clj-lHP} FX-10P-E V110 from V 2.00
HHP cassette EX-20P-MFXA-E WV 1.20 from v 2.00
Prggramming FX-PCS/AT-E-KIT V1.01 from Vv 2.00
software FX-ABGPP-E-KIT WV 1.00 from v 2.00
FX-10DU-E WV 1.10 from v 2.00
Data access units FX-20DU-E WV 1.10 from v 2.00
Other DU units from v 1.00

Existing Instruction And Special M Coil Combination To Mimic The Operation Of The
Identified Instruction
Existing FX instruction used to mimic the operation of......
Mnemonic | FNC number |Modifying M coil| Mimicked instruction | Mnemonic | FNC Number

MOV 12 M8150 Square root SQR 48
MOY 12 Ma191 Float FLT 49
RAMP 67 M8a193 Data search SER 61
RAMP 67 Ma194 RS232 instruction RS 80
FMOV 16 MB196 Hex to ASCII conversion ASCI 82
FMOV 16 MB197 ASCIl to Hex conversion HEX 83
FMOV 16 Ma195 Sum check CCD 84

6.2 Basic Program Instructions

6.2.1 What is a program?

A program is a connected series of instructions written in a language that the PLC can
understand. There are three forms of program format, instruction, ladder and SFC?STL. not all
programming tools can work in all programming forms. Generally hand held programming
panels only work with instruction format while most graphic programming tools will work with
both instruction and ladder format. Specialist programming software will also allow SFC style

programming.

program-plc.blogspot.com Page 53

Basic PLC Programming

LD X10

out Y7

AND M38

SET S5 Iy’

LD X21

outT T

K40 a -
LA

Instruction format Ladder Format SFC Format

6.2.2 Start Programming GX Developer

After installing GX developer on your PC you can start the program by selecting its entry
Start>Programs>MELSEC Application>GX Developer. This Displays the main program

window:
= MELSOFT scries GX Developer D:15P5-Programme \GX_ev_B.0_Projelc\FX15 =101x]
Proect Edi Frdfepace Cenvert ViEw Orine [agredtcs Toek Wandew Hep -
D& S 4[%(0| || &&E| 4| @l&| e
[Frogam = = Y A E
e o e e e e e e e
m| el 2l == mie 4 Bel 212] 710 @ HlEE o]
T ‘Jﬂlﬂ-
0
fpunp
r Fump
M1
¥010
I
i
Project. .
MATN Fxis Fost staton Oveerte | [M| 2
1. Title bar

The title bar of the GX Developer FX program window shows the path and name of the

current project. The usual buttons for minimizing and resizing the program window and

exiting the program are located at the right hand end of the title bar.

program-plc.blogspot.com

Page 54

Basic PLC Programming

2. Menu bar
The menu bar contains the menus that provide access to GX Developer’s functions.
Clicking on a menu title displays a drop-down menu with a list of options that you can
select.

3. Toolbars
Many of the most frequently used program functions can be accessed directly with the
tools (icons) in the toolbars.

4. Status bar
The status bar displays some useful information, including the current PLC type and
editing mode. You can also activate and deactivate the status bar in the View menu.

5. Editing screen
The editing screen is where you do your programming and documentation work. You can
have multiple editing and dialog windows open at the same time.

6. Project data list
The program, its documentation and the parameters for the FX controller are stored
together in a project. The project data list shows the directories in which the components
of the current project are stored.
Program
Controllers in the MELSEC FX family can only process one program at a time. The
default name assigned to this program is MAIN. You can rename MAIN if you want. To
do this select the MAIN entry and then right click on it to display the context menu and
select Rename.
Device Comment
You can assign a comment to every PLC device. These comments can be displayed in the
program. You can enter and edit these comments by opening the Device comment file in
the project data list.
Parameter
Double-clicking on PLC parameter in the project data list opens a dialog in which you
can enter and adjust all the settings necessary for the operation of the PLC. The PLC

parameters are transferred to the CPU together with the program.

program-plc.blogspot.com Page 55

Basic PLC Programming

Device Memory

The file stored in the Device memory directory can be used to enter default values for
each of the CPU’s data registers (D) while you are programming. To create a device
memory file select Device memory in the project data list and right-click to display the
context menu. Then select New...and enter the name of the file you want to create.

To open the file containing the device memory values just double-click on its name in the
project data list. You can select between a variety of data display formats and you can

also switch between hexadecimal and decimal modes.

Device Label (D0 - Digplay |18-b|t irteger ﬂ |DEE ﬂ D0-D255 =
Device neme i 1 2 3 4 b [7 |Char:acter stringl ;|

Do 12345 -6789 9276 -5432 4528 28429 5142 1 faSes !

ba a a a a a a a Display as 16-bit integer value
nla (1] 1]] (1]] (1] 1]

Device Label (D0 - Drisplag |32-bit inbeger j |D|:|: j 0a-0i25E —
Dewvice name 1] 2 4 & Character String =

Do -4449115549 -355981&a7& 1863127472 1czizzanllancieogae o =

D8 0 0 n Display as 32-bit integer values (2 data
T n n n words are combined for each value)

6.2.3 Outline of basic devices used in programming
There are six basic programming devices. Each device has its own unique use. To enable quick
and easy identification each device is assigned a single reference letter;

X: this is used to identify all direct, physical inputs to the PLC.

Y: this is used to identify all direct, physical outputs to the PLC.

T: this is used to identify a timing device which is contained within the PLC.

C: this is used to identify a counting device which is contained within the PLC.

M and S: these are used as internal operation flags within the PLC.

All of devices mentioned above are known as “bit devices”. This is a descriptive tittle telling the

user that these devices only have two states; ON or OFF, 1 or 0.

program-plc.blogspot.com Page 56

Basic PLC Programming

6.2.4 How to read ladder logic

ladder logic is very closely associated to basic relay logic. There are both contacts and coils that
can be loaded and driven in different configurations. However, the basic principle remains the
same. A coil drives direct outputs of the PLC or drives internal timers, counters or flags. Each
coil has associated contacts. These contacts are available in both ‘Normally open’ (NO) and

‘Normally Closed’ (NC) configurations.

The term ‘ norma’ refers to the status of the contacts when the coil is not energized. Using a
relay analogy, when the coils is OFF, a NO contact would have no current flow, that is, a load
being supplied through a NO contact would not operate. However, a NC contact would allow
current to flow, hence the connected load would be active.

Maotor

Toggle switch

Programmable Controller
YO
A X0
[

o
! PC Program U
. 0 |
P X0 X P
O U HE—GD] |]| con AC
X1 T — T CO_M __ | Power
— — (Y0) Supply

Limit switch

‘ DC Power Supply ‘

6.3 STL Programming
STL/SFC Programming, although having been available for many years, is still misunderstood
and misrepresented. Mitsubishi tries to correct this oversight as STL/SFC programming

becoming as important as ladder style programming

6.3.1 What are STL, SFC and IEC11317?

In recent years Sequential Function Chart (SFC) style programming have become very popular

throughout Europe and have prompted the creation of IEC1131 part 3.

program-plc.blogspot.com Page 57

Basic PLC Programming

The IEC 1131 SFC standard has been designed to become and interchangeable programming
language. The idea being that a program written to IEC1131 SFC standards on one
manufacturers PLC can be easily converted for use on a second manufacturers PLC.

STL programming is one of the basic programming instructions included in all FX PLC family
members. The abbreviation STL actually means Step ladder programming. STL programming is
a very simple concept to understand yet can provide the user with one of the most powerful
programming technique possible. The key to STL lies in its ability to allow the programmer to
create an operational program which flows and works in almost exactly the same manner as SFC.

One of the key differences to Mitsubishi’s STL programming system is that it can be entered into
a PLC in 3 formats. These are:

1. [Instructions — a word/mnemonic entry system

2. Ladder - agraphical program construction method using a relay logic symbols

3. SFC - aflow chart style of STL program entry (similar to SFC).

6.3.2 How STL operates

STL is a system that allows user to write a program which functions in much the same way as a
flow chart, this can be seen in the diagram opposite. STL derives its strength by organizing a
larger program into smaller more manageable parts. Each of these parts can be transferred to as

either a state or a step. To help identify the states, each is given a unique identification number.

Each step is a program

Each state is completely isolated from all other states within the whole program. A good way to
envisage this is that each state is a separate program and the user puts each of those program
together in the order that they require to perform their task. This means that states can be reused
many times and in different orders. This saves on programming time AND cuts down on the

number of programming errors encountered.

program-plc.blogspot.com Page 58

Basic PLC Programming

oM8002—+
[so]
oX0—r+ oX0—+
LS oX1-L

Combined SFC Ladder representation
Sometimes STL programs will be written in hardcopy as a combination of both flow diagram
and internal sub-program.
Please note the following convention is used:
O Normally Open contact

e Normally Closed contact

Common alternatives are ‘a’ and ‘b’ identifiers for Normally Open, normally Closed dtates or

often a line drawn over the top of the Normally Closed contact name is used, e.g X000.

« M300:
D

o X0 -
LESE

oX0—
aX1—

P —
= [sa—aa
To D

[a]

6.3.3 How to start and end an STL program
Before any complex programming can be used undertaken the basics of how to start and more

importantly how to finish an STL program need to be examined.

program-plc.blogspot.com Page 59

Basic PLC Programming

Embedded STL programs

An STL style program does not have to entirely replace a standard ladder logic program. In fact
it might be very difficult to do so. Instead small or even large section of STL program can be
entered at any point in a program. Once the STL task has been completed the program must go

back to processing standard program instructions until the next STL program block.

) LD X000

N ouT Y004 Mormal Ladder Program
LD X002 -

) SET _ S009

- STL 5009

i ouT Y010

1 LDI X003 Embedded STL Program
ouT Yoog | [—

) RET]

| LD X005
out Yoor7

' RST MOS80

Activating new states

Once an STL step has been selected, how is it used and how is the program driven? This is not so
difficult, if it is considered that for an STL step to be active its associated state coil must be ON.
Hence, to start an STL sequence all that has to be done is to drive the relevant state ON.

There are many different methods to drive a state, for example, the initial state coils could be
pulsed, SET or just included in an OUT instruction. However, within Mitsubishi’s STL
programming language an STL coil which is SET has a different meaning than one that is

included in an OUT instruction.

Terminating an STL Program

Once an STL program has been started the programmable controllers CPU will process all
following instructions as being part of that STL program. This means that when a second

program scan is started the normal instructions at the beginning of the program are considered to

program-plc.blogspot.com Page 60

Basic PLC Programming

be within the STL program. This is obviously incorrect and the CPU will proceed to identify a
programming error and disable the programmable controllers operation.

Returning to Standard Ladder

This is achieved by placing a ERT or RETurn instruction as the last STL step of an STL program
block. This instruction then returns programming control to the ladder sequence.

MED02
— S005

G
005 | wpno —
P
—"P'T'z TS
X013
~ A\

L {m

program-plc.blogspot.com Page 61

Basic PLC Programming

Chapter 7

Siemens PLC Programming

7.1 Installing the S7-200 CPU 210
7.1.1 Installing a CPU 210

The S7-200 CPU 210 is one of the S7-200 series of micro-programmable logic
controllers (Micro PLCs) that can control a variety of automation applications.
Figure below shows an S7-200 CPU 210. The compact design and low cost of the
CPU 210 make a perfect solution for controlling small applications. In addition,
the variety of input and output voltages provides you with the flexibility you need
to solve your automation problems with the maintenance-free operation of the
CPU 210.

The CPU 210 is easy to install. You can use the mounting holes to attach the
module to a panel, or you can use the built-in DIN clips to mount the module onto
a DIN rail. The small size of the CPU 210 allows you to make efficient use of

space.

program-plc.blogspot.com Page 62

Basic PLC Programming

Product Overview

The CPU 210 combines a central processing unit (CPU), power supply, and

discrete 1/0 points into a compact, stand-alone device.

e The CPU executes the program and stores the data for controlling the
automation task or process.

e The inputs and outputs are the system control points: the inputs monitor the
signals from the field devices (such as sensors and switches), and the outputs
control pumps, motors, or other devices in your process.

e Status lights provide visual information about the CPU mode (RUN) or

whether a system fault (SF) has been detected.

Equipment Requirements

You use the STEP 7-Micro/WIN programming software with a program

development station (the PDS 210) to create and to test your program. The final

program is then loaded onto a memory cartridge, which is then installed in the

CPU 210. You need the following equipment to create programs for the CPU 210:

e Personal computer (PC) running the STEP 7-Micro/WIN programming
software.

e Program development station (PDS 210).

e PC/PPI communications cable.

e Memory cartridge for transferring the program to the CPU 210.

program-plc.blogspot.com Page 63

Basic PLC Programming

Components for developing a program for the CPU 210

Program Development Station
| Computer (PDS 2100

STEP 7-Micro/WIN ;ilii

FC/PPI Communications Cable

CPU 210 Si

7.1.2 Installing the STEP 7-Micro/WIN Version 2.0 Software
Installing and Using the STEP 7-Micro/WINVersion 2.0 Software

This manual describes Version 2.0 of STEP 7-Micro/WIN. Previous versions of

—

1
| I |

Memuory cartridge

1
1
‘ |:| |:| |:| transfers the program
to the CPU 210

the software may operate differently. STEP 7-Micro/WIN is a Windows-based

software application used for programming the S7-200 Micro PLC

(programmable logic controller). The STEP 7-Micro/WIN programming software

package provides a set of tools required to program the S7-210 in either statement

list (STL) or ladder logic (LAD) programming language. In order to use STEP 7-

Micro/WIN, you must have the following equipment:

e Recommended: a personal computer (PC) with an 80486 or greater processor
and 8 Mbyte of RAM or a Siemens programming device (such as a PG 740);
minimum computer requirement: 80386 with 8 Mbyte of RAM

e A PC/PPI cable connected to your communications port (COM)

e A program development station (PDS 210)

e VVGA monitor, or any monitor supported by Microsoft Windows

program-plc.blogspot.com Page 64

Basic PLC Programming

e At least 35 Mbyte of free hard disk space (recommended)

e Microsoft Windows 3.1, Windows for Workgroups 3.11, Windows 95, or
Windows NT 3.51 or greater

e Optional but recommended: any mouse supported by Microsoft Windows
STEP 7-Micro/WIN provides extensive online help. Use the Help menu

command or press F1 to obtain the most current information.

Installing the STEP 7-Micro/WIN Version 2.0 Software Pre-installation

Instructions

Before running the setup procedure, do the following:

e |If a previous version of STEP 7-Micro/WIN is installed, back up all
application programs to diskette.

e Make sure all applications are closed, including the Microsoft Office toolbar.

Installation may require that you restart your computer.

Installation Instructions for Windows 3.1

If you have Windows 3.1 (Windows for Workgroups 3.11 or Windows NT) on

your machine, use the following procedure to install the STEP 7-Micro/WIN

software:

e Start by inserting Disk 1 in the disk drive of your computer (usually
designated drive A: or drive B:).

e From the Program Manager, select the menu command File _ Run...

e Inthe Run dialog box, type a:\setup and click on the “OK” button. This starts
the setup procedure.

e Follow the online setup procedure to complete the installation.

Installation Instructions for Windows 95
If you have Windows 95 on your machine, you can use the following procedure to
install the STEP 7-Micro/WIN software:

program-plc.blogspot.com Page 65

Basic PLC Programming

1. Start by inserting Disk 1 in the disk drive of your computer (usually
designated drive A: or drive B:).

2. Click once on the Start button to open the Windows 95 menu.
Click on the Run... menu item.

4. In the Run dialog box, type a:\setup and click on the “OK” button. This starts
the setup procedure.

5. Follow the online setup procedure to complete the installation.

Troubleshooting the Installation

The following situations can cause the installation to fail:

e Not enough memory: you need to have at least 35 Mbyte of free space on your
hard disk.

e Bad diskette: verify that the diskette is bad, and then call your salesman or
distributor.

e Operator error: start over and read the instructions carefully.

e Failure to close any open applications, including the Microsoft Office toolbar.

7.1.3 Creating a Program
STEP 7-Micro/WIN allows you to create the user program (OB1) with either the
Ladder Editor or the Statement List Editor.

Entering Your Program in Ladder

The Ladder Editor window allows you to write a program using graphical
symbols. See Figure 2-5. The toolbar includes some of the more common ladder
elements used to enter your program. The first (left) drop-down list box contains
instruction categories. You can access these categories by clicking or pressing F2.
After a category is selected, the second drop-down list contains the instructions
specific to that category. To display a list of all instructions in alphabetic order,
press F9 or select the All Instructions category. Each network allows two types of

comments:

program-plc.blogspot.com Page 66

Basic PLC Programming

e Single-line network title comments are always visible in the ladder display.
You can access the network editor by double-clicking anywhere in the
network title region.

e Multi-line network comments are only visible through a dialog box, but can
be printed (if that option has been selected through the Page Setup dialog).
You can access the network comment editor by double-clicking anywhere in

the network title region.

To start entering your program, follow these steps:

1. To enter a program title, select the menu command Edit _ Program Title.

2. To enter ladder elements, select the type of element you want by clicking the
corresponding icon button or selecting from the instruction list.

3. Type the address or parameter in each text field and press ENTER.

To change or replace one of the elements, move the cursor to that element and

select the new element. You can also cut, copy, or paste elements at the cursor

location.

i Ladder Editor - project1.ob1

||Contacts |F_2!| |N0rmally Open |E]

Network 1 [T'%, NETWORK TITLE (single line)

-
] Double click here to

I0.0 access the network title
[] . and comment editor.
[

Press ENTER or
double-click to
place element.

Entering Your Program in Statement List

The Statement List (STL) Editor is a free-form text editor which allows a certain
degree of flexibility in the way you choose to enter program instructions. Figure
2-6 shows an example of a statement list program. You can cut, copy, and paste in
the STL Editor. STEP 7-Micro/WIN also includes search-and-replace functions.

program-plc.blogspot.com Page 67

Basic PLC Programming

@Y STL Editor - project!.ob1

8

J/ Program for a Home Securlty System

NETWORE 1 J/8cund the alarm!

LD I0.3 // If (the panic alarm has been ti 12 allow*_.riewing the
LDW>= TO, +600 // or (if the alert timer is = &f Pregramin STL or Ladder,
A I0.2 I7i and the system 1s armed) divide segments of code
oLD // then with keyword NETWORK.

g Q0.3, 1 // set the modem dialer bit

R M0.2, 1 // reset the low-level alarm bit

Wetwork 2 J//Evaluate the system status. -
LDN I0.0 // If zone 1 is open

oM I0.1 ff or 1f Zone 2 18 open

MO.1, 1 /¢ set the high-level alarm kit

To enter an STL program, follow these guidelines:

Start each comment with a double slash (/). Each additional comment line
must also begin with a double slash.

End each line with a carriage return.

Separate each instruction from its address or parameter with a space or tab.

Do not use a space between the operand type and the address (for example,
enter 10.0, not 1 0.0).

Separate each operand within an instruction with a comma, space, or tab.

Use quotation marks when entering symbol names. For example, if your
symbol table contains the symbol name Startl for the address 10.0, enter the
instruction as follows:

LD “Start1”

To be able to view an STL program in ladder, you must divide segments of
code into separate networks by entering the keyword NETWORK. (Network
numbers are generated automatically after you compile or upload the

program.)

Compiling the Program

After completing a network or series of networks, you can check the syntax of

your code by selecting the menu command CPU _ Compile or by clicking the

Compile button:

program-plc.blogspot.com Page 68

Basic PLC Programming

Installing and Using the STEP 7-Micro/WIN Version 2.0 Software

Viewing a Program in Ladder or Statement List

You can view a program in either ladder or STL by selecting the menu command

View _ STL or View _ Ladder. When you change the view from STL to ladder

and back again to STL, you may notice changes in the presentation of the STL

program, such as:

e Instructions and addresses are changed from lower case to upper case.

e Spaces between instructions and addresses are replaced with tabs. You can
accomplish the same formatting of the STL instructions by selecting the menu
command CPU _ Compile while the STL Editor is active.

Downloading A Program

After developing and testing your program on the PDS 210, you must transfer the
program to the CPU 210 using the memory cartridge. In the same manner as you
could use a diskette to transfer files from one computer to another, you use a

memory cartridge to transfer your program from the PDS 210 to the CPU 210.

Downloading the Program to the PDS 210
After completing your program, you can download the project to the PDS 210. To
download your program, select the menu command Project _ Download... or

click the Download button in the main window.

The Download dialog box that appears allows you to specify the project
components you want to download. Select only “Program Code Block” for the
PDS 210: the data block and the CPU configuration are not used by the CPU 210.
Click on the “OK” button to confirm your choices and to execute the download

operation.

program-plc.blogspot.com Page 69

Basic PLC Programming

= STEP 7-Micro/WIN - cmicrowin\project1.prj
Ixjv/[==f Fdit View CPU Debug Tools Setup Window Help

Qpen...
Close

Save All
Save As..

Export

,_

Program Code Block
] Data Block
E CPL Configuration

Upload...
Download...

Page Setup...
Brint Previgw...
Erint...

Print Setup...

Exit

Copying Your Program to the Memory Cartridge
You can copy your program to the memory cartridge only when the PDS 210 is
powered up and the memory cartridge is installed. (You can install or remove the
memory cartridge while the PDS 210 is powered up.)

To install the memory cartridge, remove the protective tape from the memory

cartridge receptacle and insert the memory cartridge into the receptacle located

under an access cover of the PDS 210. (The memory cartridge is keyed for proper

installation.) After the memory cartridge is installed, use the following procedure

to copy the program:

1. If the program has not already been downloaded to the PDS 210, use the menu
command Project _ Download... to download the program.

2. Use the menu command CPU _ Program Memory Cartridge to copy the
program to the memory cartridge.

3. Remove the memory cartridge from the PDS 210.

program-plc.blogspot.com Page 70

Basic PLC Programming

Project Edit View|[dgl] Debug Tools Setup Window Help

o EARRGEE

Y Ladder Editor - u -
L Compile
Contacts |

ol el ﬂbi

Clear

Information
Configure
e CIN SRt Program Memory Carfridge

—| |—| Time of Day Clock

Compare Project to CPU

Network 1 81

Type

Transferring the Program to the CPU 210

To transfer the program from the memory cartridge to the CPU 210, follow these

steps:

1.
2.

AS

Turn off the power to the CPU 210.

Insert the memory cartridge in the CPU 210. (The memory cartridge is keyed
for proper installation.)

Turn on the power to the CPU 210.

After the RUN LED turns on, remove the memory cartridge from the CPU
210.

shown in Figure 2-10, the CPU 210 performs the following tasks after you

turn the power on when a memory cartridge is installed in the CPU 210:

The M, T, and Q areas of memory are cleared.

The current values for the counters (which are stored in the permanent
memory) are cleared. (The current values for the counters are erased only
when the memory cartridge is installed in the CPU 210. If a memory cartridge
is not installed, the current values are retained.)

The user program is copied from the memory cartridge to the permanent
EEPROM memory.

Always remove the memory cartridge from the CPU 210 after the program has

been installed. When a valid program is installed, the CPU 210 automatically goes

program-plc.blogspot.com Page 71

Basic PLC Programming

to RUN mode when power is applied. As your program runs, the CPU 210
updates the values stored in the RAM memory (the values stored in M memory,

the current values for the four counters, and the current values for the four timers).

When you turn the power off, the CPU 210 saves the current values of the four
counters to the permanent EEPROM memory. The other values stored in RAM
(such as M memory, current values for the timers, and the copy of the user
program) are cleared. Unless a memory cartridge is installed in the CPU 210, the
current values for the counters are retentive. The current values for the counters
are automatically restored to the RAM memory when you turn power on for the
CPU 210 (with no memory cartridge installed).

When the memory cartridge is installed in the CPU 210,
- turning on the power copies the user program to the
Cm.icge permanent memory

RAM Memory

User Srogram
CUITERT vaMEE f Curment values
of he countere . Counter values TN couniers

EEPROM Memory (Permanent)

program-plc.blogspot.com Page 72

Basic PLC Programming

Chapter 8
GE Fanuc Series 90 Micro PLC

Series 90 Micro PLCs offer an array of useful features, including:

Compatibility with Logicmaster 90-30/20/Micro programming software

Support for the 90-30 Hand-Held Programmer (HHP)

An alarm processor function

Password protection to limit access to PLC contents

A built-in High Speed Counter (HSC) function that can be configured as four type A
counters or as one type B counter and one type A counter (DC in/relay out Micro PLCs
only)

Two potentiometers that provide selectable analog inputs to %AI16 and %AI17 (with
configurable filtering)

Configurable software filtering of discrete inputs

Series 90 (SNP) and SNP Extended (SNPX), and RTU slave communication protocols

A pulse catch input function, selectable on up to four inputs, that detects pulses at least
100 microseconds in width

Pulse train and Pulse Width Modulation (PWM) outputs (Micro PLCs with DC output
only)

Compatibility with 14-point expansion unit (23 and 28-point Micro PLCs)

Pager Enunciation function that can be configured to send a specified byte string from
Serial Port 2 (23 and 28-point Micro PLCs)

Two analog inputs and one analog output (23-point Micro PLC)

8.1 Functional Description

The Micro PLC contains a CPU circuit board, an 1/0 board, and a Power Supply board. Figure of

Micro PLC Functional Block Diagram as below, provides an overview of Micro PLC inputs and

outputs and of the functions performed by each circuit board.

program-plc.blogspot.com Page 73

Basic PLC Programming

Figure of Micro PLC Functional Block Diagram

a45883
r——-———-- T r--—""""""""""""""""=""="""=>""=""=""=""=""=-=""=""=—=-= Bl
|) [|
| 11 CI-:-:': 1=se . . I
| 11 | |
| -\\ [|
— e o] (o] [|
Microprocessor Memary Expansion
| Il f 4 Por |
_Hand-'uaI-: < : " I I — :
Programmer L coniro
’ | I AR | .
[Fols. L : : [
| I [
I I I
| I L CPU Board N
| Lo | | Hlec 222
I T
| PIOK |
| - | PWR I
I — = 1/ LEDs |
RUN
| - 0K I
| |
T I o -
I r -
- - L 7
| NPL | ¢l |
i I I "',!_1 — I
4VDC - : 0 Circuits | - BT R |
—— | 24 VDG for Inpufs | I
ouTPU | ™] I
0 | nput Power -l |
n P — | g |
Input Fowe | 10 Board : %werﬁupply Bu::nar-:IJI
CPU Board

The CPU contains and executes the user program and communicates with the programmer (HHP
or computer running Logicmaster 90-30/90-20/Micro software). The primary capabilities of the
Micro PLC CPU hardware are listed in Table CPU Capabilities as below:

program-plc.blogspot.com Page 74

Basic PLC Programming

Table CPU Capabilities

14-Point Micro PLCs 23 and 28-Poimt Micro PLCs

H&/3003 microprocessor running at 9.84hhz
Powierup reset circult

Interrupt for power fail warning (2.0 ms)
Internal Coils - 1024

Four configurable 5Khz H5Cs

512K x 8 sectored flash memory for operating 256K x 16 sectored flash memory for operating
system and nonvolatile user program storage (3F system and nonvolatile user program storage (G5
wards of user flash memory) waords of user flash memary)
32 Kbyte RAM backed by super cap (provides data G4 FEbyte EAM backed by lithivm battery
retention far 3—4 days with the power off at 25°C) Real time clack backed up by lithium batternys
Maximum User Program - 3K words Maximum User Program - 6 words
Fegisters - 256 words Repisters — 2K words
Typical Scan Rate: 1.8 ms/K of logic (Boolean Typical Scan Rate: 1.0 ms/K of logic (Boolean
contacts) contacts)
An R5-422 serlal port that supports NP, SHNFX and | Two ES-422 serial ports: Port | supports SNP/SMNPX
ETU Slave protocols slave protocols; Port 2 supports SHP/SMPX Slave
and haster protocols and RTU Slave protocol. (Port
2 does not support the HHP.)
Ability to support up o four expansion units

High Speed Counters (IC693UDR011/002/005, IC693UAL006, IC693UDRO010)

The high speed counter (HSC) function consists of four built-in counters. Each counter provides
direct processing of rapid pulse signals up to 5Khz for industrial control applications such as:
meter proving, turbine flow meter, velocity measurement, material handling, motion control, and
process control. Because it uses direct processing, the HSC can sense inputs, count, and respond

with outputs without needing to communicate with the CPU.

The HSC function can be configured to operate in one of two modes:
A4 — four identical, independent, simple (type A) counters that can count up or down

B1-3, A4 — counters 1-3 configured as one type B counter; counter 4 as one type A counter.

In either mode, each counter can be enabled independently. Type A counters can be configured
for up or down counting (default is up) and for positive or negative edge detection (default is
positive). The HSC function is configured using the Series 90-30 and 90-20 Hand-Held

program-plc.blogspot.com Page 75

Basic PLC Programming

Programmer or the Logicmaster 90-30/20/Micro software configurator function. Many features

can also be configured from an application program using the COMM_REQ function block.

Type A Counters

A type A counter accepts a count input that increments a 16 bit accumulator. It also accepts a
preload/strobe input that can either preload the counter accumulator with a user-defined value
(PRELOAD mode) or strobe the accumulator (STROBE mode) into a 16-bit register. The four
type A counters provide 15 words of %Al data or 16 bits of %l data to the PLC. They receive 16

bits of %Q data from the PLC. Each counter has two discrete inputs and one discrete output.

Type B Counter
The type B counter provides an AQUADB counting function. An AQUADB input consists of
two signals (designated A and B). A count occurs for each transition of either A or B. The

counter uses the phase relationship between A and B to determine count direction.

DC Output (IC693UDR005/010, UAL006)

The high-speed DC output (%Q1) can be configured for PWM, pulse train, or HSC output.
Counter channel 1 can be configured for only one of these outputs at a time. Because AQUADB
counting uses channels 1-3, the PWM and pulse train outputs are not available when a type B

counter is configured.

PWM Output

The frequency of the PWM output (19Hz to 2Khz) is selected by writing a value to memory
location %AQ2. A PWM duty ratio (the amount of time that the signal is active compared to the
signal period) within the range of 0 to 100% can be selected by writing a value to memory
location %AQ3.

program-plc.blogspot.com Page 76

Basic PLC Programming

Pulse Output

The frequency (10hz to 2Khz) of the pulse train is selected by writing a value to memory
location %AQ123. The number of pulses to be output (0 to 32767) is selected by writing a value
to memory location %AQ124.

ASCII Output (IC693UDR005/010, UAL006)

This feature allows you to send a specified byte string out the serial port by including a
COMM_REQ (Communications Request) instruction in a ladder diagram. The Micro PLC can
automatically send a message to a remote location that has the ability to display an ASCII string,
such as a pager. As an example of how pager enunciation could be used, when a specific alarm
condition is detected by the PLC, the PLC would execute a COMM_REQ instruction to autodial
the modem attached to the serial port. If the autodial COMM_REQ is successful, a second
COMM_REQ would be executed to send an informative ASCII string to the pager where it can

be viewed by the user. Finally, a third COMM_REQ would be sent to hang up the pager.

1/0 Board
The 1/0 board provides the interface to the front panel input, output, and power supply

connections for the Micro PLC.

Input Circuits

DC Input Circuits (IC693UDR001/002/005/010, UAL006)

The DC input circuits condition and filter 24 VDC input voltages so that they can be properly
detected by the CPU module. The input points can be used in either positive or negative logic
mode. The DC inputs can be used as regular inputs or to supply count and preload/strobe inputs
for HSCs.

AC Input Circuits (IC693UAA003/007)
The AC input circuits accept 120 VAC, 50/60 Hz signals. Input characteristics are compatible
with a wide range of user-supplied input devices, such as pushbuttons, limit switches, and

electronic proximity switches.

program-plc.blogspot.com Page 77

Basic PLC Programming

Potentiometer Inputs (All Models)

Two potentiometers are provided to allow adjustment of the values in analog registers %AI16
and %AI17. The potentiometers can be turned by inserting a small screwdriver through an access
hole in the Micro PLC front panel. A potential use for the potentiometers would be to set

threshold values for use in logical relationships with other inputs/outputs.

Output Circuits

Relay Output Circuits (IC693UDR001/002/005/010, UEX011, UALO0O06)

The 2-amp, isolated, normally open output circuits allow the low-level signals from the CPU
module to control relay devices. There is no fusing on relay outputs. The user should provide
external fusing to protect the outputs. The outputs can be configured as regular outputs or as
outputs controlled by the HSCs.

AC Output Circuits (IC693UAA003/007)
The AC output points provide 120/240 VAC, 50/60 Hz, 0.5 A signals.

DC Output (IC693UDR005/010, IC693UAL006)
The DC output circuit provides a 24 VDC output voltage. This output can be used as a normal

DC output, HSC-controlled output, pulse train output, or pulse width modulation (PWM) output.

Analog 1/0 (IC693UALO006)

The 23-point Micro PLC features two analog input channels that map to %AI10018 and %Al0019
in the PLC. In voltage mode, the analog-to-digital (A/D) range of 0-32,000 counts corresponds to
a 0-10 V input signal. In 0-20mA current mode, the A/D range of 0-32,000 counts corresponds to
a 0-20mA input signal. In 4-20mA current mode, the A/D range of 0-32,000 counts corresponds
to a 4-20mA input signal.

The analog output channel maps to %AQ0012. In voltage mode, the output channel digital to
analog (D/A) range of 0 to 32,000 counts corresponds to a 0-10V output. In 0-20mA current

program-plc.blogspot.com Page 78

Basic PLC Programming

mode, a range of 0 to 32,000 counts corresponds to a 0-20mA output signal. In 4-20mA current

mode, the A/D range of 0-32,000 counts corresponds to a 4-20mA output signal.

8.2 Configuration and Programming
The Micro PLC can be configured and programmed using any of the following methods.
e Logicmaster 90-30/20/Micro software on one of the following types of computers:
a. Workmaster™ II or a CIMSTAR™ [industrial computer
b. IBM® PC-AT, PS/2® (Personal System 2®) with 2 Mbyte RAM and an Intel 386 or
higher processor
c. MS-DOS compatible Personal Computer with 2 Mbyte RAM and an Intel 386 or higher
processor
o Logicmaster 90 Micro software with any of the above computers.
o Series 90-30/90-20 Hand-Held Programmer (IC693PRG300).

Configuration and programming can be accomplished off-line from the PLC using the
Logicmaster 90 programmer. If you are using an HHP, configuration and programming can be
done on-line with the HHP attached to and interfacing with the PLC. Programming and
configuration communications must use Port 1. The Micro PLC provides flash memory for non-
volatile user program storage and for system firmware. The user program is always executed
from flash memory. However, the Micro PLC can be configured to read its configuration at

power up from either RAM or flash memory (ROM).

Program Format

Program elements are combined to form rungs of ladder logic. A ladder diagram has a symbolic
power source. Power is considered to flow from the left rail through a contact to the coil or
function block connected to the right. From the main menu, select Program Display/Edit (F1).

The screen displays a list of markers which represent parts of a program.

program-plc.blogspot.com Page 79

Basic PLC Programming

fim | TABLES |STATUS | | | [SETUF |FOLDER |[UTILTY [FRINT %
1 Eedit EnodifyRzearchlle 1 JEopt ioslisoto fekore lisoos |
I

[START OF LI FADGAGH TESSIN 1 =)

I UARIANLE DECLARAT IOKS 1

[BLOCE BECLARATIOMS 1

| STRRT OF PROGRAY LDGIC L]

FHD OF PRAOGRSAH 1

LA L SR

%m HEFNFE mj

Marker Description
- -
“arlable Toaccess the variable declaration table, mowethe cursor tothis marker and
Declarations | press Zoom (F10). Micknames and reference descriptions can then ke entered
in the table.
Blosck A program can include more than one block of logle. Ad ditionalblacks,

Declarations known @ subroutine blocks. can be called from otherblocks, When that =
done_blocks must be declared before they are called.

The main block has a blodk declaration table. This table Usts all blocks which
are partof the complete program.

Blocks donot have block declaraton tables. However blocks can be called
from the main block or fromany block in the program.

Start/Endof All logic 1s placed between these bwo markers. To enterlogic, place the cursor
Programlogic | onthe [END OF PROGRAH LOGIC] marker and press Ingert (F1).

Creating or Editing Program Logic
Program logic consists of various elements such as relays, timers, math functions, and other

functions, placed together to form rungs of logic.

%I0001 - X001
— | [-—| ALD_ L=
INT

FIOQLT —|I1 Q|-—%Q0O017

COMET —| 12
+0004

program-plc.blogspot.com Page 80

Basic PLC Programming

Structure of a Ladder Logic Rung

The programmer allows great flexibility in entering program elements; however, it will not allow
you to enter a rung with incorrect format or syntax. Each rung may contain up to eight parallel
lines; each line may have up to ten elements connected in series. Examples of an element include
a normally open contact, a normally closed contact, or a coil. Horizontal and vertical links are
used to carry power around an element, or to place elements in parallel or series with one

another.

- |—— +—vartical link

[berizeneal link

The following example shows two separate rungs, which must be entered and accepted

separately.

=

1 F———|

O—

=+
=

(O)—
The last element of a group of rung elements in series must be a coil, a jump, or a function.

Nothing may be to the right of a coil or a jump. The tenth position of a rung line is reserved for

program-plc.blogspot.com Page 81

Basic PLC Programming

coils and jumps. A call instruction may occupy columns 9 and 10. A rung may contain up to

eight coils. A rung line is not required to have elements in each column.

Ladder Logic Language Rules
These guidelines should be followed when creating or editing ladder logic:

1. Ifarung has a transitional coil, it must be the only coil in the rung.

2. There can be only one JUMP or MCR per rung. It must be the last instruction in the rung,
and there cannot be a coil in the same rung.

3. A rung must contain at least one contact before any coil, jump, MCR, function, or
vertical link. Contacts must be entered and cannot be left blank. Function blocks cannot
be tied directly into the power rail.

4. Short circuits are not allowed.

5. A rung must be composed of properly nested sub-expressions. There can be no branches
either into or out of another branch. The following examples contain improperly nested
rungs.

A. In this example, the rung line containing the %10005 contact branches into the middle of
the sub-expression (%10002 OR (%10003 AND %10004)).

I%|0001 9%10002 %Q0001

— ——1] + (O—
I

| [9610003 9610004 |

| —+— | —

[

1%10005 |

el +|

B. In this example, the rung line containing the %10005 contact branches out of the
middle of the sub-expression (%10002 OR (%10003 AND %10004)).

|
|%10001 %10002 %10006 %Q0001

1 | | |t
O—

1

| 910003 %10004 | |

|t —

Il

| 19610005 |

|+ +

program-plc.blogspot.com Page 82

Basic PLC Programming

6. There can be no branch around (above or below) a function in a rung. The following rung

is not allowed.

|
|%10001 %I10002 %Q0001

1 | e

||

|| ——
| — FUNC|—
B

7. There can be no sub-paths starting from a vertical in a rung containing a function, except
for sub-paths leading directly to coils.
A. The following rung is allowed because the first sub-path comes directly off the
power rail and the second leads directly to coils.
|

|
|%10001 %10002 | | %Q0001
— | [| | FUNC|

+ =
X]|

910001 %10002 %10003 | | | %Q0002

1 [[[+ ()—
[

|

B. The next rung is not allowed. It has a sub-path starting from a vertical and leading
into the function. It also has a sub-path that does not lead directly to coils; it goes
through contacts first.

|
19610001 %10002 | | %10004 %Q0001
e | —+ | FUNC]
+——] | (O)—
|

11X

| 19610003 | | [%10005 %Q0002

| +—| [+—| O—
||

|

8. There can be no contacts following a function in a rung. Note that the rung in the last

example above fails this rule, too.

program-plc.blogspot.com Page 83

Basic PLC Programming

9. In general, execution order of rung elements is left-to-right. Within a group of parallel
branches, the first (lowest rung line) parallel branch is executed first. The first of multiple
sub-paths is executed first.

8.3 Fault Reporting

The Micro PLC monitors internal operations for system and user problems. These faults are
reported through the %S references and through an internal fault table. Access to %S information
is available through the Logicmaster 90 software or the HHP. The fault table can only be

accessed by Logicmaster 90 software.

8.4 Specifications

The following tables list ordering information, physical and functional characteristics, and input

power requirements for the Micro PLCs.

I/0 Point Configurations

Input Points Output Points
Description (poinits/common) * (points/comimen) * Catalog Numbers
14 point DC infrelay out, AC power aDCc 6 relay ICE93UDRNO1
(4 and 4 (1.1, and 4)
14 point DC infrelay out, DT power aDC 6 relay ICRE3UDRME
(4 and 4 (1.1, and 4)
14 point DC in/DC out, DC power apc 6 DC [CRAEUDIN004
(4 and 4 ()
14 point AC inf AC out, AC power & AC 6 AC ICEI3UAANZ
(4 and 4) (2 and 4
28 point DT infrelay and DC out, AC power 16 DC 1 DC, 11 relay ICRI3UDRMOS
(4.4, 4 and 4) (14,1, 1,1.1, and 3)
28 point AC InfAC out, AC power 16 AC 12 AC ICEA3UAADT
(4.4, 4 and 4) (2, 4.2, and 4)
28 point DC infrelay out, DC power 16 DC 1 C. 11 relay ICE93UDROL0
(4.4, 4 and 4) i1,4,1.1, 1.1, and 3)
23 point analog DC in'relay and DC out, AC power | 13 DC, 2 analog 1 DC. 9 relay ICEI3UALDOG
(4.4, 4 and 2) 1 analog
(1.4.1.1, 1. and 1}
1 4-point Expansion Unit apc G relay ICEIGITTEXDL L
DC infrelay out, AC power (4 and 4 (1.1, and 4)

program-plc.blogspot.com

Page 84

Basic PLC Programming

Physical and Functional Characteristic (14-point PLC)

Weight:
ICEI3UDRO0 1002/ UAADDZUEXDI | 0.86 1hs (350 g)
Module Dimensions Height: 3.2" (82mm)

Diepth: 3.0" (7&mm)
Width: 4.5 (11 5mm)

Typical 5can Rate

1.8 ms/K of loglc (Boolean contacts)

Maximum number of Discrete Physical IO Points

14 (& inputs/6 outputs)

Maximum number of slave devices per neiwork

& (rcan be increased with a repeater)

Crutput Power Supplies

ICE93UDRM0L/OZUEXD 1L 24VDIC for input circults & user devices, 100maA max.
+5WDC on pin 5 of Serial Port, 155mA max (for UDRO01/002
only)
Super cap backup for RAM Provides data retention for 3-4 days with the power off at 25°C.

Physical and Functional Characteristic (28-point PLC)

Weight IC693UDR00S

1.5 Ibs (880 g)

ICE93UAADOT 1.54 Ibs (700 g}
ICE93UDROLD 154 1bs (700 g
Module Di mensions Height: 3.2" (82mm])

Width: B.67 (218mm)
Diepth: 3.0 (T6mm)

Typical Scan Rate

L0 ms/E of logic (Boolean contacts)

Real Time Clock accuracy
e
25°C
a5°C

4.54 sec.fday
5.22 sec.day
1066 sec/day

Maximum number of Discrete Physical I/O Points

28 (16 Inputs/12 outputs)

Maximuim number of slave devices per network

& (can be increased with a repeater)

+24 VDT Output Power Supply (IC693UDRM0S5/010)
(for input circults and user devices)

200 muA A

+3 VIXC on pin 5 of Serial Ports
Serial Fort |
Serlal Port 2

Serlal Ports | & 2 combinesd

155mA maximum
100mA maximum

255maA maximum (The load on either port can exceed the
individual ratings listed above, If the combined load does not
excead 255mA.) See "Camtion " below:

Lithium hattery lifetime

Shelf life (powered down)
Up to 7 years typical at 30 °C
Up to 5 vears typical at 55 °C

program-plc.blogspot.com

Page 85

Basic PLC Programming

Physical and Functional Characteristic (23-point Micro PLC, IC693UALO006)

Weight

L.52 Ibs (620g)

MModule Dimensions

Height: 3.2" (82Zmm) Width: 8.6" (218mm) Depth: 3.07
7 Gmm)

Typical 5can Rate

1.0 ms/E of logle (Boolean contacts)

Real Time Clock accuracy
107C (with Internal 15 *C rise)
25°C (with internal 15 “C rise)
55°C (with internal 15 °C rise)

4.54 sec./day
5.22 sec./day
1066 sec'day

Maximum number of Discrete Physical 1I'O Points

23 (13 tnputs/10 outputs)

Maximum number of slave devices per network

& (can be increased with a repeater)

+24 VDC Output Power Supply
(for input circults and user devices)

200 mA maximum

+3 VDC on pin 5 of Serial Ports
Serlal Port 1
Serlal Port 2
Serlal Ports | & 2 combinesd

155mA maximum

100mA maximum

255maA maximum (The load on either port can exceed the
individual ratings listed above, if the combined load does not
excead 255mA.) See "Caution " below:

Lithium hattery lifetime

Shelf life (powered down)
Up to 7 years typical at 30 °C
Up to 5 vears typical at 55 °C

Amnalog inputs
Input ranges

Twao, differential

Oto 10% (10.24% maximum)
0 to 200 ma (20.5mA maximum)
4 to 20 mA (20.5mA maxdmiim)

Resolution: 0 to 10 range
0 to 20 mA range
4 to 20 mA range

Accuracy

Linearity

Common mode valtage

Filter response time

10 bits {1 LSE = 10mWV)
9bits (1 LSE = 40p4)
&+ bits (1 LB = 40pA)

1% of full scale over full oparating temperature range

+3 L5E maximim

200 % maximiom

20.2ms to reach 1% error for step response

Amnalog outputs
Chatput ranges

Resolition

Accuracy

1, single-ended, non-isclated

Oto 10 (10.24% maximum)
0 to 20mA (20, 5md maximuom)
4 to 20mA (20, 5mA maximum)

12 bits aver O to 10% range (1 LSE = 2.5mV]
12 bits over 0 to 20mA range (1 LSB = Spa)
11+ bits over 4 to 20maA range (1 LSE = SpA)

+1% of full scale over full operating temperature rangge
(0"C ta 55°C)

program-plc.blogspot.com

Page 86

Basic PLC Programming

AC Power Requirements

AC Power Requirements — (IC693UDR0OI, TOGH3IUAAMI 00T, IC693UDRMS, ICEH3UEX M)

Range 100 -15% to 240 +10% VAC
Frequency a0 -5% to 60 +5% Hz
Haold-up 10 ms at 85 VAC

Inrush Time 2 ms for 40 A

Inrush Current 1 4-point Micro PLCs and

1 4-point Micro Expansion Unit

28-polnt Micro PLCs

18 A maximum at 120 VAC
A0 A maximiim at 200 VAC
40 A maximum at 265 VAC

A0 A maxdmiim at 200 WVAC
40 A maximum at 265 VAC

Input Current 14-point Micro PLCs

28-point, DC In‘Relay Cut

0.12 A typical at 200 VAC
0.25 A typical at 100 VAC

0.26 A typical at 100 VAC

Micro PLCs 0.12 A typical at 200 VAC
28-point, AC In/AC Out 0.16 A typical at 100 VAC
Micro PLCs 0.05 A typical at 200 VAC
Input Power Supply Rating UDROOL 35 VA
UAADDZ 20VA
UAADDT 25 VA
UDROOS 40VA
UEXDOL1 A5 WA
AC Power Requirements — (ICE93UALDDG)
Range 100 -15% to 240 +10% VAC
Frequency 50 -5% to 60 +5% Hz
Hald -up 10 ms at 85 WVAC
Inrush Time 2 ms for 40 A

Inrush Currents

35 A maximum at 200 VAC
46 A maximum at 265 VAC

Input Current

0.35 A typical at 100 VAC
0,22 A typical at 200 VAC

Isolation

1500°WVAC rms fleld side to logic (bath power supply input and 24
WDC power supply output)

Input Power Supply Rating

a0 VA

program-plc.blogspot.com

Page 87

Basic PLC Programming

DC Power Requirements

DC Power Requirements — (IC693UDRM0Z/010)

Fange 14-point Micro PLC

28-paint Micro PLCs

12 -15% to 24 +25% VDC
12 -15% to 24 +10% VAC

24 -20%, +25% VDC
24 -15%, +10% VAC

Hold-up 14-point Micro PLCs

28-paint Micro PLCs

4 msat 10 VDC
10 ms at 12 VDT

2msat 9.5 VDC

Inrush Current 14-poant Micro PLC

28-point Micro PLC'

65 A maximum at 24 VDC
2l A maximum at 30 VDC

65 A maximum at 24 VDC
2l A maximum at 30 VDC

Inrush Time 1 4-point Micro PLC
28-point Micro PLC

10 ms for &1 A

10 ms for &1 A

Input Current 14-point Micro PLCE

0.4 Atypical at 24 VDC
0.8 Atypical at 12 VDC

28-podnt Micro PLC

1.4 A typical at 24 VDC

Inpiit Power Supply Rating UDRO02
UDROLO

15W

200w

program-plc.blogspot.com

Page 88

Basic PLC Programming

Chapter 9
Allen Bradley MicroLogix 1000 PLC Programming

9.1 Using Basic Instructions
These instructions, when used in ladder programs represent hardwired logic circuits used for the
control of a machine or equipment. The basic instructions are separated into three groups: bit,
timer, and counter. Before you learn about the instructions in each of these groups, we suggest
that you read the overview that precedes the group:

e Bit Instructions Overview

e Timer Instructions Overview

e Counter Instructions Overview

Examine if Closed (XIC)
Use the XIC instruction in your ladder program to determine if a bit is ON. When the instruction
is executed, if the bit addressed is on (1), then the instruction is evaluated as true. When the

instruction is executed, if the bit addressed is off (0), then the instruction is evaluated as false.

Bit Address State XIC Instruction

0 False

1 True

Examples of devices that turn on or off include:
e apush button wired to an input (addressed as 11:0/4)
e an output wired to a pilot light (addressed as 00:0/2)
o atimer controlling a light (addressed as T4:3/DN)

Examine if Open (XI0)
Use an XIO instruction in your ladder program to determine if a bit is Off. When the instruction
is executed, if the bit addressed is off (0), then the instruction is evaluated as true. When the

instruction is executed, if the bit addressed is on (1), then the instruction is evaluated as false.

program-plc.blogspot.com Page 89

Basic PLC Programming

Bit Address State XIO Instruction

0 True

1 False

Examples of devices that turn on or off include:
e motor overload normally closed (N.C.) wired to an input (11:0/10)
e an output wired to a pilot light (addressed as O0:0/4)
o atimer controlling a light (addressed as T4:3/DN)

Output Energize (OTE)
Use an OTE instruction in your ladder program to turn On a bit when rung conditions are
evaluated as true. An example of a device that turns on or off is an output wired to a pilot light
(addressed as 00:0/4). OTE instructions are reset when:

e You enter or return to the REM Run or REM Test mode or power is restored.

e The OTE is programmed within an inactive or false Master Control Reset (MCR) zone.

Output Latch (OTL) and Output Unlatch (OTU)

OTL and OTU are retentive output instructions. OTL can only turn on a bit, while OTU can only
turn off a bit. These instructions are usually used in pairs, with both instructions addressing the
same bit. Your program can examine a bit controlled by OTL and OTU instructions as often as

necessary.

Output Latch (OTL) and Output Unlatch (OTU)

OTL and OTU are retentive output instructions. OTL can only turn on a bit, while OTU can only
turn off a bit. These instructions are usually used in pairs, with both instructions addressing the
same bit. Your program can examine a bit controlled by OTL and OTU instructions as often as

necessary.

program-plc.blogspot.com Page 90

Basic PLC Programming

Using OTL

When you assign an address to the OTL instruction that corresponds to the address of a physical
output, the output device wired to this screw terminal is energized when the bit is set (turned on
or enabled). When rung conditions become false (after being true), the bit remains set and the
corresponding output device remains energized. When enabled, the latch instruction tells the
controller to turn on the addressed bit. Thereafter, the bit remains on, regardless of the rung
condition, until the bit is turned off (typically by a OTU instruction in another rung).

Using OTU

When you assign an address to the OTU instruction that corresponds to the address of a physical
output, the output device wired to this screw terminal is de-energized when the bit is cleared
(turned off or disabled). The unlatch instruction tells the controller to turn off the addressed bit.
Thereafter, the bit remains off, regardless of the rung condition, until it is turned on (typically by

an OTL instruction in another rung).

One-Shot Rising (OSR)

The OSR instruction is a retentive input instruction that triggers an event to occur one time. Use
the OSR instruction when an event must start based on the change of state of the rung from false
to true. When the rung conditions preceding the OSR instruction go from false to true, the OSR
instruction will be true for one scan. After one scan is complete, the OSR instruction becomes
false, even if the rung conditions preceding it remain true. The OSR instruction will only become
true again if the rung conditions preceding it transition from false to true. The controller allows

you to use one OSR instruction per output in a rung.

Entering Parameters

The address assigned to the OSR instruction is not the one-shot address referenced by your
program, nor does it indicate the state of the OSR instruction. This address allows the OSR
instruction to remember its previous rung state. Use a bit address from either the bit or integer

data file. The addressed bit is set (1) for one scan when rung conditions preceding the OSR

program-plc.blogspot.com Page 91

Basic PLC Programming

instruction are true (even if the OSR instruction becomes false); the bit is reset (0) when rung

conditions preceding the OSR instruction are false.

Timer Instructions Overview

Each timer address is made of a 3-word element. Word 0 is the control word, word 1 stores the
preset value, and word 2 stores the accumulated value.

Entering Parameters

Accumulator Value (ACC)

This is the time elapsed since the timer was last reset. When enabled, the timer updates this

continually.

Preset Value (PRE)

Specifies the value which the timer must reach before the controller sets the done bit. When the
accumulated value becomes equal to or greater than the preset value, the done bit is set. You can
use this bit to control an output device. Preset and accumulated values for timers range from 0 to

+32,767. If a timer preset or accumulated value is a negative number, a runtime error occurs.

Timebase
The timebase determines the duration of each timebase interval. The timebase is selectable as
0.01 (10 ms) second or 1.0 second.

Timer Accuracy

Timer accuracy refers to the length of time between the moment a timer instruction is enabled
and the moment the timed interval is complete. Timing accuracy is —0.01 to +0 seconds, with a
program scan of up to 2.5 seconds. The 1-second timer maintains accuracy with a program scan
of up to 1.5 seconds. If your programs can exceed 1.5 or 2.5 seconds, repeat the timer instruction

rung so that the rung is scanned within these limits.

program-plc.blogspot.com Page 92

Basic PLC Programming

Timer On-Delay (TON)

Use the TON instruction to delay the turning on or off of an output. The TON instruction begins
to count timebase intervals when rung conditions become true. As long as rung conditions
remain true, the timer increments its accumulated value (ACC) each scans until it reaches the
preset value (PRE). The accumulated value is reset when rung conditions go false, regardless of
whether the timer has timed out.

Using Status Bits

And Remains Set Until One

This Bit Is Set When of the Following
accumulated value is equal
Timer Done Bit DN (bit 13) to or greater than the preset | rung conditions go false
value
Timer Enable Bit EMN (bit 14) nung conditions are true rung conditions go false

rung conditions are true and
Timer Timing Bit TT (bit 15) the accumulated value is less
than the presat value

rung conditions go talse or
when the done bit is set

When the controller changes from the REM Run or REM Test mode to the REM Program mode
or user power is lost while the instruction is timing but has not reached its preset value, the
following occurs:

e Timer Enable (EN) bit remains set.

e Timer Timing (TT) bit remains set.

e Accumulated value (ACC) remains the same.

On returning to the REM Run or REM Test mode, the following can happen:

Condition Result

EN bit remains set.
It the: rung is true: TT bit remains set.
ACC value is reset,

EN bit is reset,
It the rung is talse: TT bit is reset,
ACC value is reset,

Retentive Timer (RTO)
Use the RTO instruction to turn an output on or off after its timer has been on for a preset time

interval. The RTO instruction is a retentive instruction that lets the timer stop and start without

program-plc.blogspot.com Page 93

Basic PLC Programming

resetting the accumulated value (ACC). The RTO instruction retains its accumulated value when
any of the following occurs:
e Rung conditions become false.
e You change controller operation from the REM Run or REM Test mode to the REM
Program mode.
e The controller loses power.

e A fault occurs.

Using Status Bits

And Remains Set Until One

This Bit Is Set When of the Following
accumulated value is equal .
. . - the appropriate RES
Timer Done Bit DN (bit 13) 1JI'nzjaizzjregreater than the preset instruction is enabled

rung conditions are true and
Timer Timing Bit TT (bit 14) the accumulated value is less
than the presat value

rung conditions go false or
when the done bit is set

Timer Enable Bit EN (bit 15) rung conditions are thue rung conditions go false

When the controller changes from the REM Run or REM Test mode to the REM Program or
REM Fault mode, or user power is lost while the timer is timing but not yet at the preset value,
the following occurs:

e Timer Enable (EN) bit remains set.

e Timer Timing (TT) bit remains set.

e Accumulated value (ACC) remains the same.

Counter Instructions Overview
Each Counter address is made of a 3-word data file element. Word 0 is the control word,

containing the status bits of the instruction. Word 1 is the preset value. Word 2 is the

accumulated value.

program-plc.blogspot.com Page 94

Basic PLC Programming

Entering Parameters
Accumulator Value (ACC)
This is the number of false-to-true transitions that have occurred since the counter was last reset.

Preset Value (PRE)

Specifies the value which the counter must reach before the controller sets the done bit. When
the accumulator value becomes equal to or greater than the preset value, the done status bit is set.
You can use this bit to control an output device. Preset and accumulated values for counters
range from —32,768 to +32,767, and are stored as signed integers. Negative values are stored in

two’s complement form.

Count Up (CTU)

The CTU is an instruction that counts false-to-true rung transitions. Rung transitions can be
caused by events occurring in the program (from internal logic or by external field devices) such
as parts traveling past a detector or actuating a limit switch. When rung conditions for a CTU
instruction have made a false-to-true transition, the accumulated value is incremented by one
count, provided that the rung containing the CTU instruction is evaluated between these
transitions. The ability of the counter to detect false-to-true transitions depends on the speed
(frequency) of the incoming signal.

The accumulated value is retained when the rung conditions again become false. The
accumulated count is retained until cleared by a reset (RES) instruction that has the same address

as the counter reset.

program-plc.blogspot.com Page 95

Basic PLC Programming

Using Status Bits

P And Remains Set Until Cne
This Bit Is Set When of the Fallowing
Count Up Overflow Bit OV (bit | accumulated value wraps a RES instruction having the
12) around to -32,768 (from same address as the CTU
+32,767) and continues instruction is executed QR
counting up trom there the count is decremented
less than or equal to +32,767
with a CTD instruction
Done Bit DN (bit 13) accumulated value is equal the accumulated value
to or greater than the preset | becomes less than the preset
value
Count Up Enable Bit CU rung conditions are true rung conditions go falze OR
(it 15) a RES instruction having the
same address as the CTL
instruction is enabled

The accumulated value is retained after the CTU instruction goes false, or when power is
removed from and then restored to the controller. Also, the on or off status of counter done,
overflow, and underflow bits is retentive. The accumulated value and control bits are reset when
the appropriate RES instruction is enabled. The CU bits are always set prior to entering the REM
Run or REM Test modes..

Count Down (CTD)

The CTD is a retentive output instruction that counts false-to-true rung transitions. Rung
transitions can be caused by events occurring in the program such as parts traveling past a
detector or actuating a limit switch.

When rung conditions for a CTD instruction have made a false-to-true transition, the
accumulated value is decremented by one count, provided that the rung containing the CTD
instruction is evaluated between these transitions. The accumulated counts are retained when the
rung conditions again become false. The accumulated count is retained until cleared by a reset

(RES) instruction that has the same address as the counter reset.

program-plc.blogspot.com Page 96

Basic PLC Programming

Using Status Bits

. And Remains Set Until One
This Bit Is Set When of the Following
Count Down Undertlow Bit UN | accumulated value wraps a RES instruction having the
(bit 11) around to +32,768 (trom same address as the CTD
-32,767) and continues instruction is enabled. OR
counting down from there the count is incremented
greater than or equal to
+32,767 with a CTU
instruction
Done Bit DN (bit 13) accumulated value is equal the accumulated value
to or greater than the preset | becomes less than the preset
value
Count Down Enable Bit CD nung conditions are true rung conditions go falze OR
(it 14) a RES instruction having the
same address as the CTD
instruction is enabled

The accumulated value is retained after the CTD instruction goes false, or when power is
removed from and then restored to the controller. Also, the on or off status of counter done,
overflow, and underflow bits is retentive. The accumulated value and control bits are reset when
the appropriate RES instruction is executed. The CD bits are always set prior to entering the
REM Run or REM Test modes.

RSLogix Micro Starter Lite

Now for the moment we are creating some ladder logic. Open the RSLogix Micro software with
the START > All Programs > Rockwell Software > RSLogix Micro English > RSLogix Micro
English shortcut. Create a brand new project by pulling down the File menu and selecting New.

Every project must start with a designated processor.

program-plc.blogspot.com Page 97

Basic PLC Programming

Processar Mame: | TEST

Bul . 1763 Micrologix 1100 Serie= B

Bul . 1763 Micrologix 1100 Serie=s A

Bul 1761 Micrologiz 1000 Analog

Bul . 1761 Micrologix 1000 DH-485-HDS1lawe
Bul . 1761 MicroLogiz 1000

gsvw"\hx e,

gl L g WY B Y '“’*"--r-“"F*‘m‘--\.*im,!h‘-.~4‘\r=F“"“mf""

It has chosen the simplest MicroLogix 1000 and then clicked the OK button. If you ever work
with the purchased version of RSLogix 500 then there will be a lot more items in this hardware
list. A blank project now opens up.

4 RSLogix Micro Starter Lite - TEST M=
File Edit Wiew Search Comms Tools window Help
NS d | | ¥
[OFFLINE [#] [MoForces [3] !i [#Tie oo w
Mo Edits *| [Forces Enabled [+ i
|Driver: EMLISEIEI-1|J| u Node - 2d|| LU [\User £Bt A TimeriCourter A InpubiCutp
WTEST o =X
= {3 Project;)] -
[Help 0000 CEND =
-2 Controller _II b

i Cartraller Properties
Q\, Processar Status
U 10 configuration
IJ}E Channel Configuration
@ Multipaint Monitor

—1-[_] Program Files
B svso-
B svs1-
& LAD 2 - MAIN_PROG
5@ LAD 3 - USER_FALLT
& LaD 4 -HSC_NT
& LAD S - STINT 1
& LaDe- k4 -

<] I 2] (@]smam_ProG £ a1 2N

Far Help, press F1

program-plc.blogspot.com Page 98

Basic PLC Programming

Let’s make a simple rung to test in the emulator. Make sure the cursor is on the rung with the
END on it and then click the New Rung icon in the instruction toolbar.

I New Rung leon

14

E--HUEE-]:‘E-(}*:D-QD- El

|41 [\User 4Bt 4 TimeriCounter A InputiDutput 4 Compare |

Now click on the “Examine if Closed” * F instruction to add it to the rung. Double click on the

question mark above it and enter 1:0/0 as its input address. Just leave the description pop up box
empty by clicking OK.

Next, click on the Output Energize ** instruction to add it to the right side of the rung. Double
click on the question mark above it and enter O:0/0 as its output address. Just leave the
description pop up box empty by clicking OK.

You should now have something like below.

#5LAD 2 -- MAIN_PROG E]@Ei
—
& 1.0 w i
anan e] E L2 !
3 1] 0 _é
2
ool CEND " (\'

N e Y WL

The next very important step is to verify the project with the Edit > Verify Project menu item.

This will compile the project and get it ready for the emulator.

program-plc.blogspot.com Page 99

Basic PLC Programming

.'E]: RSLogix Micro Starter Lite - TE&.
File Edit “iew Search Comms Tu:u:ulsl

O Undo Chr+Z 3 #
OFF 2]
. Cut Chrl+3 7
E Copy Chrl4+C g
Drrivy J
1 ?
a Delete Dl ! />
__| Insert Ins
Append f
‘Werify File
‘Werify Project
b
N

Hl‘.f"\'—l-‘- r\‘_’-—ﬂ_""—l-.‘__'r

Save the project as something like Test.RSS in an easy place to find like My Documents.

9.2 Using Comparison Instructions
Comparison instructions are used to test pairs of values to condition the logical continuity of a

rung. As an example, suppose a LES instruction is presented with two values. If the first value is
less than the second, then the comparison instruction is true. To learn more about the compare

instructions, we suggest that you read the Compare Instructions Overview that follows.

Equal (EQU)
Use the EQU instruction to test whether two values are equal. If source A and source B are
equal, the instruction is logically true. If these values are not equal, the instruction is logically

false. Source A must be a word address. Source B can be either a constant or word address.

Negative integers are stored in two’s complement form.

program-plc.blogspot.com Page 100

Basic PLC Programming

Not Equal (NEQ)

Use the NEQ instruction to test whether two values are not equal. If source A and source B are
not equal, the instruction is logically true. If the two values are equal, the instruction is logically
false. Source A must be a word address. Source B can be either a constant or word address.

Negative integers are stored in two’s complement form.

Less Than (LES)

Use the LES instruction to test whether one value (source A) is less than another (source B). If
the value at source A is less than the value of source B the instruction is logically true. If the
value at source A is greater than or equal to the value of source B, the instruction is logically
false. Source A must be a word address. Source B can be either a constant or word address.

Negative integers are stored in two’s complement form.

Less Than or Equal (LEQ)

Use the LEQ instruction to test whether one value (source A) is less than or equal to another
(source B). If the value at source A is less than or equal to the value of source B, the instruction
is logically true. If the value at source A is greater than the value of source B, the instruction is
logically false. Source A must be a word address. Source B can be either a constant or word

address. Negative integers are stored in two’s complement form.

Greater Than (GRT)

Use the GRT instruction to test whether one value (source A) is greater than another (source B).
If the value at source A is greater than the value of source B, the instruction is logically true. If
the value at source A is less than or equal to the value of source B, the instruction is logically
false. Source A must be a word address. Source B can be either a constant or word address.

Negative integers are stored in two’s complement form.

Greater Than or Equal (GEQ)
Use the GEQ instruction to test whether one value (source A) is greater than or equal to another

(source B). If the value at source A is greater than or equal to the value of source B, the

program-plc.blogspot.com Page 101

Basic PLC Programming

instruction is logically true. If the value at source A is less than the value of source B, the
instruction is logically false. Source A must be a word address. Source B can be either a constant

or word address. Negative integers are stored in two’s complement form.

Masked Comparison for Equal (MEQ)
Use the MEQ instruction to compare data of a source address with data of a reference address.
Use of this instruction allows portions of the data to be masked by a separate word.
Entering Parameters
e Source is the address of the value you want to compare.
e Mask is the address of the mask through which the instruction moves data. The mask can
be a hexadecimal value (constant).
e Compare is an integer value or the address of the reference. If the 16 bits of data at the
source address are equal to the 16 bits of data at the compare address (less masked bits),
the instruction is true. The instruction becomes false as soon as it detects a mismatch.

Bits in the mask word mask data when reset; they pass data when set.

Limit Test (LIM)
Use the LIM instruction to test for values within or outside a specified range, depending on how
you set the limits.
Entering Parameters
The Low Limit, Test, and High Limit values can be word addresses or constants, restricted to the
following combinations:

o If the Test parameter is a constant, both the Low Limit and High Limit parameters must

be word addresses.
o If the Test parameter is a word address, the Low Limit and High Limit parameters can be

either a constant or a word address.

program-plc.blogspot.com Page 102

Basic PLC Programming

True/False Status of the Instruction

If the Low Limit has a value equal to or less than the High Limit, the instruction is true when the

Test value is between the limits or is equal to either limit. If the Test value is outside the limits,
the instruction is false, as shown below.

False True False
~32,768 - T + 32,767
Low Limit High Limit
Example, low limit less than high limit:
Low | High | Instruction is True Instruction is False
Limit | Limit | when Test value is when Test value is
5 B 5 through & -32,768 through 4 and 9 through 32,767

If the Low Limit has a value greater than the High Limit, the instruction is false when the Test

value is between the limits. If the Test value is equal to either limit or outside the limits, the
instruction is true, as shown below.

True False True
~32,768 e I + 32,767
High Limit Low Limit
Example, low limit greater than high limit:
Low | High Instruction is True Instruction is False
Limit | Limit when Test value is when Test value is
8 § |-32.768 through 5 and 8 through 32,757 6 and 7

program-plc.blogspot.com Page 103

Basic PLC Programming

References

1. GX Developer FX, Programming and Documentation System, Beginner’s Manual,
Mitsubishi Electric Industrial Automation.

2. GE Fanuc Automation, Programmable Control Products Logicmaster 90 Series 90-
30/20/Micro, Programming Software User’s Manual, GFK-0466L.

3. Programmable logic controllers, Basic level TP301, Textbook, Festo Didactic, R.
Bliesener, F. Ebel, C. Loffler, B. Plagemann, H. Regber, E. v. Terzi, A. Winter.

4. CP1L CPU Unit, GETTING STARTED GUIDE, Omron.

5. Simatic, S7-200 Programmable Controller, CPU 210, System Manual.

6. GE Fanuc Automation, Programmable Control Products, Series 90™, Micro PLC User's
Manual GFK-1065F.

7. Allen-Bradley MicroLogix 1000, Programmable Controllers, User Manual, (Bulletin
1761 Controllers).

8. FX Series Programmable Controllers, Programming Manual, Revision J, November
1999.

9. SINUMERIK 840D, C-PLC Programming, Description of Functions 03.96 Edition,
Manufacturer Documentation.

10. Basics of PLC Programming, Industrial Control Systems, Fall 2006.

program-plc.blogspot.com Page 104

Basic PLC Programming

Support Me

1. Add to circles on Google+
plus.google.com/107166042091915882790

2. Become a fan on Facebook
facebook.com/plcsimulation
3. Follow us on Twitter

twitter.com/program_plc

program-plc.blogspot.com Page 105

http://plus.google.com/107166042091915882790
http://www.facebook.com/plcsimulation
http://twitter.com/program_plc

