

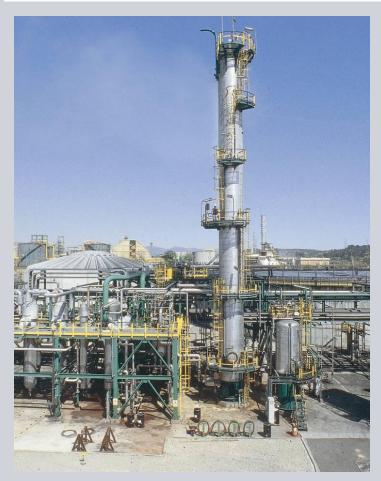
SAWEA **Russell Forbess** Bryan Kumfer Steven Olsen Copyright © Siemens AG 2006. All rights reserved.

Overview

- Description of the Zimpro® WAO process
- Spent Caustic Chemistry
- Autoclave and Full Scale Data
 - Ethylene Spent Caustic
 - Refinery Spent Caustic
- Conclusions

SIEMENS

What is Wet Air Oxidation?


- Oxidation of Soluble or Suspended Components in an Aqueous Matrix
- Oxygen (Air) is the Oxidizing Species
- Oxidation Reactions Occur at Elevated Temperatures and Pressures

BASF, Port Arthur, Texas

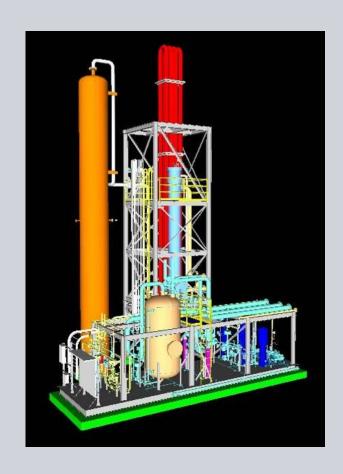
Wet Air Oxidation For High Strength Industrial Wastewaters

Repsol, Tarragona, Spain

Common Uses

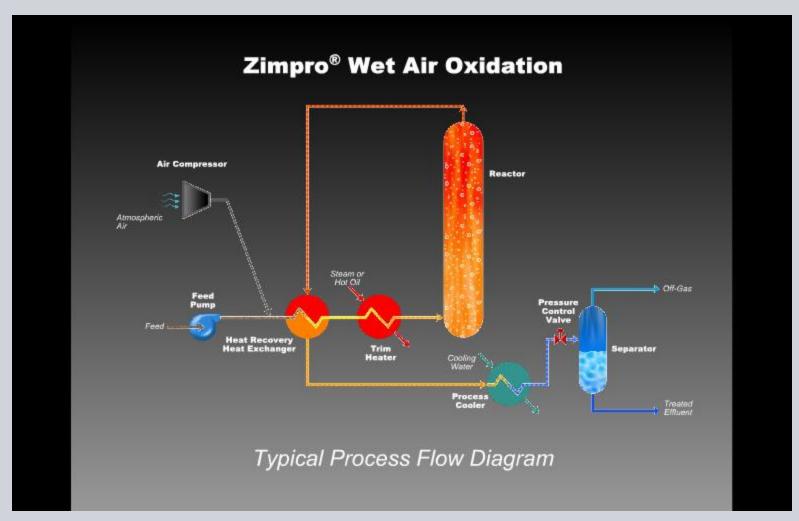
- Destruction of Specific Constituents
- Pretreatment for Biological Polishing
- Gross Reduction in COD Loading

Wet Air Oxidation For High Strength Industrial Wastewaters


Typical Industrial Wet Air Oxidation Feed Characteristics

Flow Range: 1 to 50 m³/h

COD Range: 10,000 to 100,000 mg/L


Temperature Range: 150 to 320°C

Pressure Range: 5 to 225 barg

Wet Air Oxidation – Typical Process Flow Diagram

Wet Air Oxidation

Process Variables

- Oxidation Temperature and Pressure
- Hydraulic Detention Time
- Oxidant Typically Air or Oxygen
- Flow Configuration
- Oxidation Enhancer

Atofina, Rho Italy

Spent Caustic Chemistry

Classification of Spent Caustics

Туре	Principle COD Source	Source	Operating Conditions
Sulfidic	Sulfides and/or mercaptans	Ethylene or LPG	130°C / 7 barg to 200°C / 27.5 barg
Cresylic	Phenolic compounds and reduced sulfur	FCC Gasoline Washes	200°C / 27.5 barg to 260°C / 86 barg
Naphthenic	Naphthenic compounds and reduced sulfur	Kerosene, Diesel, and Jet Fuel	240°C / 55 barg to 260°C / 86 barg

Issues With Spent Caustic Produced in the Petrochemical Industry

Spent Caustic Before and After WAO Treatment

- Odors caused by sulfides, mercaptans and volatile organics
- Potential inhibitory or toxic effects in biological treatment
- Hazards associated with toxicity
- High chemical oxygen demand
- Tendency to foam
- Corrosive

Sulfidic Reactions During WAO of Spent Caustics

$$NaHS + O_2 + NaOH \rightarrow Na_2SO_4 + H_2O$$

$$NaHS + O_2 \rightarrow \frac{1}{2} Na_2S_2O_3 + \frac{1}{2} H_2O$$

$$Na_2S_2O_3 + O_2 + NaOH \rightarrow Na_2SO_4 + H_2O$$

$$NaSR + O_2 \rightarrow RSO_3-Na$$

Organic Reactions During WAO of Spent Caustics

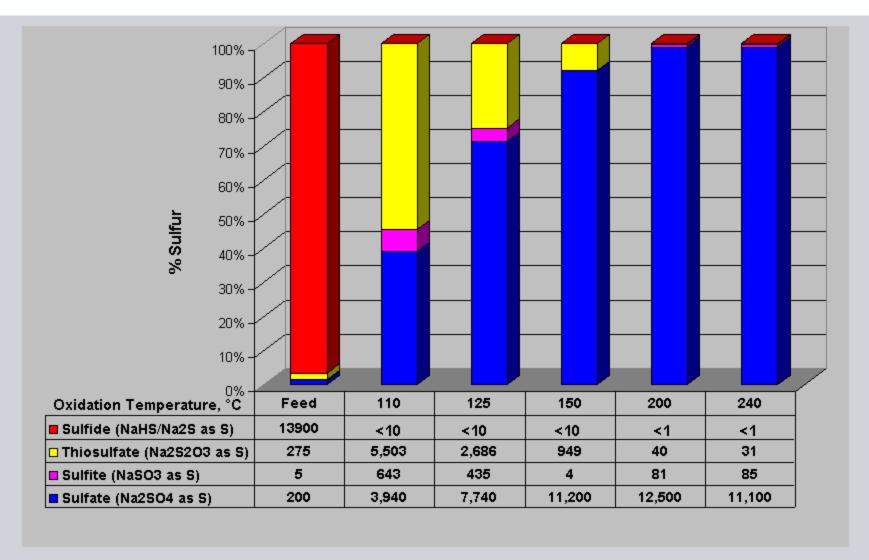
Cresylic Acids - C₆H₅O-Na

- $C_6H_5O-Na + O_2 + NaOH \rightarrow Na_2CO_3 + H_2O$
- $C_6H_5O-Na + O_2 + NaOH \rightarrow Na_2CO_3 + CH_3COO-Na + H_2O$

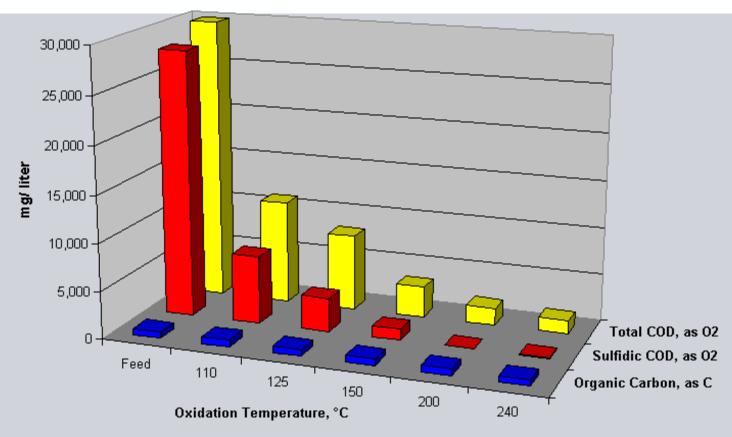
Naphthenic Acids - Na-C₁₂H₂₂O₂

- Na- $C_{12}H_{22}O_2 + O_2 + NaOH \rightarrow Na_2CO_3 + H_2O$
- Na-C₁₂H₂₂O₂ + O₂ + NaOH \rightarrow Na₂CO₃ + CH₃COO-Na + H₂O

Wet Air Oxidation of Various Spent Caustic Types

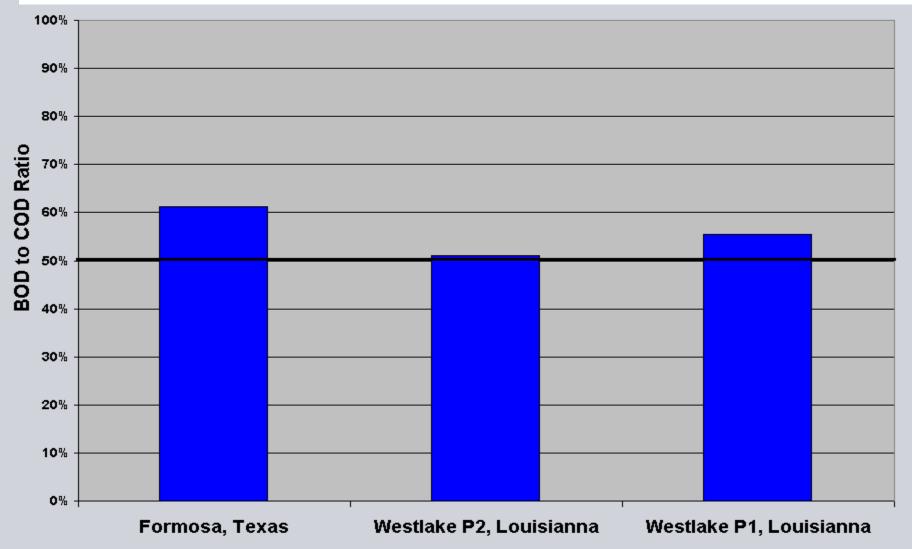

Autoclave and Full Scale Results

- Oxidation of Sulfidic Components
- Biotreatability of WAO Effluent
- Overall COD Destruction


Wet Air Oxidation Ethylene Spent Caustic – Sulfidic Components

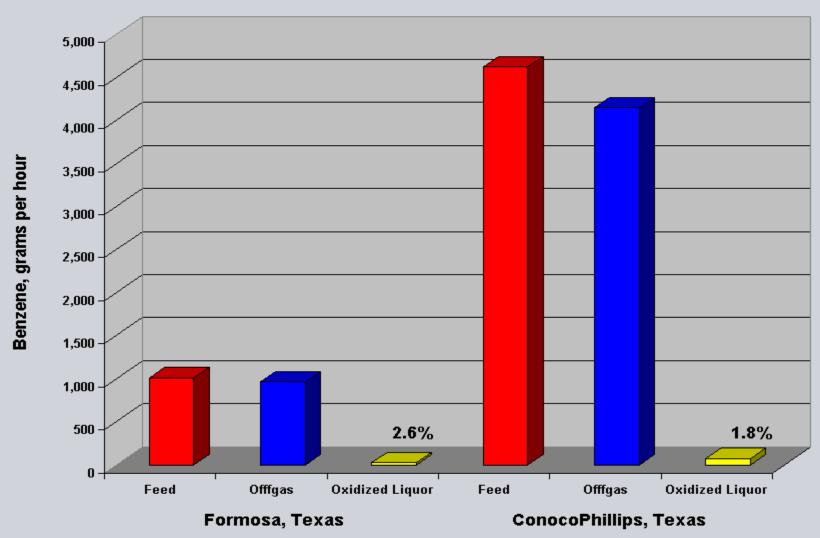
Wet Air Oxidation Ethylene Spent Caustic – Sulfidic / Organic COD

	Feed	110	125	150	200	240
Organic Carbon, as C	648	747	708	710	641	537
■ Sulfidic COD, as O2	28,085	7,184	3,567	1,185	90	80
□Total COD, as O2	29,800	10,900	8,040	3,260	1,830	1,410



Full Scale WAO Case Studies Ethylene Spent Caustic

		ConocoPhillips, Texas		BASF, Texas	
		Feed	Effluent	Feed	Effluent
Temperature, °C			135		200
Residence Time, minutes			60		60
Analysis	Units				
COD	mg/L	10,500	2,300	11,700	2,870
Sulfide-S	mg/L	4,031	<1	4,990	<1
Thiosulfate-S	mg/L	<224	959	49	<16
Sulfite-S	mg/L	<64	204	28	10
Sulfate-S	mg/L	<55	2,940	507	5,190
Mercaptan-CH3SH	mg/L			298	
Methyl Mercaptan	mg/L				<0.4
Ethyl Mercaptan	mg/L				<0.4
Calculated Sulfidic COD	mg/L	8,060	1,300	10,500	<50
% Sulfidic COD Destruction	%		84		>99.5



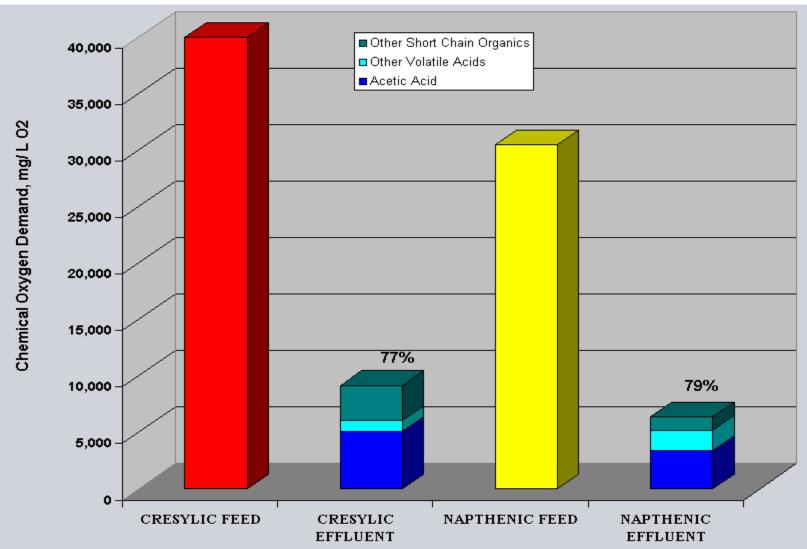
WAO Ethylene Spent Caustic Biodegradability

SIEMENS

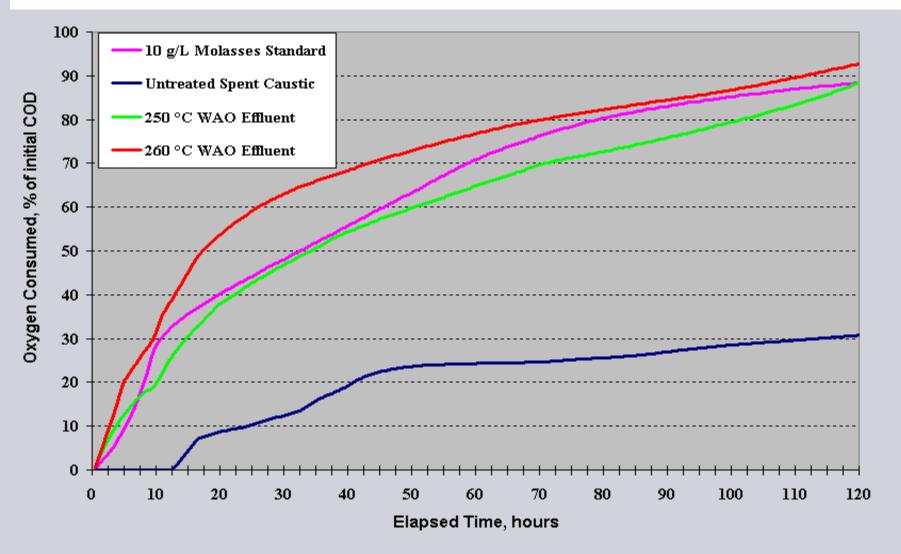
Benzene Stripping

WAO Ethylene Spent Caustic

- Operation at 200°C
 - Sulfide < 1 mg/l as S
 - Mercaptan < 1 mg/l as Methyl / Ethyl</p>
 - Thiosulfate < 100 mg/l as S
- Remaining Organic COD is Biodegradable
 - BOD to COD Ratio > 0.5


Wet Air Oxidation Refinery Spent Caustic

- Operating Conditions Dependent on Mixture Composition
- Assure Biological Treatability
- Sulfidic (LPG, etc) 200°C / 27.5 barg
 - Higher Mercaptan Content
- Cresylic 200°C / 27.5 barg to 260°C / 86 barg
 - COD Reduction
- Napthenic 240°C / 55 barg to 260°C / 85 barg
 - Prevent Foaming


Wet Air Oxidation Organic Refinery Spent Caustic – 260°C

WAO of Napthenic Spent Caustic – Respirometer Trendplot

Full Scale WAO Study – Refinery Spent Caustic Mixture

Repsol-YPF, La Pampilla, Peru

	Sulfidic spent caustics	Naphthenic spent caustics	Cresylic spent caustics
COD as g/l	7 - 110	50 – 100	165 - 230
TOC, g/l as C	0.02 – 4	11 – 25	23 - 60
DIC, g/l as C	0.15 – 5	0 – 0.16	0.33 - 0.35
Sulfide, g/l as S=	2 – 53	< 0.001	0 - 64
Mercaptans, g/l as S=	0 – 28	< 0.03	0 – 5.4
Thiosulfate, g/l as S=	0 – 3.7	0.07 - 0.13	10 - 12
Total Phenols, g/l	0.003 - 002	2 – 10	14 - 20

Repsol YPF Refinery Zimpro® WAO Performance

	Destruction	Feed	Effluent (measured, after dilution)
COD, mg/l as O ₂	85%	73,000	6,300
TOC, mg/l as C	73%	15,000	2,400
Sodium, mg/l as Na	-	41,000	24,000
рН	-	13.2	8.9
Sulfide, mg/l as S=	> 99.9	8,500	< 1
Sulfite, mg/l as S =	> 99.9	100	< 2
Mercaptans, mg/l as CH ₃ SH	> 98.8	1,500	< 30
Thiosulfate, mg/l as S ₂ O ₃	> 98.8	1,500	< 30
Total phenols, mg/l as C ₆ H ₆ O	> 99.6	6,500	36
Flow rate, m ³ /h		0.67	1.14

Repsol YPF Refinery Zimpro® WAO Performance

- Biological Treatability
 - Effluent BOD/COD Ratio: 0.58

- Volatile Acid COD: 4,150 mg/L
 - 66% of Effluent COD

- Sulfidic Components Non-Detectable
 - Including Mercaptans

Conclusions

- Reasons For Treatment
 - Biotreatable Effluent
 - No Sulfide Odors
 - No H₂S emissions
 - Minimize Downstream Corrosion
 - Eliminate Foaming Problems

Conclusions

- Ethylene Spent Caustic (Sulfidic)
 - Sulfide <1 mg/l as S
 - Mercaptans <1 mg/l
 - Thiosulfate <100 mg/l as S

Conclusions

- Refinery Spent Caustic (Higher Temperature for Organics)
 - Elimination of Sulfides and Mercaptans
 - High Conversion of Complex Organics to Short Chain Compounds
 - Both Sulfidic and Organic COD Reduction

Thank You!

Siemens Water Technology

301 W Military Rd Rothschild, WI 54474

Bryan Kumfer

Research and Development Chemist

Phone: 1 (715) 355-3271

bryan.kumfer@siemens.com

Russell Forbess

Chief Process Engineer

Phone: 1 (715) 355-3565

russell.forbess@siemens.com

Steven Olsen

Sr. Process Engineer

Phone: 1 (715) 355-3455

steven.olsen@siemens.com