

Water purification

Sediqa Hassani

Faculty of pharmacy, 3th class

- 1. Definition
- 2. History3. Methods

- ☐ Water purification is the process of removing undesirable chemical and biological contaminants from raw water.
- ☐ The goal is to produce water fit for a specific purpose

Contaminants:

- Substances that are removed during the process:
- 1. Bacteria and Viruses
- 2. Algae and fungi
- 3. Minerals, and man-made chemical pollutants.
- It is not possible to tell whether water is safe to drink just by looking at it.

- Hippocrates (the father of medicine) mentioned clearly how water could be purified. He invented "Hippocrate's sleeve," which was cloth bag and was used for water purification. This treatment was helpful in removing hardness and bad smell from the water.
- The Greek and Romans too developed various methods for treating water in order to control tastes and odor.

Methods

Distillation

Double distillation

Deionization

Reverse osmosis

Sedimentation

Flocculation

Filtration

UV-ray

Ultra filtration

Electro dialysis

carbon filter

Electro deionization

Micro porous filter

Vater Treatment Methods

Screening

The first step in purifying surface water is to remove large debris like sticks, leaves, trash and other large particles which may interfere with subsequent purification steps.

Groundwater does not need screening before other purification

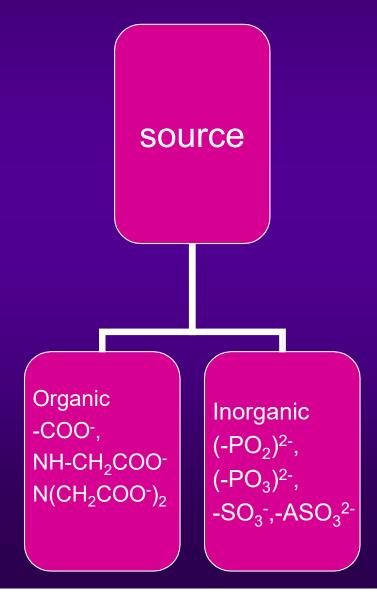
steps

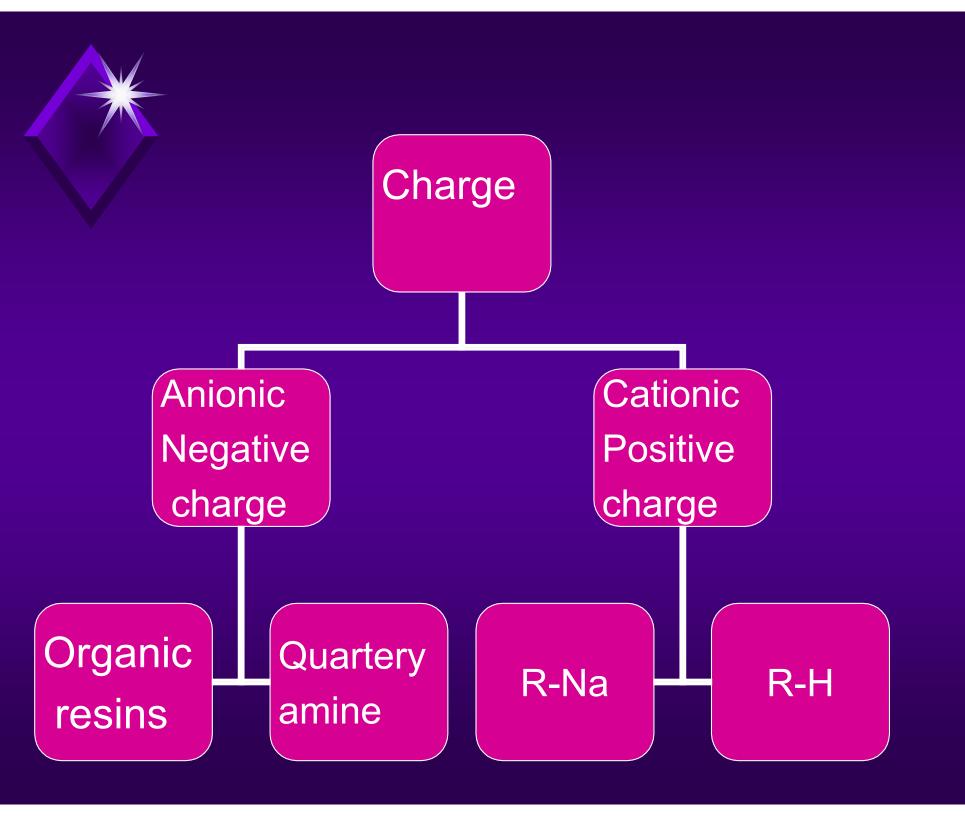
Dissolved solids less than 10mg/lit

Electrical conductivity less than 10µs/cm

Boiling→ condensing steams→ clean tank

#Yellow/white precipitate mineral above instruments→cleaning


#Bacteria's existing



Deionization (Ion exchange resin),DIW

- Ion exchange: insoluble mater, change own ion with ions in around solution
- □ Demineralized(cation:Ca,Na,K,Mg-toxic anions:nitrite,nitrate,As,Hg)
- ✓ Dissolved mineral salt
- Without mineral ppt
- ✓ Fast
- ✓ Incidental trapping in resin→strong base anion resin→negative gram bacteria
- #Cant remove: uncharged organic molecule, viruses

Coagulation and Flocculation

Together coagulation and flocculation is a traditional purification method which works by using active chemicals called coagulants that effectively "glue" small suspended particles together so that they settle out of the water or stick to sand or other granules in a granular media filter.

Coagulation

Many of the suspended water particles have a negative electric charge. The charge keeps particles suspended because they repel similar particles. Coagulation processing reduces the surface charge to encourage attraction which forms floc which can settle.

> Flocculation

is the clumping together of small particles to form larger particles, called floc, which is more readily settled out of the water.

Figure 28-8a Brock Biology of Microorganisms 11/e © 2006 Pearson Prentice Hall, Inc.

- Clarify (removing turbidity, colores)
- water clear & colorless
- Preparing ppt with simple physical methods
- □ Combining particles→floccule→filtering (sand+granulated anthracite)
- Flocculating agents:
- $1- Fe(OH)_3$
- $2-Al(OH)_3$
- 3-PolyDADMAC(synthetic, more use, high μ, stable, expensive)

In a relatively new and economically attractive development polymer film with chemically formed microscopic pores called micro or ultrafiltration membranes can be used in place of granular media to filter water effectively without coagulants. The type of membrane media determines how much pressure is needed to drive the water through and what sizes of microbes can pass.

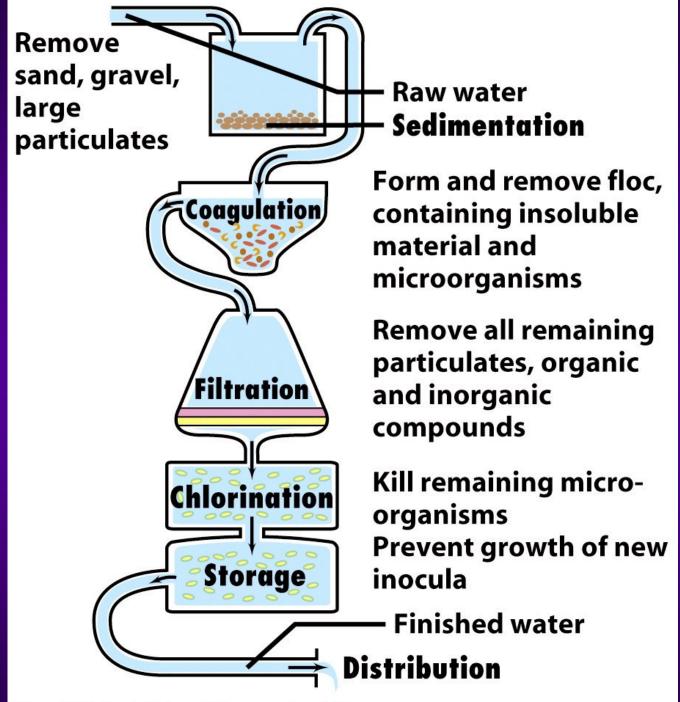
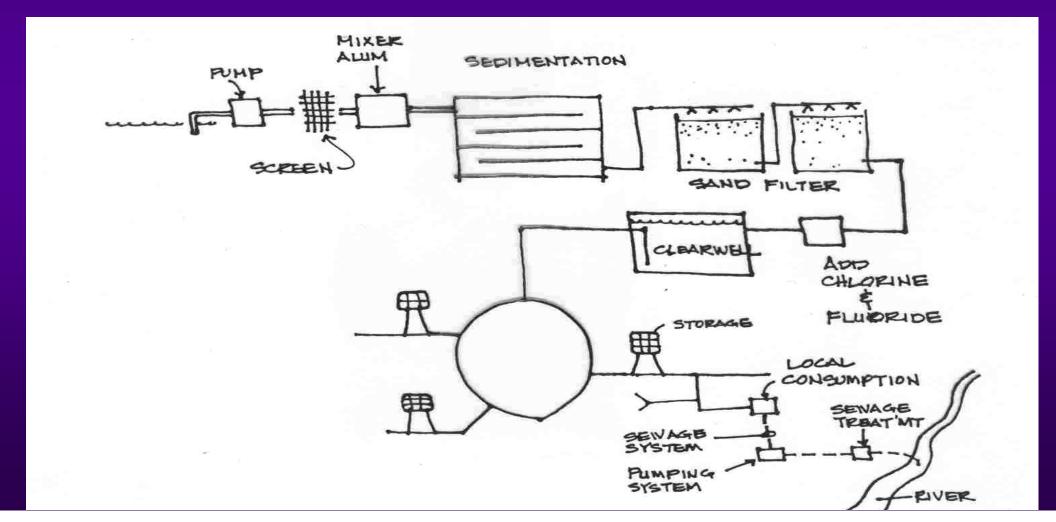
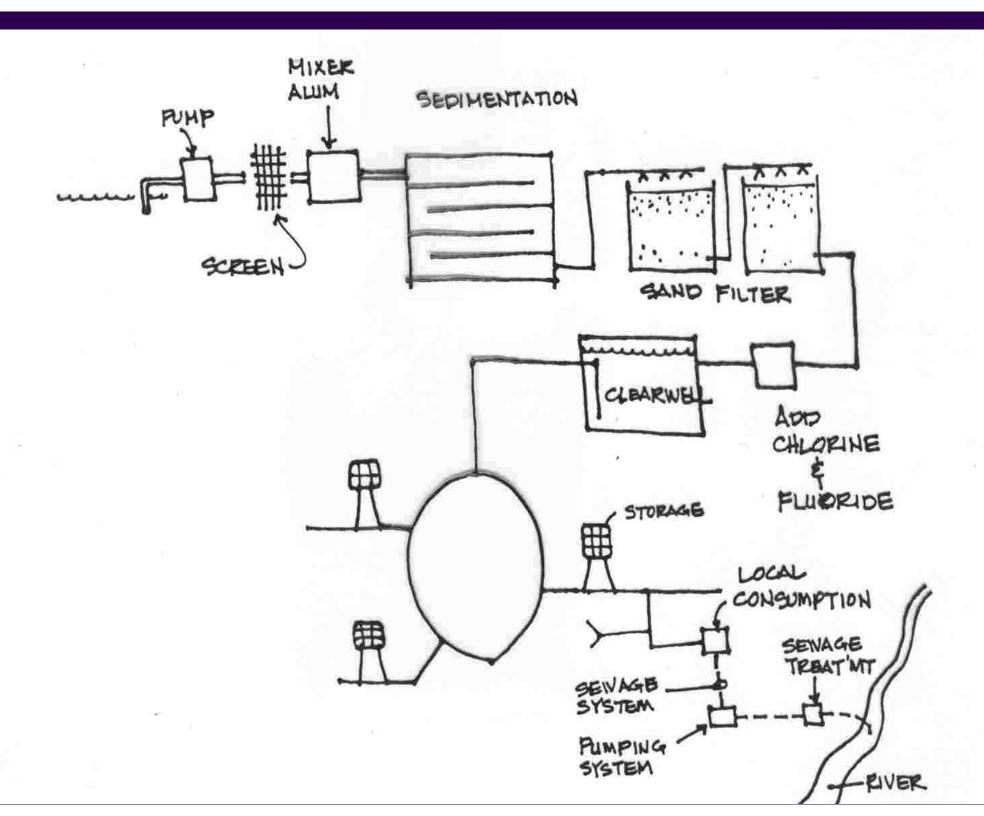



Figure 28-8b Brock Biology of Microorganisms 11/e © 2006 Pearson Prentice Hall, Inc.

Sedimentation

Water exiting the flocculation basin enters the sedimentation basin, also called a clarifier or settling basin. It is a large tank with slow flow, allowing floc to settle to the bottom.



Sedimentation

Water exiting the flocculation basin enters the sedimentation basin, also called a clarifier or settling basin. It is a large tank with slow flow, allowing floc to settle to the bottom.

Filtration

After separating most floc, the water is filtered as the final step to remove remaining suspended particles and unsettled floc. The most common type of filter is a rapid sand filter. Water moves vertically through sand which often has a layer of activated carbon or anthracite coal above the sand.

Electro deionization

Passing water from +& - electrodes

- Continuously
- ✓ reach

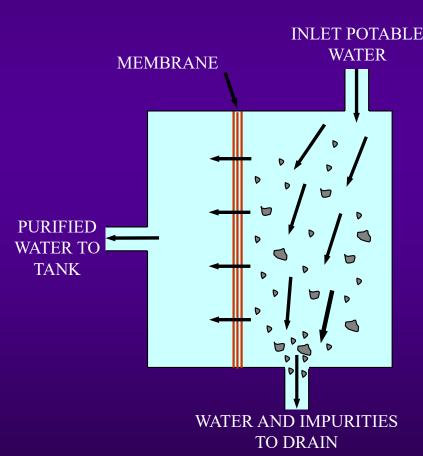
**Reverse osmosis

- Mechanical, impure solution(water)
- Moving solvent from high con. to low con. From semi permeable membrane With external pressure (more than osmotic pre.)
- □ Pressure:
- > 2-17 bar(fresh w)
- > 40-70 bar(sea w) normal=24 bar

Osmosis

Cell wall (membrane)

Weak solution outside cell



Concentrated solution inside cell inside cell

Weak solution will pass through the membrane into the concentrated solution by osmosis

Reverse Osmosis Water Purification System

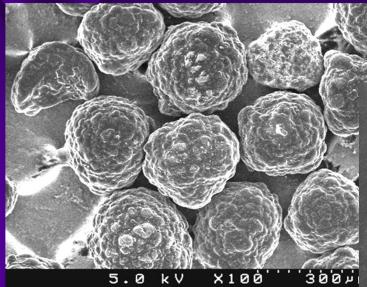
- Removes dissolved substances such as salts, metals, minerals and organisms
- 15 25% of inlet water passes through membrane as treated water and is stored in the tank
- 75 85% of inlet water goes to drain flows across membrane and flushes impurities down drain

membrane

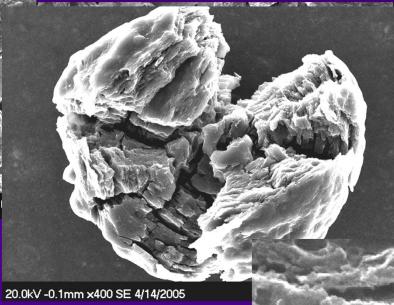
- Algae, life forms colonized that
- Only solvent passing
- □ 2 force: osmotic pre, external pre
- Most application & high purity
- ✓ From 1970 for fresh.w, medicin, industry

#Making membrane is difficult

#Only purifying 5-15% of entering water


Connects to potable water supply with pressure between 3.0 and 7.0 bar.g

Granulated active carbon filter


- ✓ Big surface area
- Absorbing more toxic compounds

Flyid coke-derived Activated Carbon

Before activation

(SSA $\sim 8 \text{ m}^2/\text{g}$)

After activation

 $(SSA \sim 2500 \text{ m}^2/\text{g})$

28 4 20.0kV X100K 300nm

Water Purification System

Reverse Osmosis Membrane Cartridge

Activated Carbon-Post-Filter

Activated Carbon Pre-Filter

Electro chemical method

With passing from membrane

An electrical field,

anion-anod

cation—catod

M1

М2

Cell divided with membranes

✓ 40-50% soluble inorganic compounds

Slide 26

passing anion Maria, 5/11/2009 M1

passing cation Maria, 5/11/2009 M2

- UV-ray
- Lava filter

Devices for producing water with micro-clusters

Oxy-Plus Water Treatment Devices

Disinfection

with aggressive chemicals like chlorine or ozone (UV-ray,H₂O₂) is normally the last step in purifying drinking water. Water is disinfected to destroy any pathogens which passed through the filters

Removing harmful microbes, water preserving, killing pathogens(passed from filter)

- In Pharmaceutics
- As a deliver & solvet
 In chemical tests (distillate water)
 Laboratory
- * Quality norm of Purified water by: ACS,ASTM,NCCLS,USP,
- □ Other use:

Deionized water: acidic battery of cars, cooling systems, vapor irons, H₂, preparation, machine washing, Maple syrups preparing, air plane engines

Storage:

Water from rivers may also be stored in bankside reservoirs for periods between a few days and many months to allow natural biological purification to take place. This is especially important if treatment is by slow sand filters.

The filtered water is then treated to remove or inactivate remaining potentially harmful microscopic organisms including viruses and bacteria.

This removal step comprises part of a multistep process of disinfection which is completed by chemical and/or ultraviolet light treatment which damages and makes non-infectious any remaining viable harmful microbes.

For waters that are particularly difficult to treat such as from catchments with intensive agriculture, extra physical, chemical and biological treatment steps may be necessary.

Any question?

Thank you!

