ELSEVIER

## Contents lists available at ScienceDirect

# Desalination

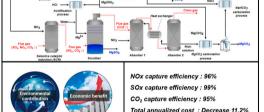
journal homepage: www.elsevier.com/locate/desal





# Utilization of desalination wastewater for SO<sub>x</sub>, NO<sub>x</sub>, and CO<sub>2</sub> reduction using NH<sub>3</sub>: Novel process designs and economic assessment

Jonghun Lim<sup>a,b,1</sup>, Jehun An<sup>a,c,1</sup>, Hyungtae Cho<sup>a</sup>, Junghwan Kim<sup>a,b,\*</sup>


- a Green Materials and Processes R&D Group, Korea Institute of Industrial Technology, Ulsan 44413, Republic of Korea
- <sup>b</sup> Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
- <sup>c</sup> Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea

## HIGHLIGHTS

- Desalination wastewater recovery process is designed for air pollutants reduction.
- Feedstock restriction of pollutant absorbents is possible to be solved.
- Environmental contamination by desalination wastewater is prevented.
- Economic feasibility can increase by CO<sub>2</sub> and SO<sub>x</sub> utilization.

## GRAPHICAL ABSTRACT

Consistence of the Consistence o



# ARTICLE INFO

Keywords: Desalination Metal ions  $CO_2$  capture and utilization  $SO_x$  capture and utilization  $NO_x$  capture

# ABSTRACT

Many countries discharge considerable amounts of desalination wastewater directly into the ocean, which cause environmental pollution, destruction of ecosystems, and economic losses. Desalination wastewater contains valuable metal ions such as  $Na^+$ ,  $Ca^{2+}$ , and  $Mg^{2+}$ , which react with carbonate and sulfate ions; therefore, it has the high potential to reduce the  $NO_x$ ,  $SO_x$ , and  $CO_2$ . Thus, this study designed process for the utilization of desalination wastewater to capture and utilize  $NO_x$ ,  $SO_x$ , and  $CO_2$  using  $NH_3$ . A process model was developed, which was composed of following three steps: (1) metal ion separation in desalination wastewater based on pH swing processes for separating  $Ca^{2+}$  and  $Mg^{2+}$  as  $Ca(OH)_2$  and  $Mg(OH)_2$ , respectively; (2)  $NO_x$  capture and  $SO_x$  capture and utilization using generated  $Mg(OH)_2$ , and (3)  $CO_2$  capture and utilization using  $NH_3$ . Subsequently, to demonstrate the economic validity of the suggested process, an economic assessment was conducted and total annualized costs (TACs) of the conventional and proposed processes were compared. As a result,  $\sim$ 96 % of  $NO_x$  was captured, the  $SO_x$  capture efficiency was 99 %, and  $\sim$ 94.7 % of  $CO_2$  was captured. Thus, a reduction of 11.2 % in the TAC was achieved using the proposed process, indicating its high economic feasibility.

## https://doi.org/10.1016/j.desal.2022.116257

<sup>\*</sup> Corresponding author at: Green Materials and Processes R&D Group, Korea Institute of Industrial Technology, Ulsan 44413, Republic of Korea. E-mail address: kjh31@kitech.re.kr (J. Kim).

Jonghun Lim and Jehun An contributed equally as first authors.

## 1. Introduction

Considerable amounts of desalination wastewater are directly discarded in many countries in the process of supplying feasible water [1,2]. The desalination wastewater contains high concentrations of metal ions such as Ca<sup>2+</sup>, Mg<sup>2+</sup>, and Na<sup>+</sup>, and because these useful metal ions react with carbonates and sulfate ions, they can be used for the capture and utilization of SO<sub>x</sub>, NO<sub>x</sub>, and CO<sub>2</sub> [3,4]. However, most of the desalination wastewater is discarded rather than used, causing serious environmental pollution, such as the destruction of the ecosystem, and economic losses [5]. In recent years, rather than discarding the metal ions in desalination wastewater, efforts have been made to investigate their reuse, and a few previous studies addressed their utilization. Shin et al. proposed a porous polymer to recover the uranyl in seawater [6]. The proposed polymer is capable of removing 90 % of uranyl. Quist-Jensen et al. suggested membrane crystallization to treat the nanofiltration retentate and desalination reject brine [7]. As a result, 99.6 % of K. 100 % of Na and 86.1 % of Ni is recovered from the desalination wastewater. Ali et al. provided a new perspective of isolation of valuable mineral from the produced water [8]. The experiment results shows, 16.4 kg of NaCl per cubic meter of produced water is possible to be recovered. Na et al. proposed the utilization of wastewater as a source of Mg production with CO<sub>2</sub> capture [9]. As a result, 94 % of Mg(OH)2 is possible to be recovered from the desalination wastewater. Among these studies, one investigated the use of desalination wastewater to capture and utilize CO2 and SOx to reduce the greenhouse gas emission and air pollution [1]. In their study, NaOH is generated from the desalination wastewater and used for metal ion separation as a buffer solution. Then the Ca<sup>2+</sup> and Mg<sup>2+</sup> are separated as a form of Ca(OH)<sub>2</sub> and Mg(OH)<sub>2</sub>, respectively, through metal ion separation based on the difference in the pH level. Subsequently, the generated Ca(OH)2 is used for SOx capture, thereby producing CaSO<sub>4</sub> (i.e. desulfurization gypsum), which is then commercialized. Finally, the CO2 is captured using the generated NaOH and then carbonated using the formed Ca(OH)2 and Mg(OH)2. As a result of the carbonation, CaCO3 and MgCO3 are also produced, which can be commercialized.

Despite the substantial contribution of the previous study towards the use of desalination wastewater for CO2 and SOx utilization, several major limitations persist. These limitations are briefly discussed subsequently. First, the previously mentioned study uses Ca(OH)2 rather than Mg(OH)<sub>2</sub> to capture and utilize SO<sub>x</sub>. However, Ca(OH)<sub>2</sub> generates scales such as CaSO<sub>4</sub>•2H<sub>2</sub>O and CaSO<sub>3</sub>•0.5H<sub>2</sub>O in the scrubber, which causes serious problems and increases the cost of maintenance significantly. In addition, Ca(OH)<sub>2</sub> has a relatively higher molar weight compared to Mg (OH)2, and thus, a scrubber with a high capacity scrubber is required, which also increases the total capital cost. Second, using NaOH for CO2 capture and utilization causes serious corrosion problems in the absorber facility. Because NaOH is strong base, corrosion generally occurs in absorber, which increases maintenance costs and decreases process stability. In addition, the NaOH is impossible to be regenerated and just discharged as a form of the NaHCO<sub>3</sub>, thus has a problem of the feedstock availability. Finally, previous studies did not consider the NO<sub>x</sub> capture (i.e., denitrification) procedure; the NO<sub>x</sub> was assumed to be already treated. Conventional denitrification uses NH3 as an absorbent of the NO<sub>x</sub>; the NO<sub>x</sub> is converted to N<sub>2</sub>, which is not harmful. Using NH<sub>3</sub> increases the operating cost and complicates the utilization process because the NO<sub>x</sub> is emitted into the atmosphere as N<sub>2</sub>. Thus, the efficient use of NH<sub>3</sub> is important, but it has not been considered in the previous study.

To overcome these limitations, this study proposes a novel process for the utilization of desalination wastewater for  $SO_x$ ,  $NO_x$ , and  $CO_2$  reduction using  $NH_3$ , and the economic validity of the proposed process is addressed. The capture and utilization processes of  $SO_x$ ,  $NO_x$ , and  $CO_2$  are integrated using metal ions such as  $Ca^{2+}$ ,  $Mg^{2+}$ , and  $Na^+$  in desalination wastewater. The aim of this work is to overcome limitations of the previous study by efficiently using desalination wastewater and

capturing and utilizing  $SO_x$ ,  $NO_x$ , and  $CO_2$  for environmental protection. The novel contributions of this work are as follows.

- 1) This study is the first to attempt to enable  $SO_x$ ,  $NO_x$ , and  $CO_2$  capture and utilization at the same time using metal ions in desalination wastewater with  $NH_3$ .
- 2) Because the suggested novel process uses metal ions in desalination wastewater to capture and utilize  $SO_x$ ,  $NO_x$ , and  $CO_2$ , it is proper solution for addressing the environmental contamination by desalination wastewater and the feedstock restrictions on conventional absorbents.
- 3) Because the proposed process uses  $Mg(OH)_2$  for  $SO_x$  capture and utilization, the problem caused by scales in the scrubber can be prevented. The  $SO_x$  is captured by  $Mg(OH)_2$  and is converted to  $MgSO_3$  and  $MgSO_4$ , which are soluble in pure water and do not cause scales in the scrubber. In addition, the molar mass of  $Mg(OH)_2$  is less than that of Ca  $(OH)_2$ . Thus, the capacity of the scrubber can be reduced, which indicates decrease in the capital cost.
- 4) The proposed process uses  $NH_3$  for  $CO_2$  capture and utilization, which prevents corrosion of the absorber. In addition,  $NH_3$  has an advantage of high stability,  $CO_2$  capture efficiency, and low regeneration energy compared to NaOH, which reduces the operating cost. Furthermore,  $NH_3$  is regenerated during the  $NH_3$  reproduction process and is reused during the  $NO_x$  capture process. Therefore, the  $NH_3$  is used efficiently.

# 2. Methodology

## 2.1. Process overview

Fig. 1 shows an overview of the proposed desalination wastewater recovery process, which is comprised of following three steps: (1) metal ion separation from desalination wastewater, (2)  $NO_x$  capture and  $SO_x$  capture and utilization, and (3)  $CO_2$  capture and utilization. Next, we presented a brief description of each step.

Step 1. Metal ion separation from desalination wastewater.

First, metal ions,  $Mg^{2+}$  and  $Ca^{2+}$ , are separated using NaOH, which is generated from the electrodialysis stage of the wastewater desalination process. The NaOH is used as a buffer solution to control the pH level.  $Mg^{2+}$  is separated as a form of  $Mg(OH)_2$  at a pH of 8.5–11 using the pH swing process for separating  $Mg^{2+}$ , and  $Ca^{2+}$  is sequentially separated as a form of  $Ca(OH)_2$  at a pH of 11–13 using the pH swing process for separating  $Ca^{2+}$  [10]. Subsequently, the separated  $Mg(OH)_2$  is used for  $SO_X$  capture and utilization, and the carbonation of ionic  $CO_2$  and  $Ca(OH)_2$  is used to regenerate  $NH_3$  in the  $NH_3$  regeneration process. The residual desalination wastewater in which the  $Mg^{2+}$  and  $Ca^{2+}$  are removed has high concentration of NaCl and is used for the  $NaHCO_3$  carbonation process.

Step 2. NO<sub>x</sub> capture and SO<sub>x</sub> capture and utilization.

Because the selective catalytic reduction (SCR) requires the high temperature condition of 300 °C or higher, the  $NO_x$  is first captured to efficiently use the heat of the high temperature flue gas. In SCR,  $NO_x$  is captured using  $NH_3$  and converted to  $N_2$ , which is not harmful to the environment. Subsequently, the denitrated flue gas enters the scrubber and  $SO_x$  is captured and utilized. To capture and utilize the  $SO_x$ , the separated  $Mg(OH)_2$  is used as an  $SO_x$  absorbent. Because  $Mg(OH)_2$  is insoluble in pure water, HCl is added during acidification to ionize the  $Mg(OH)_2$  at a pH 5–6. Subsequently, the ionized  $Mg(OH)_2$  is mixed with water, and then an alkaline slurry is generated and sprayed at the top of the scrubber. The flue gas that is in contact with the alkaline slurry and  $SO_x$  is captured as a result of the vapor-liquid contact [11]. Finally, a  $MgSO_4$ •7 $H_2O$  liquid phase, that is, Epsom salt, is generated at the bottom of the scrubber, and the desulfurized flue gas is emitted to the absorber for  $CO_2$  capture and utilization.

Step 3. CO<sub>2</sub> capture and utilization.

Finally, the  ${\rm CO_2}$  in denitrated and desulfurized flue gas is captured at the absorber, and to capture the  ${\rm CO_2}$ ,  ${\rm NH_3}$  is used as an absorbent. When

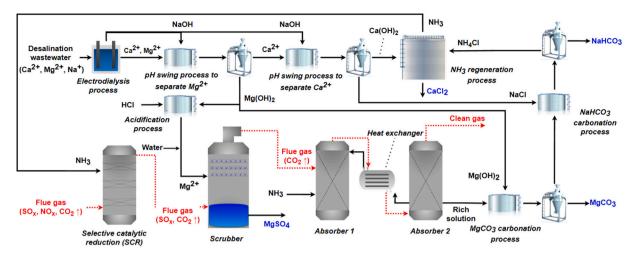



Fig. 1. Overview of the proposed desalination wastewater recovery process.

the  $CO_2$  enters the absorber, it is converted to  $HCO_3^-$  and  $CO_3^-$  according to the base condition caused by  $NH_3$ . Subsequently, the captured  $CO_2$  is carbonated to generate  $MgCO_3$  during an  $MgCO_3$  carbonation process using the  $Mg(OH)_2$ , followed by the sequential carbonation of  $NaHCO_3$  using the residual desalination wastewater, which has a high NaCl concentration. The remaining  $NH_4Cl$  is reacted with  $Ca(OH)_2$  during the  $NH_3$  regeneration process, and as a result of the reaction,  $NH_3$ ,  $H_2O$ , and  $CaCl_2$  are produced. The generated  $NH_3$  is reused for  $NO_x$  capture, and the  $CaCl_2$  is commercialized.

# 2.2. Process model

Fig. 2 shows the process model of the proposed desalination wastewater recovery process. To develop a model this process, Aspen Plus V11.0 from Aspen Tech® was used, and the electrolysis process of the desalination wastewater was modeled using MATLAB® version R2020b from MathWorks.

The proposed process requires a thermodynamic model representing the electrolyte to simulate a reaction involving various ions. Therefore, in this study, the ENRTL-RK model was used, and the correlation between ions in the existing NRTL model was supplemented [12]. The ENRTL-RK model combines ENRTL (Electrolyte nonrandom two liquid) model with the Redlich-Kwong (RK) model [13]. The ENRTL model is

applied for the nonideal electrolyte liquid phase, while the RK model is applied to the state equation of the gas phase. The ENRTL model is a widely applied property model for process simulations of electrolyte systems with mixed solvents. The equations for the ENRTL are as follows (Eq. (1)).

$$ln(\gamma^{i}) = \frac{\sum_{j=1}^{n} x_{j} \tau_{ji} G_{ji}}{\sum_{k=1}^{n} x_{k} G_{ki}} + \sum_{j=1}^{n} \frac{x_{j} G_{ij}}{\sum_{k=1}^{n} x_{k} G_{kj}} \left( \tau_{ij} - \frac{\sum_{m=1}^{n} x_{m} \tau_{mj} G_{mj}}{\sum_{k=1}^{n} x_{k} G_{kj}} \right)$$
(1)

where

$$G_{ij} = exp(-\alpha_{ij}\tau_{ij}),$$

$$\alpha_{ij} = \alpha_{ij_0} + \alpha_{ij_1} T,$$

and

$$\tau_{i,j} = A_{ij} + \frac{B_{ij}}{T} + \frac{C_{ij}}{T^2} + D_{ij}ln(T) + E_{ij}T^{F_{ij}}$$

The following equation represents the RK model (Eq. (2)).

$$P = \frac{RT}{V_m - b} - \frac{a}{\sqrt{T} \cdot V_m (V_m + b)}$$
 (2)

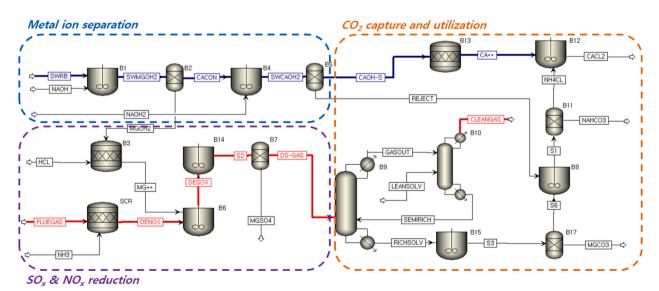



Fig. 2. Process model of the proposed desalination wastewater recovery process.

where.

a: constant for attractive potential of moleculesb

: constant that accounts for volume.

According to the ENRTL-RK model, in an aqueous phase, every stream has no temperature, pressure, or concentration gradient. Streams are mixed ideally and achieve chemical equilibria. These equilibria are automatically predicted in Aspen plus by calculating the electrolyte dissociation and salt precipitation.

## 2.2.1. Metal ion separation of desalination wastewater

The metal ions,  $Mg^{2+}$  and  $Ca^{2+}$ , are separated at different pH levels, and NaOH is utilized as a buffer solution for each pH swing process (B1, B4). The NaOH is obtained from the NaCl in desalination wastewater through cholor-alkali electrolysis [14,15], which is modeled using MATLAB® version R2020b. The reaction of the electrolysis of NaCl for NaOH production is as follows (Eqs. (3)–(6)).

$$2Na^{+} + 2Cl^{-} \rightarrow Cl_{2} + 2Na^{+} + 2e^{-}$$
(3)

$$2Cl^{-} \rightarrow Cl_2 + 2e^{-} \tag{4}$$

$$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$$
 (5)

$$Na^+ + OH^- \rightarrow NaOH$$
 (6)

In general, the NaOH produced from electrolysis should be limited to low concentrations, due to the instability of the membranes at high pH level and the stable pH range of the electrodialysis process is 10.5 to 11.5 [16]. The pH level of the solution in electrodialysis process in this work is 10.7, and thus it is possible to be stable. Subsequently, the generated NaOH (NAOH, NAOH2) is used to separate  $Mg^{2+}$  and  $Ca^{2+}$  through a pH swing process as a buffer solution. Subsequently, it is split at the two pH swing processes, that is, process to separate  $Mg^{2+}$  (B1) and process to separate  $Ca^{2+}$  (B4), and the solubility difference between each metal ion at various pH levels is applied by converting  $Mg(OH)_2$  and  $Ca(OH)_2$ , respectively. First, the  $Mg^{2+}$  is separated as a form of  $Mg(OH)_2$  at a pH of 8.5-11 in B1 according to the following equation (Eq. (7)).

$$Mg^{2+} + 2OH^{-} \leftrightarrow Mg(OH)_{2} \tag{7}$$

Subsequently, the  $Ca^{2+}$  is sequentially separated as a form of Ca (OH)<sub>2</sub> at pH 11–13 in B4 according to the following equation (Eq. (8)).

$$Ca^{2+} + 2OH^{-} \leftrightarrow Ca(OH)_{2}$$
 (8)

Subsequently, the separated  $Mg(OH)_2$  is used for  $SO_x$  capture and utilization, and the carbonation of the ionic  $CO_2$  and the  $Ca(OH)_2$  is used to regenerate  $NH_3$  through an  $NH_3$  regeneration process. The residual desalination wastewater from which the  $Mg^{2+}$  and  $Ca^{2+}$  are removed has a high NaCl concentration and is used for the  $NaHCO_3$  carbonation process. To model B1 and B4, the RCSTR model was used, and the generated  $Mg(OH)_2$  (MGOH2) and  $Ca(OH)_2$  (CAOH-S) are separated using the Sep model (B2, B5).

## 2.2.2. $NO_x$ capture and $SO_x$ capture and utilization

To capture the  $NO_x$ , this work used the SCR process. The flue gas entered the SCR process, which contained a catalyst, and the  $NO_x$  was converted to  $N_2$ , which is not harmful to the environment, contrast to adding  $NH_3$  (Eqs. (9)-(11)) [17].

$$4NH_3 + 4NO + O_2 \rightarrow 4N_2 + 6H_2O$$
 (9)

$$2NH_3 + NO + NO_2 + O_2 \rightarrow 4N_2 + 6H_2O$$
 (10)

$$8NH_3 + 6NO_2 + O_2 \rightarrow 7N_2 + 12H_2O$$
 (11)

To improve the  $NO_x$  capture efficiency, the selection of a proper catalyst is very important. The  $NO_x$  capture efficiency differs according

to the operating temperature of the SCR process; thus, the operating temperature of the SCR process should be considered when selecting the catalyst. Recently, catalysts such as titanium oxides, manganese oxides, and tungsten oxide have been employed in many SCR processes; especially nickel based-catalysts, as they have abundant surface acidity sites and high  $\rm N_2$  selectivity [18]. Thus, a nickel-based catalyst was used to capture the  $\rm NO_x$  in the proposed process. The NH $_3$  used in the SCR process was obtained from the NH $_3$  regeneration process, which generated NH $_3$  according to the reaction with NH $_4$ Cl and Ca(OH) $_2$ . To model the SCR process, the RSTOIC model was used, and the conversion rate of NH $_3$  was specified as 96 % based on the study by Wang et al. The composition of the flue gas (FLUEGAS) that was added to the SCR process was set to NO (200 ppm), NO $_2$  (300 ppm), SO $_x$  (700 ppm), CO $_2$  (15.5%), H $_2$ O (3%), O $_2$  (16.5%), and N $_2$  (65%), and the operating temperature was specified as 300 °C [19].

Second, the  $SO_x$  in the denitrated flue gas was captured using an alkaline slurry that contained water and  $Mg(OH)_2$ , which was generated from the pH swing process for separating  $Mg^{2+}$  and the acidification process.  $SO_x$  causes air pollution, such as haze and acid rain, and reacts with water in air, thereby generating sulfuric acid. Thus, many thermal power plants employ the flue gas desulfurization (FGD) process. In particular, wet flue gas desulfurization (WFGD) is generally employed because of its high desulfurization efficiency [20]. This study uses the separated  $Mg(OH)_2$  as an absorbent to capture and utilize the  $SO_x$ . Because  $Mg(OH)_2$  is insoluble in pure water, HCl is added during acidification to ionize the  $Mg(OH)_2$  at a pH of 5–6 (Eq. (12)) [11].

$$Mg(OH)_2 \rightarrow Mg^{2+} + 2OH^-$$
 (12)

Subsequently, the ionized  $Mg(OH)_2$  is mixed with water and alkaline slurry is generated. The alkaline slurry is then sprayed at the top of the scrubber. The flue gas contact with the alkaline slurry and  $SO_x$  is captured as a result of the vapor-liquid contact (Eqs. (13)–(15)) [20].

$$SO_2 + H_2O \rightarrow H_2SO_3 \tag{13}$$

$$H_2SO_3 \rightarrow H^+ + HSO_3^-$$
 (14)

$$HSO^{-} \rightarrow H^{+} + SO_{3}^{2-}$$
 (15)

As a result of the  $SO_x$  capture,  $HSO_3^-$  and  $SO_3^-$  are generated, and they react with the  $Mg^{2+}$ , thereby generating  $Mg(HSO_3)_2$  and  $MgSO_3$ , which are reaction intermediates. The reaction intermediates are oxidized to  $MgSO_4$ , which is main product. The overall mechanism of the  $SO_x$  capture and utilization is as follows (Eqs. (16)–(20)) [21].

$$SO_2 + Mg(OH)_2 \rightarrow MgSO_3 + H_2O$$
 (16)

$$SO_2 + MgSO_3 + H_2O \rightarrow Mg(HSO_3), \tag{17}$$

$$Mg(HSO_3)_2 + Mg(OH)_2 + 4H_2O \rightarrow 2MgSO_3 + 3H_2O$$
 (18)

$$SO_2 + H_2O + \frac{1}{2}O_2 \rightarrow SO_4^{2-} + 2H^+$$
 (19)

$$MgSO_3 + \frac{1}{2}O_2 \rightarrow MgSO_4$$
 (20)

Finally, in the liquid phase at the bottom of the scrubber, MgSO4•7H<sub>2</sub>O, that is, Epsom salt, is generated [22], and the desulfurized flue gas is emitted to the absorber for CO<sub>2</sub> capture and utilization. The scrubber is modeled by two steps according to the reaction phases that are at the top and bottom of the scrubber. Each step is modeled using the RCSTR model, and the equilibrium constants of above reaction are obtained based on Gibbs' free energy minimization. The specifications of the WFGD scrubber are based on the study by Salehi et al. [21]. and are presented in Table 1.

Table 1
Specification of the WFGD scrubber that uses Mg(OH)<sub>2</sub>.

| Parameter             | Value                                       |
|-----------------------|---------------------------------------------|
| Reaction temperature  | 60 °C                                       |
| Pressure              | 1 bar                                       |
| Valid phase           | Liquid-vapor                                |
| Equilibrium constants | Based on the Gibbs free energy minimization |

# 2.2.3. CO<sub>2</sub> capture and utilization

In general, CO2 capture and utilization technologies are classified according to solvent absorption, cryogenic distillation, and membrane separation. Owing to its low cost and the high CO2 capture efficiency, the absorption process with chemical solvents is generally employed to capture CO<sub>2</sub> [23]. This study used NH<sub>3</sub> as the chemical solvent because of its high capture efficiency, fast reaction rate, low degradation rate, and low regeneration energy [24]. Recently, for absorption processes with chemical solvents, the ammonia-based Solvay process is being investigated for CO2 capture and utilization. The conventional Solvav process is composed of lime kiln, absorber, and NH<sub>3</sub> regeneration processes. First, for lime kiln, CaCO<sub>3</sub> is sintered and converted to CaO. Subsequently, Ca(OH)<sub>2</sub> is generated at the lime slaker by mixing with water, and the generated Ca(OH)<sub>2</sub> is used for NH<sub>3</sub> regeneration. Second, CO<sub>2</sub> is captured in the absorber and is converted to NaHCO<sub>3</sub> and NH<sub>4</sub>Cl. Finally, generated NH<sub>4</sub>Cl is added to the NH<sub>3</sub> regeneration process, reacts with the Ca(OH)2, and then the NH3 is recovered. The conventional process consumes a lot of energy to sinter CaCO<sub>3</sub> [25]. However, the proposed process does not require a sintering procedure as Ca(OH)2 is obtained from desalination wastewater. The denitrited and desulfurized flue gas that is added to the absorber captures the CO<sub>2</sub> and converts it to  $HCO_3^-$  and  $CO_3^-$ . The concentrations of the  $HCO_3^-$  and  $CO_3^-$  are determined according to the pH level of the solution [26], and NH3 is used as a buffer solution. Without ammonia, the acidic nature of the water solution will hinder the dissociation of CO<sub>2</sub> to HCO<sub>3</sub> and CO<sub>3</sub><sup>2-</sup> and hence prevent the precipitation of carbonate [27]. Subsequently, Then the MgCO3 is first separated at filter because if MgCO3 is not separated, the MgCO<sub>3</sub> lowers the yield of the NaHCO<sub>3</sub> production reaction and requires an additional solid-solid phase separation process. The reaction mechanism of carbon dioxide and magnesium ions in an aqueous ammonia solution is as follows (Eqs. (21)-(25)).

$$NH_3 + H_2O \rightarrow NH_4^+ + OH^-$$
 (21)

$$OH^{-} + CO_2 \rightarrow HCO_3^{-}$$
 (22)

$$HCO_3^- + OH^- \rightarrow CO_3^- + H_2O$$
 (23)

$$Mg^{2+} + HCO_3^- \rightarrow MgCO_3 + H^+$$
 (24)

$$Mg^{2+} + CO_3^{2-} \rightarrow MgCO_3$$
 (25)

Subsequently, the solution from which the MgCO<sub>3</sub> was separated is added to the NaHCO<sub>3</sub> carbonation process and reacted with NaCl. As a result of reaction, the NaHCO<sub>3</sub> is generated, and the reaction is as follows (Eqs. (26)–(28)).

$$NaCl(aq) \rightarrow Na^{+} + Cl^{-}$$
 (26)

$$Na^+ + HCO^- \rightarrow NaHCO_3(s)$$
 (27)

$$NH_4^+ + Cl^- \rightarrow NH_4Cl \tag{28}$$

The precipitated  $NaHCO_3$  is separated using a filter, and the remaining solution, which has  $NH_4Cl$ , is reacted with  $Ca(OH)_2$  during the  $NH_3$  regeneration process. The reaction of the  $NH_4Cl$  and  $Ca(OH)_2$  is as follows (Eq. (29)).

$$2NH_4Cl + Ca(OH)_2 \rightarrow CaCl_2 + 2NH_3 + 2H_2O$$
 (29)

For the absorber, the ENRTL model was used to calculate the reaction coefficient, reaction enthalpy, and Gibbs free energy of  $\mathrm{CO}_2$  in aqueous ammonia. Radfrac model which are modeled rate-based condition was used to simulate the  $\mathrm{CO}_2$  capture process. The specification of the rate-based distillation column was based on the study by Qi at el [28]. The specification of the each absorber and inlet stream are listed in Table 2.

## 3. Result and discussion

In this section, the simulation results of the proposed process are presented and discussed, and to demonstrate the  $NO_x$ ,  $SO_x$ , and  $CO_2$  capture efficiency, 12 conventional cases are set. Then, the  $NO_x$ ,  $SO_x$ , and  $CO_2$  capture efficiencies of the suggested process are compared for each conventional case. Finally, to demonstrate the economic feasibility of the proposed process, the total annualized costs are calculated for an economic assessment. Table 3 shows the conventional cases for  $NO_x$ ,  $SO_x$ , and  $CO_2$  capture processes.

## 3.1. Simulation result

## 3.1.1. Metal ion separation results

The  $Mg^{2+}$  and  $Ca^{2+}$  in desalination wastewater are separated at each pH swing process using NaOH as a buffer solution. Table 4 shows the simulation results for  $Mg^{2+}$  separation using the pH swing process for separating  $Mg^{2+}$ .

From Table 4, it can be observed that  $\sim$ 0.0448 kmol/h of Mg<sup>2+</sup> is converted to  $\sim$ 0.04 kmol of Mg(OH)<sub>2</sub>; thus, the conversion rate of Mg (OH)<sub>2</sub> is determined to be 89.2%. The conversion rate of the Mg(OH)<sub>2</sub> is determined according to the amount of NaOH that controls the pH level. Since the Gibbs free energy of formation for CaCO<sub>3</sub> and MgCO<sub>3</sub> are -1129 kJ/kmol and -1029 kJ/kmol, the Mg<sup>2+</sup> and Ca<sup>2+</sup> should be separated [19]. Because when carbonation is performed if the both Ca<sup>2+</sup> and Mg<sup>2+</sup> ions are abundant, the nucleation and crystallization of MgCO<sub>3</sub> are slower than those of CaCO<sub>3</sub>, and the production rate of MgCO<sub>3</sub> are significantly low. Then, in this study, 0.4 kmol/h of 20 wt% of NaOH was used to maximize the separation efficiency of both metal ions. The simulation results of the Ca<sup>2+</sup> separation using the pH swing process for separating Ca<sup>2+</sup> are listed in Table 5.

From Table 5, it can be observed that  $\sim 0.0276$  mol/h of Ca<sup>2+</sup> was converted to  $\sim 0.0263$  mol of Ca(OH)<sub>2</sub> according to the NaOH. Thus, the conversion rate of the Ca(OH)<sub>2</sub> was determined to be 95.3 %. To separate the Ca<sup>2+</sup>, an additional 1.25 kmol/h of NaOH was used, and the remaining solution from which Ca<sup>2+</sup> and Mg<sup>2+</sup> were separated had a high NaCl concentration. The remaining solution was used in the NaHCO<sub>3</sub> carbonation process for CO<sub>2</sub> utilization.

# 3.1.2. $NO_x / SO_x$ capture and utilization results

First,  $NO_x$  is captured using the  $NH_3$  that was regenerated using the  $NH_3$  regeneration process. The flue gas is added to the SCR process, which contains a catalyst, and the  $NO_x$  is converted to  $N_2$ , which is not as harmful to the environment as adding  $NH_3$ . The simulation results of the  $NO_x$  capture process are presented in Table 6.

From Table 6, it can be observed that 0.0001 kmol/h of NO and

 Table 2

 Specification of the each absorber and inlet stream.

| Parameter                             | Value       | Parameter               | Value                                     |
|---------------------------------------|-------------|-------------------------|-------------------------------------------|
| Inlet gas temperature                 | 60 °C       | Absorber column<br>type | Rate-based calculation<br>model (Radfrac) |
| Lean solvent temperature              | 20 °C       | Packing type            | 25 mm Pall ring                           |
| Top pressure                          | 2 bar       | Number of stages        | 20                                        |
| NH <sub>3</sub> concentration,<br>wt% | 4.5 %       | Total packing<br>height | 6.5 m                                     |
| Lean solvent flowrate                 | 162 L/<br>h | inner diameter          | 0.6 m                                     |

Table 3 Conventional cases for NOx,  $SO_x$ , and  $CO_2$  capture and utilization.

| Classification                        | Case | Process type   | Process features                                          |
|---------------------------------------|------|----------------|-----------------------------------------------------------|
| NO <sub>x</sub> capture<br>efficiency | N1   | *SNCR          | No catalyst, NH <sub>3</sub> /NO <sub>2</sub> ratio = 1.5 |
| •                                     | N2   | SNCR           | No catalyst, NH <sub>3</sub> /NO <sub>2</sub> ratio = 2.0 |
|                                       | N3   | **SCR          | NiFe-500 catalyst,<br>$NH_3/NO_2$ ratio = 1.0             |
|                                       | N4   | SCR            | $TiO_2/CeO_2$ catalyst,<br>$NH_3/NO_2$ ratio = 1.0        |
| SO <sub>x</sub> capture               | S1   | ***WFGD        | Ca/S ratio = $1.04$ , pH = $5.9$                          |
| efficiency                            | S2   | WFGD           | Ca/S ratio = $1.04$ , pH = $4.8$                          |
|                                       | S3   | ****DFGD       | Ca/S ratio = 3                                            |
|                                       | S4   | DFGD           | Ca/S ratio = 1.5                                          |
| CO <sub>2</sub> capture               | C1   | *****CCS using | CO2 loaded/ NaOH ratio =                                  |
| efficiency                            |      | NaOH           | 0.23                                                      |
|                                       | C2   | CCS using NaOH | CO <sub>2</sub> loaded/ NaOH ratio = 0.56                 |
|                                       | C3   | CCS using MEA  | $CO_2$ loaded/ MEA ratio = $0.18$                         |
|                                       | C4   | CCS using MEA  | $CO_2$ loaded/ MEA ratio = 0.50                           |

<sup>\*</sup>SNCR = Selective non-catalytic reduction, \*\*\*SCR = Selective catalytic reduction, \*\*\*WFGD = Wet flue gas desulfurization, \*\*\*\*DFGD = Dry flue gas desulfurization, \*\*\*\*\*CCS = Carbon capture and storage.

**Table 4**Simulation results of Mg<sup>2+</sup> separation.

|                                                        | Ü                    | -                    |                     |                       |                       |
|--------------------------------------------------------|----------------------|----------------------|---------------------|-----------------------|-----------------------|
| Component                                              | SWRB<br>[kmol/<br>h] | NAOH<br>[kmol/<br>h] | SWMGOH2<br>[kmol/h] | MGOH2<br>[kmol/<br>h] | CACON<br>[kmol/<br>h] |
| H <sub>2</sub> O<br>Na <sup>+</sup><br>OH <sup>-</sup> | 2.876<br>0.051<br>-  | 0.32<br>0.08<br>0.08 | 3.196<br>0.131<br>- | -<br>-<br>-           | 3.1960<br>0.1310<br>- |
| Ca <sup>2+</sup>                                       | 0.0276               | -                    | 0.0276              | _                     | 0.0276                |
| $Mg^{2+}$                                              | 0.0448               | 0                    | 0.0048              | _                     | 0.0048                |
| $Mg(OH)_2$<br>$Mg^{2+} \rightarrow Mg$                 | -<br>89.2 %          | -                    | 0.04                | 0.04                  | -                     |
| (OH) <sub>2</sub>                                      | 09.2 70              |                      |                     |                       |                       |

**Table 5**Simulation results of Ca<sup>2+</sup> separation.

| Component                      | CACON<br>[kmol/<br>h] | NAOH2<br>[kmol/<br>h] | SWCAOH2<br>[kmol/h] | CAOH2<br>[kmol/<br>h] | REJECT<br>[kmol/<br>h] |
|--------------------------------|-----------------------|-----------------------|---------------------|-----------------------|------------------------|
| H <sub>2</sub> O               | 3.1960                | 1.000                 | 4.1960              | -                     | 4.1960                 |
| Na <sup>+</sup>                | 0.1310                | 0.250                 | 0.3810              | _                     | 0.3810                 |
| $Mg^{2+}$                      | 0.0048                | -                     | 0.0037              | _                     | 0.0037                 |
| $Mg(OH)_2$                     | _                     | _                     | 0.0011              | 0.0011                | _                      |
| $OH^-$                         | _                     | 0.250                 | 0.1880              | _                     | 0.1880                 |
| Ca <sup>2+</sup>               | 0.0276                | _                     | 0.0023              | _                     | 0.0023                 |
| Ca(OH) <sub>2</sub>            |                       | -                     | 0.0263              | 0.0263                | -                      |
| $Ca^{2+} \rightarrow Ca(OH)_2$ | 95.3 %                |                       |                     |                       |                        |

**Table 6**Simulation results of NO<sub>x</sub> capture process.

| Component      | FLUEGAS<br>[kmol/h] | NH3<br>[kmol/h] | DENOX<br>[kmol/h]    |
|----------------|---------------------|-----------------|----------------------|
| NO             | 0.0001              | _               | $4.8\times10^{-6}$   |
| $NO_2$         | 0.00017             | -               | $6.8 \times 10^{-6}$ |
| $NH_3$         | -                   | 0.015355        | 0.015029             |
| $N_2$          | 0.3744              | -               | 0.374692             |
| $NO_x \to N_2$ | 96 %                |                 |                      |

0.00017 kmol/h of NO $_2$  react with 0.015355 kmol/h of regenerated NH $_3$  and are converted to 0.374692 kmol/h of N $_2$ . Thus, the overall NO $_x$  capture efficiency was determined to be 96 %. Generally, NO $_x$  capture processes are classified into selective non-catalyst reduction (SNCR) and selective catalyst reduction (SCR). First, the SCR uses a reducing agent, such as NH $_3$  or CO, and the flue gas contacts the reducing agent at the column. The fluid enters the catalyst layer, and the NO $_x$  is converted to N $_2$ . The SCR has advantages of a relatively low temperature condition of 300–350 °C and high NO $_x$  capture efficiency. Second, in the SNCR, the NO $_x$  is captured without any catalyst, which requires the high temperature condition of 870–1050 °C, and has a NO $_x$  capture efficiency that is relatively low compared to that of the SCR. Fig. 3 shows the NO $_x$  capture efficiencies of the suggested and conventional processes.

From Fig. 3, the  $NO_x$  capture efficiencies of Cases N1 and N2 (SNCR) are approximately 56 % and 59 %, respectively. On the other hand, the  $NO_x$  capture efficiencies of Cases N3 and N4 for the SCR are approximately 96 % and 94 %, respectively [18,29]. Finally, because the proposed process uses the SCR process, the  $NO_x$  capture is approximately 96 %. The results indicate that the SCR has a higher  $NO_x$  capture efficiency compared to that of the SNCR. However, the capital and operating cost of the SCR are significantly higher than those of the SNCR. Therefore, many industries still employ the SNCR due to its economic feasibility. In this study, we use an SCR process with a nickel-based catalyst to maximize the  $NO_x$  capture efficiency. However, in practical industrial applications, it is important to select an appropriate process by considering both the economic feasibility and  $NO_x$  capture efficiency.

Subsequently, the denitrated flue gas is entered to the scrubber for  $SO_x$  capture and utilization. For this process, the  $Mg(OH)_2$  that was separated from desalination wastewater using a pH swing process is used as an  $SO_x$  absorbent. Because  $Mg(OH)_2$  is insoluble in pure water, HCl is added during the acidification process, and the dissolved  $Mg(OH)_2$  is sprayed at the top of the scrubber. Through the vapor-liquid contact with the alkaline slurry and flue gas,  $SO_x$  is captured, and Table 7 shows the simulation results of the  $SO_x$  capture and utilization.

From Table 7, it can be observed that 0.004~kmol/h of  $SO_x$  is converted to 0.00039~kmol/h of  $SO_4^{2-}$ , and 0.00001~kmol/h of  $HSO_3^{-}$  reacts with 0.04~kmol/h of  $Mg^{2+}$ . When the  $SO_x$  is captured,  $HSO_3^{-}$  and  $SO_4^{2-}$  are generated, and their conversion rates are determined according to the pH level of the liquid phase. As the suggested process uses  $Mg(OH)_2$ ,  $SO_4^{2-}$  is abundant because of the high pH level. Although  $SO_2$  is also converted to  $HSO_3^{-}$ , the amount is very small, and  $MgSO_3 \bullet 3H_2O$  and  $MgSO_3 \bullet 6H_2O$ , which are formed by the reaction of  $Mg^{2+}$  and  $HSO_3^{-}$  ions, are produced in very small amounts. Most of the converted  $SO_4^{2-}$  ions react with  $Mg^{2+}$  ions at the bottom of the scrubber to produce Epsom salt, which is widely used in textile, tanning, and agricultural industries. Fig. 4 shows the  $SO_x$  capture efficiencies of the proposed and conventional processes.

From Fig. 4, the  $SO_x$  capture efficiencies of Cases S1 and S2 (WFGD) are approximately 94 % and 97 %, respectively [30,31]. Furthermore,

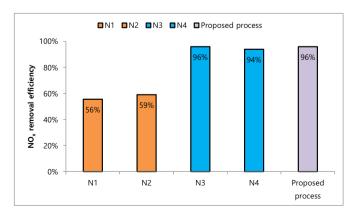



Fig. 3. NO<sub>x</sub> capture efficiency of the suggested and conventional processes.

Table 7 Simulation results of the  $SO_x$  capture and utilization.

| Component                            | DENOX<br>[kmol/h] | MG++<br>[kmol/h] | DS-GAS<br>[kmol/h] | MGSO4<br>[kmol/h] |
|--------------------------------------|-------------------|------------------|--------------------|-------------------|
| Mg <sup>2+</sup>                     | _                 | 0.04             | 0.0396             | _                 |
| $SO_2$                               | 0.0004            | -                | -                  | -                 |
| $SO_4^{2-}$                          | -                 | _                | 0.00039            | _                 |
| $HSO_3^-$                            | _                 | _                | 0.00001            | _                 |
| MgSO <sub>4</sub> *7H <sub>2</sub> O | -                 | _                | _                  | 0.00039           |
| $SO_2 \rightarrow MgSO_4*7H_2O$      | 99.9 %            |                  |                    |                   |

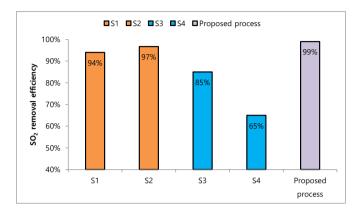



Fig. 4. SOx capture efficiencies of the suggested and conventional processes.

the  $SO_x$  capture efficiencies of Cases S3 and S4 (DFGD) are 85 % and 65 %, respectively [32,33]. According to the moisture content of the  $SO_x$  absorbent.,  $SO_x$  capture and utilization processes are generally classified into dry flue gas desulfurization (DFGD) and wet flue gas FGD (WFGD). In both desulfurization processes, a Ca-based  $SO_x$  absorbent is generally used, and limestone (CaCO3) and lime (CaO) are representative  $SO_x$  absorbents because of their low cost. The results show that the DFGD has an efficiency that is lower compared to that of the WFGD. The reason for this is that the reaction time of the WFGD is longer than that of the DFGD; thus, the removal efficiency of  $SO_x$  is high, and the generation of the unreacted absorbent is low. The  $SO_x$  capture efficiency of the proposed process is determined to be 99.9 % when  $Mg(OH)_2$  is used as an absorbent for  $SO_x$ . Because  $Mg(OH)_2$  is a relatively strong base compared to  $CaCO_3$ , it is possible to increase its  $SO_x$  capture efficiency.

The conventional SCU uses  $CaCO_3$ , which is generally obtained in limestone, as the  $SO_x$  absorbent. Because other substances, such as  $SiO_2$  and  $Al_2O_3$ , decrease the purity of the desulfurization gypsum, which is a by-product of the SCU, the limestone should have a  $CaCO_3$  purity of more than 94 wt%, that is, it should be high-grade limestone. However, the reserves of high-grade limestone are only 20 % of the total reserves; thus, the need for a substitute for high-grade limestone is inevitable. In addition, for the SCU that uses  $CaCO_3$ ,  $CO_2$  is inevitably emitted in the removal of  $SO_x$ ; thus, there is the problem of increased greenhouse gas emission. Lime (CaO) is also employed as an  $SO_x$  absorbent and does not emit  $CO_2$ ; however, it requires the sintering of  $CaCO_3$  at high temperatures, which causes additional combustion of fossil fuels and increases

However, in the proposed process, as desalination wastewater is a substitute for high-grade limestone, resource depletion can be avoided. In addition, because the incursion of an expense for providing  $CaCO_3$  is not necessary, the cost of mining limestone is reduced, and the generated  $MgSO_4 \bullet 7H_2O$  and  $MgCO_3$  can be sold, which is cost-effective. In addition, the  $Mg(OH)_2$  is used in the SCU system, which is a carbonneutral desulfurization method. Thus, it is not necessary to consider the additional  $CO_2$  generation.

## 3.1.3. CO<sub>2</sub> capture and utilization

Finally, the  $\mathrm{CO}_2$  in the denitrated and desulfurized flue gas is captured at the absorber, where  $\mathrm{NH}_3$  is used as an absorbent. Subsequently, the captured  $\mathrm{CO}_2$  exits the ionic-rich flow that contains  $\mathrm{HCO}_3^-$  and  $\mathrm{CO}_3^{2-}$ , and the rich flow reacts with  $\mathrm{Mg}^{2+}$  ions during the  $\mathrm{Mg}(\mathrm{OH})_2$  carbonation process to generate  $\mathrm{MgCO}_3$  and  $\mathrm{NaCl}$  during the  $\mathrm{NaHCO}_3$  carbonation process to generate  $\mathrm{NaHCO}_3$ . Table 8 shows the simulation results of the  $\mathrm{CO}_2$  capture and utilization. From Table 8, it can be observed that 0.1 kmol/h of  $\mathrm{CO}_2$  in DS-GAS is added to the absorber and is captured as a form of  $\mathrm{HCO}_3^-$  and  $\mathrm{CO}_3^{2-}$ . The conversion rates of  $\mathrm{HCO}_3^-$  and  $\mathrm{CO}_3^{2-}$  were calculated to be 82.3 % and 12.4 %, respectively; thus, the  $\mathrm{CO}_2$  capture efficiency is determined to be 94.7 %. The captured  $\mathrm{CO}_2$  is emitted in the form of  $\mathrm{CO}_3^{2-}$  and  $\mathrm{HCO}_3^-$ . Furthermore, the proportion of  $\mathrm{CO}_3^{2-}$  and  $\mathrm{HCO}_3^-$  can vary depending on the pH and are mainly in the form of  $\mathrm{CO}_3^{2-}$  based on the acid-base equilibrium.

Table 9 shows the simulation results of the carbonation process. From Table 9, it can be observed that  $0.08231~\rm kmol/h$  of  $\rm HCO_3^-$  is converted to  $0.0761~\rm kmol/h$  of NaHCO $_3$ , and  $0.01248~\rm kmol/h$  of  $\rm CO_3^-$  is converted to  $0.01248~\rm kmol/h$  of MgCO $_3$ . Thus, the conversion rates of the NaHCO $_3$  and MgCO $_3$  are determined to be 92.5 % and 99 %, respectively. The Gibbs free energy of formation of the NaHCO $_3$  and MgCO $_3$  is  $-852~\rm kJ/mol$  and  $-1095~\rm kJ/mol$ , respectively. Thus, if the MgCO $_3$  is not separated first, the conversion rate of the NaHCO $_3$  is significantly lowered. However, in this study, MgCO $_3$  is separated first; thus, a high conversion rate of NaHCO $_3$  is obtained. Finally, the generated NaHCO $_3$  and MgCO $_3$  are commercialized. Fig. 5 shows the CO $_2$  capture efficiencies of proposed and conventional processes.

From Fig. 5, it can be seen that the CO<sub>2</sub> capture efficiencies of Cases C1 and C2 (CCS using NaOH) are approximately 90 % and 91 %, respectively [34,35]. Furthermore, the CO<sub>2</sub> capture efficiencies of Cases C3 and C4 (CCS using MEA) are approximately 85 % and 92 %, respectively [36,37]. CO<sub>2</sub> is usually removed from flue gases through chemical absorption using an ethanol amine solution (e.g., MEA or DEA.), ammonia solution, or alkaline solution (e.g., NaOH or KOH) as an absorbent [38]. First, amine has the virtue of high reactivity with CO<sub>2</sub> and low cost, while the amine solution has low CO<sub>2</sub> absorption capacity, and it reacts with other acid components such as formic acid and acetic acid, heat-stable salt is produced, which cause loss of the absorbent during CO<sub>2</sub> capture, resulting in low CO<sub>2</sub> capture efficiency [39]. Second, NaOH is not reusable; thus, there is a problem of an increase in the raw material cost and feedstock availability. In addition, when the CO<sub>2</sub> absorption rate reaches the limited concentration, NaOH emits the CO<sub>2</sub> rather than absorb it. As the CO2 is captured using NaOH, the NaOH is converted to NaHCO3, and based on the phase equilibrium, the CO2 is reemitted from the NaHCO3. Thus, there is a limit to the isolation of CO2 as a metal salt using an NaOH solution [34]. On the other hand, NH<sub>3</sub> has high absorption capacity of CO2 and fast absorption rate; thus, its CO2 capture efficiency is high. In addition, NH3 has high stability of the oxidative and thermal degradation; thus, loss of the solvent can be prevented. Furthermore, in this study, NH3 is recovered using the Ca (OH)<sub>2</sub> that is generated from desalination wastewater, which is an efficient way to use the NH<sub>3</sub>. Table 10 shows the simulation results of the

Table 8 Simulation results of the  $CO_2$  capture and utilization.

| Component                                                                                                                                                                                                                                   | DS-GAS                                                                                                                                                | LEANSOLV                                         | RICHSOLV                                                                             | CLEANGAS                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------|
|                                                                                                                                                                                                                                             | [kmol/h]                                                                                                                                              | [kmol/h]                                         | [kmol/h]                                                                             | [kmol/h]                    |
| $\begin{array}{c} \text{CO}_2 \\ \text{HCO}_3^- \\ \text{CO}_3^{2-} \\ \text{NH}_3 \\ \text{OH}^- \\ \text{CO}_2 \to \text{HCO}_3^- \\ \text{CO}_2 \to \text{CO}_3^{2-} \\ \text{CO}_2 \to \text{HCO}_3^-, \\ \text{CO}_2^{2-} \end{array}$ | $\begin{array}{c} 0.1 \\ 5.79 \times 10^{-10} \\ 3.35 \times 10^{-19} \\ 0.0105 \\ 2.41 \times 10^{-14} \\ 82.3 \% \\ 12.4 \% \\ 94.7 \% \end{array}$ | -<br>-<br>-<br>0.4294<br>1.03 × 10 <sup>-8</sup> | $\begin{matrix} -\\ 0.08231\\ 0.01248\\ 0.7365\\ 3.07\times 10^{-10}\\ \end{matrix}$ | 0.00520<br>-<br>-<br>-<br>- |

**Table 9**Simulation results of carbonation process.

| Reaction                       | In       | Out      | Yield  |
|--------------------------------|----------|----------|--------|
|                                | [kmol/h] | [kmol/h] | [%]    |
| $HCO_3^- \rightarrow NaHCO_3$  | 0.08231  | 0.07610  | 92.5 % |
| $CO_3^{2-} \rightarrow MgCO_3$ | 0.01248  | 0.01248  | 99.9 % |

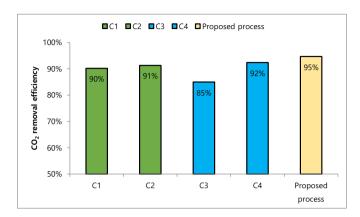



Fig. 5. CO<sub>2</sub> capture efficiencies of proposed and conventional processes.

**Table 10**Simulation results of the NH<sub>3</sub> regeneration process.

| Component           | NH4Cl<br>[kmol/h] | CAOH-S<br>[kmol/h] | CA++<br>[kmol/h] | CACL2<br>[kmol/h] |
|---------------------|-------------------|--------------------|------------------|-------------------|
| NH <sub>4</sub> Cl  | 0.09676           | _                  | _                | 0.01456           |
| Ca(OH) <sub>2</sub> | _                 | 0.0263             | 0.00004          | -                 |
| Ca <sup>2+</sup>    | _                 | -                  | 0.0263           | 0.0045            |
| $NH_3$              | 0.63974           | _                  | _                | 0.72194           |
| CaCl <sub>2</sub>   | _                 | _                  | -                | 0.02236           |
| $NH_4Cl \to NH_3$   | 85.0 %            |                    |                  |                   |

# NH<sub>3</sub> regeneration process.

From Table 10, it can be observed that approximately 0.09676 kmol/h of NH<sub>4</sub>Cl reacts with 0.0263 kmol/h of Ca(OH)<sub>2</sub>, and as a result of the reaction, 0.0822 kmol/h of NH<sub>3</sub> is regenerated, producing 0.02236 kmol/h of CaCl<sub>2</sub>. Thus, the regeneration rate of the NH<sub>3</sub> is determined to be 85 %, and the generated CaCl<sub>2</sub> can be commercialized for road surfaces, de-icing, freezing-point depression, etc.

## 3.2. Economic assessment

This section addresses the economic assessment to demonstrate the economic feasibility of the proposed process. To perform the economic assessment, conventional cases are set, which are comprised of the SCR for  $\mathrm{NO}_x$  capture, WFGD for  $\mathrm{SO}_x$  capture and utilization, and CCS that uses the MEA for  $\mathrm{CO}_2$  capture. The total annualized cost (TAC) of the proposed process and conventional case are calculated. The TAC is determined by adding the equivalent annual cost (EAC) and total product cost (TPC) (Eq. (30)) [40,41].

$$TAC = EAC + TPC (30)$$

## 3.2.1. Equivalent annual cost

The EAC is the annualized total of capital cost such as equipment cost, land cost, etc. It is determined by dividing the total capital investment (TCI) by the annuity factor (AF) (Eq. (31)) [42].

$$EAC = \frac{TCI}{AF}$$
 (31)

where, AF is calculated from the discount of the interest rate (r) and number of periods (n):

$$AF = \frac{1 - \frac{1}{(1+r)^n}}{r} \tag{32}$$

r and n are specified as 5 % and 15, respectively.

The TCI is the capital cost, which is composed of land, labor, construction, equipment, etc. It is determined by adding the fixed capital investment (FCI), working capital investment (WCI) and start-up cost (SUC) (Eq. (33)) [43,44].

$$TCI = FCI + SUC + WCI$$
 (33)

The FCI is the cost of equipment and facilities and is determined from the direct cost ( $C_{direct}$ ) and indirect cost ( $C_{indirect}$ ) (Eq. (34)) [40,45].

$$FCI = C_{direct} + C_{indirect}$$
 (34)

 $C_{direct}$  is calculated from the inside battery limit cost ( $C_{ISBL}$ ), which is composed of the cost of equipment, installation, control, pipe and electrical, and outside battery limit cost ( $C_{OSBL}$ ), which is in turn composed of building, land, and service facilities costs (Eq. (35)) [46].

$$C_{direct} = C_{ISBL} + C_{OSBL}$$
 (35)

 $C_{indirect}$  is cost which is not directly consumed to product, facility, etc. such as security costs, administrative and manpower. The  $C_{indirect}$  is determined from the engineering cost ( $C_{engineering}$ ), construction expenses ( $C_{construction}$ ), contractor's fee ( $C_{contracotor}$ ), and contingency cost ( $C_{contingency}$ ) (Eq. (36)) [46].

$$C_{indirect} = C_{engineering} + C_{construction} + C_{contracotor} + C_{contingency}$$
(36)

The start-up cost is cost which incurred when starting a facility and it is determined 10 % of the fixed capital investment (Eq. (37)).

$$SUC = 0.1 \times FCI \tag{37}$$

Finally, the working capital investment is capital cost for feedstock, products and spare parts maintenance and it is determined 20 % of the fixed capital investment (Eq. (38))

$$WCI = 0.2 \times FCI \tag{38}$$

Finally, using the above equation, the EAC was calculated, and Table 11 shows the EAC of the conventional and proposed processes.

# 3.2.2. Total product cost

The TPC is annual cost which incurred during production such as labor cost, raw material cost and utility cost. For TPC calculation, this work set the annual operating to 365 d and the TPC is determined from direct production costs (DPC) and general expenses (GEs) (Eq. (39)).

$$TPC = DPC + GEs (39)$$

The DPC directly affects product production and it can be determined from utility costs, such as raw material costs, water costs, and electricity cost (Eq. (40)).

$$DPC = C_{raw \ materials} + C_{water} + C_{electricity} + C_{maintenance} + C_{labor} + C_{supervision} + C_{operating supplies} + C_{laboratory}$$

$$(40)$$

**Table 11** EAC of the conventional and proposed processes [47].

| Classification                   | Percentage<br>of cost | Used     | Conventional<br>process [1000<br>USD/y] | Proposed<br>process<br>[1000 USD/<br>y] |
|----------------------------------|-----------------------|----------|-----------------------------------------|-----------------------------------------|
| Direct cost                      |                       |          |                                         |                                         |
| ISBL                             |                       |          |                                         |                                         |
| Equipment cost                   | 100                   | 100      | 38,533                                  | 44,133                                  |
| Equipment installation           | 25–55                 | 30       | 11,560                                  | 13,240                                  |
| Instrumentation and control      | 8–50                  | 20       | 7707                                    | 8827                                    |
| Piping                           | 20-80                 | 15       | 5780                                    | 6620                                    |
| Electrical<br>OSBL               | 15–30                 | 11       | 4239                                    | 4855                                    |
| Building and building services   | 10–80                 | 10       | 3853                                    | 4413                                    |
| Yard                             | 10-20                 | 10       | 3853                                    | 4413                                    |
| improvements                     |                       |          |                                         |                                         |
| Services facilities              | 30-80                 | 20       | 7707                                    | 8827                                    |
| Land                             | 4–8                   | 5        | 1927                                    | 2207                                    |
| Total direct cost                |                       |          | 52,405                                  | 60,021                                  |
| Indirect cost                    |                       |          |                                         |                                         |
| Engineering                      | 10                    | 10       | 3853                                    | 4413                                    |
| Construction expenses            | 10                    | 10       | 3853                                    | 4413                                    |
| Contractor's fee                 | 0.5                   | 0.5      | 193                                     | 221                                     |
| Contingency                      | 5-20                  | 8        | 3083                                    | 3531                                    |
| Total indirect cost              |                       |          | 10,982                                  | 12,578                                  |
| Fixed capital investment         | Direct cost + cost    | indirect | 53,753.2                                | 61,565                                  |
| Startup cost (SUC)               | 20 % of FCI           |          | 10,750.6                                | 12,313                                  |
| Working capital investment (WCI) | 10 % of FCI           |          | 5375.32                                 | 6157                                    |
| TCI                              | SUC + WCI +           | - FCI    | 69,879.1                                | 80,035                                  |
| EAC (r = 5 %, n = 15 year)       | Eq. (35)              |          | 6732.32                                 | 7711                                    |

where  $C_{raw\ materials}$  denotes raw material costs,  $C_{water}$  denotes water costs,  $C_{electricity}$  denotes electricity costs,  $C_{maintenance}$  denotes maintenance costs,  $C_{labor}$  denotes labor costs,  $C_{supervision}$  denotes supervision costs,  $C_{operating}$  supplies denotes operating supplies costs, and  $C_{laboratory}$  denotes laboratory charges.

The GEs is cost which incurred as part of the day-to-day operations and it can be determined by summing the administrative costs ( $C_{admistrative}$ ), marketing costs ( $C_{marketing}$ ), and research and development costs ( $C_{R\&D}$ ) (Eq. (41)) [46].

$$\mathrm{GE} = \mathrm{C}_{\mathrm{admistrative}} + \mathrm{C}_{\mathrm{marketing}} + \mathrm{C}_{\mathrm{R\&D}}$$

Table 12 shows the TPC of conventional and proposed processes.

## 3.2.3. Economic assessment results

Table 13 shows the comparison of the EAC, TPC, and TAC of the proposed and conventional processes. It can be observed from the figure that the EAC of the conventional and proposed processes were determined to be 6.73 million USD/y and 7.71 million USD/y, respectively. Because the proposed process required additional equipment for processes such as the pH swing, carbonation, and NH<sub>3</sub> regeneration processes, the EAC of the proposed process was increase by 14.5 % compared to that of the conventional process. Furthermore, the TPCs of the conventional and proposed processes were determined to be 32.08 million USD/y and 26.78 million USD/y, respectively. The TPCs of the proposed process was decreased by approximately 16.5 % because of the decrease in the raw material costs. Despite a slight increase in the electricity cost according to the electrolysis process, the proposed

**Table 12**Total production costs of the proposed and conventional processes [47].

| Classification                          | Range                       | Used          | Conventional<br>process [1000<br>USD/y] | Proposed<br>process<br>[1000 USD/<br>y] |
|-----------------------------------------|-----------------------------|---------------|-----------------------------------------|-----------------------------------------|
| Direct production cost                  |                             |               |                                         |                                         |
| Local taxes,<br>Insurance               | 1.5–5 %<br>of FCI           | 3             | 1613                                    | 1847                                    |
| Maintenance<br>(M)                      | 1.0–10 %<br>of FCI          | 4             | 2150                                    | 2463                                    |
| Operating labor<br>(OL)                 | 15 % of<br>TPC              | 15            | 4811                                    | 4017                                    |
| Supervision and<br>support labor<br>(S) | 30 % of<br>OL               | 30            | 1443                                    | 1205                                    |
| Operating supplies                      | 15 % of<br>M                | 15            | 215                                     | 246                                     |
| Laboratory<br>charges                   | 10–20 %<br>of OL            | 10            | 481                                     | 402                                     |
| Plant overhead<br>cost OVHD             | 50–70 %<br>of M +<br>OL + S | 60            | 5043                                    | 4611                                    |
| Electricity                             | _                           | Calculated    | 6696                                    | 1279                                    |
| Raw material<br>General expenses        | -                           | Calculated    | 6656                                    | 8232                                    |
| Administrative cost                     | 15–20 %<br>of OL            | 15            | 722                                     | 603                                     |
| Distribution and marketing              | 2–20 % of<br>TPC            | 2             | 642                                     | 536                                     |
| R&D cost                                | 2–15 % of<br>TPC            | 5             | 1604                                    | 1339                                    |
| Total production cost                   | Direct produ                | uction cost + | 32,076                                  | 26,778                                  |

**Table 13**Comparison of the EAC, TPC and TAC of the proposed and conventional process.

| Classification | Conventional process<br>[million USD/y] | Proposed process<br>[million USD/y] |
|----------------|-----------------------------------------|-------------------------------------|
| EAC            | 6.73                                    | 7.71                                |
| TPC            | 32.08                                   | 26.78                               |
| TAC            | 38.81                                   | 34.49                               |

process only requires HCl and makeup  $NH_3$  rather than an expensive absorbent. Finally, the TACs of the conventional and proposed processes were calculated to be 38.81 million USD/y and 34.49 million USD/y, respectively. Thus, the TAC of the proposed process was decreased by 11.2 %, indicating high economic feasibility.

# 4. Applicability of the proposed process

This section addressed the applicability of the proposed process in actual desalination plants. To address the applicability of the proposed process, the main outcomes of conventional and proposed process is compared. Table 14 shows comparison of the main outcomes of conventional model in the literature with proposed model.

**Table 14**Comparison of the main outcomes of conventional model in the literature with proposed model.

| Classification                        | Conventional model [1]                                    | Proposed model                                                                    |
|---------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------|
| NO <sub>x</sub> capture<br>efficiency | 0 %                                                       | 96 %                                                                              |
| SO <sub>x</sub> capture efficiency    | 99 %                                                      | 99 %                                                                              |
| CO2 capture efficiency                | 91 %                                                      | 94.7 %                                                                            |
| Products                              | CaCO <sub>3</sub> , MgCO <sub>3</sub> , CaSO <sub>4</sub> | MgCO <sub>3</sub> , NaHCO <sub>3</sub> , CaCl <sub>2</sub> ,<br>MgSO <sub>4</sub> |

(41)

From the table, although NO<sub>x</sub> capture was not considered in the conventional model, the proposed process can capture NO<sub>x</sub> using NH<sub>3</sub> and shows a reduction efficiency of 96 %. The use of NH3 increase the operating cost and since the NO<sub>x</sub> is emitted in to the atmosphere as N2 and thus the utilization of NOx is complicate. However, the proposed model can recover the NH<sub>3</sub> at NH<sub>3</sub> regeneration process, the efficient use of NH<sub>3</sub> is possible. Then, the 99 % of SO<sub>x</sub> is capture at conventional and proposed model. The conventional model use the Ca(OH)<sub>2</sub> for SOx capture, however the it cause the scales such as CaSO4•2H2O and CaSO<sub>3</sub>•0.5H<sub>2</sub>O in the scrubber, which causes serious problems and increases the cost of maintenance significantly. In addition, molar weight of Ca(OH)2 is higher than Mg(OH)2, and thus the high capacity scrubber is required. On the other hands, since the proposed process use  $Mg(OH)_2$ and thus the problem of the scales and capacity increase can solved. Finally, the CO<sub>2</sub> capture efficiency of the conventional and proposed model is determined by 91 % and 94.7 % respectively. In conventional model, the NaOH is used for CO2 capture however, when the CO2 absorption rate reaches the limited concentration, NaOH emits the CO<sub>2</sub> rather than absorb it. As the CO2 is captured using NaOH, the NaOH is converted to NaHCO<sub>3</sub>, and based on the phase equilibrium, the CO<sub>2</sub> is reemitted from the NaHCO<sub>3</sub>. However, the NH3 has high absorption capacity of CO<sub>2</sub> and fast absorption rate; thus, its CO<sub>2</sub> capture efficiency is high. The proposed process shows higher air pollutant reduction efficiency than the conventional process, and also can produce various products such as MgCO3, NaHCO3, CaCl2 and MgSO4. In addition, desalination wastewater is recycled to reduce air pollutants, and the efficiency of the process can be maximized by reusing NH3 that conventionally cannot be recovered. Therefore, we believe that the proposed process will not only overcome the limitations of the conventional process, but also have a high potential for application to actual desalination plants.

## 5. Conclusion

In this work, we designed a novel process for the utilization of desalination wastewater for NO<sub>x</sub>, SO<sub>x</sub>, and CO<sub>2</sub> capture and utilization using NH3. This study makes two major contributions to the existing literature. First, because the suggested process use the metal ions in desalination was tewater for  $\mathrm{NO}_x$ ,  $\mathrm{SO}_x$ , and  $\mathrm{CO}_2$  capture and utilization, it is an proper solution for the environmental contamination by desalination wastewater and the feedstock restrictions on conventional absorbents. Second, this study proposes an environmental and economical approach for NO<sub>x</sub>, SO<sub>x</sub>, and CO<sub>2</sub> utilization in the flue gas using only metal ions in desalination wastewater; thus, the approach is efficient and environmentally friendly. The findings of the study are as follows. Approximately 96 % of NO<sub>x</sub> was captured, the SO<sub>x</sub> capture efficiency was 99 %, and approximately 94.7 % CO<sub>2</sub> was captured. Furthermore, the TACs of the conventional and proposed processes were determined to be 38.81 million USD/y and 34.49 million USD/y, respectively. Thus, the proposed process has a 11.2 % reduction in the TAC, indicating high economic feasibility. Thus, we believe that this study provides valuable insights into the efficient use of desalination wastewater and the capture and utilization of NOx, SOx, and CO2 in a cost-effective and environmentally friendly manner. The Ca and Mg-based products cause fouling of the industrial equipment and thus some mitigation techniques are proposed. Thus, focus on the mitigation techniques should be taken into consideration for rigorous economic assessment in the further studies. In addition, when the actual process is operated, the results may be slightly different from the theoretical simulation results. Therefore, it is necessary to fit detailed parameters and operating conditions.

# CRediT authorship contribution statement

**Jonghun Lim:** Conceptualization, Investigation, Methodology, Formal analysis, Writing – original draft. **Jehun An:** Validation, Writing – original draft. **Hyungtae Cho:** Funding acquisition, Writing – review &

editing. **Junghwan Kim:** Supervision, Validation, Funding acquisition, Writing – review & editing.

## Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

# Data availability

No data was used for the research described in the article.

## Acknowledgments

This work was supported by the Korean Institute of Industrial Technology within the framework of the following project: "Development and application of carbon-neutral engineering platform based on carbon emission database and prediction model [grant number KM-22-0348]".

## Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.desal.2022.116257.

## References

- S. Cho, J. Lim, H. Cho, Y. Yoo, D. Kang, J. Kim, Novel process design of desalination wastewater recovery for CO2 and SOX utilization, Chem. Eng. J. (2021), 133602, https://doi.org/10.1016/j.cej.2021.133602.
- [2] K. Elsaid, M. Kamil, E.T. Sayed, M.A. Abdelkareem, T. Wilberforce, A. Olabi, Environmental impact of desalination technologies: a review, Sci. Total Environ. 748 (2020), 141528, https://doi.org/10.1016/j.scitotenv.2020.141528.
- [3] K. Madwar, H. Tarazi, Desalination techniques for industrial wastewater reuse, Desalination 152 (2003) 325–332, https://doi.org/10.1016/S0011-9164(02)
- [4] E.T. Sayed, N. Shehata, M.A. Abdelkareem, M.A. Atieh, Recent progress in environmentally friendly bio-electrochemical devices for simultaneous water desalination and wastewater treatment, Sci. Total Environ. 748 (2020), 141046, https://doi.org/10.1016/j.scitotenv.2020.141046.
- [5] J.S. Chang, Understanding the role of ecological indicator use in assessing the effects of desalination plants, Desalination 365 (2015) 416–433, https://doi.org/ 10.1016/j.desal.2015.03.013.
- [6] Y.H. Sihn, J. Byun, H.A. Patel, W. Lee, C.T. Yavuz, Rapid extraction of uranium ions from seawater using novel porous polymeric adsorbents, RSC Adv. 6 (2016) 45968–45976, https://doi.org/10.1039/c6ra06807c.
- [7] C.A. Quist-Jensen, F. Macedonio, E. Drioli, Integrated membrane desalination systems with membrane crystallization units for resource recovery: a new approach for mining from the sea. Crystals 6 (2016). https://doi.org/10.3390/cryst6040036.
- [8] A. Ali, C.A. Quist-Jensen, F. Macedonio, E. Drioli, Application of membrane crystallization for minerals' recovery from produced water, Membranes (Basel) 5 (2015) 772–792. https://doi.org/10.3390/membranes5040772.
- [9] C.-K. Na, H. Park, E.H. Jho, Utilization of waste bittern from saltern as a source for magnesium and an absorbent for carbon dioxide capture, Environ. Sci. Pollut. Res. 24 (2017) 1–10. https://doi.org/10.1007/s11356-017-9913-5.
- [10] J. Johnston, The solubility-product constant of calcium and magnesium carbonates, J. Am. Chem. Soc. 37 (1915) 2001–2020, https://doi.org/10.1021/ ja02174a006.
- [11] H. Lee, S. Jin, B. Choi, I. Kim, in: Design and Operation of 3MW Pilot Plant of Mg ( OH) 2 Flue Gas Desulfurization Process, 2001, pp. 0–4.
- [12] B.J. Sherman, Thermodynamic and Mass Transfer Modeling of Aqueous Hindered Amines for Carbon Dioxide Capture, 2016.
- [13] J. Lim, J. Kim, Optimization of a wet flue gas desulfurization system considering low-grade limestone and waste oyster Shell, J. Korea Soc. Waste Manag. 37 (2020) 263–274. https://doi.org/10.9786/kswm.2020.37.4.263.
- [14] F. Du, D.M. Warsinger, T.I. Urmi, G.P. Thiel, A. Kumar, J.H. Lienhard, Sodium hydroxide production from seawater desalination brine: process design and energy efficiency, Environ. Sci. Technol. 52 (2018) 5949–5958, https://doi.org/10.1021/ acs.est.8b01195.
- [15] T. Budiarto, E. Esche, J.-U. Repke, Chlor-Alkali Process Modelowanie I Sterowanie Procesem, Tech. Trans, 2016.
- [16] K.-H. Yeon, J.-H. Song, B.-S. Shim, S.-H. Moon, Production of sulfuric acid and ammonia water from ammonium sulfate using electrodialysis with bipolar membrane and ammonia stripping, Korean Membr. J. 7 (2005) 28–33.

- [17] S.H. Park, K.-Y. Lee, S.J. Cho, Catalytic technology for NOx abatement using ammonia, Clean Technol. 22 (2016) 211–224, https://doi.org/10.7464/ ksct 2016 22 4 211
- [18] R. Wang, X. Wu, C. Zou, X. Li, Y. Du, Nox removal by selective catalytic reduction with ammonia over a hydrotalcite-derived NiFe mixed oxide, Catalysts 8 (2018), https://doi.org/10.3390/catal8090384.
- [19] S. Cho, J. Lim, H. Cho, Y. Yoo, D. Kang, J. Kim, Novel process design of desalination wastewater recovery for CO2 and SOX utilization, Chem. Eng. J. 433 (2022), 133602.
- [20] P. Córdoba, Status of flue gas desulphurisation (FGD) systems from coal-fired power plants: overview of the physic-chemical control processes of wet limestone FGDs, Fuel 144 (2015) 274–286, https://doi.org/10.1016/j.fuel.2014.12.065.
- [21] E. Salehi, B. Eidi, Z. Soleimani, An integrated process consisting of Mg(OH)2
  –impregnated ceramic foam filters as adsorbent and Mg(OH)2 as scrubbing
  solution for intensified desulfurization of flue gas, Sep. Purif. Technol. 216 (2019)
  34–42, https://doi.org/10.1016/j.seppur.2019.01.072.
- [22] L. Okhrimenko, L. Favergeon, K. Johannes, F. Kuznik, M. Pijolat, Thermodynamic study of MgSO4 – H2O system dehydration at low pressure in view of heat storage, Thermochim. Acta 656 (2017) 135–143, https://doi.org/10.1016/j. tea.2017.08.015
- [23] M.V. Mercedes, Developments and innovation in carbon dioxide (Co2) capture and storage technology, Dev. Innov. Carbon Dioxide Capture Storage Technol. (2010) 1–538. https://doi.org/10.1533/9781845699574
- [24] K. Jiang, H. Yu, L. Chen, M. Fang, M. Azzi, A. Cottrell, K. Li, An advanced, ammonia-based combined NOx/SOx/CO2 emission control process towards a lowcost, clean coal technology, Appl. Energy 260 (2020), 114316, https://doi.org/ 10.1016/j.apenergy.2019.114316.
- [25] H. Lu, E.P. Reddy, P. Smirniotis, Calcium oxide based sorbents for adsorption of CO2 at high temperatures, AIChE Annu. Meet. Conf. Proc. 2005 (2005) 3044, 3040
- [26] P. Bumroongsakulsawat, G.H. Kelsall, Effect of solution pH on CO: formate formation rates during electrochemical reduction of aqueous CO2 at sn cathodes, Electrochim. Acta 141 (2014) 216–225, https://doi.org/10.1016/j. electacta.2014.07.057.
- [27] M.H. El-Naas, A.F. Mohammad, M.I. Suleiman, M. Al Musharfy, A.H. Al-Marzouqi, A new process for the capture of CO2 and reduction of water salinity, Desalination 411 (2017) 69–75. https://doi.org/10.1016/j.desal.2017.02.005.
- [28] G. Qi, S. Wang, H. Yu, P. Feron, C. Chen, Rate-based modeling of CO2 absorption in aqueous NH3 in a packed column, Energy Procedia 37 (2013) 1968–1976, https:// doi.org/10.1016/j.egypro.2013.06.077.
- [29] L. Zhang, L. Li, Y. Cao, X. Yao, C. Ge, F. Gao, Y. Deng, C. Tang, L. Dong, Getting insight into the influence of SO2 on TiO2/CeO2 for the selective catalytic reduction of NO by NH3, Appl. Catal. B Environ. 165 (2015) 589–598, https://doi.org/10.1016/j.apcatb.2014.10.029.
- [30] L. Zhang, Q. Zhang, Y. Cheng, Z. Dong, Field tests and optimal operation research of WFGD for a 600MW power plant, IOP Conf. Ser. Mater. Sci. Eng. 452 (2018), https://doi.org/10.1088/1757-899X/452/3/032099.
- [31] F.J. Gutiérrez Ortiz, F. Vidal, P. Ollero, L. Salvador, V. Cortés, A. Giménez, Pilotplant technical assessment of wet flue gas desulfurization using limestone, Ind. Eng. Chem. Res. 45 (2006) 1466–1477, https://doi.org/10.1021/ie051316o.

- [32] B. Hou, H. Qi, C. You, X. Xu, Dry desulfurization in a circulating fluidized bed (CFB) with chain reactions at moderate temperatures, Energy Fuels 19 (2005) 73–78, https://doi.org/10.1021/ef0499751.
- [33] F. Scala, M. D'Ascenzo, A. Lancia, Modeling flue gas desulfurization by spray-dry absorption, Sep. Purif. Technol. 34 (2004) 143–153, https://doi.org/10.1016/ S1383-5866(03)00188-6.
- [34] Y. Guo, Z. Niu, W. Lin, Comparison of removal efficiencies of carbon dioxide between aqueous ammonia and NaOH solution in a fine spray column, Energy Procedia 4 (2011) 512–518, https://doi.org/10.1016/j.egypro.2011.01.082.
- [35] W.Y. Choi, C. Aravena, J. Park, D. Kang, Y. Yoo, Performance prediction and evaluation of CO2 utilization with conjoined electrolysis and carbonation using desalinated rejected seawater brine, Desalination 509 (2021), 115068, https://doi. org/10.1016/j.desal.2021.115068.
- [36] L.E. Øi, Comparison of aspen HYSYS and aspen plus simulation of CO2 absorption into MEA from atmospheric gas, Energy Procedia 23 (2012) 360–369, https://doi. org/10.1016/j.egypro.2012.06.036.
- [37] J.T. Yeh, H.W. Pennline, K.P. Resnik, Study of CO2 absorption and desorption in a packed column, Energy Fuels 15 (2001) 274–278, https://doi.org/10.1021/ ef0002389
- [38] D. Cui, S. Yan, X. Guo, F. Chu, Advance in post-combustion CO2 capture with alkaline solution: a brief review, Energy Procedia 14 (2012) 1967–1972, https:// doi.org/10.1016/j.egypro.2011.12.1126.
- [39] L.S. Tan, A.M. Shariff, K.K. Lau, M.A. Bustam, Factors affecting CO 2 absorption efficiency in packed column: a review, J. Ind. Eng. Chem. 18 (2012) 1874–1883, https://doi.org/10.1016/j.jiec.2012.05.013.
- [40] J. Lim, H. Cho, J. Kim, Optimization of wet flue gas desulfurization system using recycled waste oyster shell as high-grade limestone substitutes, J. Clean. Prod. 318 (2021), 128492, https://doi.org/10.1016/j.jclepro.2021.128492.
- [41] J. Lim, S. Jeong, J. Kim, Deep neural network-based optimal selection and blending ratio of waste seashells as an alternative to high-grade limestone depletion for SOX capture and utilization, Chem. Eng. J. (2021), 133244, https://doi.org/10.1016/j. cej.2021.133244.
- [42] J. Lim, J. Lee, H. Cho, J. Kim, Model development of amine regeneration process with electrodialysis reclamation unit, Comput. Aided Chem. Eng. 50 (2021), https://doi.org/10.3390/min7110207.
- [43] Y. Kim, J. Lim, H. Cho, J. Kim, Novel mechanical vapor recompression-assisted evaporation process for improving energy efficiency in pulp and paper industry, Int. J. Energy Res. (2021) 1–19, https://doi.org/10.1002/er.7390.
- [44] Y. Kim, J. Lim, J.Y. Shim, S. Hong, H. Lee, H. Cho, Optimization of Heat Exchanger Network via Pinch Analysis in Heat Pump-Assisted Textile Industry Wastewater Heat Recovery System. 2022.
- [45] J. Lim, J. Lee, I. Moon, H. Cho, J. Kim, Techno-economic comparison of amine regeneration process with heat-stable amine salt reclaiming units, Energy Sci. Eng. (2021) 1–15, https://doi.org/10.1002/ese3.1000.
- [46] Y.S. Jeong, J. Jung, U. Lee, C. Yang, C. Han, Techno-economic analysis of mechanical vapor recompression for process integration of post-combustion CO2 capture with downstream compression, Chem. Eng. Res. Des. 104 (2015) 247–255, https://doi.org/10.1016/j.cherd.2015.08.016
- [47] M.R.M. Abu-Zahra, J.P.M. Niederer, P.H.M. Feron, G.F. Versteeg, CO2 capture from power plants. Part II. A parametric study of the economical performance based on mono-ethanolamine, Int. J. Greenhouse Gas Control 1 (2007) 135–142, https://doi.org/10.1016/S1750-5836(07)00032-1.