

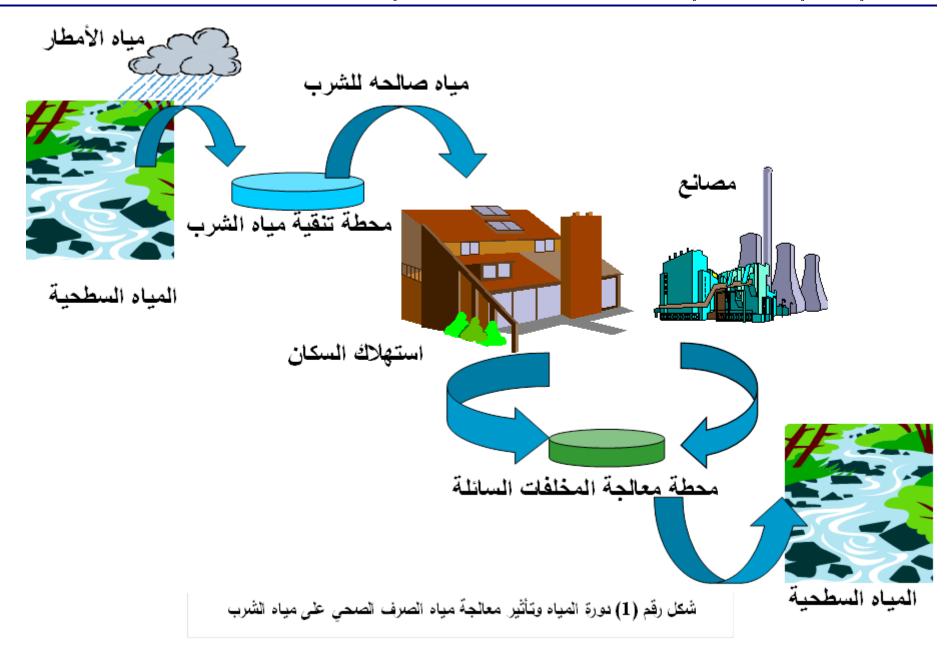
برنامج المسار الوظيفي للعاملين بقطاع مياه الشرب والصرف الصحي

دليل المتدرب البرنامج التدريبي فني تشغيل صرف صحي وظائف ومكونات محطة معالجة مياه الصرف الصحي والشبكات الدرجة تشهور

تم اعداد المادة بواسطة الشركة القابضة لمياه الشرب والصرف الصحي قطاع تنمية الموارد البشرية وبناء القدرات -الادارة العامة لتخطيط المسار الوظيفي ₂₀₁₅₋₁₋₁71

الفهرس

٣.	مقدمة عن معالجة المخلفات السائلة
٣.	مقدمه
٥.	مصادر المخلفات السائلة:
٥.	الملوثات الموجودة بالمخلفات السائلة:
٥.	طرق معالجة المخلفات السائلة
٧.	أنواع محطات المعالجة
٩.	بعض الأسس التصميمية للمرشحات الزلطية (البطيئة وذات المعدل العالي):
٩.	٢. الأقراص البيولوجية الدوارة:
٩.	بعض الأسس التصميمية للأقراص البيولوجية:
١١	المعالجة البيولوجية بالحمأة المنشطة Activated sludge treatment
١١	نظم المعالجة البيولوجية بالحماة المنشطة:
١,	أ. نظام المعالجة بالحمأة المنشطة التقليديةConventional activated sludge
۱۲	ب. نظام المعالجة بالحمأة المنشطة (التهوية الممتدة)Extended Aeration
١٤	ج. نظام المعالجة بالحمأة المنشطة (قنوات الأكسدة) Oxidation ditches
١٥	د. نظام المعالجة بالحمأة المنشطة (التهوية المرحلية) Tampered Aeration
١٦	هـ. أحواض التثبيت والتلامسContact stabilization tanks
١٦	و. بحيرات الأكســــــــــــــــــــــــــــــــــــ
۱۱	برك الأكسدة الطبيعية
۱۱	البرك اللاهوائيــــــــــــــــــــــــــــــــــــ
۱۱	برك الأكسدة الترددية
1/	بحيرات النضج (إتمام الأكسدة)
۱۹	مكونات محطات معالجة مياه الصرف الصحي
۱۹	١. المصافي (يدوية - ميكانيكية)
۲.	الطامبات
۲.	طلمبات المدخل:
۲.	طلمبات الرمال:
۲.	طلمبات غاطسة:
۲ ۱	طلمبات الغسيل والحريق:
۲ ۱	الطلمبات الأفقية:
۲ ۱	طلمبات جرعات الكيماويات
۲ ۲	طلمبة الكيماويات
۲ ۲	ضواغط الهواء
۲۲	نواشر الهواء
۲۲	الخلاطات الغاطسة
۲۲	الهويات السطحية
۲ ٤	الكواشط (الزحافات)


Υ ξ	الرّوافع (الاوناش)
۲٥	تجهيزات عصر وتجفيف الحمأة
٣٠	منظومة التعقيم
٣٠	إضافة الكلور
٣٠	أجهزة الكلور
٣٠	طلمبات تشغيل حاقن الكلور
٣١	أجهزة معادلة الكلور المتسرب
٣١	أحواض التلامس لمياه الصرف الصحي المعالجة
٣٢	أنواع شبكات مياه الصرف الصحي
٣٢	أو لا خطوط الانحدار
٣٢	أنواع المواسير المستخدمة في خطوط الانحدار:
٣٢	ثانيا خطوط الطرد
٣٢	أنواع المواسير المستخدمة في خطوط الطرد
٣٣	مكونات نظام تجميع الصرف الصحي
Ψ ξ	المواد المستخدمة في نظام تجميع مياه الصرف الصحي
٣٥	مواقع المطابق:
٣٥	محطات الرفع:
٣٥	مكونات محطة الرفع:
٣٦	تفاصيل مكو نات محطة الر فع

مقدمة عن معالجة المخلفات السائلة

مقدمه

تجري أعمال معالجة المخلفات السائلة بهدف التخلص من الملوثات الموجودة بالمخلفات السائلة الخام وتحسين خواصها بحيث يصبح التخلص منها والاستفادة منها أو إعادة استخدامها لا تشكل أي أضرار بالصحة العامة أو البيئة.

كما أن محدودية مصادر المياه الصالحة للاستخدام جعل من الضروري البحث عن مصادر أخرى لمواجهة الزيادة المطردة في عدد السكان ونقص المياه الصالحة للاستخدام ومن أهم هذه المصادر مياه الصرف الصحي المعالجة التي من الممكن استخدامها في مجال الزراعة أو الصناعة أو تغذية المياه الجوفية طبقا لخصائصها وطرق معالجتها.

مصادر المخلفات السائلة:

الاستخدامات السكانية

وهي المخلفات السائلة الناتجة عن استهلاك المياه في المناطق السكانية والتجارية والخدمية.

٢. الاستخدامات الصناعية:

وهي المخلفات السائلة المسموح بصرفها على أعمال الصرف الصحى والواردة من النشاط الصناعي.

٣. المصادر الأخرى:

وهي المياه المجمعة من مياه الأمطار ومياه الرشح.

الملوثات الموجودة بالمخلفات السائلة:

- مواد صلبه.
- مواد عضويه قابلة للتحلل وغير قابلة للتحلل.
 - البكتيريا الناقلة للأمراض.
 - نيتروجين وفسفور عضوي.
 - المعادن الثقيلة.

طرق معالجة المخلفات السائلة

تتم إزالة الملوثات الموجودة بالمخلفات السائلة بطرق طبيعية وكيميائية وبيولوجية عن طريق وحدات تعمل في مجموعات متنوعة عند اختيار نظم المعالجة ودراسة الأسس التصميمية لكل وحده.

١. المعالجة الطبيعية:

وهى المعالجة التي تعتمد على القوى الطبيعية (التثاقل) وتشمل أعمال التصفية والترويب والترسيب والتعويم والترشيح ولذلك تسبق أي وحدات أخرى للمعالجة.

٢. المعالجة الكيميائية:

وهى التي تعتمد على إضافة الكيماويات قبل عملية الترسيب والامتصاص والتطهير ففي حالة الترسيب تعمل بعض المواد الكيمائية مثل كلوريد الحديديك على تجميع وترسيب المواد العالقة وفي الامتصاص مثل كبريتات الالومنيوم فيعتمد على قوى الجذب بين المواد العالقة والمواد الكيماوية أما التطهير مثل الكلور فيعتمد على أكسدة البكتيريا وذلك بتفتيت الجدار المحيط بها.

٣. المعالجة البيولوجية (الثانوية):

وهى التي تعتمد على تثبيت المواد العضوية بيولوجيا بالتخلص من بعض عناصرها حيث يتم إزالة المواد العضوية القابلة للأكسدة بيولوجيا سواء كانت عالقة أو ذائبة حيث تتحول هذه المواد إلى غازات وانسجه لخلايا حيه يمكن إزالتها بأحواض الترسيب.

ويعتمد اختيار نوع المعالجة المطلوبة طبقا لخواص وتركيزات الملوثات المطلوب إزالتها وذلك سواء لإعادة استخدام المياه المعالجة أو التخلص منها بصوره أمنه.

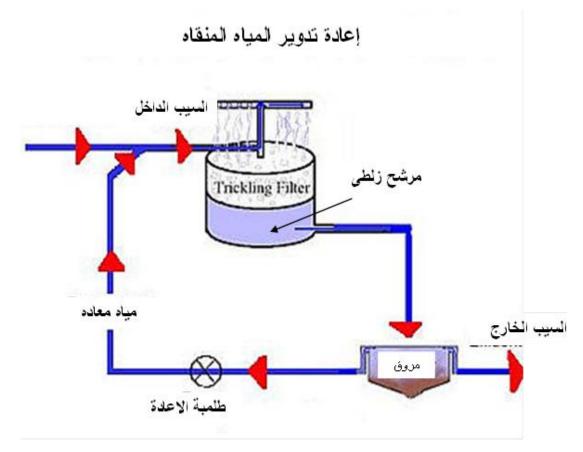
ويوضح الجدول التالي نوع الملوثات ونوع المعالجة المناسب لإزالتها:

نوع المعالجة المناسب لإزالتها	الملوثات
 طرق المعالجة الطبيعية من: التصفية والفرم إزالة الرمال والتعويم الترويب والترسيب باستخدام أو بدون كيماويات. 	Suspended solids المواد الصلبة العالقة
 المعالجة البيولوجية (الثانوية) مثل: حماة منشطة مرشحات بيولوجية برك أكسده 	المواد العضوية القابلة للتحلل Degradable المواد organic matters
 التعقيم بالكلور ومركباته: الأوزون الأشعة فوق البنفسجية 	H. bacteria البكتيريا الناقلة للأمراض
المعالجة البيولوجية والكيماوية بواسطة نمو البكتريا إلى نترات والاختزال إلى أمونيا وإضافة أملاح المعادن و الكلور بجرعة مساوية لنقطة الانكسار.	Organic nitrogen النيتروجين العضوي
المعالجة البيولوجية والكيماوية إضافة الجير ثم الترسيب	الفسفور العضوي Organic phosphors
الترسيب والكيماويات التبادل الأيوني	المعادن الثقيلة Heavy metals
المعالجة الثلاثية بالأوزون والامتصاص بالكربون النظم الطبيعية	المواد العضوية الغير قابلة للتمثيل Non المواد degradable organic matter

أنواع محطات المعالجة

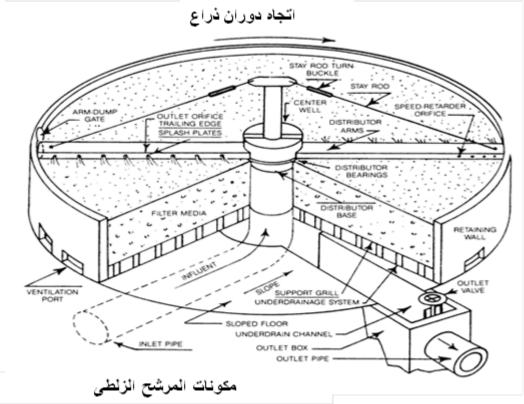
يمكن تقسيم المعالجة البيولوجية إلى ثلاثة أقسام:

١. المعالجة بالتلامس والتثبيت


وتتم المعالجة البيولوجية بهذه الطريقة عن طريق تكوين طبقة أو غشاء رقيق (طبقة هلامية) تحتوى على كمية من الكائنات الحية الدقيقة والبكتيريا على سطح وسط التلامس حيث تقوم هذه الطبقة بأكسدة المواد العضوية وتحويلها إلى مواد ثابتة يمكن ترسيبها في أحواض الترسيب النهائية ومن طرق المعالجة بالتلامس والتثبيت:

المرشحات البيولوجية الزلطية ومنها المرشحات البيولوجية الزلطية البطيئة والمرشحات ذات المعدل السريع كما يمكن استخدام المواد البلاستيكية أو الكسر الحجري كوسط ترشيحي.

وتتشأ المرشحات البيولوجية من أحواض دائرية جدرانها من الخرسانة المسلحة أو الحجر الصلد ويكون القاع خرسانة مسلحه وبميول تتاسب نظام صرف المياه من الأحواض ويكون الوسط الترشيحي من الكسر الحجري أو الزلط مقاس الحبيبة من (٥ – ١٠ سم) أو البلاستيك.


وتوزع المياه الواردة من أحواض الترسيب الابتدائي على سطح الوسط الترشيحي عن طريق موزعات دوارة عن طريق فرق المنسوب بين الموزعات والمياه في أحواض الترسيب الابتدائية.

شكل رقم (٥) إعادة المياه المعالجة إلى المرشح الزلطي

شكل رقم (٥) المرشح زلطي

بعض الأسس التصميمية للمرشحات الزلطية (البطيئة وذات المعدل العالى):

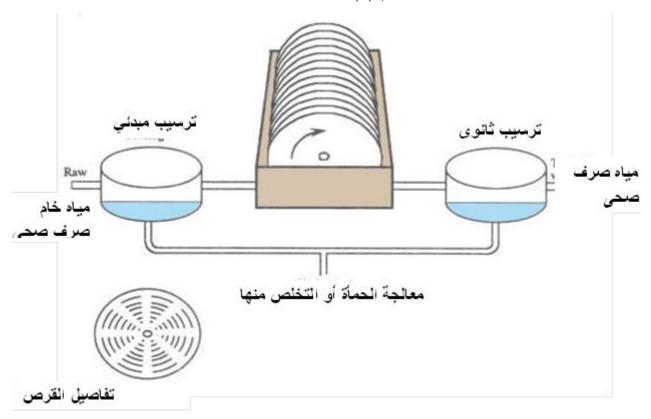
أسس ال	رئسس التصميمية المرش	المرشحات البطيئة	ذات المعدل العالي
دل الت	مدل التحميل السطحي الهيدروليكي ١-٤	١-٤ م٣/ م٢/ اليوم	٠٠-١٠ م٣/ م٢/ اليوم
دل الت	مدل التحميل العضوي ٨٠-	۳۲۰-۸۰ جم BOD/ م۳/ اليوم	۰۰۰ -۱۰۰۰ جم BOD/ م۳/ اليوم
ىق ماد	مق مادة الترشيح	۳-۱,۸ م	۱ – ۲ م
ط إعاد	ط إعادة المياه المعالجة بيولوجيا لا يد	لا بحتوى	<u>بحتوى</u>

٢. الأقراص البيولوجية الدوارة:

الغرض من الوحدة أكسدة المواد العضوية وتحويلها إلى مواد ثابتة يمكن فصلها في أحواض الترسيب النهائي.

وتتكون الوحدة منها من أقراص دائرية خفيفة الوزن تدور بسرعة بطيئة مغمورة لمنتصفها تقريبا في حوض قاعه اسطواني به مياه الصرف الصحي وتصنع الأقراص عادة من البلاستيك.

اثناء التشغيل تكون الاقراص مغمورة الى اسفل عامود الدوران المثبت في مركز الاقراص بحيث يتغمر حوالي ٤٠ % من مساحة سطحها في مياه الصرف الصحى أثناء الدوران

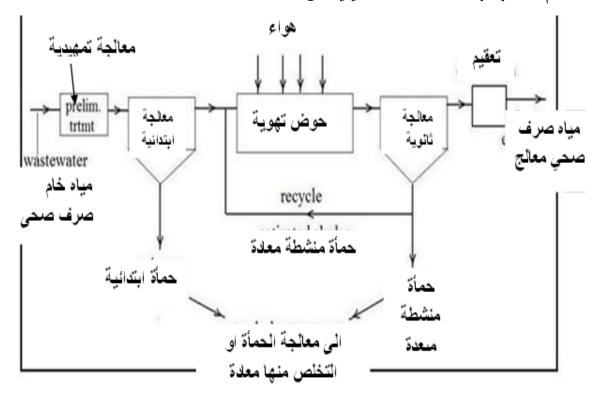

ونتيجة للدوران فأن جميع أسطح الأقراص الدوارة تتكون عليها طبقة بيولوجية تقوم بعملية المعالجة مع غمر الأقراص في المياه ثم تعرضها للهواء الجوى أثناء الدوران وتوضع في مجموعتين إلى ٦ مجموعات من الأقراص على التوالي إلى أن يصل طول كل مجموعة إلى ٧ متر.

بعض الأسس التصميمية للأقراص البيولوجية:

- سمك القرص الدوار = (1-1) سم.
 - قطر القرص = ۲ ۳٫۵متر
- سرعة الدوران = (1-7) لفه/الدقيقة ويمكن مضاعفتها لزيادة كفاءة المعالجة.
 - المسافة بين كل قرصين = $(-\pi 1)$ سم.
 - الحمل الهيدروليكي = \cdot ٤٠- تتر / م \cdot يوم.
 - الحمل العضوي = ٥٥ ٢١٠ جم BOD /م٢/ اليوم.

شكل رقم (٦) الأقراص البيولوجية الدوارة

المعالجة البيولوجية بالحمأة المنشطة Activated sludge treatment

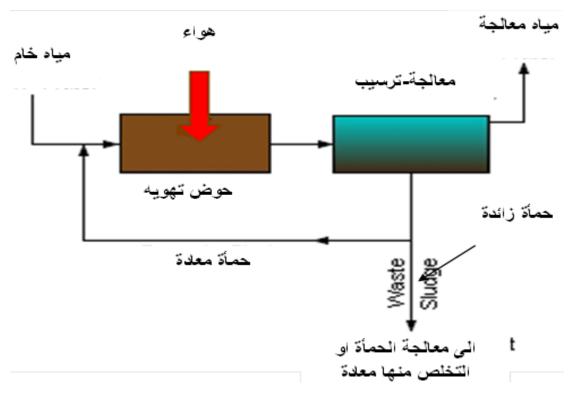

بدأ التفكير والتجارب المعملية على تهوية مياه الصرف الصحى في بداية القرن العشرين وبدأت انجلترا في إنشاء أول عملية استخدمت فيها الحماة المنشطة وهي الحمأة المعادة من أحواض الترسيب الثانوية إلى أحواض التهوية في عام ١٩١٤م وفي أمريكا عام ١٩١٦م.

وتعتمد هذه العملية على تتشيط الكائنات الحية الدقيقة بمياه الصرف الصحى وخاصة مع المواد العالقة التي ترسب في أحواض الترسيب النهائي ويعاد نسبة من هذه الرواسب إلى أحواض التهوية حيث تجد هذه الكائنات الحية الدقيقة البيئة الملائمة من غذاء في صورة مواد عضوية وأكسجين ذائب في المياه مع التقليب المستمر حيث تتشط البكتيريا ويزيد عددها فتعمل على أكسدة المواد العضوية وتجميعها ويتركز نشاط أساسا على أكسدة المواد الذائبة لسهولة امتصاصها وهضمها بواسطة إنزيمات داخلية وخارجية وتكوين الندف التي تترسب في أحواض الترسيب النهائية.

نظم المعالجة البيولوجية بالحماة المنشطة:

- أ. الحمأة المنشطة التقليدية.
 - ب. التهوية الممتدة.
 - ج. قنوات الأكسدة.
- د. التهوية المرحلية (تهوية بمعدل متناقص ومنها نظام التغذية المرحلية والخلط التام).
 - ه. أحواض التثبيت والتلامس.

أ. نظام المعالجة بالحمأة المنشطة التقليدية Conventional activated sludge

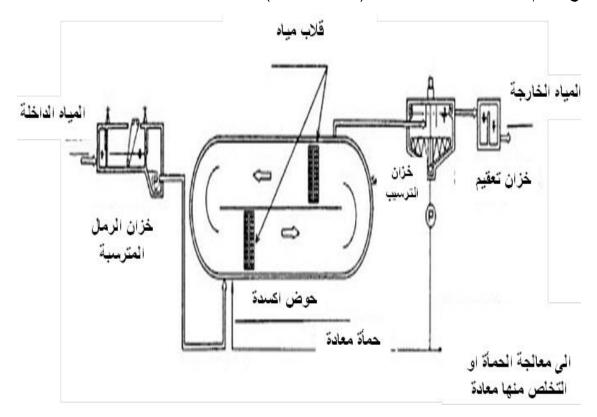

شكل رقم (٧) يوضح مسار المياه بنظام المعالجة بالحمأة المنشطة التقليدية

حيث:

يتم تغذية حوض تتشيط الحمأة (حوض التهوية) بكل من مياه الصرف الصحى والحماة المعادة وذلك في بداية الحوض حيث يتم تهوية الخليط بصورة متساوية وتخرج الندف المتكونة من نهاية الحوض.

ويعيب هذا النظام كبر حوض التهوية بالإضافة إلى عدم استقرار التشغيل وعملية المعالجة في حالة زيادة معدلات التحميل الهيدروليكية والعضوية مما يؤثر على كفاءة المعالجة.

ب. نظام المعالجة بالحمأة المنشطة (التهوية الممتدة) Extended Aeration


شكل رقم (٨) يوضح مسار المياه بنظام المعالجة بالتهوية الممتدة

يتشابه هذا النظام مع نظام قنوات الأكسدة ونظام الخلط الكامل حيث يتم خلط المياه و الحمأة الراجعة في حوض التهوية لفترات طويلة.

يتميز هذا النظام بانخفاض معدل التحميل العضوي وطول مدة المكث للمياه بأحواض التهوية وارتفاع كمية المواد الصلبة العالقة وانخفاض نسبة الغذاء إلى كمية الكائنات الحية وارتفاع كفاءة إزالة الأكسجين الحيوي الممتص وتثبيت المواد العضوية بصورة أفضل نتيجة طول فترة التهوية.

ولكن من عيوبه زيادة تكاليف التشغيل.

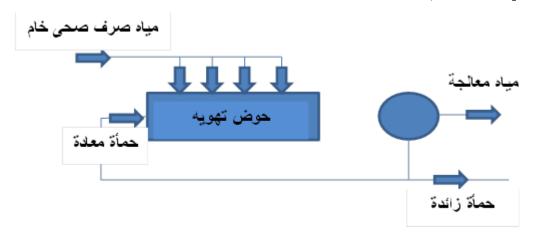
ج. نظام المعالجة بالحمأة المنشطة (قنوات الأكسدة) Oxidation ditches

شكل رقم (٩) يوضح مسار المياه بنظام المعالجة قنوات الأكسدة

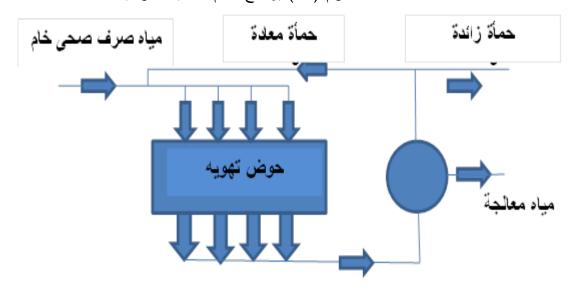
ويعتمد هذا النظام على نظام التهوية الممتدة حيث تتكون من قناة طويلة بيضاوية الشكل بها قلابات ميكانيكية أفقية أو فرش لتقليب المياه بالحوض ومن ثم إضافة الأكسجين.

وتكون سرعة المياه بالقناة من ٣,٠ إلى ٤,٠ م/ ث ويحدد عض القناة طبقا لطول القلاب الذي يعطى كمية الهوا الكافية والمطلوبة بحيث يكون عمق القناة حوالي (١ -١,٢) متر.

يتم دخول المياه الخام من جانب القناة وتسير المياه مع اتجاه دوران الفرش وتخرج من الجهة المقابلة المزودة بهدار للخروج بطول مناسب ويتم تصميمية بحيث لا تغمره المياه في حالة تغيير منسوبها في القناة.

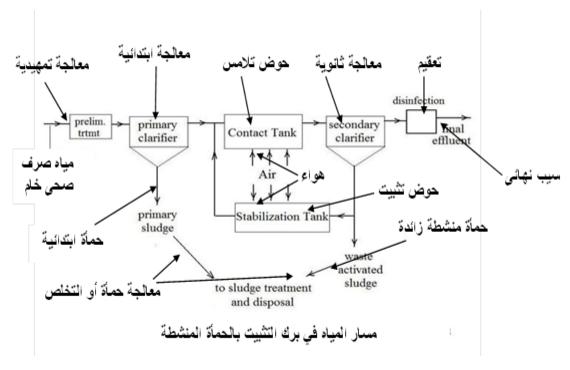

د. نظام المعالجة بالحمأة المنشطة (التهوية المرحلية) Tampered Aeration

تم بهذا النظام ضخ الهواء بمعدلات مرتفعة عند مدخل الحوض لتوفير الكمية اللازمة من الأكسجين في هذه المنطقة ثم تقل تدريجيا على طول الحوض بما يعمل على زيادة كفاءة عملية الأكسدة.


ويتم ذلك بطريقتين:

التغذية المرحلية: وفي هذا النظام يتم ضخ الهواء على مراحل على مسار حوض التهوية لتوفير الكمية اللازمة من الأكسجين في المناطق المختلفة من حوض التهوية لزيادة كفاءة التهوية.

نظام الخلط التام: وفي هذه الحالة يتم تغذية حوض التهوية بمياه الصرف الصحى الخام بشكل متساوي على طول احد جانبي الحوض ويتم سحب المياه من الحوض من الجانب الأخر بنفس الطريقة.



شكل رقم (١٠) يوضح نظام التغذية المرحلية

شكل رقم (١١) يوضح نظام الخلط التام (الكامل)

ه. أحواض التثبيت والتلامس Contact stabilization tanks

شكل رقم (۱۲) نظام التثبيت بالتلامس

يمكن تعريف هذا النظام على انه عملية الامتصاص الحيوي وهذا النظام قد يحتوى أو لا يحتوى على مرحلة ترسيب ابتدائي وتتم تهوية مياه الصرف الصحي مع الحمأة المعادة في حوض التلامس لفترة بين ٠,٠ إلى ١,٥ ساعة وذلك لإتمام عملية الامتصاص الحمأة للمواد العضوية الموجودة بمياه الصرف الصحي ثم إلى أحواض الترسيب النهائي ويتم بعد ذلك ضخ الحمأة المترسبة إلى أحواض التهوية أو التثبيت لمدة من ٣ الى ٦ ساعات قبل ضخها إلى حوض التلامس مرة أخرى.

يتطلب هذا النظام إلى كمية كبيرة من الهواء مماثلة للنظام التقليدي ويتم تقسيم هذه الكمية على حوض التلامس وحوض التثبيت.

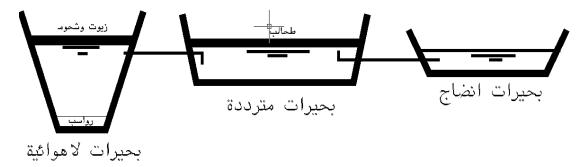
حجم الحوضين يعادل نصف حوض التهوية في الحمأة المنشطة التقليدية.١

و. بحيرات الأكسدة

الغرض من الوحدة:

تتم معالجة المخلفات السائلة في هذه البحيرات بطريقة طبيعية تعتمد على نشاط مشترك تقوم به الطحالب والبكتريا الهوائية بالاستعانة بأشعة الشمس وبعض العناصر الموجودة أصلاً في المخلفات السائلة حيث تستخدم البكتريا الهوائية الأكسجين الذائب في المياه لأكسدة المواد العضوية وينتج عن هذه الأكسدة مواد عضوية مثبتة وثاني أكسيد الكربون والطحالب بدورها تستخدم ثاني أكسيد الكربون مع بعض الأملاح في تحليقها الضوئي بمساعدة أشعة الشمس وتعطى أكسجين وهو من احتياجات البكتريا.

ومعنى ذلك أن كل من الطحالب والبكتريا تعطى للآخر ما تحتاجه ويكون النشاط البكتيري أكبر ما يمكن في الطبقات السطحية من المياه والتي تصل إليها أشعة الشمس وتكون هذه الطبقات بها تركيزات عالية من الأكسجين


الذائب أثناء النهار - أما خلال ساعات الليل فينعكس نشاط الطحالب وتبدأ في استهلاك الأكسجين الذائب في المياه واعطاء ثاني أكسيد الكربون الأمر الذي يتسبب في نقص الأكسجين الذائب في المياه أو اختفاؤه.

ويتم تثبيت المواد العضوية بواسطة التفاعلات الهوائية واللاهوائية معاً فالطبقات العليا التي يمكن أن تنفذ خلالها أشعة الشمس تتشط فيها الطحالب وتعطى المياه أكسجين ذائب تستخدمه البكتريا الهوائية في تثبيت المواد العضوية أما الطبقات السفلى من البحيرات والتي لا تصل إليها أشعة الشمس فهي أيضاً منطقة ترسب فيها المواد العالقة وينشط فيها التفاعلات اللاهوائية لتثبيت المواد العضوية بهذه الرواسب.

وعلى ذلك فلا يتم تثبيت المواد العضوية في الطبقات السطحية فقط ولكن نسبة من هذه المواد يتم تثبيتها بواسطة البكتريا اللاهوائية وتلعب الطبقة السطحية الغنية بالأكسجين دوراً هاماً إضافياً علاوة على الأكسدة الهوائية للمواد العضوية بها وهو التحكم في نواتج التفاعلات اللاهوائية التي تحدث في القاع ومنها الغازات الكريهة والأحماض العضوية.

برك الأكسدة الطبيعية

شكل (١-٧) يوضح بحيرات الاكسدة الطبيعية

البرك اللاهوائيسة

- مدة المكث= ٣ أيام
- عمق البركة= ٣ ٥ م
- نسبة إزالة الأكسجين الحيوي الممتص (BOD)= ٥٠٠ ٧٠٠.
 - نسبة إزالة المواد العالقة (SS)= ٣٠٠ ٨٠٠.
- معدل التحميل العضوي الحجمي = ١٠٠٠-٣٠٠جم (BOD)/م / يوم.
- معدل التحميل العضوي السطحي = ١٠٠-١٠٠جم (BOD) هكتار/يوم.
 - الميول الجانبية ٢: ١ (٢ أفقى: ١ رأسى).

برك الأكسدة الترددية

توجد العديد من طرق تصميم برك الأكسدة الترددية تعتمد على البيانات والتسجيلات لدى المصمم، ولذا فإننا نجد المعادلات التصميمية تتسب إلى المهندس أو الهيئة المعدة لها والتي تم التوصل إليها من تجارب معملية

ومن أهم خصائص هذه البرك أن:

- مدة المكث لا تقل عن ١٠ أيام.
- عمق البركة يتراوح من ١,٥ ٢,٠ متر.
- معدل التحميل العضوي السطحي من ٢٠٠-٤٠٠ كجم BOD / هكتار / يوم.
 - متوسط درجة حرارة الماء بالبرك = ٢٠ درجة مئوية.
 - الميول الجانبية ٢: ١ (٢ أفقى: ١ رأسى).

بحيرات النضج (إتمام الأكسدة)

وتستخدم هذه البحيرات لتحسين خواص المخلفات من الناحية البكترولوجية والكيميائية وخاصة البكتريا الضارة والفيروسات الموجودة بالمخلفات السائلة وتتراوح عمق المياه بها من ١ - ١,٥ م حيث أن معدل القضاء على البكتريا الضارة يكون أكبر في العمق الأصغر نظراً لفاعلية الشمس ومدة المكث بها حوالي ٧ أيام وتكون عبارة عن ثلاثة وحدات مدة المكث في كل وحدة يومين.

مكونات محطات معالجة مياه الصرف الصحى

تختلف التجهيزات الميكانيكية لمحطات المعالجة باختلاف طريقة المعالجة المتبعة، ففي طريقة الحمأة المنشطة مثلاً نجد ضواغط الهواء أو المهويات السطحية في حين نجد الخلاطات الغاطسة مثلاً في المحطات التي تعمل بطريقة المعالجة اللاهوائية... وهكذا. لذلك سنقوم باستعراض أهم وأبرز التجهيزات الميكانيكية التي يجب أن توجد في كل محطة معالجة تقريباً وذلك بالترتيب حسب خطوات معالجة المياه (بدءاً من مدخل محطة المعالجة وحتى آخر عملية من عمليات المعالجة).

١. المصافى (يدوية - ميكانيكية)

توضع المصافى في بداية محطة المعالجة، وتتكون من قضبان معدنية متوازية، المقطع العرضي لها مستطيل. تثبت هذه القضبان على إطار معدني وتوضع في قناة دخول المياه إلى المحطة ويتم تصنفها طبقا للمسافات البينية بين قضبان المصفاة (خشنة - متوسطة - ناعمة).

المصافى اليدوية

المصافى الميكانيكية

سير نقل الرواسب

الطلمبات

طلمبات المدخل:

تقوم هذه الطلمبات برفع مياه الصرف إلى أعمال المدخل بعد مرورها على المصفاة الخشنة مالم يتوافر تصميم اخر.

طلمبات الرمال:

تؤدي هذه الوحدة وظيفة إزالة الرمال، والحصى، والبقايا، أو أية مواد "أثقل" وزنا

طلمبات غاطسة:

ويمكن استخدامها في الأماكن التالية

تدوير الحمأة من حوض الترويق إلى مدخل حوض التهوية.

تصريف كل من الحمأة الفائضة والرغوة من حوض التهوية إلى مكثف الحمأة

طلمبات الغسيل والحريق:

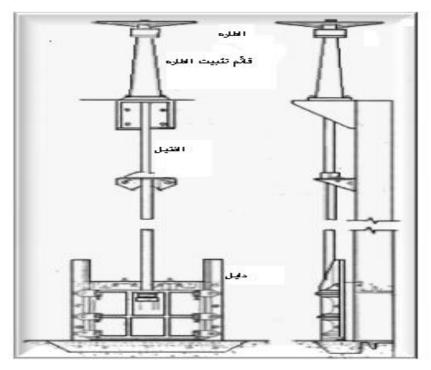
تقوم كل من مضخة الحريق والغسيل بتأمين التدفق والرفع اللازمين من خزان المياه العالية

الطلمبات الأفقية:

ويمكن استخدامها أحياناً بضخ الحمأة أو في الحالات التي تتطلب ذلك

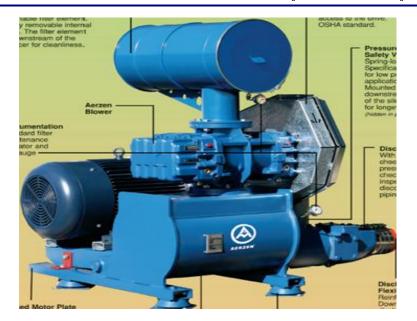
مضخة أفقية

طلمبات جرعات الكيماويات


تقوم هذه الطلمبات بضخ مادة التعقيم ضمن تيار المياه المعالجة الخارج من حوض الترسيب وذلك من أجل القضاء على البكتيريا والكائنات الممرضة قبل طرح المياه المعالجة في الجداول المجاورة

طلمبة الكيماويات

البوابات

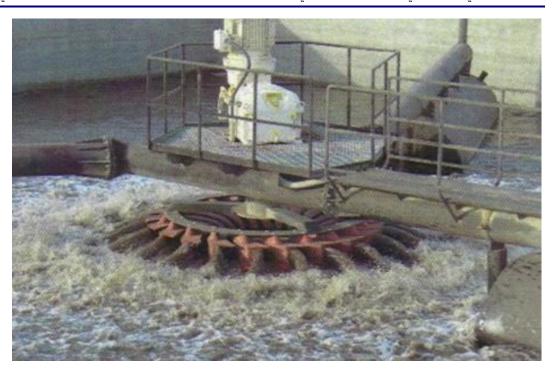

تعمل بوابة التحكم على ضبط مستوى مياه الصرف الصحى ضمن الأقنية ، فبتدوير دولاب القيادة اليدوية في الأعلى نحو اليمين أو اليسار ينخفض أو يرتفع الفاصل المعدني مما يغير في المقطع المفتوح أمام مياه الصرف.

ضواغط الهواء

تعتمد هذه التقنية على تركيب نافخات هواء Air blowers في حجرة مخصصة لها ضمن المحطة. تقوم هذه النافخات بضخ الهواء عبر الأنابيب إلى حوض التهوية عبر ناشرات هواء Air Diffusers مركبة عند مستوى قريب من قاع الحوض. كما تقوم بتأمين كمية الهواء اللازمة لطلمبات الرفع الهوائية

ضاغط هواء

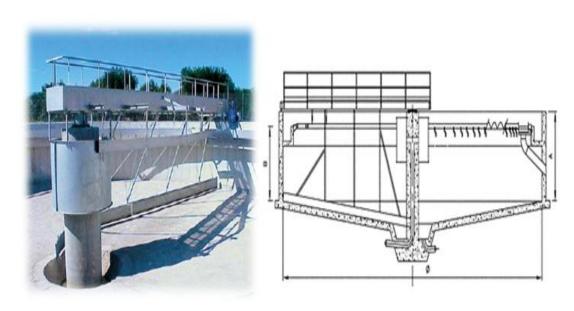
نواشر الهواء تقوم ناشرات هواء Air Diffusers بتوزيع الهواء ضمن حوض التهوية مالم يتوافر تصميم آخر


ناشر هواء

الخلاطات الغاطسة

تقوم هذه الخلاطات بتأمين مزج مستمر للمياه لضمان عدم الترسيب غير المرغوب فيه ، وهي عادة ما تستعمل في كل من المفاعلات اللاهوائية - أحواض تكثيف ومعالجة الحمأة) إن وجدت طبعاً في المحطة (حسب طريقة المعالجة)

الهويات السطحية


هي وحدات ميكانيكية للتهوية تؤمن الهواء إلى حوض التهوية (المفاعل) عن طريق دوران مراوح في الطبقة العليا للمياه تسبب تقليب ونشر الطبقة المائية واختلاطها بالهواء الجوي القريب من السطح.

شکل ۸

الكواشط (الزحافات)

تستعمل الكواشط في أحواض الترسيب الأولية والثانوية (المستطيلة والدائرية)، ولها أنواع متعددة. وظيفتها تجميع وإزالة المواد المترسبة أسفل الأحواض ومنها ما يقوم بتجميع وإزالة المواد الطافية (خبث، زبد، زيوت، دهون،... الخ). ولعل أكثر أنواع الكواشط استخداماً هي كواشط الأحواض الدائرية. والتي تقسم إلى نوعين (جسريه - نصف جسریه)

كاشط دائري نصف جسري

الرّوافع (الاوناش)

تستخدم لرفع ونقل التجهيزات الموجودة في المحطة (الكواشط - الطلمبات -.... الخ) ، ومنها ما يكون كهربائي ومنها ما يكون يدوي.

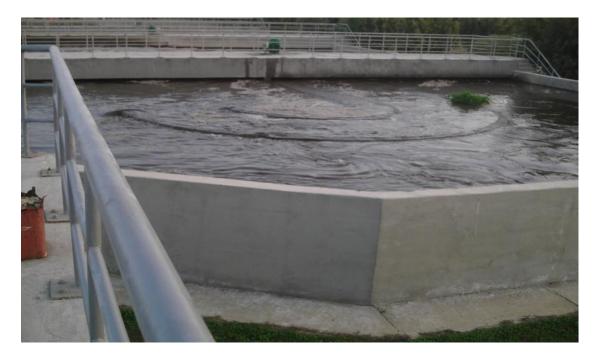
رافعة كهربائية

تجهيزات عصر وتجفيف الحمأة

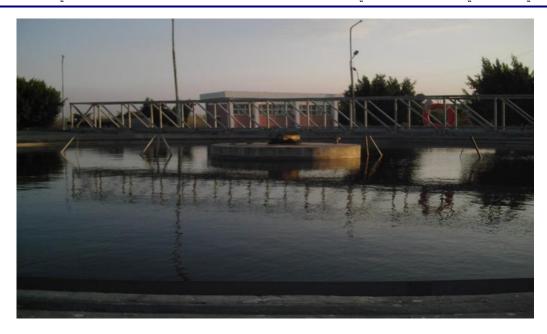
تقوم هذه التجهيزات بفصل الماء عن الحمأة إلى أقصى حد ممكن قبل التخلص منها. من هذه التجهيزات أذكر على سبيل المثال: مكبس الحمأة (Filter PRESS)، والطارد المركزي للحمأة. (Centrifuge)

مكبس الحمأة

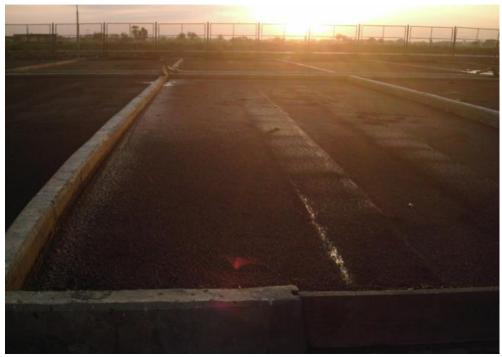
الطارد المركزي للحمأة


الشكل يوضح فاصل الرمال والكوبري المتحرك كاسحة الرمال

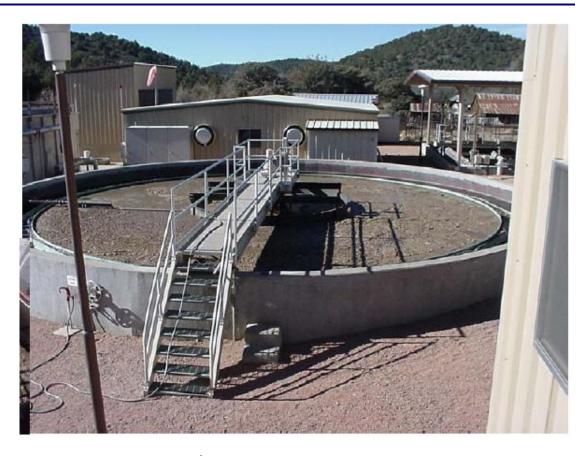
كاشط الخبث (الزيوت والشحوم)



شکل ۱۳


حوض التهوية

حوض الترسيب النهائي



قمع تجميع الخبث

أحواض تجفيف الحمأة

حوض تركيز حمأة

منظومة التعقيم

إضافة الكلور

للقضاء على البكتريا الناقلة للأمراض في مياه الصرف الصحي المعالجة، تضاف جرعات من الكلور (١٠ - ٢٠ مجم / لتر) إلى هذه المياه قبل صرفها حيث تبقى هذه المياه مدة مكث من ١٥ – ٣٠ دقيقة بأحواض للتلامس لضمان تفاعل الكلور مع البكتريا والقضاء عليها.

أجهزة الكلور

تكون أجهزة الكلور من النوع الذي يركب على الأرض والذي يعمل بالتفريغ وتكون جميع التوصيلات والمواسير دائما تحت التفريغ (ضغط جوى سالب)، ويزود الجهاز بطريقة لإزالة الضغط إذا تكون داخل الجهاز، وتكون جرعة الكلور حوالي ١٠ جرام للمتر المكعب ويمكن زيادتها إلى ٢٠ جرام للمتر المكعب عند الضرورة.

طلمبات تشغيل حاقن الكلور

هذه الطلمبات تعمل على رفع ضغط المياه داخل الحاقن وبالتالي سحب الكلور من أسطوانات الكلور وحقنها داخل خزان التلامس.

أجهزة معادلة الكلور المتسرب

• التهوية العادية

يتم إنشاء مخزن لأسطوانات الكلور بحيث يكون كافي لتخزين العدد المطلوب من اسطوانات الكلور وتزود المخازن بمراوح شفط لتهويتها خلال ساعات العمل العادية.

• في حالة تسرب الكلور

تتوقف التهوية العادية وتبدأ شفاطات الهواء في العمل بمعدلات كبيرة لسحب الهواء الملوث بالكلور ودفعة إلى برج المعادلة.

يزود مخزن الكلور وحجرة الأجهزة بمراوح لشفط الهواء الملوث بالكلور ودفعه إلى برج معادلة الكلور المتسرب.

كما يزود المخزن والحجرة المركب بها أجهزة حقن الكلور بأجهزة إنذار مرئي وصوتي للتنبيه في حالة حدوث تسرب للكلور، وفي هذه الحالة يتم تشغيل أجهزة المعادل أوتوماتيكيا عند ارتفاع نسبة الكلور بالهواء عند الحدود المقررة.

أحواض التلامس لمياه الصرف الصحى المعالجة

تختلف كمية الكلور المحقونة من وقت لآخر باختلاف مدة المزج وخواص مياه الصرف الصحي المعالجة ومقدار الأس الهيدروجيني ودرجة الحرارة.

وتكون أحواض التلامس عبارة عن خزانات من الخرسانة المسلحة المقاومة للكبريتات ومن الممكن أن تكون مغطاة أو مكشوفة وتتحدد أبعادها بحيث تسمح بمدة تلامس مقدارها ١٥ - ٣٠ دقيقة

حوض تلامس الكلور

أنواع شبكات مياه الصرف الصحي

أولا خطوط الانحدار

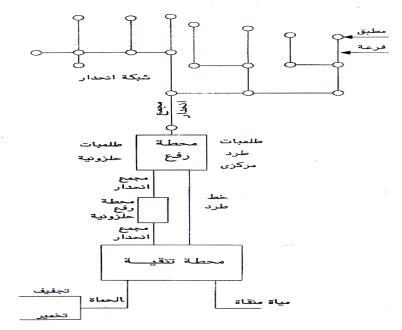
تتجمع مياه المخلفات السائلة المنزلية (الصرف الصحي) والمخلفات السائلة الصناعية ومياه الأمطار في خطوط مواسير الانحدار الفرعية الأقل قطرا والتي تخدم الشوارع الصغيرة وتسمى هذه الخطوط بالفرعيات والتي بدورها تصب هذه الفرعيات في خط بقطر أكبر عن طريق غرفة التفتيش (المطبق) الذي يستوعب جميع هذه التصرفات ويصب هذا الخط (ومجموعة مماثلة) في خط أكبر وهكذا حتى ينتهى إلى خط كبير يسمى مجمع الصرف الصحي، يكون بعمق كبير يصل في بعض الأحوال إلى ٨٠٠٠ م ويكون بقطر يصل إلى ٣٠٠ مم. ولا يمكن عمليا الاستمرار في عمل مجمعات أكبر أو بأعماق أكبر حيث أن ذلك غير اقتصادي ويستحيل التنفيذ عمليا. وفي هذه الحالة تنفذ المجمعات بطريقة الانفاق وتصب المياه في فرعة الداخل (آخر فرعة في الخط وقبل بيارة السحب) إلى غرفة (مطبق) الداخل.

أنواع المواسير المستخدمة في خطوط الانحدار:

- ١. المواسير الفخار
- مواسير ذات الوصلة الثابتة (العادية).
 - مواسير ذات الوصلة المرنة.
 - ٢. المواسير الخرسانة المسلحة
 - مواسیر بدون أسطوانة صلب
 - مواسير بأسطوانة صلب
 - ٣. المواسير الزهر المرن
 - ٤. المواسير البلاستيك UPVC
- ٥. مواسير الألياف الزجاجية GRP
 - ٦. مواسير البولى إيثلين

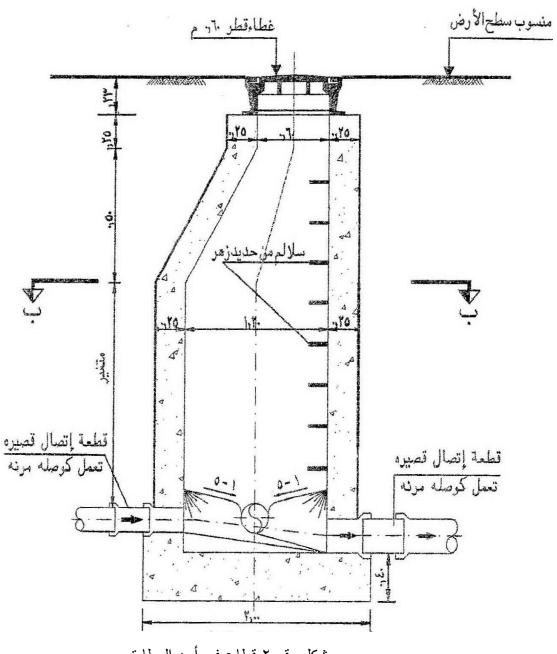
ثانيا خطوط الطرد

يتم ضخ ونقل مياه الصرف الصحي من محطة الرفع إلى محطة المعالجة أو مكان التخلص منها خلال خطوط الطرد.


أنواع المواسير المستخدمة في خطوط الطرد

- المواسير الزهر المرن.
- المواسير الخرسانة المسلحة سابقة الإجهاد
 - المواسير البلاستيك UPVC .
 - المواسير الصلب.

مكونات نظام تجميع الصرف الصحي


- التوصيلة المنزلية.
- الخطوط الرئيسية مع غرف التفتيش.
- الخطوط الفرعية مع غرف التفتيش.
- الخطوط الناقلة (الأنفاق المجمعات) مع غرف تجميع الرواسب.
 - محطات الرفع.
 - محطات الضخ الرئيسية.
 - خطوط الطرد مع غرف المحابس.

ويوضح الشكل رقم ١ مكونات نظام تجميع الصرف الصحي

شكل(١) مكونات شبكة الصرف الص

كما يعرض الشكل رقم ٢ قطاع في أحد المطابق

شكل رقم ٢ قطاع في أحد المطابق

المواد المستخدمة في نظام تجميع مياه الصرف الصحي

• التوصيلة المنزلية (تعمل بالجاذبية):

تستخدم مواسير من الفخار V.C أو مواسير الحديد الزهر C.l. وأقطارها من ٥: ٦ بوصة أو مواسير من البلاستيك P.V.C. كما يوجد غرفة تفتيش بالأرصفة من المباني أو الخرسانة.

• الخطوط الفرعية:

تستخدم مواسير من الفخار المزجج V.C أو مواسير الحديد الزهر C.l. وأقطارها من ٥: ١٥ بوصة أو مواسير من البلاستيك P.V.C. كما يوجد غرفة تفتيش فرعيه على هذه الخطوط تكون من الخرسانة المسلحة أو سابقة الصب (حلقات) مع أغطيه وبراويز من حديد الزهر.

• الخطوط الرئيسية (تعمل بالجاذبية أو الانحدار):

تكون هذه الخطوط من الفخار المزجج V.C أو مواسير الحديد الزهر .D.l المبطنة من الداخل بالأيبوكس أو الأسمنت (مواسير الخرسانة المسلحة السابقة الإجهاد والمبطنة من الداخل بمادة T-lock).

• غرف التفتيش

تصنّع من الخرسانة المسلحة أو سابقة الصب (حلقات) مع أغطيه وبراويز من الحديد الزهر مع السلالم الخاصة داخل الغرفة.

كما يوجد نوع آخر من الغرف تسمى غرفة بهدار (سقوط) عند تغيير ميل المواسير وارتفاعاتها.

مواقع المطابق:

- على مسافات تتراوح من (٢٥ متر إلى ٥٠ متر)
 - عند تقاطع الخطوط الرئيسية.
 - عند تغير القطر.
 - عند تغير الميل للخطوط أو الاتجاه.
 - عند تقاطع الشوارع الرئيسية والفرعية.
 - عند تغير المنسوب بالشوارع.

محطات الرفع:

هي محطات نتشأ أساسا لرفع مياه الصرف الصحي من منسوب منخفض إلى منسوب أعلى وتستقبل مياه الصرف الصحي وتضخها بواسطة مضخات مختلفة إلى خطوط الطرد الخارجة منها إما إلى محطة المعالجة أو إلى خطوط مجمعات وأنفاق كبيره لمسافات طويلة أو لمحطة رفع رئيسية.

مكونات محطة الرفع:

- غرفة المدخل بها شبك لحجز المخلفات والرواسب.
- خط سحب إلى الطلمبة خط طرد من الطلمبة إلى خطوط طرد الشبكة او المجمعات ثم الى محطات المعالجة.
 - معدات كهربائية للمضخات للتشغيل وعوامة تعمل مع المنسوب.
 - مولد كهربائي بالديزل احتياطي في حالة قطع التيار.
- ويتم تحديد موقع محطة الرفع حسب مناسيب شبكة الصرف الصحي وتقوم برفع مياه الصرف الصحي اما الى:
 - محطة معالجة الصرف الصحي مباشرة وفي هذه الحالة تسمى محطة رفع رئيسية.
 - شبكة الانحدار مره أخري أو الى محطة الرفع الرئيسية وفي هذه الحالي تسمى محطة رفع فرعية.

تفاصيل مكونات محطة الرفع

- ١. الطلمبات
- وقد تكون رأسيه أو أفقية أو غاطسة أو حلزونية
 - ويراعى في اختيار الطلمبات
 - مقدار الرفعHead بالمتر.
- مقدار التصرف والسعه متر " / ثانیه أو لتر ثانیه.
 - الكفاءة قدرة الطلمبة.
 - سرعة دوران الطلمبة.
 - ٢.أعمال التهوية اللازمة.
 - ٣. السلالم اللازمة للصعود والهبوط.
- ٤. البئر الرطب ويقسم إلى جزأين لأغراض الصيانة ويكون به ميول على الأقل ١:١.
 - ٥.البئر الجاف.
 - ٦. أعمال الرفع (الأوناش) اللازمة لصيانة الطلمبات.
 - ٧.خط السحب وخط الطرد.
 - ٨.شبك حجز المخلفات الصلبة.
 - ٩.غرف المحابس.

المراجع

- تم الإعداد بمشاركة المشروع الألماني GIZ
 و مشاركة السادة :-
 - المراجع
- تم الإعداد بمشاركة المشروع الألماني GIZ و مشاركة السادة :-
 - 🖊 مهندس / اشرف على عبد المحسن
 - مهندس / طارق ابراهیم عبد العزیز
 - 🗸 مهندس / مصطفی محمد محمد
 - 🗸 مهندس / محمد محمود الديب
- دكتور كيمائي / حسام عبد الوكيل الشربيني
 - 🗸 مهندس / رمزی حلمی ابراهیم
 - 🗸 مهندس / اشرف حنفی محمود
 - 🔾 مهندس / مصطفی احمد حافظ
 - مهندس / محمد حلمي عبد العال
 - 🗸 مهندس / ايمان قاسم عبد الحميد
 - 🔾 مهندس / صلاح ابراهیم سید
 - 🗸 مهندس / سعید صلاح الدین حسن
 - ﴿ مهندس / صلاح الدين عبد الله عبد الله
 - مهندس / عصام عبد العزيز غنيم
 - 🖊 مهندس / مجدي علي عبد الهادي
 - 🗸 السيد / محمد نظير حسين
 - 🗸 مهندس / عبد الحليم مهدي عبد الحليم
 - مهندس / سامي يوسف قنديل
 - مهندس / عادل محمود ابو طالب
 - 🗸 مهندس / مصطفی محمد فراج

شركة الصرف الصحي بالقاهرة الكبرى شركة الصرف الصحى بالقاهرة الكبرى شركة مياه الشرب والصرف الصحى بالجيزه شركة مياه الشرب والصرف الصحى بالدقهلية شركة الصرف الصحى بالاسكندريه شركة مياه الشرب والصرف الصحى بالجيزه شركة الصرف الصحي بالاسكندريه شركة مياه الشرب والصرف الصحى بالجيزة شركة الصرف الصحي بالقاهرة الكبرى شركة مياه الشرب والصرف الصحى بالشرقية شركة الصرف الصحي بالقاهرة الكبري شركة الصرف الصحى بالقاهرة الكبرى شركة مياه الشرب والصرف الصحي بالدقهلية شركة الصرف الصحي بالقاهرة الكبري شركة الصرف الصحى بالقاهرة الكبرى شركة مياه الشرب والصرف الصحى بالجيزة شركة مياه الشرب والصرف الصحى بالقليوبية شركة الصرف الصحى بالاسكندريه

GIZ المشروع الالماني لادارة مياه الشرب والصرف الصحي

الشركة القابضة لمياه الشرب والصرف الصحي