
تكنولونيا المالات الما

د. حسن خالد حسن العكيدي

معالجة اطياه وتحليتها

الدكتور حسن العكيدي خالد حسن العكيدي

عمان

السالح المراع

تكنولوجيا معالجة المياه وتطيتها

كقوق الطبع مكفوظة للناشر

تلفاكس: 5331289

ص.ب: 1170

الرمز البريدي: 11941

عمان، الأردن

الموقع:

شارع الملكة رانيا العبد الله، مقابل كلية الزراعة

Email: zahran@maktoob.com

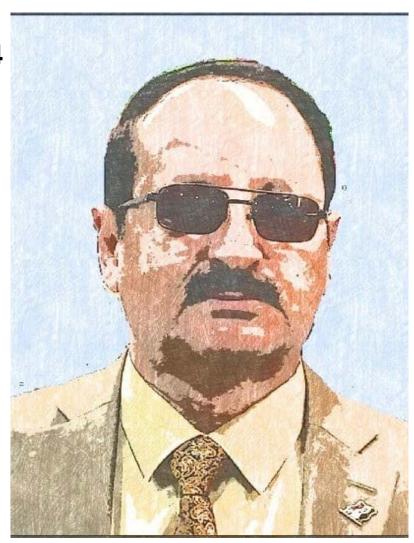
أي اعتداء على حقوق النشر أو الملكية الفكرية تحت طائلة المسئولية.

رقم الايداع لدى دائرة المكتبة الوطنية 553.7/1002 (553.7)

مع تحیات د. سلام حسین عوید الهلالي

https://scholar.google.com/citations? user=t1aAacgAAAAJ&hl=en

salamalhelali@yahoo.com


فيس بك... كروب... رسائل وأطاريح في علوم الحياة

https://www.facebook.com/groups/Biothesis/

https://www.researchgate.net/profile///Salam_Ewaid

https://orcid.org/0000-0001-9734-7331

07807137614

الموضـــوع

المقدم__ة

الفصل الأول

الماء في الكتب السماوية ، الماء في السنة النبوية الشريفة ، الماء في التراث والتقاليد ، الماء والعلاج ، أهمية الماء ، الماء في الكون ، بيولوجية الماء .

الفصل الثاني

الوطن العربي والمياه ، مصادر الموارد المائية ، دورة الماء في الطبيعة ، مفارقات خواص الماء ، أنهار الوطن العربي والعالم .

الفصل الثالث

نوعية المياه الطبيعية ، نقاوة المياه ، المياه والتطور ، الماء والطبيعة .

الفصل الرابع

المياه السطحية ، نقاوة المياه ، المواد الذائبة ، المواد المنتشرة ، الغرويات ، الجو وتلوث المصادر الطبيعية ، المواد العضوية في المياه الطبيعية ، التراي هالوميثان ، الرائحة والمذاق واللون ، مياه الأمطار ، المياه السطحية ، البرك والبحيرات والسدود ، المياه الجوفية ، الينابيع ، الآبار ، مياه البحار .

الفصل الخامس

الاحتياجات الصناعية والمنزلية للمياه ، الاستخدامات الصناعية ، الاحتياجات المناهية من الاحتياجات المنزلية للمياه ، الأمراض والاصابات والأضرار الناشئة من المياه المجهزة .

الفصل السادس

كيمياء المياه ، خواص المياه القيزياوية

الفصل السابع

معالجة المياه ، عمليات معالجة المياه وأختيار طرق المعالجة ، العوامل المؤثرة على اختيار طرق المعالجة ، معالجة المياه الجوفية ، معالجة المياه السطحية .

الفصل الثامن

التخثير والترويب ، البوليمرات الالومينيه ، أملاح الحديد ، الملبدات ومساعدات التلبيد والمطهرات ، التهوية ، أنواع التهوية ، معالجة المياه ، إزالة العسرة بالترسيب .

الفصل التاسع

الترشيح ، التعقيم والتطهير ، التنقية المايكروبية .

الفصل العاشر

تحلية المياه ، تقطير المياه ، التقطير الشمسي ، التقطير الصناعي ، التقطير المتعدد الفعالية ، التقطير بالأنابيب الغاطسة ، التقطير بالفيلم الرقيق ، التقطير المتعدد الفعالية بالحرارة المنخفضة ، التقطير الوقفي ، التقطير بالكبس مع استعمال الطرد المركزي ، التحلية بالتبخير ، التحلية بتكوين الهايدرات ، التحلية بالانتشار الغشائي ، التحلية بالتناضح العكسي .

الفصل الحادي عشر

المياه المعدنية والخطوط الانتاجية .

بيني لِللهُ الرَّجَمَٰزِ الرَّجِينَ مِ

﴿ وجعلنا من الماء كل شيء حي ﴾

صدق الله العظيم

المقدمة:

الحمد لله رب العالمين والصلاة والسلام على اشرف المرسلين سيدنا محمد وعلى آله وصحبه أجمعين.

أما بعد،

الماء هذا السائل العجيب، سائل الحياة الذي بدونه لا يمكن للحياة أن تستمر رغم تركيبته البسيطة فهو أثمن وأغلى ما تملك البشرية واستأثرت الأرض بوجود حياة عليها. والماء هو عماد اقتصاد الدول ومصدر رخائها بتوافره تتقدم وتزدهر وبنضوبة تحل بها الكوارث والنكبات فأينما يعيش الإنسان يوجد مصدر للحياة حيث كان الماء ولا زال وسيبقى العامل الأساسي لأنشطة الإنسان على مر العصور ويمكن مشاهدة ذلك من خلال شق القنوات وإنشاء السدود والخزانات لحفظ المياه من الضياع ومن ابتكار الإنسان لأفضل الطرق والآلات لرفع المياه.

وحالياً ونظراً للزيادة السكانية الحاصلة في العالم وتنوع استخدامات المياه في مجالات الحياة التي تعددت وازداد حجمها صناعياً وزراعياً وخدمياً بالإضافة إلى الاستخدام الأساسي وهو الاستهلاك المباشر جعل كمية المياه الصالحة تتناقص إذا ما علمنا بأن كمية الماء العذب والصالح للشرب وللزراعة والاستخدام يمثل ١٪ من المياه في العالم والتي تمثل نسبه الماء العذب وهي مقسمه قسمه غريبة في بقاع الأرض بعضها تجود عليها الطبيعة في سخاء شديد حتى يغرقه الماء ويغص به، وبعضها يتمسك عنه إمساكاً مروعاً والبعض الآخر يتحرق إلى قطرة واحدة وإضافة إلى كل ما تقدم فأن التلوث الحاصل في هذه المياه. نتيجة مياه المصانع والمزارع ومياه التصريفة الخجعل الكثير من الدول حالياً للتسابق على السيطرة على مصادر المياه وذلك عن طريق الاتفاقيات الإقليمية أو العمل على تحلية بعض المصادر المالحة. لذا فالاهتمام بالمصادر المائية أصبح ضرورة من ضروريات الحياة والإلمام بالمياه والتوعية بشأنها أصبح واجباً وطنياً للمحافظة عليها من التلوث فروريات الحياة والإلمام بالمياه والتوعية بشأنها أصبح واجباً وطنياً للمحافظة عليها من التلوث تسرف لا تسرف وأن كنت على نهر جار).

الفصل الأول

- الماء في الكتب السماوية.
 - الماء في السنة النبوية.
- الماء في التراث والتقاليد.
 - الماء في العلاج.
 - أهمية الماء.
 - الماء في الكون.

بيني إلله البحم البحم النجي

الماء في الكتب السماوية: (القرآن الكريم):

الماء هذه الكلمة البسيطة ذكرت في القرآن الكريم في ٦٣ موضعاً ولفظ الأنهار في ٥٩ موضعاً أما لفظ البحار فقد جاء ذكرها في ٤١ موضعاً والسحب جاءت في (٩) مواضع وهذا يدل على أهمية الماء بالنسبة للكائنات الحية حيث يعتبر الماء سائل الحياة الذي بدونه لا يمكن أن تكون هنالك حياة وقد جاءت الآيات القرآنية دليل ثابت وقاطع حيث ذكر في سورة الأنبياء الآية ٣٠ قوله تعالى: ﴿ بسم الله الرحمن الرحيم وجعلنا من الماء كل شيء حي ، أما في سورة النور الآية ٥٥ فقد جاء قوله تعالى: ﴿ والله خلق كل دابة من ماء ﴾ . أما الآيات التي تتحدث عن الماء وخلق الإنسان فهي قوله تعالى: ﴿ وهو الذي خلق من الماء بشراً فجعله نسباً وصهراً ﴾ [الفرقان: ٥٤] وقوله تعالى: ﴿ وعمل نسله من سلالة من ماء مهين ﴾ [السجدة : ٨] ثم قوله تعالى: ﴿ ألم نخلقكم من ماء مهين ﴾ [المرسلات: ٢٠] أما قوله تعالى: ﴿ فلينظر الإنسان مم خلق خلق من ماء دافق ﴾ [الطارق: ٥٠].

أما الآيات القرآنية التي تشير إلى دورة الماء في الطبيعة وهي قوله تعالى: ﴿هُو اللّٰهِ يَرْسُلُ الرَّيَاحِ بُشُواً بِينَ يَدِي رَحْمَتُهُ حَتَى إِذَا أُقلت سَحَاباً ثَقَالاً سَقَناهُ لَبلَدُ مِيتٍ فَأَنْزِلنا بِهِ الماء فأخرجنا به من كل الشمرات ﴾ الأعراف ٥٧ وفي الآية ٢٢ من سورة الحجر قوله تعالى: ﴿وأرسلنا الرياح لواقح فأنزلنا من السماء ماءً، فأسيقناكموه وما أنتم له بخازنين ﴾ أما في سورة فاطر الآية ٩ قال تعالى: ﴿والله الذي أرسل الرياح فتثير سحاباً فسقناه إلى بلد ميت ﴾.

أما الآيات التي تتحدث عن السحب ونزول المطرفهي قوله تعالى: ﴿وهو الذي يريكم البرق خوفاً وطمعاً وينشىء السّحابُ الثقال﴾ [الرعد: ١٢] وقوله تعالى في سورة الواقعة الآيات ٩٩، ٩٩ ﴿أفرأيتم الماء الذي تشربون أأنتم أنزلتموه من المزن أم نحن المنزلون﴾ وفي سورة النبأ ١٤ جاء قوله تعالى: ﴿وأنزلنا من المُعصَراتِ ماءُ ثجاجاً﴾.

أما الآيات القرآنية التي تشير إلى المياه الجوفية فقد جاء ذكرها في سورة المؤمنون الآية ١٨ قوله تعالى: ﴿وأنزلنا من السماء ماء بقدر فأسكناه في الأرض، وأنا على ذهاب به لقادرون و جاء قوله تعالى في سورة الزمر الآية ٢١ ﴿أَلُم تُو أَن الله أنزل من السماء ماءً فسلكه ينابيع في الأرض ﴾

أما الآيات التي ترتقي بالوسائل أعلى درجات الثواب والعقاب لأهمية الماء في حياة البشر ففي الثواب جاء قوله سبحانه وتعالى: ﴿مثل الجنة التي وُعد المتقون فيها أنهار من ماء غير آسن وأنهار من لبن لم يتغير طعمه وأنهار من خمر لذة للشاربين وأنهار من عسل مصطفى سورة محمد الآية ١٥ وقوله تعالى في سورة الواقعة الآية (٣٠، ٣١) ﴿وظل ممدود وماء مسكوب أما صورة العقاب فقد جاء ذكرها في سورة إبراهيم الآية ١٦ قوله تعالى: ﴿من ورائه جهنم ويسقى من ماء صديد وقوله تعالى في سورة الكهف ٢٩ ﴿وأن يستغيثوا يغاثوا بماء كالمهل يشوي الوجوه، بئس الشراب وساءت مرتفقاً ﴾.

أما عن الآيات القرآنية التي تتحدث عن الثواب والعقاب في الدنيا فقد جاءت في الآية الآية المن سورة الجن قوله تعالى: ﴿ ولو أستقاموا على الطريقة الاسقيناهم ماءً غدقاً ﴾ .

أما العقاب في الدنيا فقد جاء ذكره في الآية ١١، ١٢ من سورة القمر قوله تعالى: وفقتحنا أبواب السماء بماء مُنهمر وفجرنا الأرض عيوناً فالتقى الماء على أمر قد قُدر، صدق الله العظيم.

وهنالك آيات كثيرة في القرآن الكريم لها دلالات ومعاني كبيرة في حياة بني البشر ومن قرأها عرف قدرة إلخالق العظيم جلَّ جلاله وفضله الكبير على عبادة بما أنعم عليه من نعم وارفه.

الماء في الإنجيل والتوراة :

لقد جاء ذكر الماء في الإنجيل والتوراة في عدة أماكن وفي صور متعددة وقد شبه الماء بصفاء القلب وبالبركة وبإلخير وبسائل الحياة كما وقد أشير إلى الماء بأنه سائل الطهر والنظافة . حيث عَمد سيدنا المسيح البشر بالماء رمز النظافة والطهر .

الماء في السُنة النبوية الشريفة:

أن السنة النبوية الشريفة قد أعطت اهتماماً كبير لحماية الماء والحفاظ عليه حيث جاءت التوجيهات النبوية الطاهرة بعدم الإسراف في ماء الوضوء.

فعن عمرو بن شعيب عن أبيه عن جدة قال: أن رجلاً قد أتى النبي عَلَيْ فقال يا رسول الله كيف الطهور؟ فدعا بماء في أناء ، فغسل كفيه ثلاثاً ثم غسل وجهه ثلاثاً ثم غسل ذراعية ثلاثاً ، ثم مسح برأسه وأدخل أصبعية السباحتين في أذنيه ومسح بإبهامه على ظاهر أذنيه وبالسباحتين باطن أذنيه ثم غسل رجليه ثلاثاً ثلاثاً . ثم قال: «هكذا الوضوءة فمن زاد على هذا فقد أساء وتعدى وظلم».

وعن أبن عمر قال رأى رسول الله ﷺ رجلاً يتوضأ فقال: «لا تسرف، لا تسرف، لا تسرف، الله ﷺ مرَّ بسعد وهو يتوضأ فقال ما هذا السرف، فقال أفي الوضوء إسراف قال: نعم وأن كنت على نهر جار».

أما عن تلويث المياه فقد جاء عن أبي هريرة رضي الله تعالى عُنه قال رسول الله عَلَيْ «لا يَبُولن أحدكم في الماء الراكد، ثم يتوضأ منه». وهذه أول دعوة في التاريخ للحفاظ على الماء من التلوث.

ومن السنن النبوية الشريفة صدقه الماء. حيث نهت السنة النبوية عن منع الماء حتى لا يؤدي هذا المنع إلى الأضرار بالنبات والحيوان والإنسان فقد جاء عن أبو هريرة رضي الله تعالى عنه أنه رسول الله عليه قال: «لا يمنع فضل الماء ليمنع به الكلاً» بل نهى عن بيع الماء فقال عليه لا يباع فضل الماء ليباع به الكلاً».

وعن الحيوان قال رسول الله عَلَيْتُمْ «غُفر لأمراه مُومسةمرت بكلب على رأس بئرُ يلهث. . قال: كاديقتله العطش، فنزعت خفها فأوثقته بخمارها، فنزعت له من الماء فغفر لها».

أما الإنسان فقد أولاه اهتماماً أكبر، فجعل منع الماء عن الإنسان ضمان من العذاب الأليم.

فعن أبي هريرة رضي الله عنه قال رسول الله عنه قال يكلمهم الله، ولا ينظر إليهم ولا يزكيهم ولهم عذاب أليم في رجل على فضل ماء بالغلاه يمنعه من أبن السبيل، ورجل بايع الإمام لا يبايعه إلا لدنيا، فأن أعطاه منها وفي له وأن لم يعطه لم يف له. ورجل بايع رجلاً سلعة بعد العصر فحلف بالله لأخذها بكذا وكذا، فصدقه وهو على غير ذلك.

ومن دعاء الرسول عَلَيْ أثناء سنوات قله الغيث: قوله عَلَيْ «اللهم أغثناة اللهم أغثناة اللهم أغثنا اللهم أغثنا وفيمن أدعية الرسول أثناء هطول الغيث بشدة قوله عَلَيْ «اللهم حوالينا لاعلينا اللهم على الآكام والظراب وبطون الأودية ومنابت الشجر».

الماء والتراث والتقاليد :

للماء أهمية كبيرة في حياة وتقاليد الشعوب منذ القدم مما أعطت للماء قدسية مميزة وخصوصاً لمشاريع الحياة الجديدة كالزواج والبلوغ وتغير عتبة البيوت والسفرة إلخ من الأمور فحثلاً في مناسبات الزواج لدى بعض الأقوام بأن يتم تغطيس الزوج والزوجة قبل الزفاف في مياه الجداول والأنهار دليل على إلخير والرخاء والمحبة، أما البعض الآخر فيقوم عند زفاف أبنته بوقوفها في وعاء ماء قبل خروجها إلى بيت زوجها دليل على نضوج الفرع وتفتحه للحياة.

وكانت الأفراح والمناسبات قديماً وخصوصاً عند مراسيم إلخطوبة تعتمد على شرب الماء وتحولت إلى شرب العصائر بعد ذلك.

أما علاقة السفر مع الماء فهو أيمان بعض الناس بأنهم إذا رشوا الماء بعد المسافر ستكون لهم صلة به ليعود سالماً غانماً لهم. أما الصفة إلى تجمع الجميع فهي النظافة . والنظافة هي من الإيمان .

الماء والعلاج:

كلما تقدم الإنسان في العلم تعرف على الكثير من فوائد الماء العلاجية رغم مزاولته لبعض المعالجات بالماء منذ القدم ولكن بدون معرفة الأسباب ولم يكن يعرف دور الماء بذلك. فالماء البارد يعمل على تنشيط وتجديد حيوية الجسم وتزيد من كفاءة الجهاز المناعي لجسم الإنسان وبنفس الوقت تعمل على تنشيط مسام الجلد. أما الماء الدافيء فهي تعمل على تهدئه الأعصاب والاسترخاء والمساعدة على النوم وتسكين الآلام نتيجة لتوسع الأوعية الدموية بالجسم أما استعمال الماء الدافيء مع التدليك يساعد على تنشيط الدورة الدموية وهنالك الكثير من الاستعمالات الموضعية والكلية للجسم بالماء.

والماء منظف للجسم داخلياً وخارجياً فيعتبر الماء أفضل منظف لأجهزة الإنسان الداخلية، الكبد، الكليتين المسالك البولية إضافة إلى فوائدة العامة من شرب الماء الذي يعتبر حمام لأعضاء الجسم حيث يزيد في رطوبتها وينعشها وينظفها كما أن الماء ينظم حرارة الجسم كما أنه ينشط الجهاز الهضمي ويعمل على إزالة السموم وتخفيفها لذلك كثرت استعمالات المياه الباردة والدافئة والحارة لفرص العلاج كما أن استعمال الماء الساخن والبارد بالتعافي للقدمين يساعد في التخلص من الأرق، وإلخمول والكسل، الإمساك، احتقان الأوردة (الدوالي). أما الاستعمالات إلخارجية الأخرى فهي تنظيف الإمساك، احتقان الأوساخ والأتربة وتخفيف الأعداد البكتريةة إلخ من الأمور ويمكن أن يكون الماء عاملاً مساعداً لبعض الأملاح العلاجية أو الأعشاب. فمثلاً حمام الملحي: وأخيراً استعمال الكمادات الباردة والساخنة والثلجية. لتخفيف الآلام. تلين حركة المفاصل، إزالة التقلصات، تشيط الغدة العرقية، تسكين الصراع، تخفيف الأورام، تخفيض حرارة الجسم تخفيف تعب العضلات، إنعاش أنسجة الجلدة إلخ.

وهنا لا بدمن الإشارة إلى أن الماء مهم وضروري في المجال العلاجي ولسنا بصدده في هذا الكتاب لأن أهمية الماء العلاجية كبيرة و لا يمكن حصرها. ولكن أعطينا أمثلة لها.

أهمية الماء للكائنات:

يعتبر الماء من أهم مقومات الكائنات الحية وبدون الماء لا يمكن للكائنات الحية من الحياة فالحيوان (الكلب) مثلاً لا يمكن أن يعيش بدون الماء لفترة ٥-١٠ يوم، والدجاج يتوقف عن إنتاج البيض إذا منع عنه الماء لمدة يومين وعموماً فأن الحيوانات تموت إذا فقدت ١٠-١٢٪ من ماء جسمها والجدول التالي يوضح نسب الماء في مجموعة متنوعة من الكائنات.

(١) جدول يوضح نسب الماء في الإنسان والحيوان والنبات
 بعض المواد الغذائية

		Acceptance by property by property
نسبة الماء ٪	المادة	/. ell ā
۸٤-٦٦	اللحوم	7.90_
7. A •	الأسماك	7.1.
7.VO	البيض	V0_7
		9/
		9/

نسبة الماء ٪	الكائـــن
7.90_9.	الجنين
7.A1_9V	الطفل عند الولادة
V0_70	الإنسان عند الشيخوخة
۹۰_۸۰	النبات بصورة عامة
۹٠_٨٠	الحيوان

أما محتوى الفواكة وإلخضر والغذاء من الماء فيمكن معرفتها من خلال الجداول التالية :

جدول رقم (٤) يبين نسب الماء في إلخضروات والبقوليات

	*
نسبة الماء ٪	الخضروات والبقوليات
9 £ , V	الخـــس
98,5	الطماطم
97,4	السبانخ
91,7	الكرنب
۸۸,۲	الجـــزر
۸٧,٥	البنجـر
17,7	الـــرز
۹.	الخسيسار
۸۹,٦	اللفت
98,0	الكرفس
300000000000000000000000000000000000000	

جدول رقم (٣) يبين نسب الماء في الفواكة

نسبة الماء ٪	الفاكهــة
۸٦,٩	البرتقال
۸٤,٦	التفاح
٧٥,٣	المسوز
۸٩,٤	الخـوخ
۹٠,٤	الفروالة
417	التمر
A V A	العنب

ومن الجدول نرى أهمية الماء لكل من فاكهة أو خضرة وبدون الماء لا يمكن أن تكون هنالك فاكهة أو خضرة.

أما بالنسبة إلى محتويات أجهزة الإنسان من الماء فيمكن إجمالها بالجدول (٥) التالي حيث يوضح نسب الماء فيها.

جدول (٥) يوضح نسب الماء في أجهزة الإنسان

الأنسجة الدهنية
العظام
العضلات المخططة
بلازما الدم
خلايا الجهاز العصبي والمخ
بروتوبلازم معظم الخلايا الحية

أما ما يفرزه أجهزة الجسم خلال اليوم فيمكن إجمالها بالجدول (٦) التالي :

جدول (٦) يبين توضيح ما يفرزه الإنسان أو الجسم/ باليوم من ماء

٥٠٠٠ ملليلتــر / يوم	(١) الغدد اللعابية
۲٤٠٠ - ۱۰۰۰ مللیلتر / یوم	المعدة
۷۰۰-۲۰۰۰ مللیلتـر / یوم	الجدار المعدي
۷۰۰-۱۰۰۰ مللیلتــر / یوم	البنكرياس
۱۰۰ ـ ۲۰۰ ملليلتــر / يوم	المرارة
۷۰۰-۱۵۰۰ مللیلتــر / یوم	الغرر اللمفاوية

أما كميات ما يطرحه الجسم من الماء باليوم الواحد فيمكن ملاحظته من الجدول ٧ التالي :

جدول (٧) يوضح ما يطرحه الإنسان/ باليوم الواحد من الماء

الفقدان اليومي من البول الفقدان اليومي من البول

الفقدان اليومي من القولون ١٠٥ - ٢٠٠ ملليلتــر / يوم

الفقدان اليومي عن طريق الجلد والرئتان ١٠٥٠-٧٠٠ ملليلتــر / يوم

الفقدان اليومي عن طريق الغدد العرقية ٥٠ - ٤٠٠٠ ملليلتر / يوم

الفقدان اليومي عن طريق الثديية المفقدان اليومي عن طريق الثديية

۱۰۰ ـ ۲۰۰ ملليلتر / يوم ۹۰۰ ملليلتر / يوم / خلال فترة الرضاعة

أما المياه الإضافية في داخل الجسم وتأتي من التمثيل الغذائي للمواد الغذائية فإذا علمنا أن الغرام الواحد من الكربوهيدرات تنتج أثناء التمثيل ٦, ٠ غم ماء أما الدهون فينتج ١ غم والبروتين ينتج ٢٦, ٠ ماء.

لذا ترى أن جسم الإنسان مملوء بالماء وأن أي خلل في ميزان الماء داخل جسم الإنسان فأنه سيؤدي إلى خلل مرضي وإذا زاد هذا إلخلل يمكن أن يؤدي إلى الجفاف والموت ومن أهم الأضرار الناتجة عن نقص الماء في الجسم يمكن أن يلاحظ بالنقاط التالية :

١ ـ زيادة في سرعة التنفس.

٢ ـ زيادة في النبض وارتفاع درجة الحرارة (الجسم).

٣- الإحساس بوخز وخدر في أصابع اليدين والقدمين.

٤ ـ زيادة تركيز الدم ونقصانه وصعوبة جريانه.

ومن كل ما تقدم فلنتصور أهمية الماء في جسم الإنسان والكائنات الحية عموماً وبالإضافة إلى ما تقدم فأن للماء وظائف وأهم هذه الوظائف ما يلي :

١ ـ مكون أساسي لبروتوبلازم إلخلية الحية.

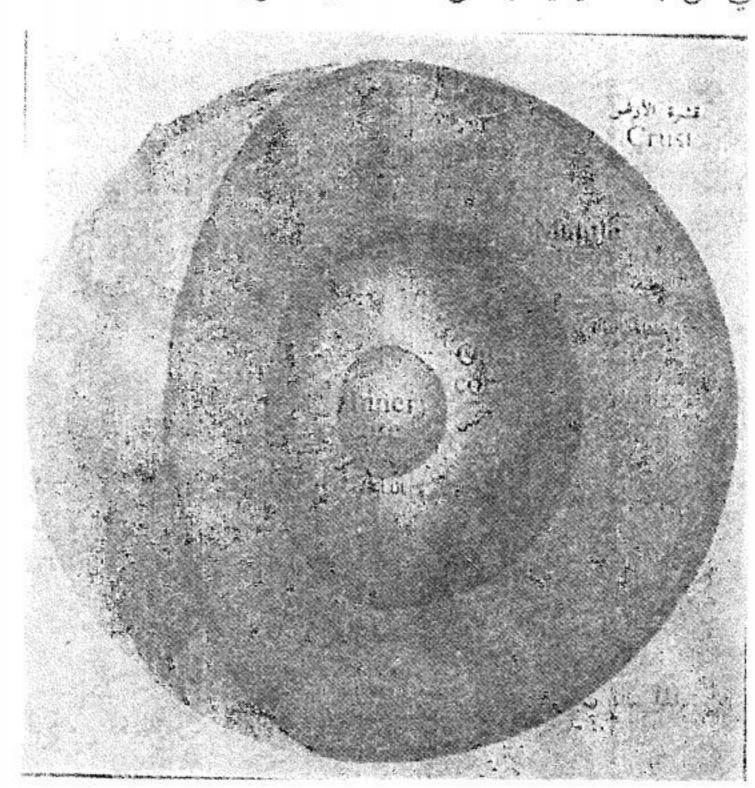
٢ ـ يعتبر الماء من أهم المذيبات للمواد العضوية والغير عضوية.

٣- يعتبر عامل نمو للملكة النباتية والحيوانية.

٤ ـ من العوامل الأساسية لعمليات التركيب الضوئي.

- ٥ _ يتواجد بكثرة في الأطعمة .
- ٦ يساعد في عمليات الطبخ.
- ٧ يساعد في الكثير من العمليات الصناعية .
- ٨ ـ يساعد في إنشاء المشاريع الزراعية وتطورها من حيث ري المزروعات وإنتاج
 المحاصيل والأطعمة، كما أنه ينتج ويولد الطاقة مثل الطاقة الكهربائية.
 - ٩ ـ يلعب الماء دوراً مهماً في تنظيم درجة حرارة الجسم وضغطه الأزموزني ويمنع الجفاف.
 - ١- يساهم في إنتاج وتصنيع المنتجات والبضائع.
 - ١١ ـ يساهم في عمليات التبريد ونقل الحرارة.
 - ١٢ ـ يساعد في التخلص من المواد الغازية.
 - ١٣ ـ يدخل في عمليات ترطيب وتبريد الهواء.
 - ١٤ ـ تستخدم في التخلص من الفضلات.
 - ١٥ ـ يستخدم في المواصلات ونقل المواد والملاحة.
 - ١٦_ يستخدم في تربية الحيوانات والنباتات المائية والبرمائيات.
 - ١٧ ـ مهم في احتياجات الصحة العمومية والبيئة.
 - وهنالك الكثير من الوظائف والمهام للحياة.

الماءُ في الكونِ :


تبلغ كمية الماء في الغلاف المائي للكرة الأرضية بحدود ٥, ١ مليار كيلو متر مكعب وجميعها تتجمع في المحيطات والبحيرات وبالرغم من هذه الكمية فأن الدراسات تشير إلى أن أضعاف هذه الكمية موجودة تحت القشرة الأرضية وهذه الكمية من المياه هي التي ميزت الكرة الأرضية عن باقي الكواكب باللون الأزرق المميز وبوجود الحياة علية والسؤال الذي يطرح نفسه من أين جاء الماء إلى الكره الأرضية.

فهنالك بعض الاقتراحات التي يتداولها العلماء فيما بينهم وعلى أختلاف اختصاصاتهم (جيولوجيا، فلك، فيزياء . . . إلخ) من العلوم فالفرضية الأولى تشير إلى أن الماء نبع من داخل الكرة الأرضية في بداية التكوين وهذه الفرضية أختص بها الجيولوجيون حيث قسموا الأرض إلى ثلاثة أقسام وكما هي في الشكل (١) .

أ ـ القشرة الأرضية Earth Grust . بـ الوشاح Mantle ويعتقد أنها مصدر الماء . جـ الغلب Core .

أما الفرضية الأخرى فهي تعتمد على أن الماء ضيفاً سماوياً فالأرض تستقبل كل لحظة ومن كافة الجهات إشعاعات ذات طاقة عالية جداً ويعتقد أن مصدرها السُموم الناتجة من الانفجارات النجمية وتحتوي هذه الإشعاعات على جسيمات ذرية أولية وتشكل البروتونات هي نوى ذرات الهيدروجين وعندما تحترق هذه البروتونات الطبقات العليا من الغلاف الجوي للأرض تستقطب إليها الاكترونات وتتحول إلى هيدروجين وسرعان ما تتحد مع الأوكسجين مكونه الماء.

ورغم كل هذه الفرضيات التي ذهب إليها العلماء من جميع الاختصاصات يبقى إلحلق للخالق العظيم والإيمان بما قدم لخير البشرية فالماء جزء من هذا إلحلق لأن الإنسان خلق من الماء بسم الله الرحمن الرحيم والله خلق كل دابة من ماء، أما الآية الشانية وجعلنا من الماء كل شيء حي صدق الله العظيم. فهنا تكمن العظمة فالماء موجود منذ إلحليقة ولم يأتي من أبعاد خيالية لبعض العلماء والمفكرون.

شكل (١) التركيب الداخلي للأرض

بيولوجية الماء :

أن عالم بيولوجيا الماء عالم واسع وكبير من حيث النوعية والكمية ولا يمكن إيجازه في سطور محددة أو فصل لأنه عالم متشعب وهنالك من المصادر العلمية التي تشرح بالتفصيل هذا العالم ولكننا في هذا الكتاب نعطي بعض المؤشرات حول هذا العالم لنعطي أهمية للماء، فالماء يضم بين جوانحه جميع الممالك من نباتية إلى حيوانية إلى طحالب وأشنات وأحياء دقيقة.

يعتبر الماء وسطاً بيئياً جيداً للكثير من الأحياء الحية وهي نعمة من نعم الله سبحانه وتعالى حبى بها عبده لأن تكون مصدر رزق له لما تحتويه هذه الأحياء من مصادر الغذاء الرئيسية كالبروتينات والزيوت والمعادن والفينامينات بالإضافة إلى ذلك فالعلم اليوم يكتشف أشياء جديدة ومهمة حيث اكتشفت في الآونة الأخيرة الكثير من العقاقير الطبية لمعالجة الكثير من الحالات المرضية من الأحياء الماثية، كما أنها مصدراً للؤلؤ والمرجان (الدرر الثمينة)، أضف إلى ذلك فأن الأحياء الماثية أصبحت حالياً مصدراً لكثير من المواد التي تحتاجها الصناعة كما أن الطحالب (طحالب المياه العذبة) ودكم وذلك لقدرتها على التي تحافظ على حفظ التوازن الغازي على سطح الأرض وذلك لقدرتها على امتصاص Co2 وإطلاق O2 ويعزى إلى أن Co2 المستهلك من قبل هذه الطحالب لعملية التركيب الضوئي والتي تتم على وجه الأرض تبلغ ٢ × ١٠ أأي ٢٠٠ مليون طن سنوياً وتتم هذه العملية من قبل طحالب المياه العذبة والمالحة أما النباتات الأرضية فتثبت ٢ × ١٠ من الكربون الموجود في Co2 سنوياً.

والطحالب كثيرة الأنواع فمنها إلخضراء ومنها البنية والطحالب الحمراء ومن هذه الطحالب ما تدعى بالطحالب البحرية أو طحالب المياه العذبة وعلى سبيل المثال طحالب إلخضراء كلاميدوموناس Chlamydomonas وهذه تعيش في المياه العذبة وكذلك الباندورينا والفولفوكس والفوشيرا Voucheria وهنالك الطحالب اليوجلينية أو السوطيه، أما الطحالب البنية فالمثال عليها Fucus و Pucus والخزازيات الكبدية الطحالب كالاسباير وجيرا والدياتومات والنوستوك والفطريات والحزازيات الكبدية التي تضم حوالي ١٧٥ جنساً.

أما إذا تبحرنا في موضوع المملكة الحيوانية فهنالك الكثير الكثير من الأحياء ابتدأ من الأحياء الأولية البسيطة البروتوزوا إلى الأكثر رقياً فمن أمثلة البروتوزوا البراميسوم واليو غليتا والأميبا والهايدرا . . . إلخ إلى أحياء أكثر تطوراً كالحشرات المائية . إلى عالم أكثر تطوراً كالسرطانات ونجمة البحر والقواقع إلى أحياء أكثر تطوراً كالأسماك المتعددة الأنواع منها الصغير ومنها الكبير إلى الحيتان وكلاب البحر والدلافين والفقمة والأخطبوط والتماسيح إلخ لأن عالم المياه عالم كبير وواسع أما عن النباتات فهناك النباتات التي تعيش على النباتات فهناك النباتات التي تعيش على سطح المياه ومنها نباتات تزهر وتورق ومنها لا تزهر علماً أن أحياء المياه لها مزايا مختلفة فمنها ما يعكر المياه ومنها ما ينقي المياه لذلك تعتبر ثروة المياه من الثروات المهمة في عالمنا المعاصر هذا لذا فلنحافظ على هذه الثروة من التلوث لأن التلوث يؤثر إلى حد كبير على صفات الماء الفيزياوية وأهمها الكثافة واللزوجة والتي تؤثر على حركة الأسماك في المياه وتعيق حصولها إلى غذائها أو توفير حمايتها من أعدائها، كما أن للارجة الحرارة دور كبير على حياة الأسماك وخصوصاً عمليات الأيض كما أن لها للرجة الحرارة دور كبير على حياة الأسماك وكذلك درجة الحموضة الأسماك فأنها تؤثر على بشكل كبير على حياة الأسماك وكذلك درجة الحموضة وكذلك درجة تركيز المواد الصلبة وكل هذه المؤشرات لها أيضاً تأثيراً كبيراً على بيولوجية المياه.

الفصل الثاني

- الوطن العربي والمياه .
 - مصادر المياه المائية .
- دورة الماء في الطبيعة .
 - مفارقات الماء .
- أنهار الوطن العربي والعالم .

الفصل الثاني الوطن العربي والمياه

أن مساحة الوطن العربي تزيد عن ١١ مليون كيلو متر مربع حيث تمتد بطول ٢٥٠٠ كيلو متر من إلخليج العربي إلى المحيط الأطلسي غرباً وأن عدد سكان الوطن العربي يزيد عن ١٦٠ مليون نسمة علماً بأن الوطن العربي يقع في ما يسمى بالحزام الصحراوي الواقع شمال خط الاستواء و يمكن تقسيمه حسب الأقاليم الجغرافية المناخية.

أ - أقاليم الرطبة إلى شبه رطبة .

ب ـ أقاليم جافة .

جـ أقاليم الجافة إلى شبه الجافة.

لذا نوى أن الوطن العربي يضم مساحات شاسعة من الصحاري إضافة إلى أن بعض الأقطار العربية لا تتوفر فيها الموارد المائية سوى المياه الجوفية والتي تمثل مركز الشقل في طائفة الموارد المائية وبعض الأقطار العربية لها حصة مائية مالحة نتيجة حدوديتها مع البحار أو المحيطات. ويجب أن لا ننسى بعض التحركات التي حدثت لقشرة الأرض والتي كان لها دور على حركة المياه الجوفية وهذا ما أثبتته الدراسات.

لذا فأن الاهتمام بمصادر المياه في الوطن العربي أصبح من الضروريات وكذلك الاهتمام بعمليات التحلية للمياه المالحة لتصبح مياه عذبة بعد التقدم العلمي الحاصل في هذا المجال.

مصادر الماء:

عنصر من العناصر الجوهرية والأساسية لبناء الكائنات الحية على مختلف أنواعها وأشكالها فهو العنصر الأساسي للحياة .

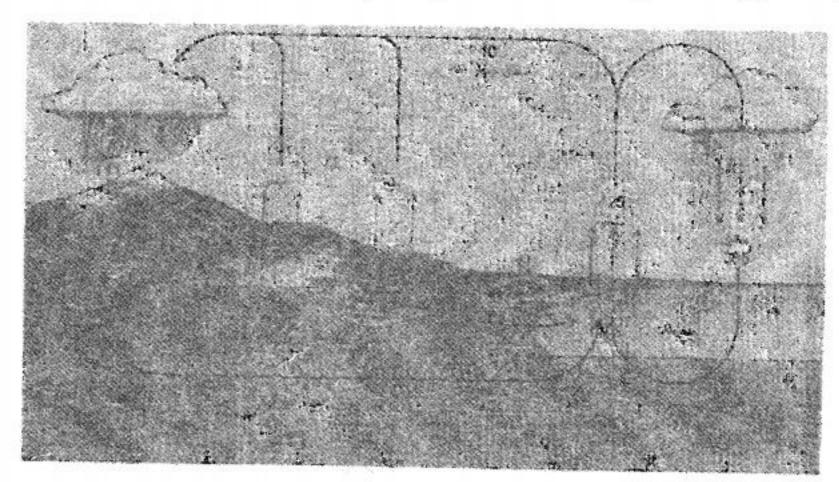
فالدم للإنسان والحيوان هو عصب الحياة الرئيسي الذي فيه يحيا وبه يعيش وتستمر حياته فالماء للطبيعة هو عصبها الرئيس وبدون الماء لا يمكن أن تكون هناك حياة فبالماء البذور تنبت والأشجار تورق والأزهار تثمر والحيوانات على اختلاف أنواعها تنمو وتتحرك ويكسو جسمها اللحم وتمتلىء بالحليب وبالمتجات الأخرى فكلها نعم من الله سبحانه وتعالى وقد جاء في صورة الأنبياء بسم الله الرحمن الرحيم «وجعلنا من الماء كل شيء حي» صدق الله العظيم. الأمثلة كثيرة في الحياة فقد قامت الحضارات على ضفاف الأنهار في وادي الرافدين ووادي النيل.

كما أن الماء يعتبر الركيزة المتميزة في كل نشاط اقتصادي أو اجتماعي في كافة الأقطار كما أن الماء يعتبر عنصراً مهماً في توفير الأمن الغذائي للشعوب إضافة إلى ذلك فالماء يلعب دوراً مهماً في الإدامة والاستقلال لدول العالم.

مصادر الموارد المائية:

توجد الماء في الطبيعة على الأشكال التالية:

أ ـ مياه سطحية: وهي المياه التي تجرى على سطح الأرض كالأنهار والجداول والبحيرات والبرك.


ب ـ مياه جوفية: وهي المياه الموجودة في باطن الأرض.

جــ مياه الأمطار والثلوج.

د. مياه المعالجة.

: The Hydrological eycle دورة الماء في الطبيعة

الماء من أساسيات الطبيعة ويوجد بصور مختلفة فمنها الصلبة (ثلوج)، وسائلة (مياه) أو غازية (أبخرة) ويتنقل الماء بين هذه الصورة في دورة ثابتة تدعى بالدورة المائية -Hydrolog وتعتبر الشمس والأرض والغلاف الجوي العوامل الأساسية لهذه الدورة. حيث يتبخر الماء من المسطحات المائية مستعيناً بحرارة الشمس ويرتفع في الهواء إلى الغلاف الجوي ومن ثم تتكاثف هذه الأبخرة حول ذرات الغبار في الهواء متحولاً إلى قطرات ماء سائلة أو تتجمد متحولاً إلى بلورات ثلجية وتتجمع هذه البلورات والقطرات، مكونه السحب والتي بدورها يزداد وزنها وتعود مرة أخرى إلى الأرض على شكل أمطار أو ثلج أو برد وهكذا تعاد الدورة نتيجة للظروف المناخية كما يمثلها الشكل التالي (٢):

شكل (٢) الدورة الهيدرولوجية Hydrological Cycle

وتحمل السحابة الصغيرة مائة وألف طن من الماء بالاعتماد على الظروف المناخية من درجة الحرارة والرياح، الهواء الجوي، الرطوبة، الرطوبة المطلقة، الرطوبة النسبية، ودرجة التشبع. إذا علمنا أن ثلاثة أرباع الأرض مغطى بالماء والسماء أيضاً تكون محملة ببخار الماء وبدرجات مختلفة وهي نعمة من نعم إلخالق على الطبيعة. فإذا علمنا أن مساحة الكرة الأرضية الكلية هي (٥٠٠, ٧٤, ٥٠٠) كم ومنها أن مساحة الكرة الأرضية بحوالي ٥١١ ألف كم كل عام منها ٤٤٩ ألف كم من سطح المحيطات الكرة الأرضية بحوالي ٥١١ ألف كم كل عام منها ٤٤٩ ألف كم من سطح المحيطات والبحار و ٢٢ ألف كم من سطح اليابسة. ويسقط على اليابسة سنوياً نحو ١٠٠-١١٤ ألف كم من الأمطار أي أن حصة اليابسة من الأمطار يفوق ما يتبخر منها سنوياً.

يتبخر الماء من سطح الأرض والمسطحات المائية والبحار والمحيطات وتتكون السحب ثم تسقط الأمطار فتتدفق المياه على سطح الأرض حيث يتبخر مرة أخرى أو من النباتات حيث ينتج بخار ماء الذي بدوره يتصاعد إلى الغلاف الجوي أو ينفذ إلى الأرض مكوناً المياه الجوفية والتي تسيل إلى البحار وتتبخر مرة أخرى مكونه السحب وهكذا بدوره لا نهائية أما حجم الماء بالكرة الأرضية فيمكن أدراجه كما في الجدول (٨) التالي:

جدول (٨) يوضح حجم الماء بالكرة الأرضية

حجم الماء بالكرة الأرضية حوالي ٤, ١ × ١ ١ كم

%.9V, T	ومنه ماء المحيطات
%Y, Y	ماء عذب
%.VV, Y	ومنه جليد في المناطق القطبية
7.77, 8	مياه جوفية
7.77	ومنه أعمق من ٧٥٠م
7.0,00	ماء في البحيرات والمستنقعات
7. * , * \$	في الغلاف الجوي
7. • , • 1	في الأنهار والجداول

ويقدر الحجم الكلي للماء على وجه الأرض بنحو ١,٣٨٦ بليون كم وتشكل المحيطات ٩٦٪ (أي بحوالي ١,٣٣٨ بليون كم).

هطول الأمطار:

أن عملية هطول الأمطار كما أثبتتها التجارب الفيزيائية تعتمد على عوامل مختلفة تؤثر في استقرار قطرات الماء في السحب وهي :

أ ـ انتظام الشحنة الكهربائية على قطيرات السحاب وهذا يساعد على تنافر القطيرات.
 ب ـ انتظام درجة حرارة عناصر السحاب.

جـ انتظام حركة عناصر السحاب والذي بدوره يمنع الاندماج عن طريق التصادم.

د - انتظام حالة عناصر السحب «أي تكون كلها ماءً سائلاً أو ثلجاً».

هـ انتظام حجوم عناصر السحاب بحيث لا تؤثر عليها قوى التميع والتؤثر السطحي على تجميع القطيرات.

آلية انتقال المياه في الطبيعة:

يتواجد الماء في الطبيعة بثلاثة صور: الصلبة، والسائلة، الغازية وهو يتنقل بين هذه الصور في دورة ثابتة وهذا الانتقال من حالة إلى أخرى قد أدى إلى نشوء حالات مثيرة من الناحية العلمية والعملية حيث أن هذا الانتقال (انتقال المياه) يجري بدون توقف من وإلى الجو والبحر واليابسة وكما نلاحظه في الشكل (٣) التالي وكما هي مؤشرة بالرموز التالية وعلى المخطط.

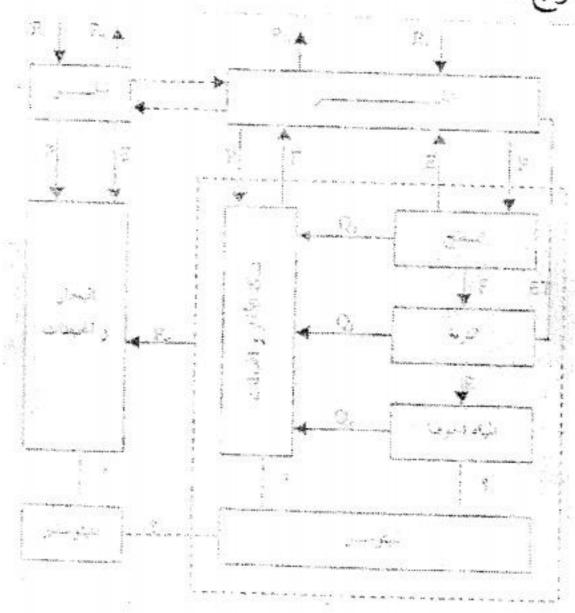
ج W = مياه الجو (مياه مطر أو ثلوج).

ق P = التساقط.

ت E عملية التبخر.

ن _ ET = النتح.

ص صفه $R_0 = a$ عملية صرف.


س صف Q_0 = انسياب سطحي.

 $Q_1 = Q_1$ سني = Q

. سياب حوضي $Q_g = Q_g$

ح F = عملية ارتشاح.

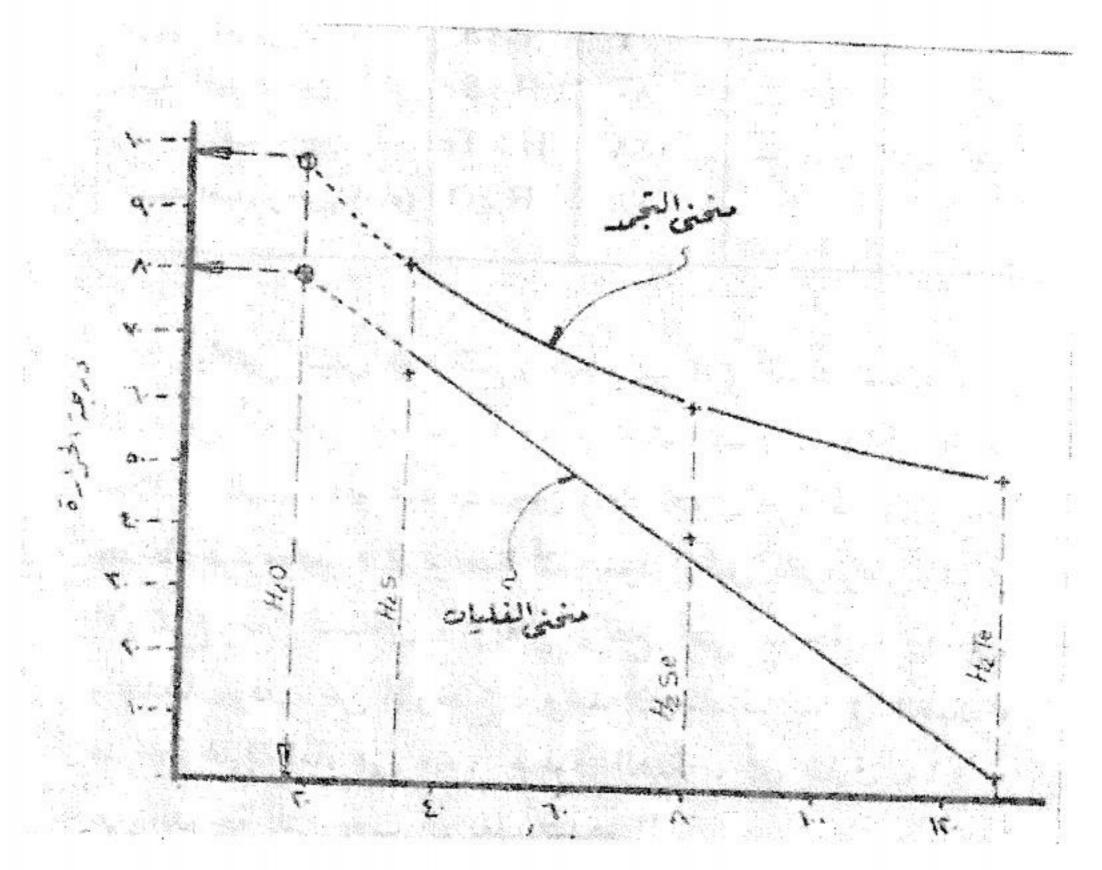
ش R = عملية إعادة الشحن.

الشكل (٣) الدورة الهيدرولوجية

وكما يظهر في الشكل وبالرموز الفعاليات المائية من حيث التساقط (أمطار ، ثلوج) والتخزين في الأرض على مختلف طبقاتها الجيولوجية وفي البحار والمحيطات والأنهارة إلخ وكل فعالية لها رد فعل معاكس فالتساقط رد فعله التبخر المباشر أو غير المباشر من الأرض ويخزنها ومن خلال علميات التتح من التربة والنباتات وهذه بدورها تصب في البحار والمحيطات يشكل عملية حرف $R_{\rm o}$ ، أما انتقال المياه إلى شبكة القنوات فيتم عن طريق الانسياب السطحي $Q_{\rm o}$ أو الانسياب البيني $Q_{\rm i}$ أي جانبي عبر طبقات التربة المشبعة أو انسياب حوضي $Q_{\rm o}$ وهذا يتم عبر التكوينات الجيولويجة المشبعة بالمياه وبالإضافة إلى هذا يكن أن تنتقل المياه إلى طبقات التربة من سطح الأرض وهذا ما يدعى بالارتشاح وهذه العملية هي التي تشحن الطبقات الجيولوجية بالمياه الجوفية (R) .

وكما أشرنا سابقاً أن كميات المياه التي تجري عليها التحولات نتيجة الطاقة الشمسية وفعل الإنسان هو ثابت أما الدورات الهيدرولويجة فهي مستمرة للمجموع الثابت للحياة .

مفارقات خواص المياه :


لقد وهب الله سبحانة وتعالى الماء من دون غيره الكثير من المزايا والصفات لم يعطى العلم تفسيراً مقنعاً حول بعضها ومن هذه المزايا. أن العناصر والمركبات الكيماوية تتصف ببعض إلخواص والمزايا والتي تحددها فموقعها في الجدول وضمن المجاميع التي حددها العلماء والباحثون خلال الحقبة الطويلة من الزمن.

ومن هذه الصفات درجة الحرارة (حرارة الغليان)، درجة التجمد، المحتوى الحراري درجة الانصهار، ثابت العزل الكهربائي وكل هذه إلخواص معروفة لدينا وتتعامل بها ولكن لو تعمقنا قليلاً في هذه الصفات لوجدنا أن هذه إلخواص شيء آخر يختلف اختلافاً كاملاً عن مجاميع زمرته في الجدول الدوري وهذا الاختلاف مقصود وضروري لقيام الحياة على سطح الأرض وفي أعماق البحار. فلو رجعنا إلى معلوماتنا الأولية عن الماء نرى أنه يتكون من الأوكسجين والهسيدروجين وكلنا نعلم أن الأوكسجين هو من المجموع (الزمرة) السادسة من الجدول الدوري وبهذه الزمرة يشترك العدد الكثير من العناصر مثل Se ، Se و وكل هذه العناصر تتحد بالهيدروجين سكونة مركبات جديدة هي كبرتيد الهيدروجين، H_2 Se وسليندا الهيدروجين الذري وتيلوريد الهيدروجين H_2 Se وهذه المركبات لها خواص تتناسب مع التركيب الذري وليا وتسلك نفس السلوك ومن المقروض أن يكون الماء H_2 O يشترك معها في هذه إلخواص فلنحاول أن ندرس درجة الغليان لهذه المركبات .

جدول (٩) خواص المجموعة السادسة في الجدول الدوري

درجة التجمد	درجة الغليان	عدد الكتلة	الرمز	الرمز
۸۲ –	71-	٣٤	H ₂ S	كبرتيد الهيدروجين
-17	٤٢ –	۸٠	H ₂ Se	سلتيد الهيدروجين
01-	٤ –	179	H ₂ Te	ثيلوريد الهيدروجين
صفر مئوي	۱۰۰	11	H ₂ O	ماء أوكسيد الهيدروجين

من الشكل (٤) التالي (المنحني البياني) لدرجتي الغليان والتجمد

شكل (٤) يوضح (المنحني البياني) لدرجتي الغليان والتجمد

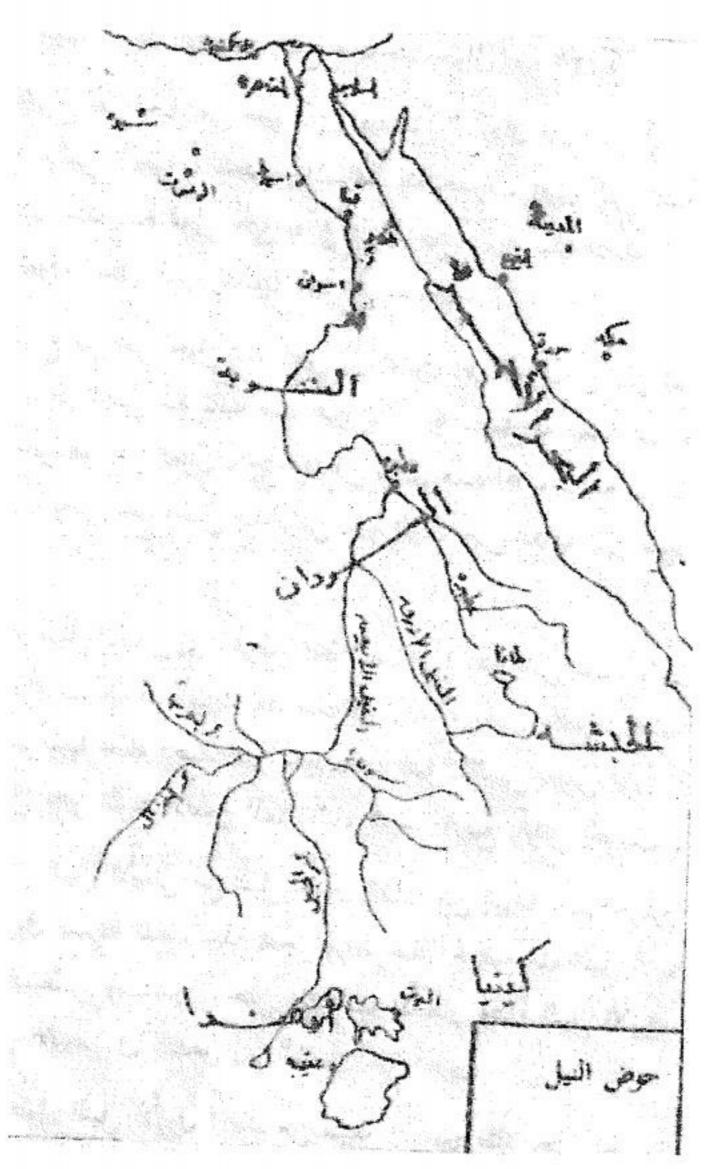
ومن الشكل البياني فيفترض أن يغلى الماء بدرجة ١٠٠ تحت الصفر ولكن الواقع غير ذلك حيث يغلي في درجة ١٠٠ م حيث يظهر الفارق كبير جداً بين الذي يجب أن يكون والواقع وهذا هو السر الكبير الذي أودع سبحانه وتعالى في الماء ليكون أحد أسباب الحياة. لأنه لو افترضنا جدلاً أن الماء يخضع لقوانين الكيمياء فأن البحار ستجف والمحيطات كذلك ويتوقف هطول الأمطار ويتبخر الماء من سطح الكرة الأرضية وبذلك تختفي الحياة ة بجميع أشكالها. أما درجة انجماد الماء فلو رجعنا إلى خواص المجموعة أو الزمرة وكما هي موضحة في المنحنى فينبغي أن يتجمد الماء في ولكنه في الواقع يتجمد في درجة الصفر المتوي أي بفارق فينبغي أن يتجمد الماء التي سخرها لنا سبحانه و تعالى لتخترق كل قوانين الكيمياء.

أنهار الوطن العربي:

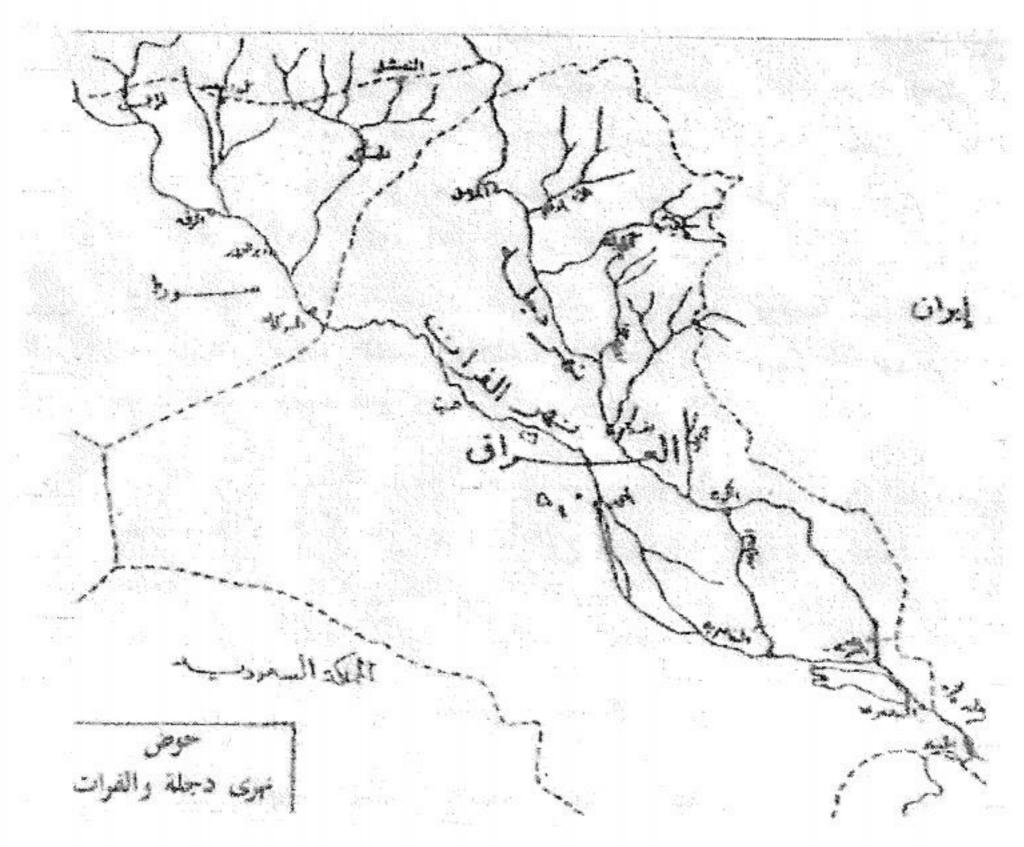
يتمتع الوطن العربي بعدد من الأنهار العذبة ومنها (أ) نهر النيل الذي يجري في جمهورية مصر وجمهورية السودان ويعتبر من أطول أنهار في العالم وفي الوطن العربي ويعتبر من الأنهار ذات السمعة العالية والتي نشأت عليه أقدم الحضارات في عالمنا ويتميز نهر النيل بطوله الذي يبلغ ٦٦٦٩ كم.

أما النهر الثاني (ب) فهو نهر الفرات الذي يمر بثلاثة دول هي تركيا وسوريا وجمهورية العراق ويبلغ طوله ٢٢٢٠ كم ويكون الجزء الأعظم من هذا النهر في العراق وتعتبر مياه نهر الفرات من المياه العذبة.

أما النهر الثالث (ج) فهو نهر دجلة والذي طوله ١٧١٨ كم والذي ينبع من بحيرة هاذار في جبال طوروس شرقي تركيا نهران «الماء الغربي» و «الماء الشرقي» ويلتقيان في ديار بكر مكونين نهر دجلة على أن هنالك روافد أخرى تغذي هذا النهر العظيم داخل الحدود العراقية ومنها الزاب الأعلى والزاب الأسفل ونهر العظيم إلخ من الروافد وتشكل نهر دجلة والفرات حضارة أرض الرافدين العريقة.


 د) نهر العاصي والذي ينبع من بعلبك في لبنان من ينابيع كثيرة ويتجه نحو الشمال فيدخل سورية ويبلغ طول نهر العاصي ٥٧١كم منها ٤٦ كم في لبنان و٣٢٥كم في سورية .

ه) نهر الليطاني ـ ينبع هذا النهر من جنوب هضبة بعلبك ويصب بين صيدا وصور ويبلغ طوله ١٤٥كم .


و) هنالك أنهار صغير داخلية مثل نهر القويق ١٢٦ كم طول ونهر الذهب • ٥ كم ونهر اليرموك ٥٧كم.

ز) نهر الأردن يبدأ نهر الأردن في جبل الشيخ - جبل حرمون في سورية ويصب في
 البحر الميت .

- ح) نهر الملوية/ من أنهار المغرب العربي ويصب في مدينة مليلة .
- ط) نهر سيبو/ ينبع من جنوب مدينة فاس ويصب شمالي مدينة الرباط.
- ي) نهر أم الربيع/ ينبع من جبال أطلس الأوسط ويصب في المحيط الأطلسي جنوب مدينة دار البيضاء.
 - ك) نهر الشينف وطوله • ٥كم وينبع من جبال أطلس وهو من أنهار المهمة في الجزائر .
 - ل) نهر المجردة وهو سن أنهار التونسية .

شكل (٥) يوضح حوض نهر النيل

شكل (٦) يوضح حوض نهر الرافدين (دجلة والفرات)

جدول (١) يوضح الأنهار الرئيسية في العالم وحسب القارات وأطولها بالميل

الطول بالميل	القارة	النهـــر	
٤٠٣٧	أفريقيا	Nile النيل	
79	أفريقيا	الكونغو Congo	
77	أفريقيا	النيجر Niger	
170.	أفريقيا	زامبيزي Zambezi	
17	أفريقيا	أورانج Orange	
75	آسيا	يانجتسي Yangtze	
٠٢٨٢٠	آسیا	لينا Lena لينا	
YA	آسيا	آمــور Amur	

الطول بالميل	القارة	النهــــر
77	آسيا	هوانج (أصفر) Hwang
7719	آسيا	Yenisey
70	آسيا	Mekong مــيكونج
777.	آسيا	أوب Ob
7	آسيا	أنــــدوس أنـــدوس
115	آسيا	أرتــيــس Irtysh
14	آسيا	براهما بوترا Prahmapotra
170.	آسيا	سالوين Salween
14	آسيا	الفرات Ellphrates
100.	آسيا	Kolyma کولیما
1017	آسيا	فيلفوي Vilvuy
10	آسيا	أمــو داريا Amu Darya
10	آسيا	Gainges جانجيز
189.	آسيا	Ural أورال
170.	آسيا	ايراوادي Irrawaddy
17	آسيا	Syr Drya سير داريا
117.	آسيا	Aldan الدان
110.	آسيا	Angara أنجارا
1 . 5 . 1	ا آسیا	Tobol تــوبــول
44	أمريكا الجنوبية	الأمازون Amazon
7777	أمريكا الشمالية	Mississip المسيسبي
77	أمريكا الجنوبية	Parana بارانا
3107	أمريكا الشمالية	ماکنزي Mackenzie
7577	أمريكا الشمالية	ميسوري Missouri
777.	أمريكا الشمالية	Mississpi مسيسبي
120.	أمريكا الشمالية	Arkansas اركانو
	- 47	-

المريكا الجنوبية الاستفالية المريكا الجنوبية الاستفالية الاستفالية الاستفالية الاستفالية الاستفالية المريكا الشفالية المريكا البنوبية المريكا الجنوبية المريكا المريكا الجنوبية المريكا	الطول بالميل	القــارة	النهـــر	
۱۲۳۸ أمريكا الجنوبية Xingo ١٢١٠ أمريكا الشمالية كولومبيا ١٠٣٨ أمريكا الشمالية Snake ١٠٠٨ أمريكا الشمالية Red ١٠٠٠ أمريكا الشمالية كالسوميلي ١٠٠٠ أمريكا الجنوبية كالم المحالية ١٩٠٠ أمريكا الجنوبية المدانوبية ١٨٠٠ أمريكا الجنوبية المدانوبية ١٨٠٠ أمريكا الجنوبية كالم المحالية ١٨٠٠ أمريكا الجنوبية كالمريكا الجنوبية ١٥٠٠ أمريكا	15	أمريكا الشمالية	Colorado	كولورادو
امریکا الشمالیة Columbia ۱۰۳۸ أمریکا الشمالیة ۱۰۳۸ أمریکا الشمالیة ۱۰۱۸ أمریکا الشمالیة ۱۰۰۰ أمریکا الشمالیة ۱۰۰۰ أمریکا الشمالیة ۱۹۰۰ أمریکا الجنوبیة ۱۹۰۰ أمریکا الجنوبیة ۱۹۰۰ أمریکا الجنوبیة ۱۸۰۰ أمریکا الشمالیة ۱۸۰۰ أمریکا الجنوبیة ۱۹۰۰ أمریکا الخورال ۱۹۰۰ <t< td=""><td>170.</td><td>أمريكا الجنوبية</td><td>Jurua</td><td>جوروا</td></t<>	170.	أمريكا الجنوبية	Jurua	جوروا
۱۰۳۸ أمريكا الشمالية Snake ا٠٠٠ ١٠٠٠ أمريكا الشمالية Red ١٠٠٠ ١٠٠٠ أمريكا الشمالية Churchill ١٠٠٠ ١٠٠٠ أمريكا الجنوبية Uruguay ١٩٠٠ ١٩٠٠ أمريكا الجنوبية Purus ao Francisco ولي الشمالية ١٨٠٠ أمريكا الجنوبية Rio Grande ا١٠٠ ١٨٠٠ أمريكا الشمالية Yakon امريكا الجنوبية ١٦٠٠ أمريكا الجنوبية Arragyaia ١٥٠٠ ١٥٠٠ أمريكا الجنوبية Negro امريكا الجنوبية ١٥٠٠ أمريكا الجنوبية Paragway امريكا الجنوبية ١٥٠٠ أمريكا الجنوبية Paragway Volga ١٥٠٠ أوربا Volga الدانوب ١٨٠٠ أوربا Danube أوربا	1771	أمريكا الجنوبية	Xingo	كسينجو
ادریکا الشمالیة Red ادریکا الشمالیة ۱۰۰۰ أمریکا الشمالیة Churchill ۱۰۰۰ أمریکا الجنوبیة Uruguay ۱۹۰۰ أمریکا الجنوبیة Purus ۱۸۰۰ أمریکا الجنوبیة ao Francisco f	171.	أمريكا الشمالية	Columbia	كولومبيا
ا٠٠٠ أمريكا الشمالية Churchill ١٠٠٠ أمريكا الجنوبية Uruguay ١٩٠٠ أمريكا الجنوبية Purus ١٩٠٠ أمريكا الجنوبية ao Francisco ao Fran	1.47	أمريكا الشمالية	Snake	سنيك
الرووغواي Uruguay أمريكا الجنوبية الإروغواي Purus المريكا الجنوبية الإروس الإر	1.17	أمريكا الشمالية	Red	رد
۱۹۰۰ أمريكا الجنوبية Purus ۱۸۰۲ أمريكا الجنوبية ao Francisco مريكا الشمالية ۱۸۰۰ أمريكا الشمالية Rio Grande ۱۸۰۰ أمريكا الشمالية Yakon ۱۸۰۰ أمريكا الجنوبية Tocantins ۱۸۰۰ أمريكا الجنوبية Arragyaia ۱۵۰۰ أمريكا الجنوبية Negro أمريكا الجنوبية أمريكا الجنوبية أمريكا الجنوبية اهوربا كالجنوبية امريكا الجنوبية امريكا الجنوبية امريكا الجنوبية الدانوب امريكا الجنوبية الدانوب امريكا الجنوبية الدانوب امريكا الجنوبية الدانوب امريكا الجنوبية المريكا الجنوبية المريكا الجنوبية المريكا الجنوبية المريكا الجنوبية المريكا الجنوبية المريكا الجنوبية المريكا الجنوبية المريكا الجنوبية المريكا الجنوبية <t< td=""><td>1</td><td>أمريكا الشمالية</td><td>Churchill</td><td>تشرشل</td></t<>	1	أمريكا الشمالية	Churchill	تشرشل
المريكا الجنوبية المريكا الجنوبية المريكا الجنوبية المريكا الجنوبية المريكا الشمالية المريكا الشمالية المريكا الشمالية المريكا الجنوبية المريكا المريكا الجنوبية المريكا	1	أمريكا الجنوبية	Uruguay	أوروغواي
امریکا الشمالیة Rio Grande امریکا الشمالیة ۱۸۰۰ أمریکا الشمالیة Yakon Yakon ۱۲۰۰ أمریکا الجنوبیة Tocantins Tocantins ۱۵۰۰ أمریکا الجنوبیة Negro Negro ۱۵۰۰ أمریکا الجنوبیة Paragway امریکا الجنوبیة ۱۵۰۰ أمریکا الجنوبیة Paragway Volga الفولجا Volga أوربا الدانوب Danube أوربا	19	أمريكا الجنوبية	Purus	بروس
۱۸۰۰ أمريكا الشمالية Yakon ١٦٠٠ أمريكا الجنوبية Tocantins ١٥٠٠ أمريكا الجنوبية Arragyaia ١٥٠٠ أمريكا الجنوبية Negro ١٥٠٠ أمريكا الجنوبية ١٥٠٠ ١٥٠٠ أمريكا الجنوبية ١٥٠٠ ١٥٠٠ أمريكا الجنوبية Yolga ١٥٠٠ أوربا Yolga ١٥٠٠ أوربا الدانوب ١٨٠٠ أوربا Danube	١٨٠٢	أمريكا الجنوبية	عو ao Francisco	ساو فرانسيس
المريكا الجنوبية Tocantins أمريكا الجنوبية المريكا المر	14	أمريكا الشمالية	Rio Grande	ريو جراندي
أرجوايا Arragyaia أمريكا الجنوبية Negro أمريكا الجنوبية أوربنوكو أمريكا الجنوبية أوربنوكو Paragway امريكا الجنوبية Paragway امريكا الجنوبية Volga ألفو لجا Volga ألدانوب Danube أوربا	۱۸۰۰	أمريكا الشمالية	Yakon	ياكون
المريكا الجنوبية المريكا المريكا الجنوبية المريكا الجنوبية المريكا المري	17	أمريكا الجنوبية	Tocantins	توكانتين
أوربنوكو أمريكا الجنوبية 10٠٠ بارجواي Paragway أمريكا الجنوبية 70٠٠ ألفولجا Volga أوربا 10٠٠	10	أمريكا الجنوبية	Arragyaia	أرجوايا
الدانوب Paragway أمريكا الجنوبية 10٠٠ ألفولجا Volga أوربا 1٨٠٠ الدانوب Danube	10	أمريكا الجنوبية	Negro	نجرو
ألفولجا Volga أوربا Volga الدانوب Danube	10	أمريكا الجنوبية		أوربنوكو
الدانوب Danube أوربا	10	أمريكا الجنوبية	Paragway	بارجواي
	77	أوربا	Volga	ألفولجا
	14	أوربا	Danube	الدانوب
دنيبر Denepr اوربا	18	أوربا	Denepr	دنيبر
	1177	أوربا	Kama	كاما
دون Don أوربا	1100	أوربا	Don	دون
بتیشورا Pechora أوربا	1177	أوربا	Pechora	بتيشورا
مواري Murray استراليا ۱۲۰۵	17.0	استراليا	Murray	مواري
	177.	استراليا	Darling	دارلنج

أما أطول الأنهار في العالم فهي كما يلي بالتسلسل وبالكيلومترات

الطول بالكيلومتر	اسم النهــــر	التسلسل
۹۲۲۲ کم	النيل	1
٢٣٤٦ كم	الأمازون	2
9790 کم	المسيسبي	3
٧٢٥٥ کم	الاوب ابرتيش	4
٥٤٧١ کم	اليانجتس	5
۷۲۸٤ کم	الهوانج	6
۲۷۳۶ کم	الكونغو	7
٤٤٣٤ كم	الآمور	8
۲۱۳٤ کم	اللينا	9
٠ ٤ ٢ ٤ کم	الماكنزي	10
۲۱۸۳ کم	المكيونج	11
۱۸۳ ع کم	النيجر	12
۲۲۰۶ کم	البارانا	13
۲۷۱۷ کم	المورى ـ دار البخ	14
٥٨٢٣ کم	الفولكا	15
155	l	1

أنواع المياه في الطبيعة كما يمثلها الجدول (١٢) التالي :

جدول (١٢) يوضح أنواع المياه في الطبيعة

الملوحة (جزء بالمليون)	الميساه
صفر	ماء مقطر
١.	المطر والثلج
0 7	الأنهار
T	الآبار الارتوازية العميقة
2 40	البحار
170	آبار الملح
70	البحر الميت

أما مواصفة المياه حسب التركيز فيوضحها الجدول (١٣) التالي: جدول (١٣) يوضع مواصفة المياه حسب التركيز

T. D. S مواد صلبة ذائبة (جزء بالمليون)
۳۰۰۰ – ۱۰۰۰
1 7
701
أكثر من ٢٥٠٠٠

أما أحجام المياه على كوكب الأرض فيبينها الجدول (١٤) التالي: جدول (١٤) يوضح أحجام المياه على كوكب الأرض

كيلو متر مكعب	أحجام المياه على كوكب الأرض
۱۳۲۰ ٤٨٩ ٦٠٦	حجم المياه بالمحيطات
10.45	حجم المياه بالجو
15012112	حجم المياه بجبال الجليد
77907.	حجم المياه بالبحيرات والأنهار
	حجم المياه الجوفية في مستوى أعلى من
80.V184	۳۷۵۰ متراً .
	حجم المياه الجوفية في مستوى أقل من
777777	٣٧٥ متراً .

أما المساحات المغطاة بالجليد فالجدول التالي (١٥) يوضحها: جدول (١٥) يوضح المساحات المفطاة بالجليد

کیلو متر مربع	المساحات المغطاة بالجليد
V7 910	شمال أمريكا
107 207	جزر المتجمد الشمالي الكندي
11.101.	جرينلاند
70188	جنوب أمريكا
١٠٦٢٨	أوربا
	جزر شمال الأطلنطي والمتجمد الشمالي
١٢٤٦٨٠	الأوربي .
١٢٦٢٣٥	آسيا
71	أفريقيا
1.77	جزر المحيط الأطلنطي
77 289	جزر قريبة من المتجمد الجنوبي
۱۲ ٦٦ ٠ ٣٣٥	المتجمد الجنوبي
189121	المجموع

المساحات المائية السطحية على الكرة الأرضية كما يوضحها جدول (١٦): جدول (١٦) يوضح المساحات المائية السطحية على الكرة الأرضية

الإجمالي النسبة المئوية من المساحة الكلية	المساحة (كم ^٢)	المائيـــــة	المسطحات
	117787011	المحيط الهادي	
	1100VA · ·	المحيط الأطلسي	
TAGEOTAVO	VT { TVV 90	المحيط الهندي	المحيطات
7.07,V	75737771	المتجمد الشمالي	
	7975710	بحر جنوب الصين	
	7010977	البحر الكاريبي	البحار الكبري
	40.4414	البحر المتوسط	
	. ٧٠١٢٢٢	بحــر بيــرنج	
	10.7749	خليج المكسيك	

جدول (١٧) يوضح المساحات المائية

الإجمالي النسبة المئوية من المساحة الكلية	المساحة (كم ^٢)	المائيــــة	المسطحات
	1497170	بحر أوكوتسك	
17779799	1.17989	بحـر اليـابان	البحار الكبري
	V4.111	خليج هدسسون	البحار الكبرى
(%, ٤)	PYABFO	بحر اندامان	
	0. 449	البحر الأسود	
	100793	البحر الأحمر	
	E 7 V + 9 1	بحر الشمال	
	471.40	بحـر البلطيق	

الإجمالي النسبة المئوية من المساحة الكلية	المساحة (كم ^٢)	المسطحات المائيــــــة
	201040	قــــــزويــن
	7777	ســوبيــرور
300171	79810	البحيرات الكبرى فكتريا
(%,,17)	70077	الأورال
	0904	هــــورون
	٥٨٠١٦	ميتشجان
	27792	تانجـانيــقـا
	71797	الدب الأكـــبــر
	4.01.	بيـــــقـل
	797.8	انيــاســا

الفصل الثالث

- نوعية المياه الطبيعية .
 - نقاوة المياه .
 - المياه والتطور.
 - الماء في العلاج.
 - الماء والطبيعة .

الفصل الثالث

نوعية المياه الطبيعية Guality of Natural Water

الماء وكما أوضحنا سابقاً هو أحد العناصر المهمة والضرورية في حياة جميع الكائنات الحية ولا يمكن للأحياء أن تستمر بدون الماء كما وأن التطور الصناعي لا يمكن أن يستمر ويتطور دون الماء وليس غريباً بأن الماء يغطي على معظم فعاليات الإنسان حيث تشير كل المؤشرات التاريخية على أن كبرى الحضارات والمدن أقيمت على مصادر المياه على اختلاف أنواعها . كما وأن أهمية المياه تقدر على فعل الإنسان وبناءة وتصنيع غذائه كما وأن هنالك علاقة ما بين استعمال الماء والمواطنة الحديثة وحضور الماء يجعل كل تخطيطاتنا المستقبلية ناجحة وأن أي خلل يغير من الكثير من فعالياتنا العمومية .

إن المياه عموماً لا توجد في الطبيعة بشكل نقي وإن أنقى مياه هي مياه الأمطار والتي تحتوي على كميات من المواد العضوية والغازات الذائبة مثل CO2، O2 .

أما المياه الجوفية والتي تجري على الأرض (صخور، معادن إلخ) فأنها تحتوي على إضافات غير نقية حيث تمتص الكثير من سطح التربة وخصوصاً أملاح المعادن كالكربونات، السلفات، الكالسيوم، المغنيسيوم والتي تذوب بالماء.

المياه الجوفية عموماً تحتوي على الكثير من المعادن الذائبة وتكون الطبقة السفلى أقل من السطحية وعلى هذا الأساس تم إيجاد عملية الترشيح وعلى هذا المبدأ أصبحت عملية تدريج المياه ضرورة ولذلك قسمت المياه إلى النوعيات التالية:

١ _ مياه الشرب.

٢ _ مياه للاستعمالات الصناعية.

٣_مياه للاستعمالات الزراعية.

٤ ـ مياه المعالجة.

: Impurities in Water نقاوة الياه

تعمل جميع الحكومات والجهات ذات العلاقة على نقاوة المياه، لأن المياه في الطبيعة كما أشرنا إليها مقدماً ويجب أن يكون نقية ثم اكتشاف الكثير من الطرق والمواد.

إن المعرفة سجلت للإنسان أهمية كبيرة لكي يبرهن على نوعية المياه وقد بدأت هذه المعرفة بالمياه قبل ٢٠٠٠ سنة قبل الميلاد حيث ابتدأت عملية التنقية بالغليان أو باستخدام أشعة الشمس أو بواسطة تغطيس أسلاك مسخنة فيه وبعدها جاءت عملية الترشيح من خلال الرمل إلخشن ثم استخدام الفحم.

إن عملية تنقية المياه تحتاج إلى جهد وقد عمل الإنسان منذ آلاف السنين على فنون عديدة ومنها ما هو معتمداً حالياً ففي عام ١٨٠٤ تم اكتشاف أول مرشح Pilter فنون عديم المدينة في أسكتدلندا (Paiesly) وفي سنة ١٨٣٢ أسس أول معمل لتنقية المياه لليخدم المدينة أمريكية (رشموند) كما أن أول تطبيقات لاستعمال الكلورين كمعقم كان في بداية القرن التاسع عشر من قبل D. Arcot . وبعدها توالت الاكتشافات حيث استطاعت جانيت سنة ١٨٦٥ من وضع أول معرفة لعملية الترويب Coaqulation وقدتم تطبيقها سنة ١٨٨١ من قبل Bolton ، وأن أول براءة اختراع في موضوع الترويب Coaqulation سجلت من قبل Hyattt والذي نجح باستعمال عن من 1٩٣٠ فقد لعنصر الحديد مكوناً Coaqulont أن يبر هنوا بأن عملية الترويب تنتج بواسطة الأواصر Baylis, Graf, Schworm . حيث تبدأ عملية الترويب تنتج بواسطة الأواصر Goaqulation . حيث تبدأ عملية الترويب التنج بواسطة مع كمية من سليكات الصوديوم المحمض ومن ثم Silicic Acid المنكون لمعادلة سليكات الصوديوم (المبلمر) على شكل سلسلة طويلة من بولي سلسيلك أسد (Poly Silicic)) .

وهذا بدوره ينشط السليكا وبالنتيجة يلاحظ زيادة معدل التنقية والذي يوضح بتقليل الكتل Floc والتي تترسب بسرعة لذا فأن السليكات النشطة هي أول بولمر للتكتل (للترويب) وبعدها تتابعت الاكتشافات ففي سنة ١٩٥٠ تم اكتشاف بعض المواد الطبيعية وكذلك المخلقة صناعياً (كتابون Gation) و(الانيون Anien) والبولمرات الغير أيونية والمعروفة حالياً باسم Polymeric Flocculant والتي تستخدم أو تستعمل في تنقية المياه ثم توالت المعلومات في مجال عملية الترويب Softening والتهوية منذ سنة (١٩٥٠-١٩٥٠) وكذلك العمليات الأخرى كالتحلية Softening والتهوية وحتملات الخديد إلخ وبنفس الوقت تطورت معاملة المياه للأغراض الصناعية .

إن عملية الاهتمام بالنوعية (خصوصاً نوعية المياه) في كثير من الدول هو المعول الأساسي لتقدم أي دولة وخصوصاً في مجال المياه السطحية والآبار والأنواع الأخرى المستخدمة للاستهلاك البشري ويتوقع العالم أن يشهد تطوراً كبيراً في مجال تنقية ومعالجة المياه لأن حصة المياه العذبة لبعض الدول في العالم تقل يوماً بعد يوم. والجدول التالي يوضح كمية المياه في أمطار إلى موارد سطحية إلى مياه جوفية متاحة ومستغلة للأقطار العربية.

جدول (١٨) يوضح كميات الأمطار والمياه المتاحة لأمطار الوطن العربي لعام ١٩٨٣

الجوفية المستغلة مليار م ^٣ / سنة	المياه المتاحة مليار م ^٣ / سنة	الموارد المائية السطحية المتاحة مليار م ^٣ / سنة	كمية الأمطار مليار م٣ / سنة	القطــر
1,000	۲,٠٦	_	٤٨,٩٨٦	ليبيا
٠,٢٠	١,٥٠	١,٦٧	491,777	تونس
١,٧٠	۲,۰۰	٣,٥٠	197, 277	الجزائر
۲,0٠	٧,٥٠	17,00	17, 401	المغرب
_		_	104, 4.1	موريتانيا
1, 7.	۲,۰۰	٤٢,٦٠	99,170	العراق
7,071	٣,٠٠	9,80	07, 75.	اسوريا
•, ٢٥٧	٠,٥٠٠	.,٧١٥	7,777	الأردن
٠,٥٠٠	١,٠٠	٣,٨٠	7,150	لبنان
			۸,۰۲۱	فلسطين
٠,٧٦٠	4,778	00,000	10,700	مصر
٠,١٨٣		11,000	1.98,801	السودان
		۸,۲۰۰	190,717	الصومال
	_	_	4,944	جيبوتي
_		_	177,777	السعودية
		_	Y, VV	الكويت
٣,٨٣٠	٤,٦٨٣	7,987	٢,٤٧٦	الامارات
			٠,٠٠٦	البحرين
_		_	١,٨٨	1
_	_		18,777	قطر عُمان
	<u></u>	V <u>ent 400</u>	۱۲,۱۲۱	جزء من اليمن
10, 11	44,914	۱۲۳,۷٦۸	7717	الإجمالي
_	۳٫۱٥,۲۱۹	۲٫۸٫۶۱۹	٥٥٢١١م	حصة الفرد العربي
_			للفرد	من الإجمالي

المياه والتطور:

أن للماء دور أساسياً في تطور الحياة وديمومتها وذلك للأسباب التالية:

١ _ إنتاج الغذاء والذي يعتمد بالدرجة الرئيسية على المياه .

٢ ـ دخول المياه في إنتاج الطاقة ـ الكهربائية ولإنتاج Hydroelectric Power .

٣- الطلب المتزايد في الصناعة على المياه.

٤ ـ هنالك بعض الدول التي تحتاج إلى مياه ونتيجة تطورها والتي تمتلك مساحات كبيرة فهي دول متطورة ومتقدمة نتيجة استغلالها الأمثل للمياه.

 التلوث الحاصل في المياه السطحية والبحار والمحيطات زاد من أهمية المواطنة في المحافظة على هذه المياه وزيادة رقعتها وإيجاد مصادر جديدة وملائمة.

الماء والطبيعة :

الماء هو مصدر طبيعي ويتواجد باستمرار في الطبيعة من خلال الدورة الهايدرولوجية. وأن كميات المياه المقدرة على أساس أنها ثابتة من خلال الدورة الهايدرولوجية حيث تكمن الدورة من الأرض إلى الجو ومن الجو إلى الأرض نتيجة حرارة أشعة الشمس (الطاقة الشمسية). فالمياه تتحرك من المحيطات والبحار والأنهار والبرك والجداول. ومن عمليات نتح الأشجار وتنفس وتعرق الكائنات الحية حيث ترتفع إلى الجو ومن ثم تتكثف وتسقط على المحيطات والبحار والأنهار والأرض وتعتبر هذه العملية عملية تحلية طبيعية. حيث تكون مياه الأمطار مياه عذبه وخالية من الأملاح.

والحسابات الأولية تشير إلى أن الحجم الكلي للماء في الأرض هو $3,1 \times 1^9$ كيلو متر مكعب والذي منه حوالي 7,0 مياه محيطات وبحار والميزان هو 1,0 مياه عذبة علماً أن 1,0 من المياه العذبة هو مجمد في الأقطاب (الشمالي والجنوبي) على شكل ثلوج أما الباقي فهو متفرقات في أرجاء العالم من الماء العذب 1,0 والذي يستخدم للاستهلاك البشري والزراعة. وهو بحدود 1,0 من الماء العذب 1,0 أن هذه الكمية من المياه العذبة في تناقص متزايد نتيجة التزايد في أعداد البشر في العالم ففي خلال 1,0 سنة الماضية أزدادت نفوس العالم من 1,0 بليون إلى 1,0 بليون) نسمة عام 1,0 مصادر جديدة للمياه العذبة اصبح أمراً واقعياً يجب الاهتمام به.

أما المياه الجوفية ورطوبة الترب فتقدر بـ ٤ , ٢٢٪ من الماء العذب أي بحدود ٢٠٪ من الماء العذب (٧ , ٧٪) وأن ثلثي هذه المياه هي على عمق كبير ٢٥٠م تحت مستوى الجوفي وحوالي ٣٥٪ منه هو في البحيرات والمستنقعات ٥٤ swomps , ٠٪ هو في الجووأقل من ٢٠ , ٠٪ في الجداول .

الفصل الرابع

- المياه السطحية .
 - نقاوة المياه .
- الجو وتلوث المصادر الطبيعية .
 - الرائحة والمذاق واللون.
- مياه الأمطار ، المياه السطحية .
 - المياه الجوفية .
- الينابيع ، الآبار ، مياه البحار .

		*	

الفصل الرابع

المياه السطحية

هي المعول الأساسي للاستهلاك البشري و ١٣٠٠٠ كيلو م من المياه السطحية يكون ضمن الدورة الهايدرولوجية أما الباقي فيكون موزع في الأنهار والجداول . . . إلخ . أما البحيرات فتحتوي على ٢٠٠٠٠ كيلو م من المياه العذبة . وعموماً فالبحيرات الصناعية تخزن بحدود ١١٪ من مياه الأمطار run off أي بحدود ٥٠٠٠ كيلو متر ، أما البحيرات والجو والجداول فتحتوي على ٤٠ . ٠ ٪ من الماء العذب أو ٢٠ , ٠ ٪ من حجم الماء الكلي .

نقاوة المياه:

أن نقاوة المياه تعتمد بصورة رئيسية على ثلاثة مجاميع وهي كالآتي:

المجموعة الأولى:

١ _ مواد ذائبة في الماء .

٢ ـ جزيئات ذائبة .

٣_ أيونات منتشرة .

المجموعة الثانية:

١ _ مواد منتشرة خشنة

المجموعة الثالث:

١ ـ مواد غروية .

المواد الذائبة:

إن المياه الطبيعية اعتيادياً تحتوي على معادن ذائبة نتيجة جريانها على الأرض في الأنهار والبحيرات والبرك . . . إلخ . وأن هذه المعادن تختلف في تراكيزها في مصادر المياه المختلفة اعتماداً على نوعية الترب التي تجري فيها وأهم مصادر هذه المعادن هي الأملاح والتي تكون متأينه في محاليلها خصوصاً في المصادر الطبيعية كالكتايونات Mg^{++} . Ca^{++} ، Na^{++} ، Na^{++} وتكون هذه المعادن الستة هي المنتشرة بكثرة والاينونات Mg^{++} ، Ma^{+-} ، Ma^{+-}

النترات عموماً تشير إلى أن المياه ملوثة بمياه فضلات المصانع نتيجة تحلل فضلات المصانع أما الحديد والمنغنيز فهو موجود أيضاً في المياه الطبيعية ولكن بشكل شظايا وقد تتراوح نسبتها حد ١ ملغم وقد يوجد الحديد متحداً على شكل (Ferrus) أما المنغنيز فهو الآخر يوجد متحداً مع المواد العضوية وأهم أشكال الحديد والمنغنيز والمياه يكون على شكل سلفيت الحديد وسلفات المنغنيز في المياه الحامضية خصوصاً والتي تتلوث أيضاً بمياه التصريف.

أما تركيز السليكا Sio₂ في الماء الطبيعي فهو بحدود (٥-٩٠) ملغم/ لتر أما حامض السلسليك Silicic Acid في الماء فيكون على شكلين الأيوني والغروي وهذا مما يجعلنا أن نوجه كامل العناية له.

أما كميات الالومينا (الشب) والفلورايد فهي توجد بكميات قليلة فالفلورايد لا يتعدى تركيزه في الطبيعة عن ٥,١ ملغم/ لتر والتركيز المثالي له في مياه الشرب ١ملغم/ لتر بالاعتماد على درجة الحرارة.

أن المياه الطبيعية تحتوي على الغازات الذائبة كالأوكسجين والـ Co₂ والتي تسبب التأكل لمعادن أنابيب المياه .

بعض المياه تحتوي على الكبريت والذي يتراوح ما بين ٠-٠٠ ملغم/ لتر وهذه تسمى هذه المياه بالمياه الكبريتديه Sulfur water .

الأوكسجين عموماً موجود في جميع أنواع المياه الطبيعية إلا في بعض الآبار العميقة وبحدود ١٤ ملغم/ لتر وعند درجة حرارة الصفر المثوي إلى (١٠) ملغم/ لتر عند درجة حرارة ٢٧م.

أما ثاني أوكسيد الكاربون الحر فيوجد بكميات ففي الآبار العميقة يكون بحدود ٥٠-٥ ملغم/ لتر أما في المسطحات المائية كالأنهار فكمية كروع تتراوح ما بين ٥٠-٥ ملغم/ لتر . أما محتوى الأنهار من المواد العضوية فهي ما بين الكميات العالية في بعض الأوقات وكميات قليلة في أوقات أخرى .

المواد المنتشرة (الغير النقية):

أن المواد الأخرى المهمة والتي تسبب عدم نقاوة المياه هي المواد المنتشرة Suspended كالرمل الطيني وبحجوم مختلفة وكذلك الأجزاء ونباتية ومواد أخرى التي تأتي من خلال الأمطار أو من خلال ذوبان الثلوج والتي تحملها إلى أحواض الأنهار والبحيرات والبرك والبحيرات الصغيرة ponds .

أن أكبر تركيز لهذه المواد في المياه السطحية يمكن ملاحظتها من كمية الأطيان والرمال المحمولة بالأنهار muddy Rivers وتقدر بعدة غرامات / لتر وكذلك المواد العضوية والغير عضوية كاله Silt ، سليكا ، زيوت إلخ بالإضافة إلى ذلك فأن للأحياء المجهرية والنموات هي أيضاً شائعة في المياه السطحية والأنهار وخصوصاً بكتيريا التربة كبكتيريا الحديد والمنغنيز والاشنات Crustacea . إلخ وعموماً فأن جميع ما ذكر يكون غير متواجد في الآبار العميقة ولكن في الآبار السطحية الغير عميقة ومياه بعض الينابيع يكن أن تحتوي على عدد من الأحياء المجهرية وكذلك بكتريا الحديد والمنغنيز والتي هي معروفة بـ Crenothirx والتي تسبب مشاكل في tuberculation Incrustation في المياه الكبريتدية (Sulfurous Water Bacteria) المختزلة والمؤكسدة .

الغرويات:

أن المواد العضوية أو المعدنية يمكن أن تتواجد في المياه الطبيعية بشكل غروي وجزيئاتها لا تترسب بسهولة كالمواد المنتشرة والتي لا يمكن مشاهدتها ميكروسكوبياً بينما بعض المواد بسبب اللون مثل الهيومس Humic Substaces ، مواد غير عضوية كالطين ، الحديد ، السليكا يمكن أن تتواجد بشكل غروي والهيومس يمكن أن نشاهده في البحيرات وبكميات كبيرة والتي تعطي اللون الأصفر القهوائي .

بعض مياه الآبار الغير عميقة وقليل من العيون (الينابيع) والقليل جداً من الآبار العميقة يكن مياهها أن تكون محتوية على ألوان ملحوظة. الألوان في المياه الطبيعية تتراوح من لون بني فاتح جداً إلى الأصفر-الجوزي Brown إلى اللون القهوائي الأسود.

مياه البحيرات يظهر بلون أسود نتيجة تأكسد التانات qallates والكالات qallates و عكن إزالة اللون من خلال امتصاص من قبل الغرويات ولكن العكارة تبقى بسبب المواد الغروية. كما أن للمعادن دور في هذا المجال كما يوضحها الجدول (١٩) التالي لثمانية معادن معروفة في المياه حيث يوضح القيم الافتراضية لتركيز كل أيون معدني. أما الانحراف الأخير فهو الميزان بين الشحنات الموجبة والسالبة في المحلول.

جدول (١٩) يوضح قيم الافتراضية لتركيز كل أيون معدني

meq/L	ملغم / لتر	أنبوب	meq/L	ملغم / لتر	كايتون
2.00	100	قاعدية	2.00	40	كالسيوم
2.08	100	سلفيت	1.66	20	مغنيسيوم
1.98	70	كلورايد	2.18	50	صوديوم
0.16	10	نترات	0.06	10	بوتاسيوم
6.22			Tan 5.90		Teat

بالنسبة إلى الأساسيات في التعادل الإلكتروني والذي يجب أن يكون صفراً وأن أي تحليل للمياه يجب أن يهمل الانحراف إذا كان أكبر من 0.03 .

(Cation + anion) (Cation - anion) = الانحراف عن التعادل الإلكتروني $T = T_1$) ($T - T_1$) = 0.32 =

الجو وتلوث المصادر الطبيعية:

تعتبر المصانع المصدر الرئيسي لتلوث مصادر المياه وانتشاره إلى المزارع. أما التلوث الحاصل في المركبات الكيماوية في الجو فهو في كميته مهم جداً نظراً لتحميض آلاف البحيرات في اسكندنافيا، كندا، أمريكا في ٣٠ سنة الماضية حيث أوضحت الدراسات على أن مكونات الجو من حامض الكبريتيك والنايتريك الناتج من أحتراق الزيوت المتحجرة والتي تؤثر على المصادر الطبيعية للمياه وخصوصاً البحيرات ذات المساحات السطحية الكبيرة.

الجو عرف بأنه المصدر الرئيسي للعناصر (S ، N ، P ، C) والحموضة (H+) للمياه الطبيعية بالاعتماد على سقوط الأمطار وذوبان الثلوج.

المواد العضوية في المياه الطبيعية:

النباتات، الحيوانات، الفضلات هي مصدر المواد العضوية في المياه الطبيعية وخصوصاً السطحية منها ويزداد تركيزها في البحيرات ولكنها تقل في الجداول الجبلية، بعض الاشنات تنتج مركبات تعطي رائحة في المياه.

اللون القهوائي لكثير من المسطحات المائية وخصوصاً تلك التي لها علاقة مع بالمواد العضوية أو الترب أو مستخلصات الهيومس، الفينول، الكريسول وبعض المواد الأخرى التي يكون مصدرها المعامل الصناعية (فضلات) وعند عملية الكلوره تتكون الكلورفينولات وبكميات تتراوح ما بين ١٠,٠ ملغم / لتر إلى ٢,٢ ملغم / لتر والداي كلورفينول بسبب الرائحة في مياه الشرب.

أن تصريف فضلات مياه المعامل المعاملة وغير المعاملة هو السبب الرئيسي لشظايا المركبات العضوية في المياه الاستهلاكية والصناعية كما أن الهواء هو الآخر يعتبر مصدراً من المصادر نتيجة حمله الكثير من المواد المتبخرة، المذيبات المتطايرة وهذه المواد عند ملامستها سطوح المياه فتلوثه. أما المصدر الآخر فهو الترب الملوثة بالشظايا العضوية ونتيجة سقوط الأمطار فأنها تصبح ملوثه للمياه السطحية والجوفية وقد تعمل بعض أحياء الترب على تحطيم بعض هذه المواد العضوية فتكسب المياه لوناً بالإضافة إلى أن تفاعلات المواد العضوية على سطح التربة قد تعطي مركبات لوناً نتيجة سقوط الأمطار.

في الولايات المتحدة الأمريكي سنة ١٩٧٥ تم تشخيص ١٥٤ مركب في مياه الشرب وكان ١١٣ مركب منها صنف على أنها مواد رئيسية أو منتجات ثانوية .

إن دراسة عملية الكلورة للمياه أوضحت بأن معظم المواد العضوية تتكلور من خلال المعاملة منتجة الروائح، أيشر، الكينات غير مشبعة، الديهيدات، كيتونات، فينولات، بنزين، سلاسل طويلة للالكينات المشبعة، أيسترات وبعض من هذه المركبات تشكل من خلال الكلوره متظمنة الكلورفورم، m كلورونايترو بنزين، ميثل كلورايد، تترا وتراي وبنتا كلوروفينل، trichloethylene و trichloroethane و trichlorophenol . . إلخ.

المركبات النفطية و (قطر الفحم) وروائح الأمينو والمركبات النايتروجينية والمبيدات الخشرية ومبيدات الأعشاب والمواد المثبتة للترب شخصت بأنها مواد كيماوية مسرطنة تشتق من المصادر الصناعية.

الكثير من الكيماويات تنشكل من خلال التفاعلات المختلفة في الهواء، في التفرية في المياه مثل Photo activeted radical reaction وتفاعلات الأكسدة وتفاعلات المائية وتفاعلات التحطيمية لفعل المايكروبات.

أن مصدر التلوث المحتمل الآخر لمياه الشرب هي المصادر الصناعية والتصريفات الأخرى التي تأتي من المزارع ومعامل معاملة المياه . أن التأكيد على إجراء الفحوصات الكاملة على المياه وخصوصاً مياه الشرب أصبح أمراً ضرورياً وذلك لكثرة مصادر التلوث وفي سنة ١٩٧٠ تم وضع الكثير من القواعد العامة على المياه مثل الترشيح والمعاملة بالكاربون الفعال واستخدام المرشحات الفائقة واستخدام الأوزون بنسبة ١-٢ ملغم/ لتر.

التراي هالوميثان Trihalo methane التراي هالوميثان

الكلورفورم ينتج بواسطة فعالية الكلورين على بعض المواد العضوية المتأكسدة مثل الأستيون، ريسورسينو ومواد الهيومس والتي هي موجودة بكثرة في المياه ومصادرها.

التراي هالوميثانات الأخرى مثل بروموفورم والايودوفورم تتكون عندما تكون المياه محتوية على البرومايد والايودايد.

لقد لوحظ في بعض المصادر الأمريكية أن تراكيز (THM) يزيد عن ١٠٠ ملغم/ لتر باستخدام الكروموتوغرافيا الغازية .

ومن خلال الدراسات السريرية تم تشخيص الكلورفورم على أنه مادة مسرطنة (ضعيفة) أما التراي هالوميثانات الأخرى فقد اعتبرت من المواد المطفرة Mutagenic ولذلك اهتمت بعض الحكومات ووضعت حدوداً له (THM) وتتراوح هذه الحدود ما بين ١٠٠ مايكرو غرام/ لتر إلى ا مايكرو غرام/ لتر . وعلى العموم فأن تراكيز بعض المواد التي تنتج نتيجة عملية الكلوره للمواد العضوية في الماء هي عالية ولكن العلاقات الصحية لهذه المواد غير معروفة ولكن منظمة الصحة العالمية WHO أشارت إلى أن التأثير الطويل للمركبات العضوية المتهلجنة على الإنسان تحت الظروف المحددة من الاستعمال غير معروف حالياً ولكن يجري العمل على خفضها قدر الإمكان .

الرائحة والمذاق واللون في المياه :

أن خاصية المذاق والرائحة (النكهة) هي دائماً في خدمة الإنسان والحيوان لمعرفة المياه الرديئة من الجيدة والرائحة لها علاقة كبيرة بالمذاق وأن عملية التذوق المياه هي أسهل بكثير من عملية الشم، أن مؤشر حساسية الشم هي أكثر من حساسية أي مؤشر تحليلي لكثير من المركبات العضوية وجزيئاتها فمثلاً استعمال فحص الكروموتوغرافيا الغازية والذي يمكن أن يوضح ٩٣ مركب عضوي ملوث للمياه والتي أكثر مركبات صناعية متحللة حديثاً والتي بسهولة يمكن التعرف عليها من بعض المعالم المحيطة بمصدر الماء.

فبخاصة المذاق والشم يمكن التعرف على الكثير من المواد ومنها:

أ ـ المواد العضوية .

ب ـ الاشنات في الماء والأحياء المجهرية الأخرى والتي تحتوي على الزيوت والمركبات العطرية .

جــ الحديد، المنغنيز والمنتوجات المعدنية المتآكلة.

د . فضلات المصانع ـ فينوك ، روائح .

هـ ـ الكلورين ومركباته.

أن بعض عمليات الأكسدة التي تجري داخل المياه للمواد العضوية وكذلك تأثير الكلورين على البعض الأخر والتحلل المايكروبي وعامل الهلجنة لمنتجات الكلورين كلها تعطي روائح غير مستساغة وغير مقبولة.

بعض المسطحات المائية تحتوي على روائح نتيجة لتفسخ الأشنات بعد معاملتها بالأوزون و بالكلورين يمكن إزالتها.

الروائح في المياه تتغير نتيجة تغير درجة الحرارة. إن معالجة المياه لإزالة الروائح غير المقبولة وتحسين الطعم أصبح من الضروريات الأساسية للحياة ولذلك لا بدمن إدارة مائية ذات أساسيات ولها إلخطط للمعالجة الصحيحة ومن هذه المعالجات: (أ) التهوية الميكانيكية (ب) الأكسدة الكيماوية بالأوزون (ج) الامتصاص بمواد ممتصة كالكاربون، الترب المعدنية.

أن أسباب تلون المياه يعود لعدة أسباب ومن أهمها فعاليات الإنسان وفضلاته أما المصادر الأخرى التي تسبب الألوان للمياه فهي الترب ونوعيتها التي تحتضن المياه أو التي تجري عليها وبوجود المواد الغروية والهيومس والنموات والأشنية التي تعكس لون المياه . أما المياه المحتوية على الحديد والمنغنيز والتي تكسب المياه اللون الأحمر أو الأسود، أما فضلات المعامل وفضلات مياه التصريف هي الأخرى تكسب المياه الألوان .

أن من أهم الطرق المستعملة لإزالة الألوان هي الترويب Coagluatan بالمعادن المروية Coagluatan وبالأكسدة وباليولي الكتروليت وبالكيماويات مثل (الأوزون)، الكلورين وأوكسيد الكلورايد وبالمواد الممتصة adosorptian matter كالكاربون النشط. وعموماً فالمياه يجب أن تكون خالية من المواد الملونة والعطارة والمذاق والرائحة في كل الفصول وكذلك يجب أن تكون خالية من كل تلوث ومن الأمراض والسموم والمعادن والمواد العضوية.

خواص المياه لمختلف المصادر:

أن أصل المياه لكافة المصادر في الطبيعة هي مياه الأمطار. الماء يمكن أن يجمع كما هو قبل وصوله إلى الأرض أو بعد وصوله إلى الأرض كمسطحات مائية إذا جرى فوق الأرض أو يستقر في أحواض أو بحيرات أو ينابيع أو يحفظ كمياه جوفية. والمياه الجوفية لها وسائلها كالآبار والينابيع.

نوعية المياه تعتمد بالدرجة الأولى على نوع المصدر والوسط الأرضي التي تجري فيه المياه. أما المياه الجوفية فتعتمد على عمق المياه الجوفية والتي تحتوي على كمية كبيرة من المعادن وكمية قليلة من المواد المنتشرة العالقة وكمية كبيرة من أوكسيد الكاربون علماً بأن التركيب الكيماوي للمياه الجوفية العميقة دائماً ثابت.

: Rain Water مياه الأمطار

بعض الناس في أنحاء العالم يستعملون مياه الأمطار مباشرة حيث تجمع هذه المياه في أحواض. ومياه الأمطار تعتمد بشكل كبير على بيئة الجو فإذا كانت ملوثه فأن مياه الأمطار تتلوث كتحصيل حاصل وخصوصاً بدقائق الغازات والمواد العضوية الممتصة من الجو. أما من الناحية الاقتصادية فأن كلفة جمع هذه المياه وخزنها عالية أما من الناحية الصحية قد تكون هذه المياه خطرة نتيجة نحو نمو بعض الأحياء المرضية فيها (بكتريا، فطريات، آشنات، بعوض . . . إلخ).

: Surface Waters المياه السطحية

أ . الجداول والأنهار STREAM and Rivers :

مياه الجداول والأنهار هي من المصادر الرئيسية لتلبية متطلبات الاستهلاك البشري بكافة أنواعه الغذائية والزراعية والصناعية وتزداد أهمية هذه المصادر لتجهيز الماء. واعتيادياً تعامل مياه الجداول والأنهار بالمواد الكيماوية التخثرية Chemical Coaqulation بسبب العكورة العالية بعض السطوح المائية مثل emanating from swampy areas غالباً ما تكون ملونه وبشدة وتكون غير مقبولة في بعض الأحيان للمنازل أو للصناعات أن سبب المواد اللونية في هذه المياه هو نتيجة احتكاك المياه مع المواد العضوية مثل الأوراق، الإبر، إلخشب (الغابات) جميع حالات التحلل العضوي في الطبيعة.

إن نوعية مياه الأنهار تعتمد بالدرجة الرئيسية على خواص تربة الأراضي التي تجري بها والقريبة من النهر، وكذلك بعد وقرب مصادر تصريف فضلات المياه وفضلات المصانع والظروف المناخية (جاف، رطب) والجدول (٢٠) التالي يوضح التركيب المعدني بـ ٩٨ نهر في الولايات المتحدة الأمريكية.

جدول رقم (٢٠) يوضح المحتوى المعدني بـ ٩٨ نهر في الولايات المتحدة الأمريكية

المعدل ملغم / لتر	المادن
019-10	العسرة Hardness
E · A - 11	الكالسيوم Ca++
111-4	مغنيسيوم Mg ⁺⁺
VV ξ - ξ	K + Na
31-507	بايكاريونيت
V•Y - 1	كلورايد
١٠-٠,١	نترات
£ V T - £	سلفيت
٠,٠٢-٣	الحديد
$\xi \Lambda - \Lambda$	سليكا

ب ـ البرك، والبحيرات، السدود (إلخزانات):

تنتشر في الطبيعة الكثير من البحيرات، البرك، إلخزانات الطبيعة والسدود وتعتبر مياه هذه الأنواع من المياه أقل تغايراً من تراكيب أو محتويات الأنهار والبحيرات الكبيرة والتي هي ثابتة في المحتوى والتراكيب ولفترات طويلة من الوقت أما البحيرات الصغيرة والبرك وإلخزانات بعضها يكون ثابت التركيب والمحتوى والبعض الأخر يتغير تبع الفصول. علماً أن البحيرات الكبيرة تعتمد اعتماداً كبيراً على مصدر تجهيز المياه وبعضها يكون منخفضاً بالمحتويات المعدنية والبعض الأخر يكون عالي بالمحتويات المعدنية وبالعسرة والنقاوة والجدول (٢١) التالي يوضح بعض المحتويات لبعض البحيرات الهندية على سبيل المثال.

جدول (۲۱) يوضح بعض محتويات البحيرات الهندية

بحيرة تل الأحمر مدراس	بحيرة حيدر آباد	بحيرة لوهايدل	نوع التحليل
Λ, ٩ – ٧, ٧	٩,٠-٨,٢	9,0-7,7	PH
_	701 - 12V	177 - 771	القاعدية
_	£ V • - Y • •	777 - 197	المواد الصلبة الكلية
_	1 12	777 - 127	المواد الصلبة الذائبة
_		78-18	العسرة الكلية
_		78-18	العسرة الكالسيومية
_		71-17	العسرة المغنسيومية
۸-٧,١	VV - 1 £	۸٦,٥-١٠,٧	الفلورايد

: Underground Waters جـ المياه الجوفية

المياه التي يتم استخراجها من باطن الأرض تدعى بالمياه الجوفية وبعض الأحيان المياه الجوفية تصبح سطحية كما في الينابيع وكلن معظمها تأتي إلى إلخارج كمياه تحتية تحت الأنهار والبحيرات أو المحيطات والتي تنفذ من خلال مساميه الترب وتعتبر الترب أكبر مرشح طبيعي لها. بعض التلوثات تحصل ويكون مصدرها الإنسان والحيوان وهذه الملوثات يمكن إزالتها بالامتصاص من خلال المبادلات الأيونية على الطين hydrous oxides clay فأيونات الأمونيوم تتبادل مع البوتاسيوم في الطين المعدني.

أما الجزيئات الكبيرة من المواد العضوية مثل المبيدات الحشرية، مخاط البكتريا البروتينات تمتص على سطح التربة. الأنيونات للأملاح الذائبة جداً ماعدا الكلورايد، النتراتن الكرومات وبعض المنظفات تتحرك من خلال التربة وبسرعة الماء نفسه.

الآبار عموماً تهمل دور التربة كأفضل مرشح لإزالة الكثير من الملوثات في الماء كما وأن المياه الجوفية تحتوي على البايكربونات والكالسيوم، الكلورايد والمغنسيوم والصوديوم والسلفات والسليكات والنترات والمنظفات كما وتحتوي على الحديد والمنغنيز والمعادن الثقيلة.

: Springs اليناييع

الإنتاجية للينابيع مقبولة كمجهز مائي وغالباً ما تكون مياهها نقية وهذه الحقيقة في بعض الأحيان تكون ولكن على الأغلب لا تكون.

مياه الينابيع تعتمد بالدرجة الرئيسية على جيولوجية الينبوع أو الظروف الطوبوغرافية والمياه ربما تكون عسره أو عذبة، نقية أو ملوثة وبعض الأحيان تكون مالحة.

الكبريتات وferruginous. . إلخ ومحتواها من أوكسيد الكاربون يكون عالي ولا يمكن أعتبار مياه الينابيع أمينة إذا لم تفحص .

: WELLS الآبار

تعتبر مياه الآبار المصدر الرئيسي للمصانع وذلك لفوائدها العديدة أكثر من المياه السطحية .

- ۱ _ النقاوة Clarity .
- ٢ _ خالية من الألوان والطعم والرائحة.
 - ٣ ـ تركيبها يكون تقريباً ثابت.
- ٤ _ خالية من التلوث بالفضلات الصناعية أو المصرفية .

الآبار الغير عميقة تعتبر أو تندرج من ضمن الدرجات الدنيا بالنقاوة أما مياه الآبار الغير عميقة Shallow Weels تعتبر مياه عامة بينما الآبار العميقة فهي التي تجهز المجتمعات والمصانع بالمياه وعلى الأغلب يكون إنتاجها من المياه كبير وفيه درجة كبيرة من النقاوة من المواد العضوية والبكتريا ويمكن معالجة مياه هذه الآبار إذا كان ضرورياً بتقليل الملوحة أو لإزالة الحديد وتتصف مياه الآبار العميقة بأنها شفافة، نقية (غير عكره) وعديمة الألوان.

: SEA WATER مياه البحار

مياه البحار استعمالاتها كبيرة في الصناعة لأغراض التبريد ومياه المحيطات لها تراكيز ملحية تتراوح ما بين ٣٠٠٠٠- ٣٦٠٠٠ ملغم/ لتر من المواد الصلبة الذائبة والتي تتضمن ما يلي:

جدول (٧٢) يوضح تراكيز العناصر في بعض المحيطات

المحتسوى	المسادن
۱۹۰۰۰ ملغم/ لتر	كــــــورايـــد
١٠٦٠٠ ملغم/ لتر	الصـوديوم
۱۲۷۰ ملغم/ لتسر	مغنيسيوم
۸۸۰ ملغم / لتــر	الكبريت
٤٠٠ ملغم / لتــر	الكالسيوم
۳۸۰ ملغم / لتــر	البوتاسيوم
٦٥ ملغم / لتـــر	البـــرومين
۲۸ ملغم / لتــر	الكاربون
١٣ ملغم/ لتــر	الستترتيتوم
٤,٦ ملغم / لتـر	اليـــورون

وتكون المحتويات الصلبة الكلية في وسط المحيط بحدود ٣٥-٣٧ ألف ملغم/ لتر بعض البحار تحتوي على مياه أقل درجة من المواد الصلبة الكلية وعلى سبيل المثال بحر البلطيق يحتوي على -10^7 ملغم/ كغم البحر الأسود -10^7 ملغم/ كغم، بحر أورال capsin sea فيتراوح ما ملغم/ كغم أما بحر كابسن sea فيتراوح ما بين -10^7 ملغم/ كغم لذا تكون تحلية هذه البحار مكلفة جداً.

الفصل الخامس

- الاحتياجات الصناعية والمنزلية للمياه .
 - الاستخدامات الصناعية .
 - الاحتياجات المنزلية للمياه .
- الأمراض والاصابات الناشئة من المياه المجهزة .

الفصل الخامس

الاحتياجات الصناعية والمنزلية للمياه

أن دور المياه واستعمالاتها الوطنية كانت أم الإقليمية يعتمد بالدرجة الرئيسية على الظروف المناخية ودرجة التطور الاقتصادي.

وفي بداية مرحلة التطور كان الاحتياج الرئيسي للمياه للري وللثروة الحيوانية وللاستهلاك البشري كان هو المتغلب ولكن مؤخراً ازداد استعمال المياه في الصناعة وتوليد المياه في الصناعة وتوليد القوة الكهربائية بحيث أصبح هو الغالب على الزراعة . ونوعية المياه لها دور كبير في تقدير الاستعمال وطبيعياً فنوعية المياه للاستهلاك البشري يجب أن تكون خالية من التلوث قدر الإمكان بالإضافة إلى نقاوتها . أما المياه ذات النوعية الواطئه فتكون للاستعمالات الأخرى كالزراعة ، الصناعة وعموماً يجب تخصيص المياه من حيث الاستعمال النوعية الحالية من المياه يمكن أن تكون ملائمة للأغراض الصناعية مثلاً ويمكن أن لا تكون ملائمة للزراعة مثلاً والعكس صحيح بالاعتماد على المنتجات الصناعية والمحاصيل الزراعية .

أما نوعية المياه لإنتاج القوة الكهربائية فهي أقل أهمية من حيث النوعية أما بالنسبة لدراسات معهد الهايدرولوجي (روسيا) فقد قدر الاستهلاك الكلي للمياه في العالم عام ١٩٧٦ حوالي ٢٠٠٠ كيلو متر ٣ وهو موزع كما يلي:

7.0A	آســـــا
7.71	شمال أفريقيا
7.17	أوروبا
7.0	أفيقا
7.4	جنوب أمسريكا
7.1	استراليا ونيوزلندا
1	المجمموع

أن احتياجات المرفق الزراعي للمياه أكثر بكثير من احتياجات الصناعة لذا نرى أن مياه العالم تستعمل زراعياً وبحدود ٩٤٪ عام ١٩٧٠ بينما تناقصت إلى ٨٠٪ في بداية التسعينات من الاستهلاك العام علماً أن بعض المساحات تعتمد على مياه الأمطار كمصدر رئيسي للمياه ومن المتوقع أن الطلب سيزداد للأغراض الصناعية والأغراض الأخرى غير الزراعية وبسرعة بالاعتماد على التطور الحاصل في العالم فعلى سبيل المثال أن الهند تستعمل حالياً ٦, ٨٨ من مياهها للزراعة بينما كانت تستهلك ٥, ٩٢٪ من مياهها للزراعة عام ١٩٧٥ وهذا المثال يكرر نفسه في كل قطر من أقطار المعمورة الذي يسير بخطى صناعية.

الاستخدامات الصناعية واحتياجاتها من المياه:

المياه كما أشرنا سابقاً تستعمل في الصناعة بكميات تعتمد على نوع الصناعة وأهدافها وعموماً فالمصانع تفتش عن المياه ذات الكلفة الواطئة لأن المياه المعالجة تحتاج إلى الكثير من الكلف (الكيماوية وغير الكيماوية) وتقدر كلفتها و ٢٥-٣٠ مرة أكثر من كلف المياه الغير معاملة. المصانع في المناطق الجافة تستخدم كميات كبيرة من المياه وأحياناً نرى بعض المعامل الكبيرة تستخدم كميات قليلة من المياه مقارنة ببعض المعامل الصغيرة والجدول التالي يوضح احتياجات بعض الصناعات.

جدول (٢٣) يوضح الاحتياج المائي لبعض الصناعات المختلفة

الاحتياج المائي م" / وحدة منتج	الصناعـــة	
	ـ معامل الورق :	
۲۰ – ۲۰ طن	الورق المضغوط	
١٥ – ١٤٠ طن	Straw board	
۲۷۰ – ۲۲۰ طن	Sulfate pulp	
	ب ـ معامل الحديد:	
۲۰۰ – ۲۸۰ طن	الحديد المفبرك	
۸۰ – ۹۰ طن	Ingot steel	
۲۶ – ۱۸ طن	Pig Iron	

الاحتياج المائي م" / وحدة منتج	الصناعـــة
	. النفط:
۲۱ - ۲۰م خام	تكرير النفط
١٤ - ١٥م خام	Oil Fisher
١٠ - ١٥م خام	كازولين طبيعي
۱۵ - ۰ ۰ ۲ طن	كرنيه الفحم
۳ – ٤ طن	السمنت
	. النسيج القطني :
Km 19 17.	القصر Bleaching
۱۲۰ – ۱۲۰ طن	الصبغ Dyeing
۷۰-۲٥ طن	Finishing
۰ ۲۸۰ – ۵۰ طن	التصنيع
	صناعة الرايون Ryon
۰ ۰ ۸ ۰ - ۸۸ طن	Cupprommonium yam
۰ ۹۵۰ – ۸۳۰ طن	إذابة اللب
۰۰۰۸ - ۰۰۰۹ طن	الرايون اللزج
	2

أن المصانع على اختلاف أنواعها غذائية ، ورقية ، كيماويات ، نفطية ، معدنية . . إلخ حدود ٨٥٪ من المرسوم المائي وبحدود ٢٠-٠٨٪ من هـذا الاحتياج المائي للعمليات مية هو للتبريد وهو من نوعية ليست عالية ويمكن تدوير هذه المياه داخل المصنع .

والجدول التالي يوضح الطلب على المياه من مختلف الصناعات في بعض بالمتر المكعب لكل طن.

جدول (٢٤) يوضح الطلب على المياه من مختلف الصناعات في بعض الدول

أمريكا	إيطاليا	أفريقيا	المكسيك	الصناعة
۸۰۰-۲٥٠	_	100.	109,97	(اللب) Pulp
1717.	118,7	1 7	٣٦,٤٩	الورق
_	0 7 7	01.	18,77	الحديد والصلب
77	7 7 7	_	408	النسيج م"/ م
_	884,0	_	٧٣	الدباغة
A	۸٤,٣	0 1 .	٣٢,٥٠	الكيماويات

أما الاحتياجات المائية لبعض الصناعات في الدول الأقل تطوراً وكمثال عليها الهند والتي هي قريبة لمصانعنا وكما هو موضح في الجدول التالي:

حجم المياه	الصناعـــة
٦ - ١٠ لتر / لتر حليب	الألبان
١٥ - ٢٠ لتر / لتر كحول	التـقطيـر
١٥ - ١٠ لتر / كغم سكر	الـــكــر
٠٤ - ٥٥ لتـر / كـغم	الدباغـــة
٦ - ٨ لتـر / كـغم يوريا	اليــوريا
١,٥ لتر / كغم فحم مكربن	الكربنه العالية
٢ لتر / كغم فحم مكربن	الكربنه الواطئه

أما كميات المياه المستهلكة لمختلف الصناعات وعلى سبيل المثال (الهند) لأنني لم أجد أي دراسة عربية حول كميات المستهلكة في الصناعات وأقرب مثال لنا هو الهند.

جدول (٥٥) الكميات المستهلكة من الماء في الصناعات

كمية الماء (ميلون م")	نوع الصناعـــة
70	الكيماويات
11	الحسديد
11	الــنــفــط
۹.,	النسيج
٤٠٠	الفــحم
Ψ	المنجا ـ الغذائية
١	اللب والورق
78	المجموع

ويظهر أن الكميات المستخدمة في الصناعة كبيرة جداً قياساً إلى الحصة المائية للهند بينما إذا نظرنا إلى الدول المتقدمة كأمريكا مثلاً نرى أن الحصة المائية للصناعة محسوبة كنسبة من الماء الكلي وكما يلي:

جدول (٢٦) يوضح الكميات المستخدمة من الماء في الصناعة

٪ الماء المأخوذ من الماء الكلي	نوع الصناعة	٪ الماء المأخوذ من الماء الكلي	نوع الصناعة
٣,٢	صناعة اللحوم	٦,٢	صناعة السيارات
V, Y	صناعة النفط	1.,0	صناعة السكر (البنجر)
0,5	صناعة الدواجن	0,9	الصناعة الكيماوية
٤,٣	لب الورق	١٨,٢	صناعة الفحم
۲۷,٦	صناعة الملح	۲۰,٦	مطاحن الذره والحنطه
۸,٥	الصابون والمنظفات	۱۰,٤	التقطير
٧,٣	الحديد	٣٣,٦	الغذائية
10,9	السكر	۲١,٤	الميكانيكية
		٦,٧	النسيجية

علماً أن كل صناعة من هذه الصناعات تحتاج إلى نوعية محددة من المياه الأغراضها وأهم مؤشر هو الكلفة وكذلك درجة الملوثات وسنتطرق إلى كل صناعة واحتياجاتها المائية.

صناعة اللب والورق:

يستعمل الماء في هذه الصناعة من أجل صناعة العجينة (اللب) وإنتاج الورق وتحت ظروف معينة ومحددة وتعتمد على ظروف المائية لأي دولة ونوعيتها وتمر خطوات الإنتاج بالمراحل التالية:

١ _ مجاري حرق السليلوز ليصبح شرائح أو شظايا chipper .

٢ _ ضغط الشظايا .

" عملية الغسل في الـ knotters .

٤ _ عملية تعقيم اللب.

٥ _ عملية التكثيف.

٦ _ عملية السيطرة على المضخات المغذية.

ولأجل تنفيذ هذه العمليات الصناعية يحتاج إلى كميات من المياه وذات مواصفات وأهمها النقاوة لأن خلاف ذلك سيؤثر على نعومة الورق المنتج. كما أن العكارة واللون ستؤثر على نوعية الورق.

أما العسرة فلها دور كبير حيث تتفاعل مواد العسرة مع طبيعة المواد الموجودة وتكوّن مواد جديدة غير ذائبة كالحديد، المنغنيز والتي تسبب تلون الورق وكذلك فقدانه اللمعة.

أما الاشنات وأسبورات الاعفان فأنها تعمل على تبقع الورق الناتج لذاتم تحديد مواصفات المياه المستعملة في هذه الصناعة وكما هي مؤشرة في الجدول التالي:

جدول (٧٧) يوضح مواصفات المياه المستخدمة في صناعة الورق

أعلى درجات الورق	ورق الصودا والسلفايت	ورق كرافت مع اللب غير مفسول	ورق كرافت المغسول	ورق الخشب الأرضي	المحتـــوى
٥	١	١٠٠	10	۲.	اللون (وحده هيز)
١.	10	١	۲٥	٥٠	العكارة (سليكا)
٣٠٠	٣	0	٣	0 * *	المواد الصلبة الذائبة
١	١	۲.,	1	۲	العسره الكليه ca co ₃
٠,٢٥	٠,٢٥	١	٠,٢٥	١	الحديد Fe
٠,٠٥	٠,٠٥	٠,٥	٠,١	٠,٥	المنغنيز Mn
٠,٢٥	٠,٢٥		٠,٢٥	١	الحديد + المنغنيز معاً
۲	۲		۲	۲	الكلوريد المتبقي

اللون المنتج بواسطة ١ ملغم/ لتر للبلاتينوم (k2 ptel) والمأخوذ كوحدة قياسية اللون (Hazen Unit) وهي معروفة كمحلول بوتاسيوم كلورو بلاتينت مع كمية قليلة من كلوريد الكوبلت.

صناعة النسيج:

تستعمل المياه في هذه الصناعة لغسل الصوف وعملية Kiering والعمليات التصنيعية والنهائية كالتبريد، البخار . . . إلخ .

وأن مواصفات المياه المستعملة في هذا النوع من الصناعة يجب أن تكون خالية من العكارة الملونة (حديد، منغنيز) وكذلك خالياً من العسرة وخصوصاً مرحلة صبغ النسيج والجدول التالي يوضح مواصفات ومزايا مياه صناعة النسيج.

جدول رقم (٧٨) يوضح مواصفات المياه المستخدمة في صناعة النسيج

تنظيف الصوف	القصر والصبغ	لكافة الأغراض	تنظيف الصوف
٧٠	٥	۲.	الصوف (هيزن)
	٥	٥	العكارة (سليكا)
۸,٥-٦	۸,٥-٦	۸,٥-٦	الأس الهيدروجيني
٥٠	0 *	0 *	العسره ک
٠,٢٥	٠,٢٥	٠,٢٥	الحــــديد Fe
٠,١٠	٠,١٠	٠,١٠	المنغنيـــز Mn
٠,٢٥	٠,٢٥	٠,٢٥	الحديد + المنغنيز
٠,٢٥	٠,٢٥	٠,٢٥	الحديد + المنغنيز

صناعة الدباغة:

العمليات الصناعية لهذه الصناعة كثيرة وتحتاج إلى كميات مياه معينة وذات مواصفات محددة أيضاً وأهم إلخطوات في هذه الصناعة هي:

١ _ امتصاص البقع أو إخفاء بعض المواد الغير مرغوبة في الجلد.

٢ _ عملية المعاملة باللايم (الكلس) Liming .

" عملية إزالة اللايم (الكلس) (deliming) .

٤ _ عملية تطرية الجلود بماء قلوي (Bating) .

. pickling م عملية التحليل

لذا فأن هذه الصناعة يجب أن تكون مياهها خالية من المنغنيز بسبب الصبغة (اللون للمياه) وبالتالي يؤثر على عملية الدباغة كما وأن العسرة (اللون للمياه) وبالتالي تؤثر على عملية الدباغة كما وأن العسرة (CaCo والبايكاربونات (Co التي تؤثر على وتكون بقع أو علامات (Kiss spots) .

وأن مواصفات المياه المستخدمة في هذه الصناعة يجب أن تتوفر فيها الشروط والمزايا التالية :

جدول (٢٩) يوضح مواصفات المياه المستخدمة في صناعة الدباغة

القيساس	الصفة (الميزة)
٢٥ هـيــــزن	الــــــــون
۲.	العكاره (سليكا)
۸,٥-٦,٥	الأس الهيدروجيني
١٥٠	القاعدية كـ (Ca Co ₃)
٥٠٠ جـزء بالمليـون	العسرة كـ (Ca Co ₃)
1	الحديد + المنغنيز (معاً)

صناعة التخمرات:

الصناعات التخميرية واسعة الانتشار ومنتجاتها كثيرة وتستعمل كميات كبيرة من المياه وتعتبر المياه مادة أساسية في هذه الصناعة وتبدأ العملية .

- ١ _ أحواض التخمير.
- ٢ _ عمليات التقطير والتكثيف.
 - ٣_ عمليات غسل القناني .
 - ٤ _ عمليات البسترة.
 - ٥ _ عمليات التبريد.

وأكثر هذه العمليات تحتاج إلى مياه ذات نوعية معينة ومتخصصة لهذه الصناعة وكما هي مدرجة في هذا الجدول.

جدول (٣٠) يوضح مواصفات المياه المستخدمة في صناعة التخمرات

السماح	الخاصية	السماح	الخاصية
٢٠ جـزء بالمليـون	نـــــرات	۲۰ (هیزن)	اللون
٠٠٠١ جزء بالمليون	مواد فينوليه	١.	العكارة (سليكا)
٥٠,٠٠ جزء بالمليون	السكسروم	عديم الرائحة	الرائحة
٠,٠١ جزء بالمليون	السيانيد	9,7-7	الأس الهيدروجيني
١, ٠ جـزء بالمليـون	الرصــاص	١٠٠٠ جزء بالمليون	المواد الصلبة
٥٠, ٠جزء بالمليون	السلينوم	٥٠٠ جزء بالمليون	العسرة الكلية CaCo ₃
۲,۰ جزء بالمليون	الــزرنــيـخ	٢٥٠ جزء بالمليون	الفلورايد F
		۲۰۰ جزء بالمليون	السلفيت So ₄
		٣,٠ جزء بالمليون	الحديد Fe
		۲, ۰ جزء بالمليون	المنغنيز Mn
		١ جزء بالمليون	النحاس Cu
		١٥ جزء بالمليون	الزنك Zn
		١٢٥ جزء بالمليون	مغنيسيوم Mg
		١,٥ جزء بالمليون	فلورايد

وتعتبر المياه المستعملة في صناعة التخمرات شبيهه بالمياه المستعملة في صناعة المشروبات الغازية بمواصفاتها وعموماً فالمياه يجب أن تكون نقية وعديمة اللون والطعم والرائحة وخالية من الأحياء المجهرية .

مصانع الأغذية:

أن مصانع الأغذية تستخدم كميات كبيرة من المياه ويعتبر الماء ركن أساسي من أركانها فعمليات الغسل والطبخ والبسترة والتعقيم ومياه إلخدمات كالمراجل البخارية والتبريد والتكثيفة. إلخ من العمليات. وتستخدم مصانع الأغذية المياه النقية وإلخالية من الحديد والمنغنيز وعديمة اللون والطعم والرائحة وخالية من الأحياء المجهرية. والجدول (٣١) التالي يوضح مواصفات مياه مصانع الأغذية.

جدول (٣١) يوضح مواصفات مياه مصانع الأغذية

الكمية أو وحدة القياس	الخاصية	الكمية أو وحدة القياس	الحناصية
٠,٢	المغنيسيوم	۲۰ (هيزن)	اللون
٠,١	رصــاص	١.	العكارة (سليكا)
٠,٠٥	كرومنيوم	عديم الرائحة	الرائحة
10	زنــــــك	9,7-7,0	الأس الهيدروجيني
٠,٢	النزرنيخ	١٠٠٠ جزء بالمليون	المواد الصلبة
۲.	نتـــرات	٦٠٠ جزء بالمليون	العسرة الكلية CaCo ₃
٠,٠٠١	مواد قينولية	۲۰۰ جزء بالمليون	السلفيت So ₄
	(C6H ₅₀ H)	٥,١ جزء بالمليون	فلورايد
		۲۵۰ جزء بالمليون	كلورايد
		۰,۰۱ جزء بالمليون	سیانید
		٠٠,٠٥ جزء بالمليون	سلينيوم
		٣,٠ جزء بالمليون	حديد

صناعة الريون:

ألياف الريون التي تصنع بواسطة Cupra amonium أو أستيات السليلوز وأن عمل عملية التصنيع هذه تتضمن كميات من الماء التي تستعمل بكل خطوة: غسل، عمل محاليل إلخ من عمليات التصنيع وأن صفات الماء المسموح به لصناعة الرايون هي في الجدول (٣٢) التالي:

الماء المسموح به لعمليات التصنيع Processing : جدول (٣٢) يوضح مواصفة المياه المستخدمة في صناعة الرايون

الكمية أو وحدة القياس	الخاصية	الكمية أو وحدة القياس	الخاصية
٣,٠ جزء بالمليون	الحـــديد Fe	۲۰ (هیزن)	اللون
٧٥ جـزء بالمليـون	المغنيسيوم Mg	١.	العكارة (سليكا)
۲,۰ جزء بالمليون	المنغنيــز Mn	عديم الرائحة	الرائحة
١ جـزء بالمليـون	النحـاس Cu	9,7-7,0	الأس الهيدروجيني
١, ٠ جزء بالمليون	الرصاص Pb	١٠٠٠ جزء بالمليون	المواد الصلبة الذائبة
۰,۰٥ جزء بالمليون	الكرومينوم Cr	٦٠٠ جزء بالمليون	العسرة الكلية CaCo ₃
١٥ جـزء بالمليـون	الـزنـك Zn	۲۰۰ جزء بالمليون	السلفيت So ₄
۲,۰ جزء بالمليون	الزرنيخ As	١,٥ جزء بالمليون	الفلورايد F
٢٠ جـزء بالمليـون	النتـــرات	۲۵۰ جزء بالمليون	الكلورايد Cl
٠٠٠١ جزء بالمليون	المواد الفينوليه	٠,٠١ جزء بالمليون	السيانيد CN
	(C6H ₅₀ H)	۰,۰٥ جزء بالمليون	السلينيوم Se

أما المياه المسموح بها لإنتاج الرايون فهي كما مدرجة بالجدول التالي والمقصود هنا بـ Manufacturing .

النسبة المسموح بها	الصفة	النسبة المسموح بها	الصفة
١.	SIO ₂ السليكا	٥	اللون (هيزن)
٠,٠٥	الحديد	١	العكاره (سليكا)
٠,٠٣	المنغنيز	۲.,	المواد الصلبة الذائبة
٠,٠٥	الحديد + المنغنيز	٧٥	القلوية الكلية كـ CaCo ₃
٠,٠١	المعادن الثقيلة	٥	العسره الكليه

صناعة الثلج:

الثلج يصنع في مصانع الأغذية أو في مخازن التبريد والتجميد. والثلج بمواصفاته يكون رائق وكريستال وعديم اللون وخالي من الفقاعات ثلجي البصلة وفيه فتحة كبيرة والمياه المستعملة لإنتاج الثلج يجب أن تكون عديمة اللون وخالية من المواد المنتشرة ونقية ولا تحتوي على الحديد والمنغنيز والرصاص ولا تحتوي على المواد العضوية وخالي من الأحياء المجهرية.

الصناعات الكيماوية:

إن الصناعات الكيماوية المختلفة تحتاج إلى كميات من الماء وذلك لاستعمالها كمادة خام أو كمادة خدمات ويجب أن تكون هذه المياه بمواصفات خاصة لكل صناعة من الصناعات ولكن على العموم فيجب أن تتصف المياه بنقاوتها أولاً ومن ثم عديمة اللون والرائحة والطعم وخالية من الحديد والمنغنيز وسلفات الهيدروجين والنموات العضوية وأهم الصناعات الكيماوية.

١ _ صناعة الحديد والصلب:

وهذه الصناعة تحتاج إلى كميات كبيرة من المياه ابتدأ من المراجل البخارية إلى وحدات التبريد والحرق، التمليح Rinsing والتصفيح . . إلخ وبالنسبة إلى بعض المختصين فيحدد مياه صناعة الحديد والصلب بالآتي :

١ ـ درجة حرارتها أقل من ٧٥ م.

٢ _ الكلورايد أقل من ١٧٥ ملغم/ لتر.

٣- الأس الهيدروجيني بين ٧, ٦-٧.

٤ _ العسرة ٥٠ ملغم/ لتر.

٥ _ المواد المنتشرة أقل من ٢٥ ملغم/ لتر.

٦ _ المحتوى العضوي أقل ما يمكن.

٧ ـ الطاقة التآكلية في أقل مستوى.

وعندما تستعمل المياه السطحية المعالجة يجب أن تكون ضمن إلخطوات التالية : الترسيب، الكلوره، التلبيد التخثر، الترشيح، إزالة الحديد والمنغنيز.

مياه المراجل البخارية:

أن مشكلة المراجل البخارية شائعة لكل الصناعات بسبب الترسبات والتآكل الذي تصيب هذه المراجل فمشكلة الرغوة Foaming تسبب مع مياه غير نقية لذلك تتكون الفقاعات والرغوة أما اله Priming فيكون في البخار رطوبة ومواد صلبة ، أما التبلور الداخلي والذي يحصل للمراجل وخصوصاً على المعادن حيث يتجمع على شكل طبقة مما يسبب بعض المخاطر لذا فقد أنشأت جمعيات لحماية العاملين في المراجل البخارية لكي تكون المياه بمواصفات ثابتة لتحمي المراجل والعاملين معاً أما الحدود الدنيا لمواصفات هذه المياه فهي في الجدول التالي:

جدول (٣٣) يوضح مواصفة المياه المستخدمة في المراجل البخارية

- (.) (الضغط Mn م		
الخاصيــة	1	1,٧_1	٧,١_٩,٧	أعلى من ٢٨
العكارة (سليكا)	۲.	١.	٥	١
اللون (هيزن)	۸٠	٤٠	٥	1
الأكسجين المستهلك	10	١.	٤	٣
سلفات الهيدروجين	٥	٣	صفر	صفر
العسرة الكلية	۸٠	٤٠	١.	۲
سلفيت / كاربونيت	١:١	١:٢	۱:۳	1:4
أوكسيد الألومنيوم	0	٠,٥	٠,٠٥	٠,٠١
السليكا	٤٠	۲.	٥	1
البيكاربونات	٥٠	۳.	٥	صفر
الكاربونيت	۲	١	٤٠	۲٠
الهيدروكسيدات	٥٠	٤٠	۳٠	10
المواد الصلبة الذائبة	10	Y 10	101	٥٠
PH	٨	Λ, ξ	٩	٩,٦

ومن الجدول يظهر أن الحماية هي:

- ١ ـ باختزال العكارة، اللون والمواد الصلبة .
 - ٢ _ اختزال العسرة، السليط، الألومنيا.
- ٣ ـ صيانة السيطرة على العلاقة ما بين السلفات والكاربونات.
- ٤ ـ حذف الأوكسجين واختزال أيونات البايكاربونات وزيادة الـ PH .

الاحتياجات لمنزلية للمياه:

إن الاحتياج الكلي لأي مدينة في العالم للمياه تقدر اليوم بواسطة عدة عوامل وأهمها النفع العام ، النوعية ، الكلفة ، الدخل ، حجم العوائل ، عادات المنطقة ، مقياس الحياة ، الطرق والوسائل لتوزيع المياه ، المناخ .

فجسم الإنسان مثلاً يحتاج إلى حوالي ٢ - ٤ لتر باليوم لكافة الوظائف الفسيولوجية بالاعتماد على المناخ والعمل واستهلاك الأغذية أيضاً له بعض النفع المائي .

تجهيز المياه للمستهلكين:

إن تجهيز المياه للمستهلكين يعتمد على:

١ _ احتياجات منزلية ، شرب ، طبخ ، تحميم ، غسل ، تنظيف ، تبريد .

٢ _ احتياجات المعاهد والمؤسسات العامة .

- ٣ ـ أغراض عامة .
- ٤ ـ تنظيف شوارع .
- ٥ ـ تنظيف مرافق عامة .
 - ٦_إطفاء الحرائق.
- ٧_استعمالات تجارية.
- ٨ ـ استعمالات صناعية .
- ٩ _ استعمالات زراعية .

وإن هذه الاحتياجات تختلف من حديقة وأخرى وبين قطر وآخر .

ولهذا الغرض تستعمل أنابيب تتزاوح ما بين ١٠٠ - ٤٠٠ لتر / للوحدة باليوم وكمعدل إلى الاستهلاك المنزلي في الدول المتطورة هو ٢٥٠ لتر / للوحدة / باليوم وهذه القيمة يمكن أن تضاعف بواسطة عامل ثابت Factor وهو ٥,١ لكي تعطي الحقيقة للاستعمال المنزلي .

بالنسبة لمنظمة الصحة العالمية WHO أجرت مسحاً لـ ٩٢ دولة متطورة و ٦٧ دولة متطورة و ٢٥ دولة متطورة و ٢٥ دولة نامية والذين يملكون الأسباب لحماية المياه وأخذت قراراً لتغطية ١٠٠٪ من الاحتياجات بواسطة أنابيب تبخر المياه .

الأمراض والإصابات والأضرار الناشئة من المياه المجهزة :

يعتبر العالم سنو SNOW أول من لاحظ بيئة مياه الشرب ووجد فيها العوامل البيولوجية لانتشار مرض الكوليرا وتبعه بعد ذلك روبرت كوخ الذي أوضح بأن الماء يعتبر وسطاً لانتقال الكثير من الأمراض وأن الفلاتر الرملية المجهزة لاختزال المواد العالقة تختزل جزء من المحتوى البكتيري من الماء إلى درجة تنقيته وقد حسبت منظمة الصحة العالمية أكثر من ٨٠٪ من الأمراض في العالم لها علاقة بالمياه مباشرة أو غير مباشرة ومن خلال (الحشرات) والتي تعتبر مضيف وسيط للأمراض.

أن النقض الحاصل في تجهيز المياه أقل من ١٣٥ لتر/ وحدة/ باليوم هو سبب آخر للمصيدة الصحية للمياه. حيث تشير الإحصائيات إلى أن أكثر من ٢٠٠ مليون نسمة يقاسون من gastroenteritis و ٢٠٠ مليون نسمة يقاسوا من schistosmiasn وكلاهما له علاقة بالمياه الملوثة والمستعملة للاستهلاك. علماً بأن أكثر من (١٠) مليون نسمة يتأثرون سنوياً بالتايفوئيد، الكوليرا، الدزانتري وSchistomiasis أو البلهارسيا وهو مرض واسع الانتشار بسبب الطفيل (Worm) والذي ينفذ إلى الإنسان من خلال الاحتكاك بالمياه (مياه البرك، القنوات والبحيرات... إلخ.

أن التلوث بفضلات الإنسان هو الآخر يعاني ويقاسي منه أكثر من ٢٠٠ مليون نسمة في أفريقيا، الشرق الأوسط، جنوب أمريكا، جزر الكاريبي الصين والشرق الأقصى.

البعوض الذي يتكاثر في المياه وهو المسؤول عن مرض الملاريا Filariasis وأمراض أخرى علماً بأن أكثر من ٢٥٠ مليون نسمة تعاني من أمراض البعوض سنوياً.

أن الأمراض الناشئة من المياه تنقل متى ما كان المرض في الماء علماً أن الماء يعمل على نشر هذه الأمراض كما أن للماء علاقة ببعض العلاقات الجلدية البكتيرية . كما أن العين لا تسلم من المياه الملوثة وخصوصاً مرض التراخوما في الدول الاستوائية . علماً أن الماء يعتبر جزء مهم لدورة بعض الأمراض وخصوصاً الحيوانية منها علماً وأن كل هذه الأمراض هي طفيلية والتي تعتمد بدرجة رئيسية على المضيف ليكمل دورة حياته مثل:

- . schistosomiasis _ \
 - . Guinea Worm _ Y
 - . Chonorehiasis _ T
- . Diphyllobothrasis _ &
 - . Fasciolapsiasis _ o
 - . Paragonimiasis _ 7

وجميع هذه الأمراض يمكن أن تنتشر من خلال الماء أو بالتنافذ من خلال الجلد كما في الإسكارس Ascariasis Trichuris و Hook Worm وكذلك الماء مهم في نشر مرض الملاريا والحمى الصفراء و Filariasis و Filariasis و الحمى الصفراء و Filariasis و المحسرات التي تنقل الأمراض إلى الماء وخصوصاً في الدول الأفريقية ومن أمثلتها مرض الحشرات التي تنقل الأمراض إلى الماء وخصوصاً في الدول الأفريقية ومن أمثلتها مرض Trypanosomiasis و (ذبابة الأنهار) . Glossuia Spp أما مرض الزحار الأميبي ومرض الإسهال فسببها السلونيلا والشيكلا والشيكلا shegalla . أما التايفوئيد والبارا تايفوئيد فسببها بكتيريا Leptospirosis أما اليرقان فسببه فايروسي .

أن هذه الأمراض الناشئة من المياه يمكن القضاء عليها بزيادة الوعي وبزيادة السيطرة النوعية على المياه المجهزة والمستعملة (المستخدمة).

ويمكن تصنيف الأمراض حسب مصادرها:

أمراض برازية (غير بكتيرية).

أمراض برازية (بكتيرية).

أمراض تنتقل من التربة.

أمراض تنتقل من الحيوانات.

الفايروسات في المياه:

الفايروسات في المياه عبارة عن طفيليات داخل إلخلايا الحية يتضاعف عددها أو حجمها فهو تحت حجم الرؤيا الميكروسكوبية وتحتوي الفاروسات على الأحماض النووية RNA و DNA مع تغطية بروتينية وتعتمد الفايروسات على العائل المضيف (إلخلية الحية) لأجل الطاقة وسعتها التخليقية وليس لها وظائف مايتوكوندرية.

حجم الفايرس يتراوح ما بين ٠٠, ٠ إلى ٣, ٠ ملمايكرون وهناك فايروسات واسعة الانتشار للبنات والحيوان وبضمنها الإنسان.

فايروسات الحيوان او البكتريوفاج لها علاقة بالصحة العامة وهي شائعة العزل في المياه فالمياه إلخام الملوثة ببراز الإنسان والحيوان والتربة ملوثة دائماً بالفايروسات وأعلى تركيز لها بحدود ١٠٠٠, ١٠٠٠ فايرس/ لتر. علماً أن بعض الفاروسات تهاجم الكبد ويسمى hepatatis virus .

ولأجل هذه الأمراض الكثيرة والواسعة اهتمت أكثر دول العالم بصحة المياه فالمياه أهم معول في حياة الإنسان فهي الأساس في ديمومة حياته وبدونها سيفقد حياته. والمياه وسط مهم في انتشار الأمراض والتسممات. لذا كان هذا الاهتمام والسيطرة على أهم مصدر من الناحية البيولوجية أولاً وكذلك المواد المتحللة في المياه وتأثيرها على صحة المواطن علماً بأن درجة الحرارة (درجة حرارة المياه) لها دور كبير في تغير الطعم والرائحة وتسارع في التحلل للمواد العضوية.

فعند انخفاض درجة حرارة المياه تكون أكثر استساغة للمستهلك بينما في نفس الوقت تزيد من تناقص كفاءة التنقية والتطهر أما عند ارتفاع درجة حرارة المياه نتيجة وجود الأحياء المجهرية وتأثير هذه الأحياء على تحليل المواد العضوية فأنه سيؤثر بالنتيجة على الطعم والرائحة واللون ومن هذه المواد:

: Cl₂

الكلور من المواد المعقمة للمياه وهو الضمانة الأكيدة على خلو المياه من الأحياء المجهرية ولكن لعمل الكلور أصبحت ضروف قياسية متعارف عليها وهي أن تكون العكارة أقل ما يمكن (INTU) وكذلك الأس الهيدروجيني يجب أن يكون أقل من ($^{(4)}$) عند تلامس الكلور والماء وفي خلال ($^{(4)}$) دقيقة. وأهم من ذلك فأن كمية الكلور المتبقية في المياه يجب أن لا تقل عن $^{(4)}$ 0 ملغم/ لتر $^{(4)}$ 1 وعن $^{(4)}$ 0 ملغم/ لتر $^{(4)}$ 2 وعن $^{(4)}$ 3 ملغم/ لتر $^{(4)}$ 3 وعن $^{(4)}$ 4 ملغم/ لتر $^{(4)}$ 5 ملغم/ لتر $^{(4)}$ 6 وعن $^{(4)}$ 6 ملغم/ لتر $^{(4)}$ 7 ملغم/ لتر $^{(4)}$ 8 وعن $^{(4)}$ 9 ملغم/ لتر $^{(4)}$ 9 دمن في المياه يجب أن لا تقل عن $^{(4)}$ 9 ملغم/ لتر $^{(4)}$ 9 وعن $^{(4)}$ 9 ملغم/ لتر $^{(4)}$ 9 ملغم/ لتر $^{(4)}$ 9 دمن في المياه يجب أن لا تقل عن $^{(4)}$ 9 ملغم/ لتر $^{(4)}$ 9 دمن في المياه يجب أن لا تقل عن $^{(4)}$ 9 ملغم/ لتر $^{(4)}$ 9 دمن في المياه يجب أن لا تقل عن $^{(4)}$ 9 ملغم/ لتر $^{(4)}$ 9 دمن في المياه يجب أن لا تقل عن $^{(4)}$ 9 ملغم/ لتر $^{(4)}$ 9 دمن في المياه يجب أن لا تقل عن $^{(4)}$ 9 ملغم/ لتر $^{(4)}$ 9 دمن في المياه يجب أن لا تقل عن $^{(4)}$ 9 ملغم/ لتر $^{(4)}$ 9 دمن في المياه يجب أن لا تقل عن $^{(4)}$ 9 ملغم/ لتر $^{(4)}$ 9 دمن في المياه يجب أن لا تقل عن $^{(4)}$ 9 دمن في المياه يجب أن لا تقل عن $^{(4)}$ 9 دمن في المياه يولياه يولياه كلاك

الأعداد البكتيرية:

يعتبر العدد البكتيري مؤشراً يؤثر على كفاءة عملية التطهير (الكلورة) لأنه كلما كان وقت التلامس مع كمية الكلور كافية كان العدد البكتيري صفراً، وأن دليل التوعية يشير إلى أن العدد البكتيري لا يشترط أن يزيد عن (٢٠٠٠ CFU / مل) لأن الزيادة ستؤثر على دقة فحص بكتيريا الكوليفورم والتي تعتبر مؤشر أساسي لوجود الأحياء المجهرية المسببة للأمراض وقد أوصت بعض المواصفات بأن العدد البكتيري لا يفترض أن يزيد عن (٢٠١ CFU / مل) عند التحضين على درجة ٣٧م و (٢٠ CFU / مل) عند التحضين على درجة وأن تجاوز هذه القيم في عند التحضين على درجة المعبأة يكون ناتجاً عن تكاثر البكتيريا الطبيعي.

الفلوريك:

أن وجود الفلوريد في مياه الشرب وبتراكيز قليلة يحمي الإنسان من التسوس حيث يقل تسوس الأسنان كلما أقترب تركيز الفلوريد من الملغم/ لتر ويؤثر على الأسنان إذا زاد عن ٥, ١ ملغم/ لتر أما تأثيره على العظام فأنه يضرها إذا زاد تركيزه عن ٣ ملغم/ لتر في مياه الشرب حيث يسبب ما يسمى Skeletal Fluorosis وكذلك يسبب الإعاقة إذا زاد عن ١٠ ملغم/ لتر في مياه الشرب وذلك أوصت المنظمة العالمية للصحة بأن لا تزيد نسبة الفلورايد عن ٥, ١ ملغم/ لتر في مياه الشرب.

الرصاص:

يعتبر عنصر الرصاص من المواد السامة والتي تؤثر بصورة رئيسية على الأطفال الرضع والحوامل أكثر من الأخرين ولأجل أن لا يرتفع الرصاص في الدم فيجب أن لا تزيد نسبة تركيز الرصاص في مياه الشرب عن ٠٠,٠ ملغم/ لتر.

الخارصين :

الخارصين عنصر لا يوجد له أي أثر صحي سلبي إذا كان في مياه الشرب وضمن التراكيز المسموحة وأن أثره يكمن من الناحية الاستساغية للمياه حيث إذا زاد تركيز الخارصين أعلى من ٥ ملغم/ لتر يسبب طعم غير مرغوب في المياه ويسبب طبقة دهنية عند الغليان وعموماً مياه الشرب لا تحتوي على الخارصين أعلى من ١٠, ملغم/ لتر علماً أن احتياج الإنسان من الخارصين يتراوح ما بين ١-١٠ ملغم/ باليوم اعتماداً على الجنس والعمر ومصدر الخارصين في الغذاء.

علماً بأن الخارصين يسبب اللون والمرارة في طعم المياه.

الزئبــق:

الزئبق من المواد السامة ويوجد على شكل عضوي أو غير عضوي ويتواجد في المياه على شكل غير عضوي ويكون أكثر خطورة إذا وجد على شكل عضوي حيث يسبب خلل في الجهاز العصبي Neurological Impairment إذا زاد استهلاك الفرد اليومي من الزئبق عن ٢٥, ٠ ملغم ك methyl Mercury.

والزئبق العضوي يتراكم في جسم السمك عند تلوث مياه تربية السمك به وهذا ما يجعل السمك غير صالح للاستهلاك البشري. وعند استهلاك مياه ملوثة بالزئبق عمدل ٢ لتر/ يومياً ويتركز الزئبق ١٠٠، ملغم/ لتر يسبب ظهور أخطاء الزئبق باحتمال أقل من ١٠٪ ومصدر الزئبق هو التلوث بالمخلفات الصناعية.

النحياس:

النحاس من العناصر الضرورية لعملية الهضم عند الإنسان وهو غير سام عند التراكيز الموجودة في الطبيعة وفي مياه الشرب. ولكنه يعمل على زيادة الصدأ وتآكل المواسير الحديدية إذا زاد تركيزه عن ٥ ملغم/ لتر.

الكادميوم:

يكن أن يتعرض الإنسان للكادميوم عن طريق الطعام والماء والهواء وقد أوصيت منظمة الصحة العالمية ومنظمة الغذاء والزراعة الدولية بأن لا يزيد معدل استهلاك الفرد من الكادميوم عن (٤, ٠-٥, ٠ ملغم) في الأسبوع حيث إذا زادت كمية الكادميوم تسبب مضاعفات وتسمم. ومصدر الكادميوم (المخلفات الصناعية).

الكوبلت :

يعتبر الكوبلت من العناصر المؤثرة إذا زاد تركيزه عن ١ ملغم/ لتر علماً بأن هذا التركيز يعطي طعماً غير مستساغ وعموماً فأن أكثر المواصفات العالمية لا تسمح تجاوز هذا العنصر عن ١ ملغم/ لتر.

الكروم السداسي:

يعتبر الكروم السداسي أكثر سمية من الكروم الثلاثي، فمياه الشرب التي يتم كلورتها وتهويتها يكون الكروم السداسي هو الغالب وذلك لتأكسد الكروم الثلاثي إلى سداسي وقد أوصت أكثر المواصفات بأن لا يزيد تركيز الكروم عن ٥٠,٠ ملغم/ لتر أما مصدر الكروم فهي التلوث بالمخلفات الصناعية.

الألمنيوم AL :

أن تواجد عنصر الألمنيوم في المياه ليس له أثر صحي للإنسان السليم ولكنه يؤثر في الإنسان الذي يعاني من الكلى وارتباك عصب Neurological Disorders علماً بأن الألمنيوم وبتركيز ١,٠ ملغم/ لتر يعمل على إزالة اللون في المياه.

الزرنيـخ:

الزرنيخ عنصر سام إذا زاد تركيزه عن ٠٠،٠ ملغم/ لتر في المياه ويكون مصدر الزرنيخ عادة من الصناعات التي تستعمل مركبات محتوية على هذا العنصر .

الصوديوم:

عنصر الصوديوم وجوده في المياه أمر طبيعي وناتج من جيولوجية الأرض وفصول السنة وإذا تركيزه عن ٢٠٠ ملغم/ لتر يسب الطعم لمياه الشرب خصوصاً مع الأيونات السالبة مثل الكلوريدات والبيكربونات. وللصوديوم تأثير كبير على الإنسان خصوصاً الذين يعانون من ضغط الدم.

البوتاسيوم:

أن عنصر البوتاسيوم يتواجد في المياه نتيجة تحلل الأملاح الذائبة في الماء ومصدره الطبيعة وأن تحديداته في مياه الشرب بأن لا يزيد عن ١٠-١٢٪ ملغم/ لتر (المواصفة الأوروبية).

المغنيسوم:

من الأملاح الشائعة الذائبة في الماء ومصدرة الطبيعة وإذا زاد تركيزه عن (٥٠-٥٠ ملغم/ لتر) بالاعتماد على الأيون السالب المصاحب له. فالمغنيسيوم مع الكبريتات يسبب الاسهال ولكن مع مرور الزمن يمكن أن يتعود الإنسان عليه علماً بأن المغنيسوم هو أحد العناصر التي تسبب العسرة للماء.

الكاليسوم:

أيضاً من الأملاح الشائعة في المياه ومصدرة الطبيعة وهو أحد العناصر التي تسبب العسرة للماء. أما إذا زاد تركيزه عن ١٠٠-٣٠٠ ملغم/ لتر فأنه يسبب الطعم بالاعتماد على الأيون السالب المصاحب له. علماً بأن تركيز ظهور الطعم هو أعلى من التركيز المسموح للعسرة.

العسر الكلى:

العسر الكلي ناتج من أملاح عنصري الكالسيوم والمغنيسوم وعموماً تقاس العسرة لأملاح هذين العنصرين الكاربونية $Ca\ Co_2$ لذا يجب أن تكون العسرة أقل من محمر ملغم/ لتر لأنها إذا زادت تسبب ترسبات في مواسير شبكات المياه بالاعتماد على الأس الهايدروجيني وعند الغلي تسبب ترسبات وكذلك تسبب زيادة في استهلاك الصابون. والعسرة بحدود ١٠٠ ملغم/ لتر تسبب الصدأ والتآكل لذا حددت المواصفة له بأن لا يزيد عن ١٠٠ ملغم/ لتر علماً بأن ارتفاع عسر الماء إلى ١٠٠ ملغم/ لتر له فوائد صحية خاصة لمرضى القلب.

الكبريتد أو كبيرتيد الهيدروجين:

يكثر وجود الكبرتيد في المياه الجوفية وأحياناً في شبكات التوزيع نتيجة اختزال أيون الكبريتات بعد استنزاف الأوكسجين المذاب بواسطة البكتيريا. وأن وجود الكبرتيد في المياه يستلزم أجراء فوري للتخلص منه بالتهوية لأن وجود يسبب الطعم والرائحة في المياه.

القينولات:

للقينولات صفات خاصة فعند تفاعلها مع الكلور تعطي كالورفينول مسبباً الرائحة والطعم الغير مستساغ للمياه. لذا يوصي باستعمال الكلور للتطهر للمياه ذات التركيز الفينولي لا يزيد عن ١ جزء بالمليون أما المياه المحتوية على ١٠٠ جزء بالمليون فيفضل معاملتها بمطهر آخر وتعتبر مركبات الفينول سامة إذا وجدت في تراكيز عالية ويمكن التخلص منها عن طريق الأكسدة أو باستعمال الكربون النشط.

المنظفات الصناعية:

أن المنظفات الصناعية التي تستعمل في المنازل والمصانع . . . إلخ هي مصدر كبير وواسع لتلوث المياه .

الكربون العضوي الكلي:

للكربون العضوي دور مهم في إزالة المواد العضوية والملوثات أثناء التنقية وليس له أي تأثير نوعي للمياه ولا لصلاحيتها للشرب بل يعكس كميات المواد العضوية في المياه وفي هذه الحالة يجب دراسة كل مادة عضوية ومعرفة تأثيرها على الناحية الصحية أما المسموح به من الكاربون العضوي هو ١٧ - ٢٢ ملغم/ لتر.

الفوسفات:

تعتبر الفوسفات وارتفاعها في المياه مؤشراً واضحاً على تلوث هذه المياه بمصدر مائي ملوث كالمياه الصناعية أو المجاري أو الأسمدة .

النسرات:

النترات No₃ مادة تسبب التسمم إن وجدت في المياه بتراكيز عاليه ومن أهم الأمراض التي تسبب هي مرض الاختناق أو الازرقاق عند الأطفال الرضع وكذلك يكون سبباً لبعض أنواع السرطان لذا جاء تحديد كمية النترات في المياه بأن لا تزيد عن عنه , ٤٥ ملغم لتر ومن مخاطر النترات تحولها إلى نتريت نتيجة علمية الاختزال والذي يتحد مع هيمو غلوبين الدم ليمنع وصول الأوكسجين إلى إلخلايا .

النتريت :

النتريت مشابه للنترات في تأثيراته علماً أنه قلق وغير مستقر فسرعان ما يتحول إلى نترات هي المياه والكمية المسموحة للنتريت هي (١ ملغم/ لتر ك N) أما مصادر النتريت هي مياه المجاري.

المواد العضوية:

ازداد في الآونة الأخيرة تلوث المياه بالمواد العضوية نتيجة تطور الزراعة بشقيها النباتي والحيواني وكذلك انتشار المصانع قرب مصادر المياه وانخفاض مستوى الوعي الثقافي والصحي لبعض المجتمعات.

وعلى العموم فأن تواجد المواد العضوية في المياه يساعد على تكاثر الأحياء المجهرية وبالتالي الأضرار بصحة المواطن أو المستهلك ولأجل هذا تجري بعض الدول فحص (PV) Permanganate value للدلالة على كمية المواد العضوية والشوائب القابلة للأكسدة باستعمال بوتاسيوم برمنغنات.

: EC الإيصالية الكهربائية

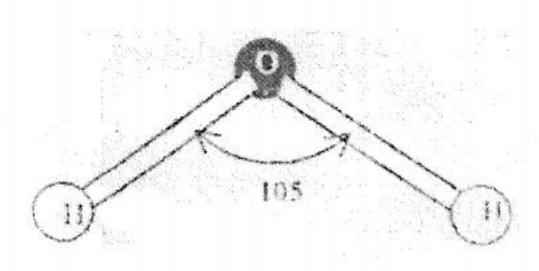
الإيصالية الكهربائية مهمة جداً لمعرفة نوعية المياه الصالحة للشرب وذلك لقياس كمية الأملاح في المياه . وهنالك حدود دنيا وعليا لهذه الأملاح . لأن زيادة تراكيز هذه الأملاح يضر بصحة الإنسان والحيوان والنبات .

المواد الصلبة الذائبة الكلية TDS:

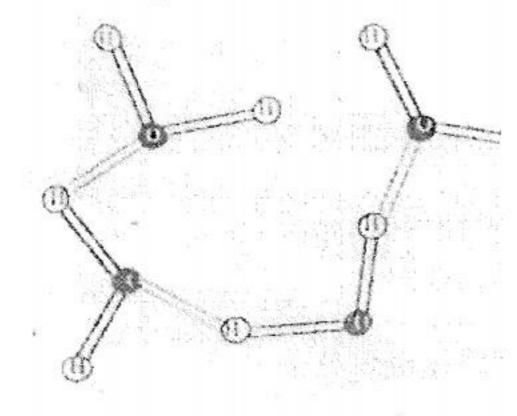
تعتبر المواد الغير عضوية مصدراً للمواد الصلبة الذائبة وأهمها ,Mg, Ca, Cl, Na والبيكربونات وغيرها لهذه المواد تأثير على طعم المياه واستساغتها وقد اتفقت الجهات المعينة بأن تكون الحدود العليا للمواد الصلبة الذائبة الكلية ١٥٠٠ ملغم/ لتر علماً بأن الطعم الغير مستساغ يظهر بعد تركيز ٢٠٠ ملغم/ لتر .

الأس الهايدروجيني Ph:

من الأمور البديهية أن آلية التغاير للرقم الهيدروجيني تؤثر على شبكة توزيع المياه وتسبب التآكل والصدأ وأن الأس المثالي للمياه هو (V) ولكن إذا قل عن $(0,7-0,\Lambda)$ PH λ , δ , δ وتسبب التآكل والصدأ وأن الأس المثالي الصدأ والتآكل وبدوره سيؤثر على صحة الإنسان أما إذا زاد عن الرقم δ فأنه سيؤثر على فعالية الكلور في علمية التطهير وبذلك سيعطي الحرية لتكاثر الأحياء.


الفصل السادس

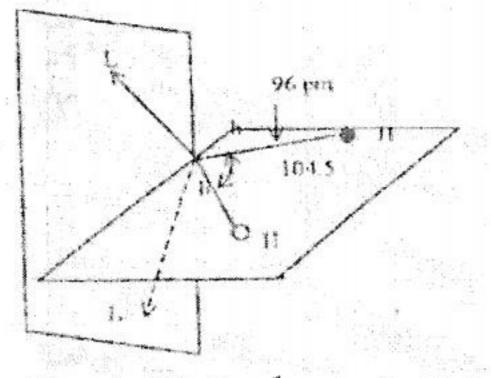
- كمياء المياه .
- خواص المياه الفيزيائية .



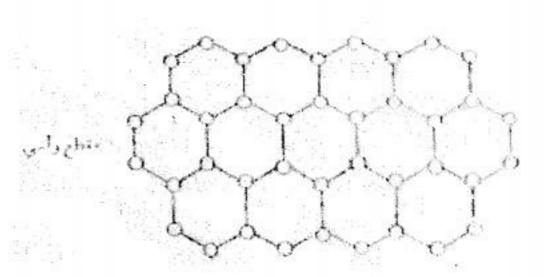
الفصل السادس كيمياء المياه

ـ جزيء الماء :

شكل (٧) التركيب الكيميائي لجزيء الماء



شكل (٨) الروابط الهيدروجينية للماء


يتكون الماء كيميائياً من ذرة أكسجين وذرتي هيدروجين H-O-H عن طريق رابطتين تساهميتين تشكلان زاوية وهذا الوضع جعله يختلف كيميائياً عن المركبات الهيدروجينية المشابهة التي تتكون نتيجة لاتحاد الهيدروجين مع العناصر الأخرى، والتي تقع في نفس المجموعة من الجدول الدوري للعناصر الموجود فيها الأكسجين مثل الكبريت. الموجود فيها الأكسجين مثل الكبريت. والرابطة ما بين ذرتي الهيدروجين وذرة الأكسجين جعلت جزيء الماء جزيء ذو قطبين أحدهما سالب والآخر موجب ويكن أيضاً للأكسجين أن يرتبط بروابط ويكن أيضاً للأكسجين أن يرتبط بروابط

هيدروجينية ضعيفة مع ذرات الهيدروجين وجذبها إليه وبالتالي يتشكل التركيب البنائي H لاتحاد التراكيب الكيميائية لجزيء الماء كما هو موضح لنا في الشكل رقم (٨) الرابطة الهيدروجينية بين جزئيات الماء تمتلك تأثيراً على غالبية إلخصائص الفيزيائية للسائل الماء، حيث أنَّ ميزة وجود الرابطة الهيدروجينية التي تربط جزيئات الماء تجعل من الماء ما يشبه مغناطيسياً له قطب سالب وآخر موجب وذلك لوجود عدد من الشحنات السالبة في يشبه مغناطيسياً له قطب سالب وآخر موجب وذلك لوجود عدد من الشحنات السالبة في ذرات الأكسجين H كما هو موضع في الشكل رقم (٩) ولا ننسى تأثير درجة الحرارة والذي بازديادها تتلاشى قوة الرابطة الهيدروجينية وهذا يجعل الماء يأخذ شكل الجزيء الواحد من H في حالة السائلة ،

وأربعة جزيئات في حالة الثلج (الجليد الرخو) $(\text{Snow})_4(\text{Snow})$ وثمانية جزيئات في حالة الجليد الصلب $(\text{H}_2O)_8(\text{Ice})$ كما هو موضَّح في الشكل رقم (10).

الشكل رقم (٩) يوضّح شكل الفلك لجزيء الماء

شكل رقم (١٠) يوضح كيفية ارتباط جزيئات الماء لتكوين الجليد والثلج (الحالة الصلبة للماء)

- بعض الخصائص الفيزيائية للماء:

١ _ درجة الانصهار ودرجة الغليان:

في ظرف الضغط الجوي العادي ينصهر الماء عند درجة صفر مئوي، ويغلي عند درجة ١٠٠ مئوي.

: Specific Heat of Water

هي كمية الحرارة اللازمة لرفع درجة حرارة غرام واحد من الماء عند درجة حرارة درجة مئوية واحدة وترتفع قيمة الحرارة النوعية للماء بسبب وجود الروابط الهيدروجينية التي تزيد من مقاومة الماء لتغير درجات الحرارة، وهذه إلخاصية تفيد في مقاومة جسم الكائن الحي للتقلبات الجوية المختلفة. وتبلغ الحرارة النوعية للماء ١٨, ٤ كيلو جول/ كغم. م وذلك على درجة حرارة صفر مئوي وتتغير هذه الحرارة النوعية مع تغير درجة الحرارة وتصل الحد الأدنى عند درجة حرارة . والحرارة النوعية تساعد جسم الكائن الحي على امتصاص كمية عالية نسبياً من الحرارة دون تغير يذكر في درجة حرارته بينما تساعد حرارة التبخر العالية على التخلص من كمية مرتفعة منها مع ثبات درجة حرارته تقريباً. وتتميز الحرارة النوعية للمياه بأنها أعلى من الحرارة النوعية لأي مادة باستثناء الامونيا وغاز الهيدروجين السائل مما يجعل مياه المسطحات أن تلعب دوراً في خزن كميات كبيرة من الطاقة الحرارية .

٣ _ الحرارة الكامنة لانصهار الماء:

هي كمية الحرارة اللازمة لصهر واحد غرام من الماء دون تغير درجة حرارته وتبلغ ٢٣٠كيلو جول/ كغم، وعليه فإن الحرارة الكامنة لتبخير الماء هي الحرارة اللازمة لتبخير واحد غرام من الماء دون تغير درجة حرارته. وبمقارنة الماء مع المواد الأخرى المشابهة له، فإن الحرارة الكامنة لانصهار والحرارة الكامنة للتبخير، تعدان كبيرتان وهذا ما يُكسب الماء مقاومة كبيرة لتغيير حالاته من الصلابة إلى السيولة ومن ثم إلى الحالة الغازية، وهذا كله بسبب وجود الرابطة الهيدروجينة.

وهذه إلخاصية تعطي الماء ميزة استعماله في إطفاء الحرائق حيث يأخذ كمية كبيرة من الحرارة من الوسط المحترق قبل أن ترتفع درجة حرارته وبالتالي يتم إطفاء الحريق عن طريق خفض درجة الحرارة.

وتمنع الحرارة العالية للانصهار انخفاض درجة حرارة الجسم أثناء الشتاء. فرغم ندرة انجماد الماء في العصير إلخلوي في الأحياء الراقية فأن الحرارة المتحرره من أنجماد غم واحد من الماء عند درجة حرارة الصفر المتوي هي ثمان مرات تلك المقررة عند انخفاض درجة حرارة هذا الغرام من ١م إلى صفر وعند انجماد الماء يطفو على السطح وتبقى الطبقات الأخرى تحته سائله صالحة لعيش الأحياء.

٤ ـ اللزوجة والتوتر السطحي Viscosity of Surface Tension of Water :

كما نعرف أنَّ اللزوجة هي مقاومة السائل للحركة ، بينما التوتر السطحي هو خاصية السوائل في حالة السكون حيث يكون سطح السائل الحر مشدوداً حتى يأخذ أقل مساحة ممكنة حيث نجد أنَّ الرابطة الهيدروجينة في الماء تسبب انجذاب الجزيئات لبعضها البعض بحيث يكتسب الماء لزوجة أكثر من لزوجة تلك المركبات التي تشبه الماء في تكوينها الكيميائي وهي تتأثر بدرجة الحرارة حيث تزداد بانخفاضها (كما هو موضح في الجدول رقم (٣٤) المبين في الأسفل) وأيضاً تؤثر الرابطة الهيدروجينية في زيادة التوتر السطحي للماء مقارنة بالسوائل الأخرى .

اللزوجة المطلقة mPas	درجة الحرارة	اللزوجة المطلقة mPas	درجة الحرارة
١,٠٠٧	۲.	1, ٧٩٧	صفر
٠,٨٩٥	40	1,077	٥
٠,٨٠٠	٣.	1, 4.1	١.
٠,٧٢٣	٣٥	1,181	10

جدول رقم (٣٤) يوضح تغير اللزوجة مع درجة الحرارة

ونعمل أيضاً أنه كلما زاد محتوى الماء على الأملاح زادت لزوجته وهذا ما يوضحه الجدول التالي رقم (٣٥).

اللزوجة المطلقة عند	محتوى الماء من الأملاح
۳Pa.s → °۶۲ ۰	ion Cl in g.L -1
١,٠٠٧	•
1,.71	٤
1,.40	٨
1,007	17
١,٠٦٨	17
١,٠٨٥	۲.

الجدول رقم (٣٥) يوضح تأثير محتوى الماء من الأملاح على اللزوجة

أما عن التوتر السطحي فإنه يقل كلما ارتفعت درجة الحرارة وهذا ما يوضحُه الجدول التالي رقم (٣٦) التالي.

التوتر السطحي 10 ⁻³ N.m -3	درجة الحرارة °	التوتر السطحي 10 -3 N.m-3	درجة الحرارة °
٦٧,٩١	0 *	٧٥,٦٠	' صفر
77,17	٦.	V£, YY	١.
78,80	٧.	٧٢,٧٥	۲.
77,7.	۸۰	٧١,١٨	٣.
٥٨,٩٠	1	79,07	٤٠

جدول رقم (٣٦) يوضح تأثير درجة الحرارة على التوتر السطحي وأيضاً فإنَّ زيادة محتوى الماء من الأملاح يزيد من التوتر السطحي له.

- بعض إلخصائص الكيميائية للماء:

١ _ مقاومة التحلل:

بسبب وجود الرابطة الهيدروجينية ووجود الذرات بشكل مائل فإنه ليس من السيهل تحلل الماء إلى ذراته الأولية في الظروف الطبيعية، ولكنه قد يتحلل بنسبة ضئيلة تقدّر بحوالي ١١٪ عند درجة حرارة ٢٧٠٠م وذلك حسب المعادلة التالية:

$$2H_2O \xrightarrow{2700^{\circ i}C} 2H_2 + O_2$$

٢ _ الإذابة:

هي عملية مزج لمواد مختلفة متحدة كيميائياً لتكوين مزيج ذو تركيب وخواص متجانسة، والمادة التي توجد بكمية كبيرة هي المذيب والمواد الأخرى تدعى بالمادة المذابة، والماء يطلق عليه اسم (المذيب العام) لأنه من أحسن المذيبات وأغلب المواد تذوب فيه وبدرجات مختلفة الروابط الهيدروجينية والشكل المائل أدى إلى جعل الماء مادة ضعيفة للتوصيل الكهربائي، ثنائي الاستقطاب وبالتالي أصبح الماء سريع الإذابة للمواد المختلفة، خاصة المواد المؤينة مثل الأملاح والقواعد والأحماض والجدول التالي يوضح ذوبانية بعض الغازات في الماء على درجة حرارة ١٠٥°.

mg.L -1 الإذابة	الغـاز
74,4.	N ₂
٥٤,٣٠	O_2
7, 711	CO ₂
0,117	H ₂ S
17,00	CH ₄
١,٦	H ₂

جدول رقم (٣٧) يوضح ذوبانية بعض الفازات في الماء

٣ _ الأكسدة والاختزال:

عملية الأكسدة تحدث لذرات العناصر التي تمتلك في مداراتها الأخيرة أقل من ٤ إلكترونات فتفقدها عند التفاعل مع ذرات المواد الأخرى، ففقدان هذه الإلكترونات يدعى بالتأكسد، أما التي تحتوي على أكثر من ٤ إلكترونات في مدارها الأخير فأنها تكتسب إلكترونات وهذا ما يدعى بالاختزال.

ويدخل الماء في كثير من عمليات الأكسدة والاختزال بتفاعله مع العناصر النشطة حيث يتم طرد الهيدروجين، والعناصر الأكثر نشاطاً تتفاعل مع الماء البارد، والعناصر الأقل نشاطاً تتفاعل مع بخار الماء.

$$2H_2O + 2Na \longrightarrow 2NaoH + H_2$$

 $4H_2O + 3Fe \longrightarrow Fe_3O_4 + 4H_2$

ويتفاعل الماء مع اللافلزات أيضاً مثل الهالوجينات (الكلور والفلور والبروم) عند درجة حرارة الغرفة مكوناً الأحماض الهالوجينية .

$$Cl_2 + H_2O \longrightarrow HCl + HClO$$

٤ _ التفاعل مع المركبات:

أ يتحد الماء مع أكاسيد فلزات القواعد لتكوين قواعد ثاني الفلزات وينتج حرارة
 كما في التفاعل التالي:

$$Na_2O + H_2O \longrightarrow 2NaOH + \Delta$$

ب ـ يتــفـاعـل الماء مع أكــاسـيــد فلزات الأرض القــاعــدية (Mg, Ca,...) مكوناً هايدروكسيدات هذه الفلزات كما في المعادلة التالية :

$$MgO + H_2O \longrightarrow Mg (OH)_2$$

ت ـ تتحد بعض أكاسيد اللافلزات مع الماء لتكون الأحماض كما في المعادلة $SO_2 + H_2O \longrightarrow H_2SO_3$ التالية : $SO_2 + H_2O$

عدرجة الحموضة للماء pH:

هي عبارة عن سالب لوغاريتم تركيز أيون الهيدروجين _لوغاريتم [-OH] = ١٠-١ مول/ لتر

فالماء كأي عنصر أو مادة أخرى يتعرَّض للتفكك والانقسام للأيونات والماء كما ذكرنا سابقاً يتعرَّض للتفكك ولكن بشكل ضعيف كما في المعادلة التالية :

$$H_2O \Leftrightarrow H^+ + OH$$

وعند درجة حرارة معنية يكون حاصل ضرب تراكيز هذه الأيونات هو ثابت ويُدعى Kw = CH1 × COH : أنَّ : Kw = CH1

وفي حالة الاتزان فإنَّ ثابت التفكك يكون

$$K_{H2O} = \frac{\left[H^4\right] \times \left[OH\right]}{\left[H_2 O\right]}$$

 $Kw = K_{H2O} \times [H_{2O}] = [H^+] \times [OH^-]$

حيث أنَّ: Kw : نواتج أيونية للماء ويكون له قيمة ثابتة عند ثبات درجة الحرارة وتالياً الحالات التي تتواجد بها درجة الحموضة :

ـ عند زيادة تركيز أيون الهيدروجين فالوسط حامضي pH تكون أقل من (٧).

- عندما يقل تركيز أيون الهيدروجين ويزداد تركيز أيون الهيدروكسيل، فإنَّ الوسط يكون قاعدياً وعندها تكون قيمة pH أعلى من (٧).

- أما في حالة التعادل (أي أنَّ الوسط ليس قاعدياً ولا حامضياً) فعندها تكون قيمة pH تساوي (٧).

٦ _ التأين:

التأين هو عملية تحوَّل جزئيات مركب ما إلى أيونات (أجزاء موجبة وسالبة)، وكما هو موضَّح في المعادلة التالية فإنَّ الماء يعد تأينه ضعيفاً جداً مقارنة بالمركبات الأخرى.

$[H_2O] \Leftrightarrow [OH^-] + [H^+]$

وتركيز جزئيات الماء يتناسب مع حاصل ضرب تراكيز مكوناته (تراكيز أيونات الهيدروجين وتراكيز أيونات الهيدروكسيل [HO] الهيدروجين وتراكيز أيونات الهيدروكسيل [H+] تعني الزيادة في القاعدية (القلوية) والعكس عند الزيادة في أيونات الهيدروجين [+H] فتزداد الحموضة ، وفي حالة التساوي في تراكيز [-OH] و [+H] فإنَّ الوسط المائي يكونُ متعادلاً (Neutral) و درجة الحموضة تساوي V.

وللحصول على قيمة pH (درجة الحموضة).

 $pH = Log[H^+] = Log[OH^-]$

 $Log[H^{+}] + Log[OH^{-}] = 14$

في حالة التعادل فإنَّ تركيز[- OH] = تركيز [+H] = mole /litre | 1 × 10 -7 mole /litre | وتالياً بعض الجداول المفيدة عن إلخواص الطبيعية للماء في حالاته الثلاثة :

(٣٨) جدول صفات وخواص الماء في حالته السائلة

الخاصيـــه	القيمـــه
KJ / Moleb at 250C حرارة التكوين	285.890
M-1 at 250C ثابت التكسر الأيوني	10-14
التأين KJ / Moleb at 250C حرارة التأين KJ / Moleb at 250C	55.71
C.m ⁰ الظواهر القطبية اللحظية	6.24*10 ³⁰
mP.a.s (= cP), at 25 ⁰ C	0.8949
I,m / s at 25 ⁰ C سرعة الصوت	1496.3
at 25 ⁰ C الكثافة	0.9979751
g/cm³ at 00C	0.99987
⁰ C درجة الانجماد	0.00
درجة الانصهار 0 C	100.0
nPa-1 at 250C over the range of (0.1-1)Mpd الانضغاطية الايسنوتروفية	0.45
le, J/(g.k)b at 25°C الحرارة النوعية عند حجم ثابت	4.17856
W / (cm.k) at 20 ⁰ C الإيصالية الحرارية	0.00598
درجة الحرارة عند الكثافة العظمى 0 C	3.89
17 ⁰ C & 60MHz ثابت العزل الكهربائي	81.0
	<108

(٣٩) جدول صفات وخواص الماء في حالته البخارية

الخاصيـــه	القيمـــه
الوزن الجزيئي	18.015
KJ / Moleb at 1000C حرارة التكوين	242.49
mP.a.s (= cP), at 20 ⁰ C اللزوجة	96*10 ⁰
m/s at 100°C لزوجة الصوت	405
cm2/s at 1000C in air معامل الانتشار	0.380
cm^3/g at 100^0C	1279.6
J/(g. K)b 1000C الحرارة النوعية	2.078
W / (cm. K) at H0 ⁰ C الإيصالية الكهربائية	2.44*104

(٠٤) جدول صفات وخواص الماء في حالته الصلبة (الجليد)

الخــــواص	القيـــم
Kg / mol at 0 ⁰ C حرارة التكوين	292.72
Mpa ^b at - 10 ⁰ C معامل يونغ للمرونة	967
g / cm³ at 00C	0.9168
Coefficient of cubical thermal expansion,	120*10-6
cm^3 / (g. 0 C) at 0^0 C معامل التمدد الحراري	
معامل التمدد الحراري الخطي 0 C-1 at 0 C	52.7*10-6
nPa ⁻¹ at 0 ⁰ C الانضغاطية الايسوتروفيه	0.12
J/(g. K) ^c at 0 ⁰ C الحرارة النوعية	2.06
W / (m. K) at 0 ⁰ C الإيصالية الكهربائية	210
1°C & 3KHz ثابت العزل الكهربائي	79

(٤١) جدول يبين ثوابت إلخصائص للتحول بين الحالات الثلاث للماء

الخـــواص	B الانصهار	B التبخير	B التسامي
aK درجة الحراة	237.15	373.15	237.16
Isopiestic heat capacity change Δ C _p	37.28	-41.93	
J /(mol ^d)			
ΔΗ KJ / Mold التغير الانثالبي	6.01	40.66	51.06
التغير في الانثروبي Δ S, J / (mol. 0 C) d	22.00	108.95	186.92
التغير الحجمي Δ V, cm 3 /mol	- 1.621	3.01*1014	
Δ E, J/mold التغير في الطاقة الداخلية	6.01	37.61	48.79

خواص الماء:

عديم اللون ـ ولكن لون طبقاته السميكة زرقاء اللون الرائحة عديم الرائحة عديم الطعم الطعم درجة الانصهار صفر مئوي ١٠٠م عند ضغط ٧٦٠ ملم زئبق درجة الغليان كثافة الماء ۱ عم/ مل عند درجة حرارة ۹۸ ,۳ درجة الحرارة الحرجة ضغط الجرح ۲۱۷ ضغط جوی كثافة الحرجة ٤ , ٠ غم/ سم ٥ • • ١ • ، • بويز (داين ثانية/ سم عند • ٢ م) لزوجة الماء لزوجة الماء النوعية ۰,07۱ عند ۲۰م° درجة الشد السطحي للماء ضد الهواء ۰,07۱ عند ۲۰م° درجة الحرارة النوعية ١ عند ١٥م ۲۰۸۰,۰۶ مقلوب أوم عند درجة ۱۸م التوصيل الكهربائي ثابت العزل الكهربائي ۸۱,۰۷ عند در جة ۱۸م ٠٤٠ سعره للغرام الواحد الحرارة الكامنة لتبخره الحرارة الكامنة لانصهار الثلج ۸۰ سعرة/ غم الماء له عزم قطبين dipolemoment

الماء يتأين بدرجة ضعيفة جداً

الماء له خواص حيث يسلك سلوك القاعدة في تفاعلاته وكحامض في تفاعلات أخرى. خواص المياه الفيزيائية Physical properties of water

أولاً: كثافة الماه Density of water

تعرف الكثافة بأنها عبارة عن كتلة المادة مقسومة على حجمها ووحداتها القياسية هي عم/ سم أما مقلوب الكثافة فيسمى بالوزن النوعي ويعبر عنه بوحدة الحجم الذي يحوي وحدة كثافته. أما الثقل النوعي فهو النسبة ما بين كثافة المادة إلى كثافة حجم مماثل من الماء.

الثقل النوعي = كثافة السائل / كثافة الماء.

وتتأثر كثافة المياه بكمية الأملاح الذائبة حيث كلما زادت هذه الأملاح كلما زادت كثافة الماء ونفس النظرية تنطبق على الضغط فكلما زاد الضغط كلما زادت الكثافة ولهذا السبب نرى أن المياه الجوفية كثافتها أكثر.

أما درجة الحرارة فأنها تلعب دوراً كبيراً في كثافة المياه فكلما ارتفعت درجة الحرارة كلما قلت كثافة الماء وعند درجة حرارة ٩٤, ٣م.

ولها ثلاثة أشكال أو حالات في الطبيعة

- ١ الحالة الصلبة ـ والمال عليه الجليد والذي تكون جزيئاته متقاربة بعضها ببعض وليست لها حرية الحركة .
- ٢ ــ الحالة السائلة والمثال عليها الماء والذي جزيئاته تكون قريبة من بعضها البعض ولديها الحرية في الحركة مما يعطي لها شكلاً انسيابياً.
 - ٣- الحالة الغازية ـ البخار ـ والذي تكون جزيئاته متباعدة بعضها عن بعض.

ولذلك تكون كثافة الجليد أقل من كثافة الماء ولهذا السبب يطفو الجليد على سطح الماء.

درجة الحرارة المياه:

تعتبر درجة حرارة مصادر المياه من إلخصائص التي يهتم بها المختصون لإيضاح الكثير من المعلومات حول مصدر المياه وحالته وأن التغير في درجة حرارة المصدر يعود لعدة أسباب.

١ ـ تغيرات بسبب الظروف الموسمية.

٢ ـ تغيرات بسبب تأثير بعض المصادر الصناعية والزراعية على المصدر وهذه يمكن
 التعرف عليها من الكشف التحليلي للمصدر من حيث:

أ _ زيادة التفاعلات الكيماوية.

ب_زيادة دور الأحياء في عمليات التحويل البيولوجي لبعض المركبات العضوية.

جـ التغير في درجة تركيز الأوكسجين الذائب.

د ـ الزيادة في B. O. D .

ه _ تأثير بيئة الكائنات الحية في المصدر المائي.

و _ ظهور الروائح والطعوم الغير مستساغ.

: Turbidity العكارة

العكارة هو مقياس لعدد وحجم الحبيبات العالقة والتي تؤثر عل بعثرة مسار حزمة ضوئية عبر الماء وهو مؤشر مهم في تقدير المختص في تصميم وحدات المعالجة والتنقية للمياه وتنحصر مواد هذه العكارة بالطين والصخور المنكسرة والمواد الصغيرة العالقة الغروية منها والمنتشرة وأكاسيد بعض المعادن وألياف إلخضراوات والنموات المختلفة. و يمكن تقسيم درجة العكارة إلى ما يلي:

١ _ مياه شفافة .

٢ ـ مياه ذات عكوره بسيطه.

٣_مياه ذات عكوره متوسطة.

٤ ـ مياه ذات عكوره عالية.

الطعم في المياه:

من المفروض أن المياه لا تحتوي على أي طعم مميز بواسطة المستهلكين وأن أكثر المواد التي تسبب الطعم في المياه هي المواد العضوية مثل الزيوت والشحوم، والدهون، والفينولات والفينولات المكلورةة إلخ أما المواد الغير عضوية المؤثرة في الطعم فهي الأملاح الذائبة كالحديد، والمنغنيز، والكلوريدات والغازات كما وأن الطعم قد ينتج من تفسخ بعض النباتات المائية والحشائش وأوراق الأشجار أو من النشاط المايكروبي ويمكن تقسيم طعم المياه حسب حاسة الذوق إلى مر نتيجة الأملاح وإلى لاذع نتيجة بعض المركبات وإلى حلو.

الرائحـة:

أن مصدر الرائحة في المياه ناتج من العوامل التالية :

أ _ تفسخ الكائنات الحية والطحالب والأشنات .

ب ـ نواتج التفاعلات الكيماوية والبيولوجية وإنتاج مواد مثل الكريتات، والكلور، كبرتيد الهيدروجين والسيانيديه إلخ.

ج _ تفسخ المركبات النتروجية والفوسفورية والكبريتية.

اللسون :

إن سبب اللون في المياه راجع إلى محتواه من:

١ ـ مستخلصات عضوية طبيعية كالأوراق، الأعشاب، الطحالب، الفحم.

٢ _ فضلات المصادر الصناعية والمناجم.

٣ _ فضلات المنازل.

وأهم مسبب للألوان في المياه هو وجود أيونات معادن طبيعة كاوكسيد الحديد (اللون الأحمر) وأوكسيد المنغنيز (بني إلى أسود) والدبال وفحم المستنقعات .

الاحتياجات المنزلية للمياه:

أن الاحتياج الكلي لأي مدينة في العالم للمياه تقدر اليوم بواسطة عدة عوامل وأهمها النفع العام، النوعية، الكلفة، الدخل، حجم العوائل، عادات المنطقة، مقياس الحياة، الطرق والوسائل لتوزيع المياه، المناخ.

فجسم الإنسان مثلاً يحتاج إلى حوالي ٢-٤ لتر باليوم لكافة الوظائف الفسيولوجية بالاعتماد على المناخ والعمل وأستهلاك الأغذية أيضاً له بعض النفع المائي.

تجهيز المياه للمستهلكين:

أن تجهيز المياه للمستهلكين يعتمد على:

١ ـ احتياجات منزلية، شرب، طبخ، تحميم، غسل، تنظيف، تبريد.

٢ _ احتياجات المعاهد والمؤسسات العامة .

٣ ـ أغراض عامة .

٤ ـ تنظيف شوارع.

٥ ـ تنظيف مرافق عامة.

٦ ـ إطفاء الحرائق.

٧ ــ استعاملات تجارية.

٨_ استعاملات صناعية.

٩ _ استعاملات زراعية .

وأن هذه الاحيتاجات تختلف من مدينة وأخرى أو بين قطر وآخر ولهذا الغرض تستعمل أنابيب تتراوح ما بين ١٠٠-٤٠٠ لتر/ للوحدة باليوم وكمعدل إلى الاستهلاك المنزلي في الدول المتطورة هو ٢٥٠ لتر/ للوحدة/ باليوم وهذه القيمة يمكن أن تضاعف بواسطة عامل ثابت Factor وهو ١,٥ لكي تغطي الحقيقة للاستعمال المنزلي.

الفصل السابع

- معالجة المياه .
- عمليات معالجة المياه واختيار طرق المعالجة .
 - العوامل المؤثرة على اختيار طرق المعالجة .
 - معالجة المياه الجوفية.
 - معالجة المياه السطحية .

الفصل السابع

معالجة الياه WATER TRETMENT

منذ أكثر من خمسة آلاف سنة واهتمام الإنسان كان منصباً على نوعية المياه التي يشربها ونظرأ لشحه المعلومات والمعرفة حينذاك وعدم إلمامه بالأمراض ومسبباتها فقد كان اهتمامه محصوراً في لون وطعم ورائحة المياه فقط، حيث كانت عمليات المعالجة تقتصر على الغليان والترشيح والترسيب وإضافة بعض الأملاح وهي عمليات بدائية ولكنها كانت كافية حسب اعتقادهم. وفي القرن الثامن عشر وبالتحديد عام ١٨٠٧م تم إنشاء أول محطة مُعالجة للمياه في العالم في مدينة كلاسكو الاسكتلندية والتي استخدم فيها طريقة ترشيح ومن ثم نقل المياه إلى المستهلكين عبر أنابيب خاصة ومع أن هذه المحطة تعتبر تطوراً إلا أن الاهتمام كان منصباً أيضاً على اللون والطعم والرائحة. ولكن مع تطور العلم وتطور طرق الكشف عن الأمراض ومسبباتها وبالتالي معرفة بعض الأمراض التي تنقلها المياه مثل الكوليرا وبدأ بذلك اهتمام الإنسان بنوعية المياه التي يشربها ولم تقتصر على اللون والطعم والرائحة بل تعدته إلى المكونات أيضاً وبدأ حينذاك تطور أساليب المعالجة للمياه بحيث أصبحت تشمل الكثير من المواصفات ومنها أن تكون خالية من العكورة وعديمة اللون والطعم والرائحة وأمينة من النواحي الكيميائية والبيولوجية حيث استخدم الكلور كمطهر للقضاء على الكائنات الحية الدقيقة من بكتيريا، فيروسات مما أدى إلى الحد من انتشار الكثير من الأمراض التي تنقلها المياه. أما في وقتنا الحاضر فتشمل معالجة المياه على العديد من العمليات الكيميائية والفيزيائية والبيولوجية بحيث يتم الاختيار بينها حسب نوعية الماء الداخل إلى المحطة وسنستعرض في هذا الفصل طرق معالجة المياه السطحية بكافة أنواعها والمياه الجوفية.

١ _ عمليات معالجة المياه واختيار طرق المعالجة المناسبة :

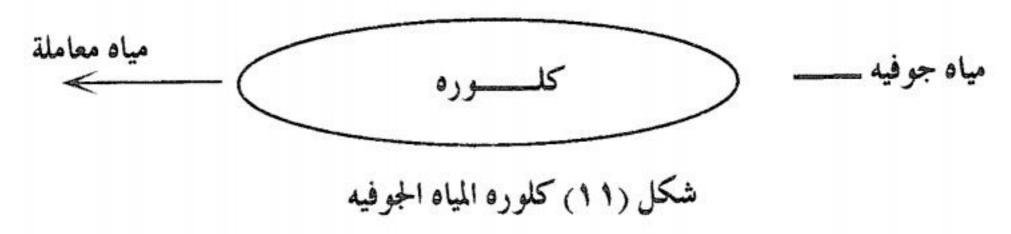
إن الزيادة في عدد السكان في العالم وبالتالي زيادة كمية استهلاك المياه ونضوب الكثير من الأحواض المائية الجوفية العذبة له الأثر الكبير في الاتجاه لمعالجة المياه السطحية بأنواعها ومياه الأحواض المائية الجوفية المالحة وذلك من أجل الوصول إلى الهدف المنشود ألا وهو سد حاجة الاستهلاك المحلي من كافة النواحي وبنوعية جيدة وبكلف واطئة حيث تلبي طلباته.

أن تصميم محطات المعالجة للمياه وبكافة أنواعها من مياه سطحية إلى مياه جوفية إلى مياه صناعية وبقدرات إنتاجية عالية وبمواصفات تطابق مواصفات منظمة الصحة العالمية ومنظمة البيئة العالمية وبالإضافة إلى ذلك يجب أن تكون هذه المحطات قادرة على استيعاب مياه ذات مواصفات متغيرة وأيضاً مياه بمواصفات تعتمد على نوعية الاستخدام وذلك توفيراً للوقت والمال فبعض الاستخدامات لا تحتاج إلى مياه بمواصفات دقيقة جداً بل نلتقي ببعض الشروط النوعية وهذا كله لا يتحقق إلا باستخدام طرق المعالجة التي يراها المختص ملائمة. فطرق المعالجة كثيرة فمنها فيزيائية وكيميائية وبيولوجية فالمهندس المصمم يمكن أن يستعمل إحدى هذه الطرق فقط أو وكيميائية وبيولوجية فالمهندس المصمم يمكن أن يستعمل إحدى هذه الطرق فقط أو جميعها معتمداً على مواصفات المياه الداخلة والمواصفات المطلوبة للمياه إلخارجة من جميعها معتمداً على شرط أن تكون مواصفات المواد المستخدمة في شبكة التوزيع مقاومة محطة المعالجة على شرط أن تكون مواصفات المواد المستخدمة في شبكة التوزيع مقاومة للتبادل المادي مع المياه. أما إذا حصل هذا التبادل وأنه سيؤدي إلى تغير مواصفات المياه وبالتالي تلف شبكة التوزيع.

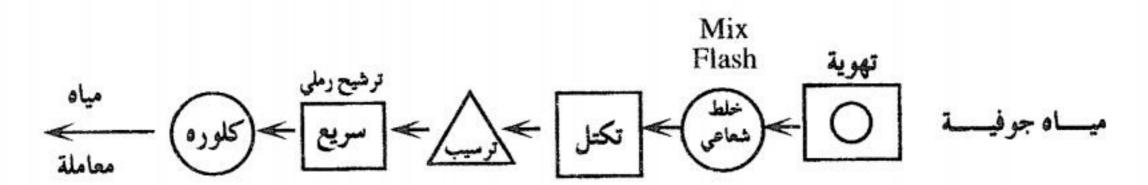
وهنا لا بد أن نعير اهتماماً لقضية دراسة التكاليف الاقتصادية لإنشاء مثل هذه المحطة منتظمة تكاليف التشغيل والصيانة وكلما كانت هذه التكاليف منخفضة فأنها بالنتيجة تنتج مياه ذات أسعار مناسبة للوصول إلى الهدف المطلوب وهو مياه نقية صحية وخالية من اللون والطعم والرائحة وبسعر منخفض.

العوامل المؤثرة على اختيار طرق المعالجة :

أن الطرق المعالجة المستخدمة لتنقية المياه يعتمد على القضايا الدقيقة إلخام وعلى وحدات تقيس المياه المنتجة، أن الطرق المختلفة لمعالجة المياه كثيرة وأن اختيار الطريقة المناسبة يعتمد على الأساس العلمي للتحاليل الاقتصادية والتكنولوجية بالإضافة إلى كلفة العوامل المحلية التي تدخل في اختيار وحدة المعالجة وعلى سبيل المثال فالمياه التي تحتاج إلى ترشيح فقط أو ترشيح زائداً التطهير لمعالجة مياه الأنهار والتي تحتوي على ملوثات مختلفة، فالتداخل الذي يحصل هو عملية التخثير لأجل إزالة المواد الغروية والمنتشرة بواسطة الترشيح بالكربون المنشط والذي يمكن أن يستعمل ليعطي نوعية مياه مختارة.


إن الماء إلخام متنوع من مصدر لآخر ولهذا السبب فأن الماء المنتج هو الآخر متنوع من حيث النوعية من استعمال لآخر . إن وحدة التشغيل لعمليات مناسبة لمعالجة المياه تتضمن التهوية ـ الترويب ـ التنقية ـ الترشيح ـ التعقيم ـ التطهير ـ التحلية ـ إزالة الأيونات ـ إزالة الفلور والحديد والمنغنيز ، إزالة الرائحة وإزالة المركبات العضوية وأن التداخل بين هذه الوحدات التشغيلية والوحدات الصناعية عموماً تستعمل لأجل إنتاج النوعية للمياه .

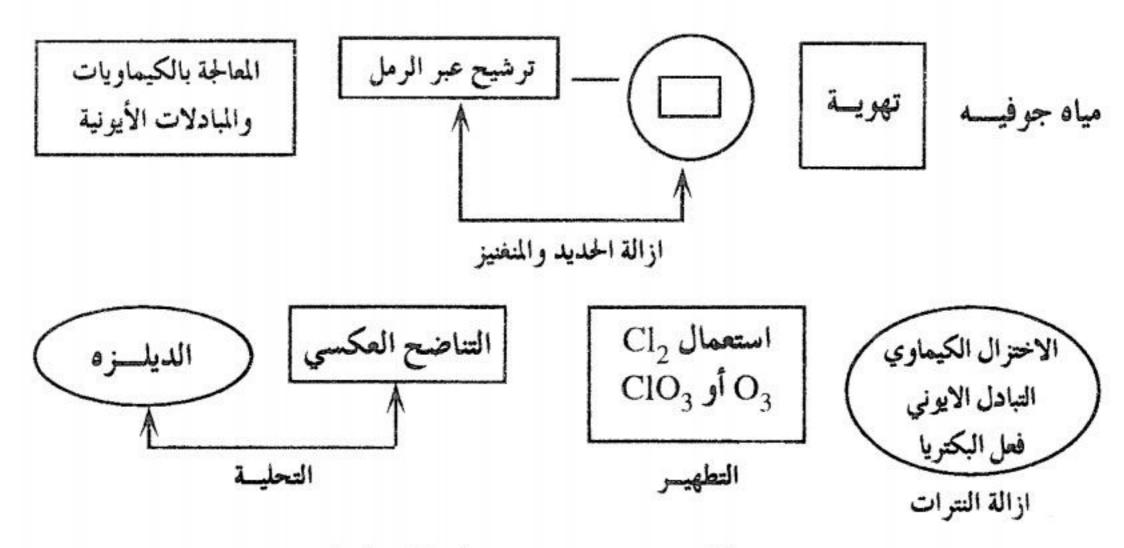
أما الحد من الأمراض التي منشأها المياه فبدأ الاخيتار ينصب على نوعية المصدر وكذلك طرق معالجته نتيجة الوعي المتزايد للشعوب بنوعية المياه وهي التي ساهمت في تحفيز الجهات المختصة للتخطيط لتضع التصاميم لمعالجات أكثر دقة للتخلص من أكثر المركبات العضوية.


أن العمليات الجديدة لها قابلية تطور كبيرة ولها تأثير كبير في إزالة الأمونيا والنترات والتراي هالوميثان والشظايا العضويةة إلخ أن المعامل الحديثة للمياه تستعمل درجات عالية من التقنية الميكانيكية .

معالجة المياه الجوفية:

عندما تكون المياه الجوفية والسطحية مخزنة بشكل جيد حيث تكون العكورة أقل من JTU وتكون خالية من الرائحة واللون والطعم وأي أثر للمركبات العضوية فمعالجتها لكي تكون صالحة للشرب تكون سهلة ورخيصة حيث تتمثل معالجتها بالتطهير وكما هي في الشكل (١١).

إن إلخيار الأول في الحصول على المياه يتمثل في المياه الجوفية وذلك لنقاوتها العالمية من الناحية الكيميائية والبكتيرية، ومن حيث عدد عمليات ومراحل المعالجة، ولكن ومع كل ما تقدم فأن هنالك مشاكل قد تظهر في المياه الجوفية، فمثلاً وجود الحديد والمنغنيز والعسرة العالمية وجود كثافة عالية لثاني أوكسيد الكربون، وفي هذه الحالات فأن معالجة المياه تتم بالتهوية متبوعة بالترويب ومن ثم الترسيب فالترشيح السريع (بالجاذبية أو الضغط) ثم أخيراً التطهير باستخدام الكلور وكما هو موضح بالشكل (١٢)



شكل (١٢) معالجة المياه الجوفية المحتوية على الحديد وثاني أوكسيد الكاربون والروائح الغازية

ففي حالة احتواء المياه الجوفية على الغازات المذابة فيتم إزالتها بالطرق الكيميائية والفيزيائية وفي حالة احتواء المياه الجوفية على الغازات المذابة فيتم إزالته الميائية والفيزيائية H_2S , Co_2 , O_2 بالكلوره أو من هذه الغازات CO_2 فتتم إزالته بإضافة الجير، أو تتم إزالته بالتهوية فالتعقيم.

أما في حالة احتواء الماء على غازات مسببة للرائحة وغاز CO2 فقط.

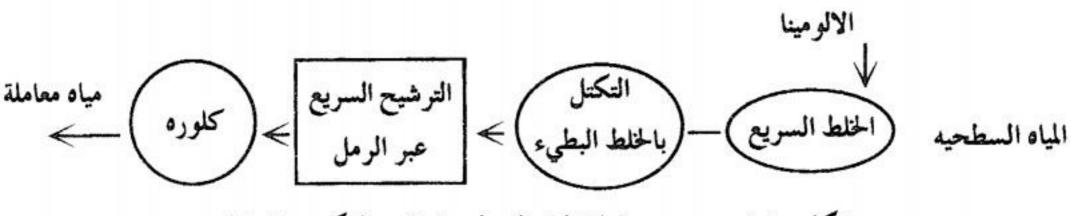
فيتم إزالتها بالتهوية ومن ثم التعقيم. أما في حالة وجود الأوكسجين O2 في الماء فيزال بإضافة ثاني أوكسيد الكبريت أو كبرتيد الكربون في عملية تهوية باستخدام أجهزة مثل جهاز التهوية الرذاذي أو الشلالات أو باستخدام التهوية المتعددة الصواني أو باستخدام أجهزة التهوية ذات الهواء المنتشر وتستعمل هذه الأجهزة أيضاً في إزالة كبريتات كبرتيات الهيدروجين من الماء ومن أفضل الأجهزة المستعملة بكثرة في إزالة كبريتات الهيدروجين هو عبارة عن جهاز هوائي يحتوي بداخله على حشوة حلقات مصنوعة من السيراميك أو البلاستك ويتم الحصول على الهواء باستخدام مراوح حيث يتم إمرار الهواء بتيار معاكس وبتلامس مع الماء على سطح الحلقات والشكل (١٣) يوضح التنوع في عمليات المعالجة ومدى الاختيارية في انتقاء الأفضل لمعالجة المياه الجوفية .

(١٣) شكل يوضح مواضع معاملة المياه الجوفية

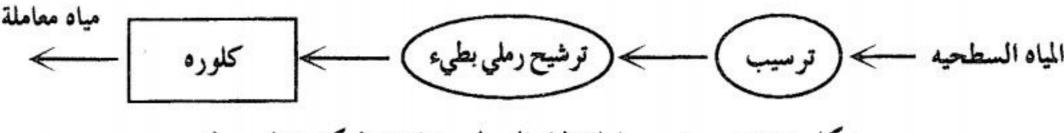
إن المشاكل الثانوية في المياه الجوفية تتمثل في وجود بعض الصفات أو المركبات أو العناصر الغير مرغوب فيها. فمثلاً وجود الحديد والمنغنيز اللذان يزالان بالتهوية ثم الترشيح فالترسيب. أما أملاح العسرة في الماء فيتم معالجتها باستخدام المبادلات الأيونية أو بإضافة الجير. أما عند وجود النترات فتتم أزالتها أيضاً باستخدام المبادلات الأيونية أو بطريقة النترتة Denitrification أما عن الأملاح التي تسبب الملوحة للماء فيتم معالجتها أو إزالتها بطريقة التناضح العكسي أو الديلزة الكهربائية، أما الأمونيا ذات التراكيز العالية فتتم إزالتها باستخدام مرشحات رملية نيتريتية والتي تعمل على مبدأ الجاذبية الأرضية. أما المركبات العضوية فتتم إزالتها باستخدام الكربون المنشط أما عند الحاجة إلى التعقيم فأن التعقيم يتم باستخدام الكلورين أو الأوزون أو ثاني أكسيد الكلورين أن العمليات الفيزيائية لإزالة الغازات من المياه مبنية على عدة أسس هي.

 ١ حمل الماء على التلامس مع الهواء (إذا كان الضغط الجزئي للغاز المراد إزالته من الماء في الهواء صفراً، فهذا الغاز سينقل من الماء إلى الهواء.

٢ ـ الوصول إلى الظروف التي عندها تكون ذائبية الغاز المراد إزالته من الماء في الماء صفراً.


ومع أن المياه الجوفية هي أفضل مصدر من مصادر المياه من الناحية النوعية وكذلك لسهولة معالجتها إلا أن الأحواض المناسبة ليست دائماً متوفرة .

معالجة المياه السطحية:


تعتمد بعض شعوب العالم على المياه السطحية والمتمثلة بالأنهار والبحيرات والبرك والجداول والمستنقعات وهذه المياه تكون عرضه للتلوث وخصوصاً تلوث الاستعمال المباشر وكذلك التلوث الصناعي من غازات مواد سامة ، مواد كيماوية بما يسبب معالجات إضافية لكي تصبح صالحة للشرب أن مياه الأنهار تزداد سوء بعد سقوط الأمطار حيث تتغير نوعيتها باستمرار لذا فمحطة معالجة مثل هذه المياه يجب أن تكون قابلة على مياه سيئة جداً ومتغيرة وذلك باستخدام خزانات (أحواض) ترسيب ابتدائية إذا كانت نسبة العكورة عالية وعندما يكون الترسيب جيداً فهذا يساعد في التخلص من المواد العالقة من المعادن والمركبات العضوية وتعتبر المناطق التي تحتوي على بحيرات كبيرة أفضل حظاً من غيرها لأن مثل هذه البحيرات تكون عميقة ومياهها نقية وغير متأثره بنشاطات الإنسان .

إن مياه الأنهار عموماً تحتاج إلى تعقيم مركز وذلك لتعرضها للملوثات البشرية والمخلفات الصناعية .

ولأجل تهيئة بعض المخططات لمعالجة المياه ذات العكورة القليلة (أقل من 10-15 JTU) وتحتوي أيضاً على مواد صلبة عالقة بنسبة قليلة (أقل من ٥٠ ملغم/ لتر) وكما هو موضح في الشكل (١٤) حيث تمرر هذه المياه من خلال مرشحات رملية سريعة مع إضافة الجير أثناء إلخلط البطيء أو بدون إلخلط ولمدة عشرة دقائق. وفي المياه السطحية عموماً فالعكورة لا تتجاوز JTU 50 علماً أن هنالك مساحة كافية للمعالجة بالترسيب ثم تتبع بالترشيح الرملي ومن ثم عملية التعقيم وكما هو موضح في الشكل (١٥).

شكل (١٤) يوضح معاملة المياه السطحية ذات العكوره الواطئه

شكل (١٥) يوضح معاملة المياه السطحيه ذات العكاره المتوسطه

أما إذا كانت العكورة منخفضة فتستعمل عملية الترشيح فقط دون المرور بعلمية الترسيب باستخدام المرشحات الرملية السريعة والتي تعمل بمبدأ الجاذبية أو الضغط ومسبوقة بالترويب .

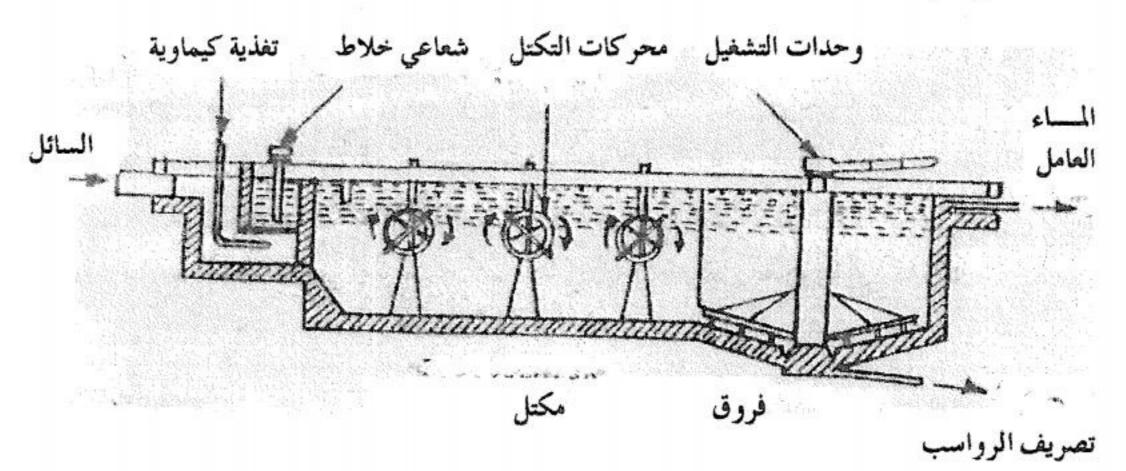
وفي المياه السطحية عموماً هنالك اختيارين أولهما المعالجة الكيمائية المتمثلة بالترويب أو المعالجة البيولوجية باستخدام المرشحات الرملية البطيئة في بعض دول العالم المتقدم فأن المرشح الرملي البطيء يستخدم بعد الترويب أما استخدام الاوزون فيأتي بعد ذلك.

المرشح الرملي البطيء يستخدم لتحسين اللون وإزالة المواد العضوية كما أنها تزيل الكائنات الدقيقة ولكنها في نفس الوقت لا تصلح للمياه الملونة علماً بأن المرشحات الرملية البطيئة تحتاج إلى مساحات واسعة وأيدي عاملة كثيرة ويمكن تقليل هذه المساحات وذلك باستخدام ضغط ولكن مع الآخذ بعين الاعتبار نوعية المياه إلخارجة بحيث لا يزيد الضغط عن مدى معين ولكن عملية الترويب أفضل وتعطي نتائج متفوقة عن المرشحات الرملية البطيئة وهي تستعمل لمعالجة المياه السطحية.

أن عملية الترويب يمكن وصفها بعدة مراحل والهدف منها معالجة المياه العكرة عن طريق جعل الغرويات غير ثابتة وبالتالي إزالتها ويمكن إيجازها بأربع خطوات :

١ ـ انتشار المروب.

٢ ـ اتحاد الانوية nucleation .


٣-الترويب.

٤ _ فصل الطور .

فعند انتشار مادة الترويب في السائل (خطوة الانتشار) بواسطة التحريك العنيف، وتكوين الجزيئات باتحاد الانوية (nucleation) في البداية تتكون الجزيئات الصغيرة ثم تكبر هذه الجزيئات باتحادها.

ففي إلخلط الميكانيكي يتم إلخلط السريع عند إضافة المادة المخثرة ثم إلخلط البطيء عند بدء تكون الروب (عملية الترويب). وعموماً يكون إلخلط السريع في غرف دائرية أو مستطيلة بواسطة دوران فراشه تدور بواسطة محرك كهربائي وفترة الحجز تكون بحوالي ٣٠ ثانية أما في داخل جهاز الترويب يتم إلخلط البطيء ميكانيكيا بداخل خزان دائري مجهز بفراشات تدور على محور عامودي وبسرعة دوران ٢-٣ دورة/ دقيقة، إن الزمن المسموح للترويب هو 1 - 0.5 ساعة.

أن جهاز الـ Clariflocculater هو جهاز ثنائي يتم فيه الترويب والترويق وكما هو موضح في شكل (١٦).

شكل (٩٦) يوضح التشفيل الميكانيكي للمكتل (ملبد) ٨

أن الرغبة في تسريع وتحسين عمليات المعالجة (للمياه) التي تسبق عملية الترشيح أدى إلى تطوير عمليات تبادل المواد الصلبة والتي تعرف بمعادلات المواد الصلبة بالتدفق الصاعد وتجري هذه العملية في حوض دائري أو مضلع وأن هذه العملية تجري قبل الترشيح في معالجة المياه حيث الجريان والترسيب هنا يتم بشكل عمودي متصاعد ومن خلال طبقة (blanket) وهذه الوحدات تحتوي على إمكانيات للتحكم بإزالة المواد الصلبة حتى يكون تركيز المواد الصلبة المتبقية في الحوض عند تركيز معين وكما هو الحال في معالجة المياه فأن جهاز اتصال المواد الصلبة يعرف بالوحدة والتي تحتوي على عدة عمليات مندمجة في جهاز فردي موحد وهي (إلخلط، التخثير والترويب وترسيب عدة عمليات مندمجة في جهاز فردي موحد وهي (الخلط، التخثير والترويب وترسيب الرائب وفصل الصلب عن السائل وإزالة الراسب بشكل أتوماتيكي).

بعض المنظمات العالمية في حقل المياه تثبت أن تكون المياه بعكورة تصل إلى FTU . , ٠٥ وجود العكورة يقلل من وتلا من التعقيم ولأجل الحصول على هذه النسبة من العكورة فأن استخدام المخثرات الجيدة هو الحل لأجل الإسراع في الترسيب.

بعضها مع بعض حتى تصل إلى مرحلة الانفصال عن السائل بالترويب أو الترشيح وبالتالي تأخذ كل المواد الصلبة العالقة أو الذائبة.

أن من أكثر المروبات استعمالاً هو كبريتات الألمنيوم Copperas والمعروف بـ Ferrous Sulfate والمعروف بـ Ferric والمغروف بـ Ferric والمغروف بـ Ferric والمغروف بـ Ferric وكبريتات الحديديك Ferric وكبريتات الحديديك Sulfate وكبريتات الحديديك Chlorinated Copperas Sodium Aluminate وهذه تستعمل بشكل أقل.

وقد وجد أن الشب (كبريتات الألمنيوم) تتخثر عن الأس الهيدرجيني (7-1) PH أما أملاح الحديد فعند الأس الهيدروجيني (7-1) PH أما أملاح الحديد فعند الأس الهيدروجيني (7-1) PH ودرجة الحرارة والعكورة فيتم تحديدها باستخدام Jar Test وتتغير بتغير اله PH ودرجة الحرارة والعكورة البدائية و يمكن إضافة المواد المخثرة على صورة مساحيق أو على شكل سائل.

أما في حالة المياه ذات العكورة العالية فأن عملية التخثير والترسيب تستعمل لإزالة العكورة ومن ثم تستخدم عملية الترشيح كمرحلة نهائية لتخفيض العكورة إلى IFTU .

فالمادة المخثرة تخلط الماء بواسطة الأجْهزة التالية:

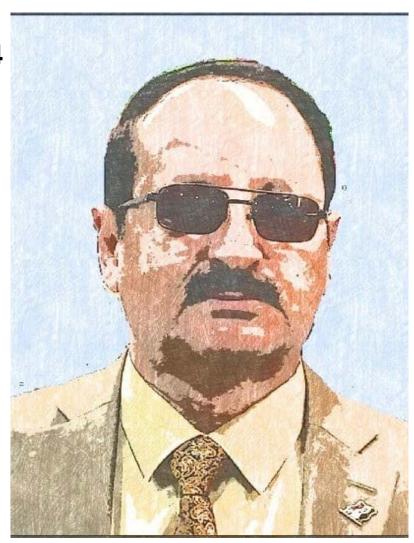
١ _ جهاز ذا العوارض.

٢ ـ جهاز إلخلط الميكانيكي.

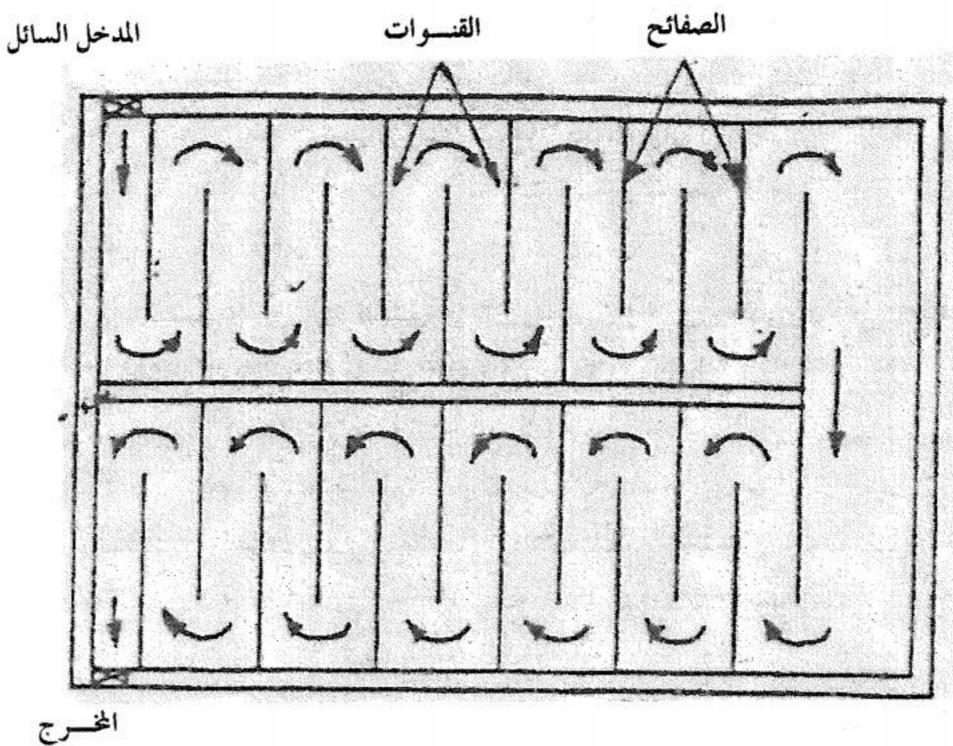
مع تحيات د. سلام حسين عويد الهلالي

https://scholar.google.com/citations? user=t1aAacgAAAAJ&hl=en

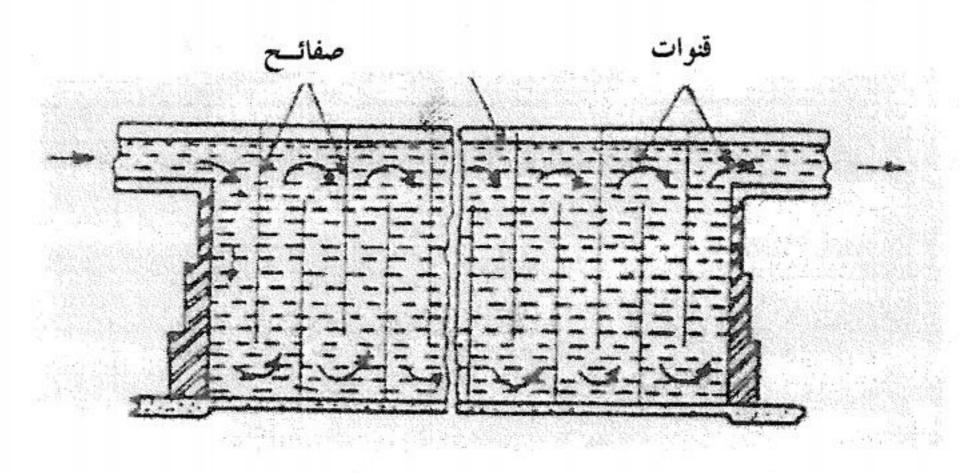
salamalhelali@yahoo.com


فيس بك... كروب... رسائل وأطاريح في علوم الحياة

https://www.facebook.com/groups/Biothesis/


https://www.researchgate.net/profile///Salam_Ewaid

https://orcid.org/0000-0001-9734-7331


07807137614

ويمكن أن يتم إلخلط أيضاً بواسطة القفز الميكانيكي أو المضخات أن العوارض المستخدمة على نوعين فالنوع الأول ذو النهايات المدورة Round the End وكما هو موضح في الشكل (١٧) أما النوع الثاني فمن نوع الصعود والنزول Over and Under وكما هو وكما هو موضح في الشكل (١٨).

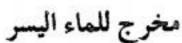
شكل (١٧) أحواض الخلط مع الصفائح المحيطه

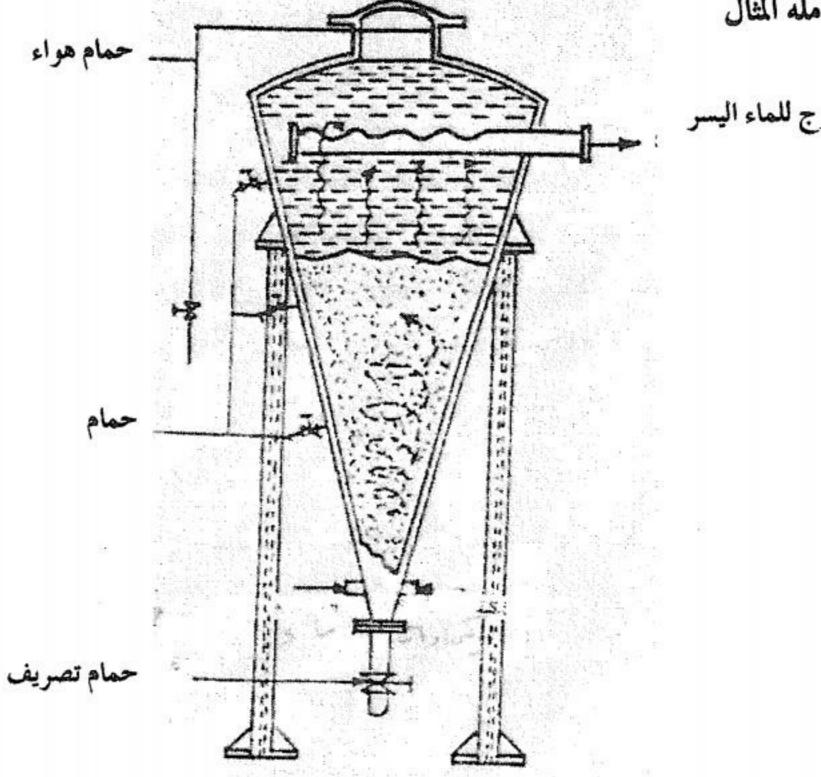
شكل (١٨) مقطع عرضي لحوض الخلط مع صفائح عليا وسفلي

أن الاختلاف الجوهري في تصرف أو في سلوكية الإلكتروليتات المتعددة (Polyelecholytes) بالمقارنة بالمخثرات المستعملة في المعالجة لها تأثير كبير على تصميم المحطة، ولأجل معرفة مدعى فعالية المادة المخثرة فيجب عمل الفحوصات اللازمة لتقييم الأداء عليها ومن هذه الفحوصات فحص الجار (Jar Test) ومن اللازمة لتقييم الأداء عليها ومن هذه الفحوصات فحص الجار (أيوني وأينوني وأينوني وأينوني وأينوني وأينوني وأينوني في الطبيعة وأهم ثلاث خصائص بوليمرية التي تؤثر على خواص الاستعمال هي نوعية الشحنة للمروبات وكثافة الشحنة والوزن الجزئي، أن المروبات البوليمرية تستعمل بكثرة في المعالجة الأولية بالترشيح وجمعالجة الأطيان وقد تلحق أو تستبدل كلياً بمخثرات مناسبة.

في بعض المحطات الحديثة لمعالجة المياه السطحية فأن معالجة المياه فيها densely populated water shed تعتبر عملية معقدة فبالإضافة إلى التخثير والترسيب والترشيح وعمليات الأكسدة مع معالجات كيميائية وبيولوجية قديلزم استعمالها لسنين طويلة حيث كانت المياه السطحية الملونة تعالج باستخدام الترشيح المباشر باستخدام المرشحات الضاغطة. ففي بريطانيا وبالنسبة لمصادر المياه السطحية والتي تكون ملوثه فلا توجد هنالك مشكلة مع الكلورة حيث تعالج المياه الملوثة بواسطة التخثير الكيمائي لإزالة اللون ومن ثم الترسيب فالترشيح، وعندما تكون مستويات اللون في المياه عالية فأنه يجب زيادة جرعة المواد المخثرة وهذا يؤدي بدوره إلى زيادة الحمل على المرشحات مما يؤدي إلى تقليل عمر المرشح وتحليل للمروبات الهشة. أما المياه اليسرة المعالجة حيث مستويات اللون تكون أقل وبنتيجة التجربة وجد أن استخدام الدمج بين التخثر والإلكتروليتات المتعددة (polyelectrolite) ومرشح الطبقة المزدوجة يمكن أن تكون مناسبة لإنتاج نوعية مياه جيدة وعمر مناسب للمرشح باستخدام جرعات قليلة من الإلكتروليت المتعدد الكايتوني Cationic polyelectrolyte بدلاً من التخثير البدائي قبل الترشيح المباشر حيث وجد أنه يسمح بمعدل ترشيح أعلى. وهنالك معالجة أخرى للكميات المحتوية على مواد صلبة عالقة بنسب قليلة ولون مناسب وهو باستخدام دمج بين المعاملة بالأوزون لإزالة اللون والمصافي الدقيقة لإزالة المواد الصلبة وحيث تكون العكورة بين 40 JTU - 30 وأن إزالة اللون لا تتطلب إضافة جرعات زائدة من المواد المخثرة فأن دمج ترشيح صاعد متبوعاً بترشيح نازل وباستخدام الضغط قد وجد أنه مفيد جداً وقد يؤدي إلى تخفيض الكلف الكلية.

أن خزانات (Lamella tank) للترسيب حيث يتم الترسيب للماء الماربين صحون متوازنة مائلة أما بتدفق متعاكس أو موازي لجريات الطين sludge أو مع الماء المار خلال شبكات الأنابيب المائلة حيث أصبحت هذه إلخزانات مشهورة وهنالك غوذج مشابه له Lamella tank للترسيب حيث الجريان النازل من الطين المترسب يتحرك إلى الأسفل على صحون بلاستيكية ناعمة ويسير بنفس اتجاه جريان الماء . الصحون المتوازية تكون مائلة بزاوية ٤٥ درجة ، المسافة بينهما تكون ٥ , ٢-٥سم ثم يجمع الناتج Effluent من خلال نظام رأسي والذي يضمن جريان متساوي خلال المسافات .

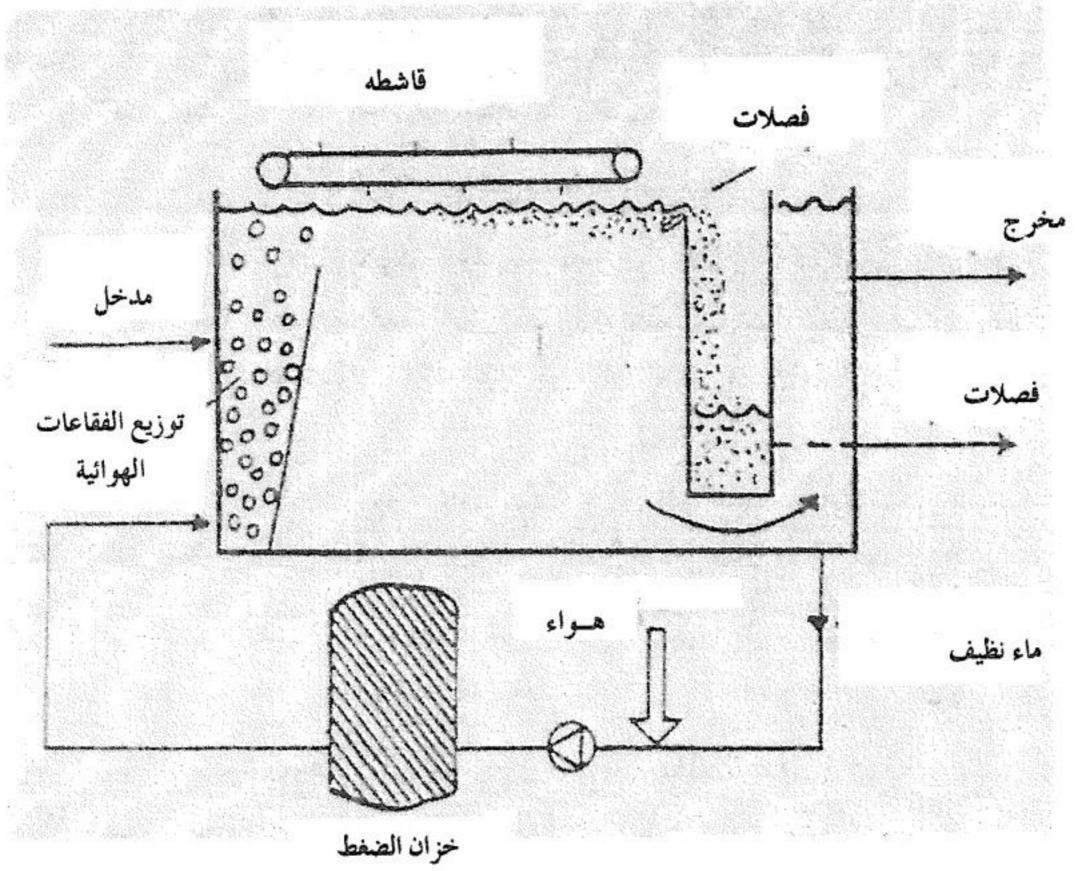

وقد وجد أنه باستعمال جهاز مروّق ذا مرحلتين متتالتين مع التحكم بالتخثير الجيد يمكن معالجة مدى كبير من المياه حتى مياه الأنهار دون اللزوم إلى التخزين قبل المعالجة .


في بعض دول العالم حيث يستخدم جهاز ثنائي المرحلة لا تستطيع التعامل مع مياه ذات نسبة وحل عالية مثل مياه بعض الأنهار حتى بزمن استبقاء طويل لذلك فأن أحواض الترسيب البسيط يتم إضافتها قبل عملية الترويب والمستعمل هو أحواض الترسيب الدائرية أو المستطيلة وأن الفاعلية في حوض الترسيب تعتمد على خصائص الترسيب للمواد الصلبة المعلقة التي يجب إزالتها وعلى إلخصائص المائية لحوض الترسيب والتي تعتمد على هندسة الحوض والتدفق خلال الحوض، أن تصميم حوض الترسيب يعتمد على معدل الفيضان وزمن الاستبقاء ومعدل حمل المواد الصلبة، وأن السيب يعتمد على معدل الفيضان وزمن الاستبقاء ومعدل حمل المواد الصلبة، وأن تصميم المدخل والمخرج هام جداً لتسيير المياه السطحية باستخدام الكيماويات مثل الجير أو الجير مع Soda Ash بالإضافة إلى مادة التخثير أو مادة مخثرة مع الماء الميسر والذي يجب إعادة كرنبته قبل المرشحات وذلك لمنع تراكم كربونات الكالسيوم على مادة المرشح وهنالك ثلاث أنواع رئيسية لأجهزة التيسير باستعمال الجير البارد Cold Line Soda وهي:

- . Sludge blanket type _ \
 - . Conventional type _ Y
- . Catalyst or spivatos type _ T

حيث أن الأول Sludge blanket أفضل من Conventional type وذلك لفعاليته الكبيرة وبزمن استبقاء أقل والمساحة المطلوبة له أقل أما النوع الثالث فالاهتمام به كبير في الوقت الحاضر وذلك لأنه يعطي وحل على شكل حبيبات والتي يمكن التصرف بها بسهولة (شكل ١٩) في هذا الجهاز.

عملية معامله المثال

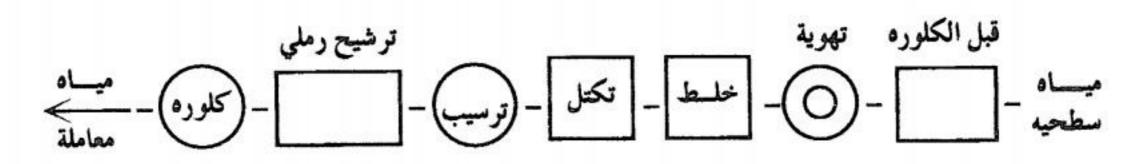


شكل (١٩) موزع سريع للصودا لايم لأجل التحلية اليسرة

يمكن أن يكون العامل المساعد Catalyst ذا نعومة بقطر (0.3-0.6 mm) وغير ذائب ويتم عادة استخدام مطحون من الكالسايت Calcite والذي يكون مرتب ولكن حالياً يستخدم الرمل الأخضر بدلاً من الكالسايت وزمن الاستبقاء يكون ما بين ٨-١٢ دقيقة .

أن استعمال خزانات تخزين المياه وذلك لتحسين إنتاجية المحطات من الناحية الكيمائية والمايكروبيولوجية للماء ويمكن أيضاً أن يحسن التذبذب في نوعية المياه الداخلة إلى محطات المعالجة.

أن التطوير الحاصل في عملية التعويم كبديل جيد للترسيب شكل (٢٠) إضافة إلى أن تكاليف التعويم أقل من تكاليف عملية الترسيب ولكن تكاليف التشغيل لعملية التعويم أعلى من تكاليف تشغيل عملية الترسيب ولكن وبكل الأحوال فأن عملية التعويم أفضل في حالة معالجة المياه التي تكون ذات تكون شديد واليسيرة والتي تنتج كتل هشة ومياه algal المشحونة والتي لا تعالج جيداً بأحواض الترسيب الاعتيادية البسيطة.



شكل (٥٠) توضح عملية التعويم أو التطفية كبديل جيد للترسيب

أن عملية التعويم تفصل القسم الأساسي من الكتل المتكونة قبل المرشحات السريعة حيث يعمل التعويم على نقل الوثائق، الكتل والبلانكتون إلخ إلى سطح الماء من خلال الاحتكاك أو الاتصال بالفقاقيع أن عملية التكتل تخدم عملية الترشيح في أجهزة sludge blanket clarifier .

أما الطرق الأخرى التي تستخدم لتحسين نوعية المياه / الأنهار وخصوصاً في ألمانيا هو توشيح المياه الضاربه إلى الملوحة حيث في هذه الطريق يتم سحب الماء من حضن النهر بواسطة حفر ضيقه غاطسه على بعد معين من النهر للحصول على خليط من ماء النهر المرشح والمياه السطحية وهذه النوعية من المياه تتطلب معالجة أقل من المياه التي تسحب مباشرة من النهر.

وعلى العموم فالمعالجة التقليدية من قبل الكلورة تتضمن التهوية، التكتل، الترسيب، الترشيح الجاذبي السريع والكلورة اللاحقة والتي تستخدم للمياه السطحية الملوثة بالفطريات والاشنات والأحياء الأولية والأحياء الميكرسكوبية شكل (٢١).

شكل (٢١) يوضح معاملة المياه السطحيه

أما عندما تتضمن المياه اللون (الحديد، المنغنيز، والألمنيوم) مع بعض فتتم المعالجة بمرحلتين أو بثلاث مراحل وذلك لإزالة اللون والذي يتطلب أس هيدروجيني منخفض (PH) بينما إزالة المنغنيز يتطلب PH أعلى من (8) وقد وجد أن معالجة اله PH في مرحلتي التعويم والترشيح بجريان نازل ومتبوع بترشيح سريع من خلال وسط خشن على (PH) على شرط أن نسبة الكلورين المتبقي Ippm تنتج مياه مقبولة ومن ضمن معدلات الماء الخام.

ومن الملاحظه فأن استخدام خزانات الترسيب والمرشحات وبمعدلات أعلى يؤدي إلى تقليل الكلفة في المعالجة ذات المرحلتين.

أن طريقة الترشيح يمكن أن تكون من أقدم طرق المعالجة حيث تشير الدراسات إلى أن هناك نموذجين تاريخيين هما المرشح الرملي البطيء والسريع وهما ما زالا من أفضل خطوات الفصل المستخدمة في كل محطات المعالجة أن المرشحات الرملية البطيئة تعتبر عملية بايولوجية أما المرشحات الرملية السريعة تتصرف كعمود (كولوم) معبأ بمادة أدمصاصية ثابتة ميكانيكا ورخيصة والتي يمكن استخدامها لعدة سنوات. أن الحبيبات الغير ثابتة في الماء لا تتصادم فقط مع بعضها البعض وإنما تتصادم مع سطح المرشح الرملي أثناء المرور من خلاله حيث أنها غير ثابتة فأنها ترتبط مع السطح الرملي.

أن المرشحات المستخدمة بكثرة في معالجة المياه هي المرشحات الرملية البطيئة والسريعة ومرشحات الضغط ومرشحات الجريان الشعاعي أن إلخواص الأساسية للمرشحات الرملية البطيئة هي:

أ _ معدل الترشيح قليل (١٠٠ - ٢٠٠٠ لتر/ م٢/ ساعة).

ب- يتم تنظيف المرشحات الرملية بالقشط والإزالة.

جـ - تتم إزالة الكبتريا من الماء إلى حد ٩٨ -٩٩٪.

أن الحجم الفعال والمؤثر (حجم المنخل بالملم والذي يسمح لمرور ١٠٪ من كتلة الرمل من خلاله) للرمل المستخدم هو ٢٥,٠-٣٥, ملم. أن معامل التماثل (النسبة بين حجم المنخل والذي سيمرر ٢٠٪) والحجم الفعال هو ٢-٣.

أن الحجم الفعال للرمل المستخدم في المرشحات الرملية السريعة هو ٣٥,٠ ملم فما فوق ومعامل التماثل هو ليس أقل من ١,٧ وليس أعلى من ١,٧ أن إلخواص الأساسية للمرشحات السريعة هي:

أ _ معدل الترشيح عالي من ٢٠٠٠-١٠٠٠ لتر / م١/ ساعة .

ب- يتم التنظيف من خلال الغسيل العكسي.

ج _ المعالجة الأولية للماء تتم بعناية .

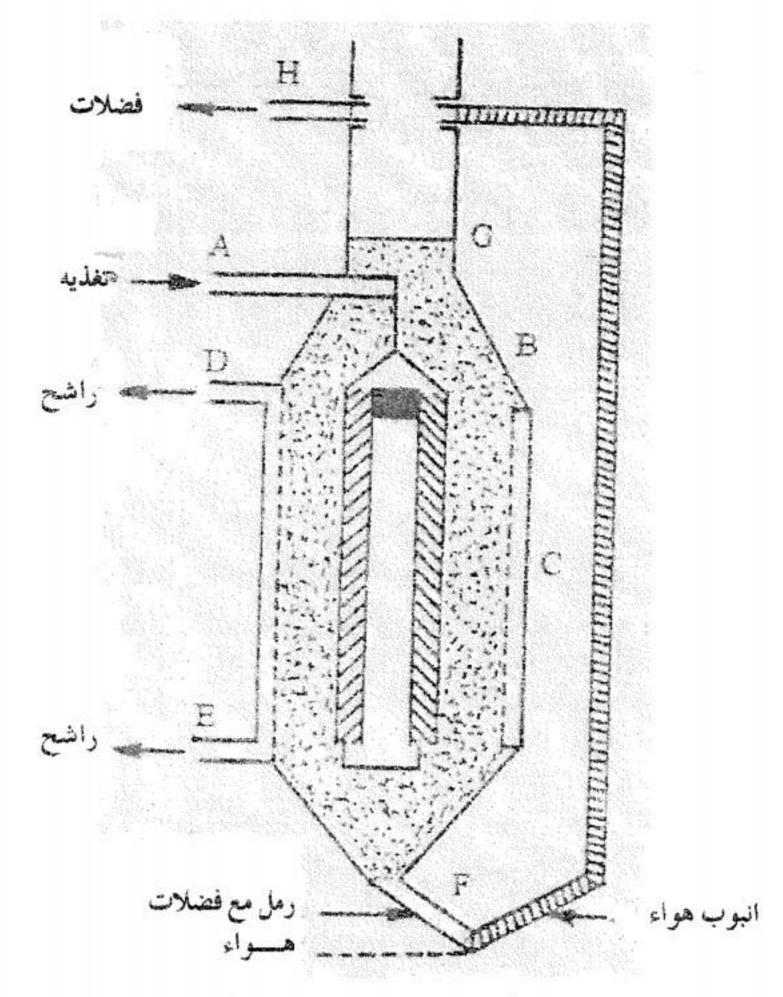
يتم الغسيل العكسي لفراش المرشحات الرملية باستخدام مضخات ماء نفاثة (رذاذية قوية من الأسفل) يؤدي إلى غسل الحشوة المتمددة وذلك عن طريق التحريك باستخدام جرافات ميكانيكية أو حقن الهواء إلى الفراش (Bed) قبل أو خلال الغسل العكسي لتمدد الفراش ويكون الغسل أفضل.

أن المرشحات الضاغطة هي بالأساس مثل المرشحات السريعة إلا أن الماء يتم ترشيحه من خلال الحشوة تحت ضغط مناسب وقد فضل استخدام هذا النوع من الترشيح في الصناعات خصوصاً لمعالجة مياه تغذية المراجل البخارية (Boiler) ، علماً أن المرشح يمكن تركيبه على خطوط الضغط وهكذا يتم تلاشي إعادة الضغط.

وهذه الوحدات يتم إنشائها كوحدات أفقية أو طولية وعند استخدام هذا النوع من المرشحات يتم في البداية ترشيح كميات قليلة من المياه ومن ثم يتم ترشيح الأحجام الكبيرة وبشكل طبيعي.

لا يمكن فحص حالة حشوة المرشح في المرشحات الضاغطة بشكل روتيني ويمكن لحشوة المرشح في المرشحات الضاغطة التي تعمل عمل ضغط عالي أن أتلاف عملها وذلك عن طريق الفقدان المفاجيء للضغط بواسطة الفائض الجانبي من الوحدة . عادة يتم استخدام التخثير والترسيب قبل الترشيح الضاغط وإذا لم يتم استخدامها قبل الترشيح الضاغط فيتم إضافة المخثرات إلى أنبوب الماء الغير مرشح قبل المرشحات .

للحصول على أفضل النتائج من الترشيح من المفيد ترشيح الماء أولاً من خلال حبيبات خشنة وذلك لتحسين نوعية المياه واستخدام كامل عمق حشوة المرشح. حالياً ثم بناء عدد من المحطات أو تطورها لاستخدام حبيبات ترشيح خشنة.


ترشيح الجريان الصاعد يتم تمرير المياه من الأسفل إلى الأعلى حيث يتم ترشيح الماء للأعلى حيث يتم ترشيح الماء للأعلى حيث يتم ترويقها حتى تخرج من أعلى الحشوة مرشحة تماماً. خلال عملية الغسل العكسي يقوم هواء التنظيف المضغوط بطرد العوالق.

منذ عام ١٩٦٢ أكثر من ٢٠٠ محطة معالجة مياه صناعية والمنزلية في الولايات المتحدة الأمريكية وكذا استخدمت مرشحات ذات حشوات مختلطة. وفي العادة (مادة الحشوات) فحم، (amthracite الكثافة النوعية ٥,١) وذات أقطار كبيرة، رمل، السليكا (الكثافة النوعية ٥,٢) ذات قطر متوسط و (Garnet والكثافة النوعية ٥,٤) والأقطار الأقل يتم استخدامها للحشوات.

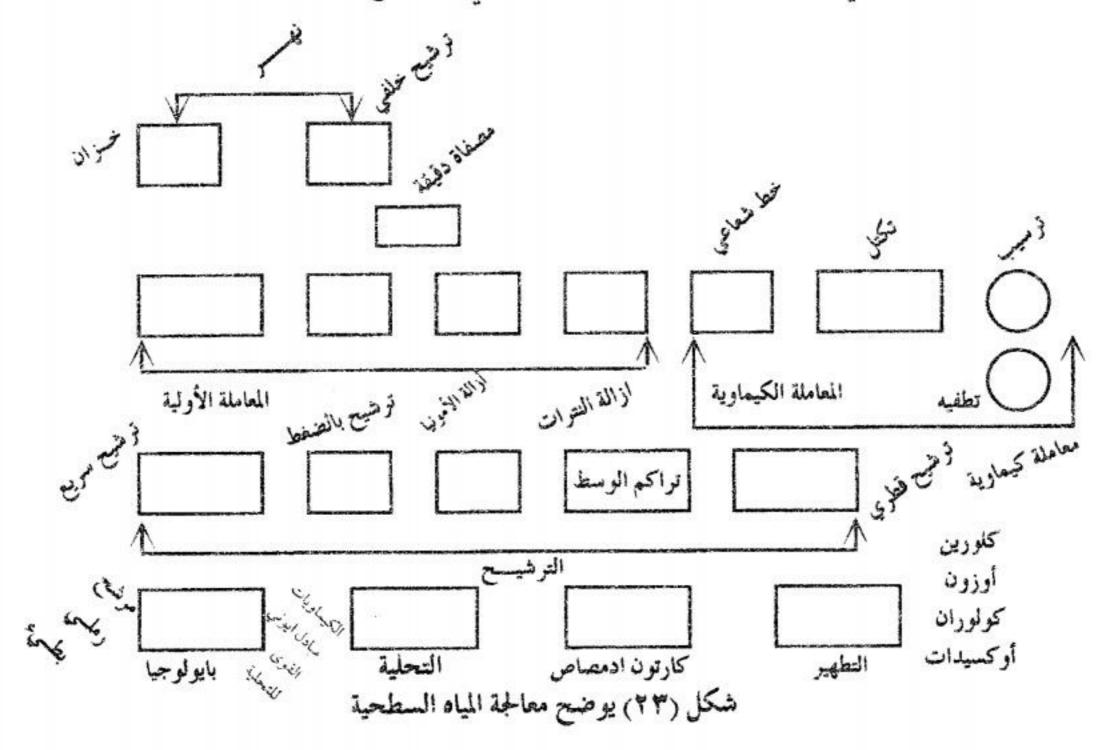
بعد عملية الغسل العكسي، يتم ترتيب الفحم والرمل والكارتيت بطبقات متتالية واحدة تحت الأخرى أثناء مرور الماء إلخام من الأعلى إلى الأسفل وبتهيئة ظرف مشابه لظروف مروره في مرشحات الجريان الصاعد.

من الأمور السيئة لمرشحات الجريان الصاعد هو تجدد الحشوة كلما زاد فقدان الضغط. وهذا بدوره يؤدي إلى خسارة في الكفاءة والأمانة حيث يتم تجاوز التمدد في الحشوة من خلال مرشحات الجريان المزدوج وذلك بوضع مخرج المرشح عند ربع عمق الحشوة والترشيح باستخدام الجريان النازل من خلال عمق قليل للرمل الناعم والجريان الصاعد من خلال عمق أكبر من الرمل إلخشن.

أن مرشحات الجريان الإشعاعي يتم تشغيلها بطريق الوجبة لأن الترشيح يجب أن يتوقف وذلك للغسيل العكسي. حديثاً قامت شركة (سيمنكو simanaco في المملكة المتحدة) بتطوير مرشح إشعاعي والذي يمكن تشغيله بشكل مستمر بدون التوقف لعملية الغسل العكسي كما هو موضح بالشكل (٢٢).

شكل (٢٢) يوضح المرشح القطري

أن وسط الترشيح هو (رمل معبأ في الفراغ الحلقي في غلاف أسطواني مغلق (B) . الماء المعالج كيميائياً يدخل خلال أنبوب تجويف مركزي (مدخل A) وتتحلل بشكل خطياً خلال الرمل ويتم جمعه خلال قناة حلزونية ويتم جريانه خارج إلخزان (المخارج D و E) . الرمل مع الرواسب يتم إخراجها باستمرار من الأسفل F والهواء المرفوع إلى الغرفة G في أعلى المرشح حيث يتم غسله والرمل النظيف يتم إغراقه إلى الاسطوانة بينما (ماء الغسيل يحمل الوجل إلى إلخارج خلال جهاز فيضان (H) أن العمليات الكيمائية الأكثر استخداماً للتعقيم تستخدم الكلورين ، الأوزون أو ثاني أوكسيد الكلورين بعضها يتفاعل مع المركبات العضوية لإنتاج مركبات مثل المركبات العضوية المهلجنة أو Ozonierdes أو Halogenated Organic أو


أن المستويات المرتفعة من الأمونيا في المياه إلخام تسبب دائماً متاعب وذلك لتأثيرها على التعقيم في بداية عمليات المعالجة ولأجل ذلك يتم إضافة كمية من الكلورين إلى الماء إلخام وذلك لإزالة الأمونيا كمركبات (كلور أمايد Cliloramids) وإذاتم تكون مركبات عضوية مكلورة فأنها يمكن أن تؤدي إلى مشاكل جدية. أن الاهتمام المتزايد بالمركبات العضوية المكلورة أدى إلى تحديد تراكيز من المركبات العضوية المكلورة أدى إلى تحديد تراكيز من المركبات

أن أنظمة بديلة باستخدام مفاعلات الجريان الصاعد التي تعمل على مبدأ النترتة البايولوجية فقد وجد أنها أفضل من حيث الفاعلية والكلفة من استخدام طرق إضافة جرعات من الكلورين والذي وكما نعلم تؤدي إلى تكوين مركبات العضوية المكلورة وتكوين تراكيز محددة من تراي هالوميثان.

هنالك مشكلة أخرى قد ظهرت في المياه السطحية والجوفية وهذه المشكلة تتمثل في وجود تراكيز NO₃ أعلى ppmn .

أن وجود كميات قليلة جداً من مركبات العضوية في مياه الأنهار قد أدى إلى وجود مشاكل مثل الطعم والرائحة في صنبور المستهلك، وقد اتجه حديثاً الاهتمام نحو إمكانية تأثير الكيمياويات العضوية الأساسية على الصحة والمتواجدة في المياه إلخام أو من المركبات المكونة من خلال المعالجة.

أن الطرق الشائعة والمستخدمة لإزالتها من الماء توصف في فصل لاحق. أن مدى الاخيتارية في معالجة المياه السطحية تظهر في الشكل (٢٣).

أن استخدام الأوزون نهائي عادة يجب أن يتبع بالكلورين وذلك لإضافة كمية متبقية وذلك بهدف منع النموات في أنظمة التوزيع. يتم استخدام الأوزون قبل الترشيح والكلورين بعد الترشيح وذلك لتوفير الكمية المتبقية من الكلورين. ينتج الأوزون عدد من مركبات الأوزونية الغير ثابتة Ozonied والهايدروبيروكسايد والتي تتحلل لتكون الالديهايدات والايبوكسيدات. معظم هذه المركبات المتكونة من الاوزون وثاني أوكسيد الكلورين لا يمكن تحديدها بواسطة تقنيات الفحص اليومية.

أن المركبات المؤكسدة تكون أكثر ذائبية في الماء من المركبات المكلورة ولذلك هذا يؤدي إلى صعوبة استخلاصها من الماء أن النتائج الجانبية من عملية الاوزنة لم يتم التعرف عليها بشكل واضح. أن ثاني أوكسيد الكلورين يمكن ن ينتج أيون الكلورايت Chlorite والذي يكون تحديده في ماء الشرب أقل من واحد جزء بالمليون حسب المواصفات الأمريكية.

أن استخدام الكاربون المنشط قد اكتسب أهمية في معالجة المياه لإزالة المركبات العضوية أن المكان المثالي لمرحلة الادمصاص هذه هي في نهاية المنظومة وقبل العقيم النهائي في حالة محطات المرشحات الرملية البطيئة يمكن استخدام مرشح ادمصاصي.

يمكن استخدام مرشحات ادمصاصية كمرحلة أولية. أن عمليات الإزالة للمركبات العضوية يمكن الوصول إليها عن طريق إضافة الاوزون قبل وحدة الكاربون الادمصاصي ويمكن استبدال الرمل في المرشحات الأولية بالكاربون المنشط ولكن تظهر من جديد مشكلة الحمل العضوي وزمن الاستبقاء والذي يجب دراسته ومتابعته.

製			

الفصل الثامن

- التخثير والترويب.
- المخثرات (الملبدات).
- أملاح الألمنيوم ، البوليمرات الألومينيه ، أملاح الحديد .
 - التهوية .
 - ازالة العسره

الفصل الثامن التخثير والترويب

أن إنتاج الماء الصالح للشرب من مصادرة مياه ملوثة بملوثات طبيعية أو ملوثات سببها الإنسان يحتاج إلى سلسلة من الوحدات والعمليات للمعالجة. ومن هذه العمليات المهمة هي عملية التخثير والترويب، والتي سنناقشها في هذا الفصل، حيث تم التطرق إلى العديد من المواضيع مثل التاريخ والحاجة إلى عملية التخثير وطبيعة وخواص المواد في الماء وآلية عمل التخثير والترويب بالإضافة إلى العوامل المؤثرة على هاتين العمليتين والمواد المستخدمة كمخثرات ومروبات.

أن عملية التخثير والترويب هما عمليتان رئيسيتان في خطوات معالجة المياه، علماً أن عملية التخثير (التلبيد) هو عملية جمع العوالق الغروية والشوائب والتي تظهر خواص ترسيبية ضعيفة وعموماً فأن الجزئيات التي تكون لحد ٥٠ مايكرون يمكن فصلها بالترسيب اعتماداً على كثافتها والجدول (٤٢) التالي يبين سرعات الترسيب لحبيبات الرمل في الماء.

جدول (٤٢) يوضح سرعات الترسيب لحبيبات الرمل في الماء

سرعــة الترسيب mTh	حجم الحبيبه Mm (مايكرون الرمل ـ الكثافة النوعية له 2.65
6×10^2	1000
26×10^{1}	100
3×10^{-1}	10
3×10^{-3}	1.0
1 × 10-5	0.1
2 × 10-7	0.01

ولأجل زيادة معدّل ترسيب الحبيبات الغروية فأنه أمر حتمي أن تتجمع هذه الحبيبات بواسطة بعض العوامل المساعدة. وبما أن العوالق الغروية ثابتة وتحمل شحنات متشابهة، فأنها تكون غير قادرة على التجمع التلقائي لتكون حبيبات أكبر والتي عندها يمكن أن تترسب من الماء.

أن المواد المخثرة (الملبدة) تساعد المواد العالقة والغروية للوصول إلى خواص الترسيب.

أن السبب وراء الاستقرارية الغير طبيعية للغرويات هو حملها لنفس الشحنة لأن الحبيبة التي تحمل نفس الشحنات تتنافر عن بعضها وتمنع التخثير في الظروف الطبيعية والحل السليم هو معادلة هذه الشحنات المتشابهة بواسطة غرويات ذات شحنات مخالفة وهذه هو الأساس في عملية التخثير (التلبيد).

وبعد أعطاء الجرعة اللازمة من مادة التخشير فأن الماء يصبح عكراً وتتزايد العكورة مع الوقت حتى تترسب الكتل في أسفل إلخزان وأثناء نزول الكتل إلى الأسفل فأنها تلتقط الحبيبات الأخرى الناعمة وبالتالي تحسن عملية الترويق. ومن متابعات هذه العملية فأنه أمر طبيعي أن تجد في المواد المترسبة مواد عضوية وغير عضوية ومركبات كيميائية pheological وبصرية وبكتر تولوجية ظاهرة.

أن المواد الذائبة الغير عضوية تكون متواجدة على شكل عسرة أو قلوية ويمكن ترسيبها عن طريق إضافة مواد كيميائية ليتيسر أو بالأس الهيدروجيني pH وعادة فنتائج التفاعلات الجانبية مع المواد المخثرة أو المثبطات والمواد الحافظة فأن بعض الأملاح الغير عضوية والذائبة لا تترسب في تفاعل الترسيب ولكنها قد تؤثر على عملية التخثير فعلى سبيل المثال فأثناء عملية التسير فأن بعض المركبات العضوية ذات الوزن الجزئي المنخفض قد تساعد في الترسيب أو قد تزال مع الغازات أو مع مخاط البكتريا أن المركبات العضوية التي يكون حجمها في مدى (١٠١-١٥٠ A) قد لا تكون غرويات ثابتة بل على العكس تكون كتل. أن وجود المنظفات يساعد على تكوين المستحلبات مع الدهون أو الشموع حيث يمكن إزالتها أن المتبع لعملية التخثير يمكن أن يكشف الآتي: الدهون أو الشموع حيث عمل Amelable للترسيب العادى.

٢ ـ طور غروي ذائب أو غير ذائب يتضمن حبيبات ذات قطر ١٠ A - 1 مايكرون.

٣ ـ طور عضوي Supra يحتوي على حبيبات ذات قطر من إلى ١٠٠ مايكرون.

٤ - الحبيبات إلخشنة أو القابلة على الطفوا والترسيب ذات أقطار أكبر من ١٠٠ ما ما يكرون والتي تكون الجزء الأكبر للراسب.

أن المعالجة الفيزيو كيميائية للمركبات الذائبة للمياه ذات التأثير القلوي غالباً ما تترسب في عمليات الترويب بينما الحبيبات إلخشنة تترسب لوحدها وبدون عامل مساعد. أن الحبيبات الخبيبات الخبيبات الخبيبات الغروية و Supra تكون كتل عند إضافة المواد المخثرة وذلك لمعادلة المعلق الغروي.

تاريخ التخثير (التلبيد):

أن المصريين القدماء وعلوم الطب القديمة وبين نقوش وكتابات المصريين حملت تدوين المعرفة عن معالجة المياه وبالتحديد إلى حوالي ٢٠٠٠ سنة ما قبل الميلاد فبالإضافة إلى عملية التسخين والغلي والترشيح فهنالك طرق أخرى لتنقيه المياه تتضمن استعمال أنواع متعددة من مركبات إلخضراوات والمركبات المعدنية وبالتحديد بذره فعالة فأن القائمة تتكون من منوعات مدهشة من المواد والتي هي الفاصوليا ونقع شجر الغار، الشعير، الشب وهو المادة المخثرة والأكثر استخداماً اليوم فأن له تاريخ يعود إلى وذلك لتنقية المياه فقد اكتشف من قبل العالم Plying. وفي سنة ٧٧ بعد الميلاد ثم وصف استخدام الجير (الطبشور) في مدينة Rods والشب Rods وعند علول القرن مفيدة في الحصول على ماء للشرب علماً بأن الشب كان عنصراً مهماً في تجارة عالم قدماء المصريين حتى قبل اكتشاف استخدامه في معالجة المياه. وعند حلول القرن قدماء المصريين حتى قبل اكتشاف استخدامه في معالجة المياه. وعند حلول القرن إلخامس عشر أخذ تحضير الشب النقي أبعاداً صناعية.

ففي عام ١٤٦١ أراد البابا بايوس الثاني Second Pius أصدار احتكار على إنتاج الشب وخلال سنتين إلى ثلاث أصبح الإنتاج البابوي للشب يحتاج إلى خدمات ليس أقل من (٨) آلاف عام خلال العصور المظلمة فأن فن معالجة المياه بالمعية مع الكثير من التقنيات قد ظهر ولكنه لم يتقدم بل انتعش بواسطة السير فرانسيس باكون وآخرين عام ١٦٠٠ (القرن السادس عشر) بعد الميلاد.

وفي عام ١٧٦٧ استطاع بعض العاملين في هذا الحقل في إنكلترا من الوصول إلى معالجة ناجحة لمياه طينية وذلك بإضافة ٢-٣ حبة من حبيبات الشب إلى ربع كالون والسماح له بالترويب ومن ثم ترشيحه. حيث أن عامل التخثير هو عملية مساعدة للترسيب والترشيح للمياه المنزلية والصناعات الصغيرة والتي كانت تمارس في العصور القديمة ولكن استخدامها في المحطات الصناعية الكبيرة قد بدأ في نهاية القرن التاسع عشر. أن أقدم استخدام للتخثير في معالجة مصادر المياه كان عام ١٨٨١ في إنكلترا وقد تم إضافة الشب بمعدل ٥,١ حبة لكل كالون من الماء الداخل، ومنذ عام ١٨٨٥ وإلى الآن فأن التخثير يستخدم قبل المرشحات الرملية السريعة ومع هذا وبسبب استخدام التخثير والترشيح مع بعضها البعض خلال العصور فأنهما في النهاية قد أندمجا.

فالتخثير قد حسن من صفات المصادر العامة ومع هذا فأن مجموعة من الناس ذوي النفوذ قد عارضوا استخدام التخثير والترشيح السريع خلال أواخر القرن التاسع عشر وأوائل القرن العشرين ولكن التحريات حول استخدام الشب في معالجة المياه من قبل Geunet و ١٨٣٨ DARCET عام ١٨٦٥ قد دحظت الأراء والشكوك حول فعالية التخثير وفي عام ١٨٨٤ قد ظهرت أول براءة اختراع في التخثير تعود إلى العالم سمث Smith Hyath والذي تبع باقتراح من العالم كاردنر Gardner والذي شرح في اختراعه استخدام بيركلورايت الجديدة في جهازه والمتكون منPerchloride of Iron كمادة مخثرة مع مرشح رملي سريع والمستخدم في معالجة المياه العكرة وبعد عام فأن شركات مياه كبرى مثل شركة سومرفيل Sommerville وRaviten في نيوجرسي قد تبنت جهاز Hyatt المستخدم في التخثير والترشيح والذي يستخدم أيضاً في الترويب adjunet ومرافقاته للترشيح السريع وقد استخدم التخثير كمرحلة أولية ثم الترشيح السريع والذي بدأ استخدامه كطريقة صناعية للمعالجة في عام . ١٨٨٥ نشرت جامعة أوستنOsten and Welber of Rodger نتائج أول بحث علمي أمريكي في استخدام الشب كمادة مخثرة وبعد إجراء الفحوصات على عدد كبير من الأملاح فقدتم الوصول إلى نتيجة بأن هذه الأملاح ليس لها فوائد وفي عام ١٨٩٥ إلى ١٨٩٧ في مدينة لويس فيل Louisville وكنتاكي Kintaki قام العالم George Waren Fuller ومساعدته بإجراء عدة تجارب على مياه نهر أوهايو العكر والذي تم تجربة عدة مراحل تعددية من التخثير باستخدام الشب وكبريتات الألومنيا أو (شب بوتاسي) والجير ومن بين هذه المواد فقد وجد أن الأفضل هو الشب وهذه التجارب قد أكدت فكرة التخثير مع مرشح رملي سريع.

الحاجة إلى التخثير:

مع بعض التوقعات النسبية القليلة. المياه السطحية تتطلب بعض المعاملات قبل التوزيع إلى المستهلكين. وذلك لأن المياه ونتيجة للملوثات الكثيرة التي تحدثنا عنها من الاحتكاك بالأرض إلى ذوبان بعض المعادن والمواد العضوية المنتشرة بشكل واسع في الجداول والقنوات والأنهار. ولأجل أن يكون الماء صالحاً فلا بد من إزالة هذه المسواد.

إن الاحتياجات بنفس المعاملة قد تزداد بسبب المعقدات الصناعية وفضلات الإنسان، المياه الطبيعية أيضاً تتلوث من قبل الإنسان والطبيعة وخصوصاً بالمواد العضوية وغير العضوية الذائبة والأشكال البيولوجية مثل البكتيريا والبلانكتون ولأجل التخلص من هذه المواد من خلال وحدات المعالجة والتي من أولياتها عملية التخثير والترويب وبعد ذلك الترشيح والترسيب الكيماوي فهي تستعمل عموماً لإزالة المعادن الذائبة مثل مركبات العسرة والحديد والمنغنيز.

العمليات الأخرى مثل الادمصاص، التهوية، التبادل الأيوني، الأكسدة والتقطير هي أيضاً مهمة في إزالة المواد الذائبة، وعملية التخثير يتبعها عملية الترشيح ولكن أبعد من هذا وبشكل واسع فهذه العمليات تعمل على إزالة المواد التي تسبب العكارة في الماء والعكارة سببها معادن الطين والأحياء المجهرية حيث لها حجوم مناسبة وكافية لكي تترسب بسرعة. أما الحجوم الصغيرة فتبقى منتشرة لفترة طويلة، أما المواد إلخشنة مثل الرمل، الغرين، يمكن إزالته من الماء بالترسيب البسيط. الدقائق الدقيقة لا تترسب بسرعة بل تحتاج إلى فترة زمنية ولأجل هذا يُعمد إلى تكتيلها لإنتاج دقائق أكبر لكي تترسب. أن قابلية المواد لبقائها في الماء تعتمد بالأساس على قاعدتين هما الحجم (حجم الدقائق وكثافتها) والمهم في الحجم يتضح في الجدول (٤٣) والذي يوضح العلاقة بين وقت الترسيب بالحجوم المختلفة للدقائق ويمكن رؤيتها ويمكن تقسيمها في النهاية ما بين (٠٠١، والى ١ مايكرون).

المواد المنتشرة هي بطيئة فلأجل إزالتها من الماء بواسطة الترسيب في خزانات تملك الأبعاد الاعتيادية هو غير محتمل. أن الجسامة تزداد للمساحة السطحية للوزن المعطى للمواد الصلبة كدقائق وتصبح أصغر وأكثر جسامة في أهم خاصية للغرويات والتي سنناقشها بعد ذلك والمواد التي تنتج اللون وبشكل واضح من غرويات العكارة والتي تحتوي على (هايدروكسايد، حديد) أو مركبات عضوية لها حجوم دقائقية صغيرة هذه المواد أيضاً يمكن إزالتها بالتخثير والتي تخدم تراكم الدقائق الصغيرة إلى الحجم الذي تكون جاهزة للترسيب أو إزالتها بالترشيح. عملية التخثير يمكن أن تكون لها استعمالات ليس فقط في تحلية المياه العسرة مع اللايم أو Soda Ash .

التحلية هي بخواصها عملية ترسيب والتخثر ويتستعمل على الغالب بسرعة وتكتمل عملية الترسيب لمركبات العسره. إن الحد الأدنى للعكارة هو ١,٠ وحدة والحد الأدنى للون هو ٣ وحدات والتي سجلت بواسطة الجمعية الأمريكية للعاملين في المياه حيث وضعت الحدود الدنيا للمياه وكما هي موضحة في الجدول (٤٣) التالي.

جدول (٤٣) توضح العلامة ما بين الحجم والوقت اللازم للترسيب

الوقت اللازم للترسيب	المساحة السطحية الكلية	· حجـــم	قطر الدقائق mm
0.3 ثانيــــه	0.487 Sq/in	حصـــــــى	10
3 ثانیـــه	4.87 Sq/in	رمل خــشن	1
38 ثانيــــه	48.7 Sq/in	رمىل نباعهم	0.1
33 دقــيــقــه	3.38 Sq/in	ہـريــــن	0.01
55 ساعــه	33.8 Sq/in	بكتـــريا	0.001
230 يــــوم	3.8 Sq/yd	دقائق غروية	0.0001
6.3 ســنـــه	0.7 acre	دقائق غروية	0.00001
63 سنه على الأقل	7.0 acre	دقائق غروية	0.000001

مساحة الدقائق لهذه الحجوم انتجت من دقائق 10 ملم قطر وكثافة 2.65

ويجب أن نؤشر هنا بأن حتى النوعيات العالية من المياه تحتاج إلى مثل هذه التوصيات لإزالة العكارة بـ ١ , ٠ وحدة لأنها لا تزال تحتوي على عدد من الجسيمات وهذه يمكن أن تكون غير مخثرة في التخثير الأولى وكمثال فالحساب يمكن أن يعطينا أو يوضح لنا بأن كل لتر معامل من الماء يحتوي على حوالي ٢ × ١٠ (٢٠٠ مليون) جزيء من المخثر الالومي غير الذائب على فرض المحتوى المنتشر للمواد الصلبة لـ جزيء من المخثر الالومي غير الذائب على فرض المحتوى المنتشر للمواد الصلبة لـ ١ , ٠ ملغم لر لتر وكرات ذات القطر ١ مايكرون ذات الكثافة ٢ ، , ٠ .

أن البراهين العملية تؤكد أن هذه الحسابات والافتراضات صحيحة وعلى الأقل في مجال أهميتها. أن التجارب المخبرية في مجال التخثير والترشيح لمياه عكرة أنتجت ناتج جانبي بعكورة تقدر 0.11 وحدة والتحاليل الكيميائية أظهرت ألمنيوم متبقي بمحتوى ppm 0.6 ppm ومن ناحية إحصائية فأن عدد الحبيبات بمدى حجم من 10-0.59 وباستخدام جهاز عدد الحبيبات الإلكتروني حيث كشف ان كل لتر من الماء المعالج يحتوي على ٢٠٤٤ حبيبة (٢٠٠٠ مليون) هذه القيمة الناتجة عن التجربة تثبت صحة الرقم المحسوب.

المواد في الماء:

المواد في الماء يمكن تصنيفها بالنسبة إلى مصادرها كمواد غير عضوية أو مواد عضوية كاربونية. فالمواد التي تنتج العكارة هي على الغالب غير عضوية. أما المواد التي تسبب المذاق والرائحة واللون هي عموماً مركبات عضوية. ويمكن تصنيف المواد التي تسبب العكارة بالنسبة إلى حجمها والتي تحدد بأبعادها الجزئية من (٥٠) مايكرون أو أكبر، أما الأجزاء الأكبر من (١) مايكرون قطراً ومعظمها ترجع إلى مصدرها (الغرين) حيث تترسب وتبقى الجزيئات الصغيرة والتي تصنف كغرويات والتي تبقى لفترة طويلة.

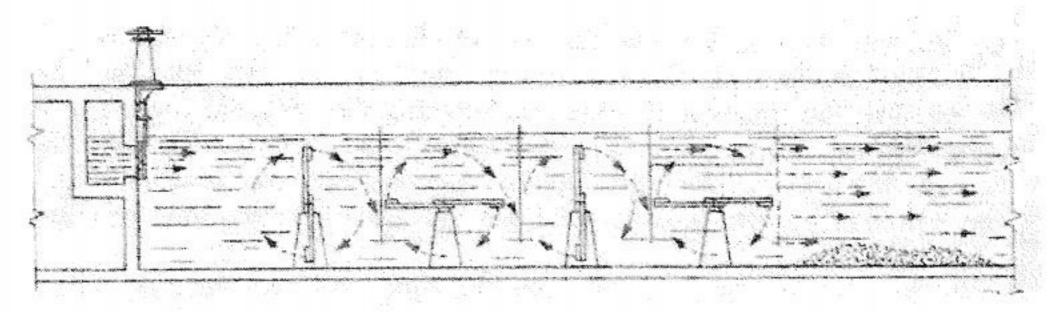
والأهمية الأكبر في استعمال المخثرات لإزالة المواد الغروية الصغيرة والكبيرة أن خواص الجزيئات الغروية المميزة وأبعادها هي العلاقة أو النسبة ما بين المساحة السطحية إلى الكتلة ففي الجزيئات الكبيرة النسبة تكون واطئة علماً أن الكتلة تؤثر كمرسب بالاعتماد على الجاذبية المتغلبة، أما المواد الغروية التي تكون النسبة بها عالية فإلخواص تتجمع مع أسطح الجزيئات كالشحنات الكهربائية للمجاميع الأيونية وبذلك تصبح أهميتها أكبر، والغرويات إضافة إلى خواصها (الحجم، المساحة السطحية) فأنها تصنف كمواد Hydrophobic أو المنافقة إلى خواصها الوسيطة بين هاتين الصيغتين إلخواص المميزة للمواد المحبة للماء وقابليتها للتفاعل مع الماء لتشكل معلق ومن ثم تجفيفها ومن ثم التفريق تدريجياً وهذا النوع من المركبات يتضمن النشا، الاصماغ، البروتينات.

أن تفريق المواد الكارهة للماء من الجانب الآخر عموماً يحفر بواسطة الوسائل الكيماوية أو الفيزياوية .

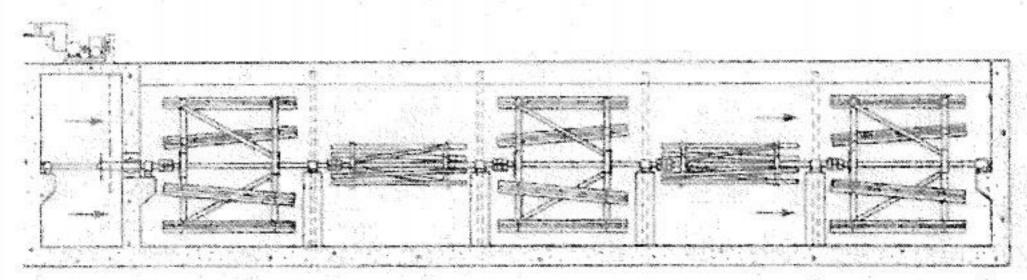
فالتفريق يجفف ويتفرق تلقائياً في الماء الطين، أكاسيد المعادن والتي هي كارهة للماء في طبيعتها بسبب خواصها فالغرويات المحبة والكارهة في بعض الأحيان تدعى متعاكسة وغير متعاكسة على التعاقب وهذه الميزة بين هاتين المجموعين من المركبات هي مهمة في عمليات التخثير بسبب نظام المحب فالدقائق كيماوياً تتفاعل مع الماء والتي تتفرق مع المواد المخثرة. ونقاوة النظام الكارة لا يتفاعل مع طور الماء والمخثرات تقود التفاعل لأن يكون فيزياوياً أكثر من كيماوياً.

ميكاتزم (ميكانيكية عملية التخثير):

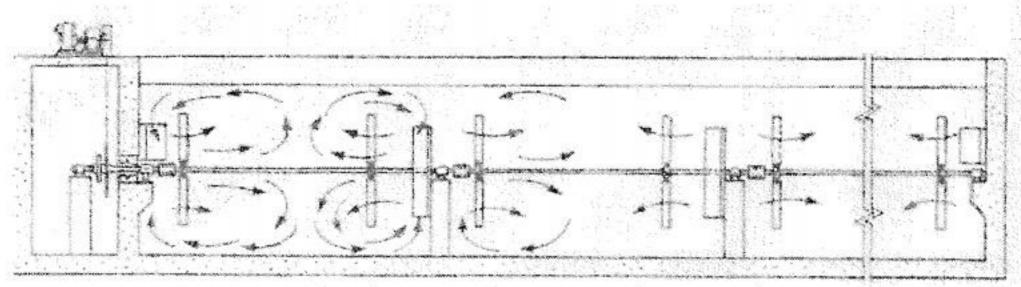
لقد وضحنا سابقاً أن سرعات الترسيب للحبيبات المتجزئة والغروية بفعل الجاذبية وحدها تكون صغيرة جداً بحيث أن الترسيب الطبيعي يكون غير عملي ولذلك فمن الضروري استخدام طرق لتجميع الحبيبات الصغيرة إلى حبيبات أكبر والتي عندنا

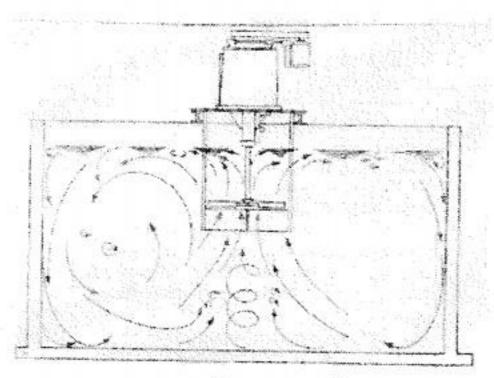

سيكون لها سرعات ترسيب مطلوبة وعملية. أن تكوين الحبيبات الكبيرة من الحبيبات الصغيرة هي أيضاً مهمة وذلك لإزالتها بالترشيح. تاريخياً فأن الكلمات التخثير والترويب قد استخدمت لوصف عملية إزالة العكورة من الماء ولكن مع هذا فهنالك فرق واضح بين المعنين. أن كلمة تخثر هي لاتينية الأصل ومعناها (القيادة مع بعض) Coaglare أن هذه العملية تضيف تأثير إضافة مادة كيميائية إلى مادة غروية منتشرة (تشتت) مؤدياً بذلك إلى عدم استقرارية الحبيبة وذلك بتقليل القوى التي تجعل الحبيبات متشتتة عملياً أن عملية التخثير يتم الوصول إليها بإضافة مادة كيميائية مناسبة والتي تؤدي بالحبيبات أن تتجمع مع بضعها البعض أن عملية إلخلط السريع مهمة في هذه المرحلة وذلك للحصول على تشتيت متجانس للمادة الكيمائية وذلك لزيادة فرصة التصاق الحبيبة بالحبيبة الأخرى أن هذه العملية ككل تحدث في وقت قصير جداً وبزمن أقل من ثانية مؤدية في البداية إلى حبيبات حجمها أصغر.

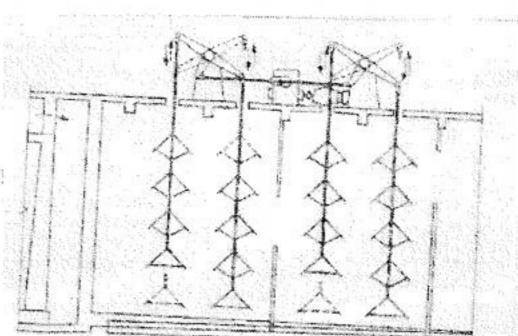
أن المرحلة الثانية من تكوين الحبيبات الراسبة من الحبيبات الغروية ثابتة يدعى بالترويب Floccular والتي من اللغة اللاتينية أصلاً Floccular والتي تعني تكوين floc (الكتل) والذي يشبه عنقود الصوف أو تركيب مسامي ليفي.


على عكس التخثير حيث القوى الأولية تكون الكتروستاتكية أو تأيونية داخلية Interionic فأن عملية الترويب تظهر بتجسير كيميائي أو بميكانيكية فيزيائية. أن عملية الترويب تتم بخلط بطيء والذي بدوره يحول الحبيبات المخثرة الصغيرة جداً إلى حبيبات معلقة ظاهرة كلما كان هنالك تدريب أكثر على عمليات الفصل الفيزيائية بواسطة التخثير والترويب والترسيب والترشيح حيث أن الجهود في الوقت الحاضر تتكاثف على هذه العمليات لأجل تقليل زمن الترويب ولتقصير أو حذف أحواض الترسيب بالرغم من الاعتماد على المرشحات كجزء من عملية الترويب.

عوامل الاستقرار وعدم الاستقرار:


في هذه النقطة من المهم توضيح العوامل التي تؤدي بالحبيبات لتبقى معلقة أو بالعوامل التي تؤدي إلى التخثير. أن هذه الشروط توصف بالمصطلحين الاستقرارية واللاستقرارية لمحلول معلق غروي. أن الاستقرارية تعود إلى إلخاصية الملازمة للحبيبات الغروية لتبقى منتشرة بالرغم من مرور الوقت أما اللاستقرارية تصف الرغبة للحبيبات لتتحد متى وما كان هنالك اتصال حبيبة بحبيبة أخرى تاريخياً فأن هنالك نظريتين التي تم عرضها لشرح الميكانيكية إلخاصة لهاتين الظاهرتين. أن النظرية الأقدم الكيميائية تفترض أن الغرويات تحصل على شحنات كهربائية على سطحها عن طريق التأين للمجموعات الكيميائية المتواجدة على السطح.


شكل (٣٤) جهاز التكتل (ترويب) سلسلة من الريش التي تتحرك عبر الخزان بحركة دورانية متوازية

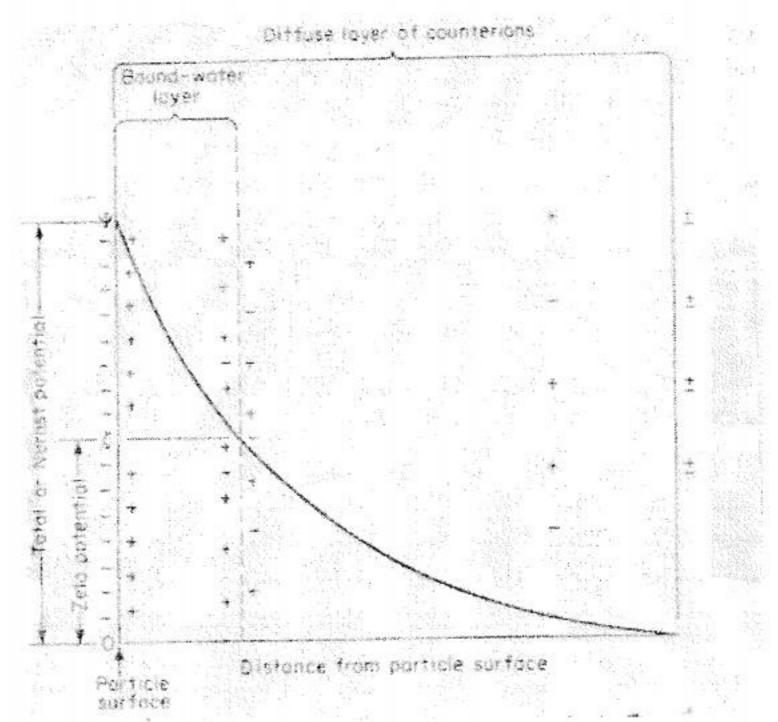

شكل (٣٥) جهاز تكتل (ترويب) سلسلة من الريش شدة الخلط تعتمد على المساحة (مساحة الريش) وسرعتها والماء يسير تبعاً لحركة المحور

شكل (٣٦) مكتل محوري . وهو نموذج لمكتل ذا الريش

شكل (۲۸) مكتل توربيني

شكل (٧٧) مكتل ذا أذرع محركات أعلى وأسفل للريش تعمل حركة مريحة

وأن التخثير للاستقرارية يتم الوصول إليها باستخدام متصلات كيميائية بين الحبيبات الغروية والمادة المخثرة .


أما النظرية الفيزيائية فأنها تدعم العوامل الفيزيائية بواسطة الطبقة المزدوجة الكهربائية بواسطة امتصاص الأيون المعاكس وهذا يؤدي إلى اللاستقرارية والتي تأتي من خلال تقليل القوى مثل جهد زيتا. أن كل نظرية قد حظيت بوقت شهره ولكن الآن قد اتضح بأن الميكانيكية ليست متضادة باتفاق الطرفين وأن النظريتين يجب أن تستحضر وذلك لتفسير عملية التخثير في عمليات معالجة المياه حيث يتواجد خليط غير متجانس من الأنظمة الغروية.

قوى الاستقرار:

بما أن الهدف من التخثر هو حمل الحبيبات أو الجزيئات على عدم الثبات وبالتالي السماح بتكوين الكتل الكبيرة فأنه من المهم الآخذ بعين الاعتبار القوى التي تسبب الثباتية للمعلق للأنظمة الغروية Hydophilic فأنه يتم الحصول على الثباتية بواسطة ظاهرة _ Hydration والتي يتم فيها جذب جزيئات الماء إلى سطح الجزيئات وتتصرف كحاجز لتصل بين الجزيئات.

أن من المتفق عليه الآن بين علماء الغرويات أن الثباتية لجزيئة المسحونة وتحيط تعود إلى ظاهرة الطبقة الكهربائية المزدوجة والتي تتضمن سطح الجزيئة المسحونة وتحيط (مدار) Sheath الأيونات التي تحمل الشحنات المعاكسة لسطح الجزيئة، هنالك العديد من النظريات التي طورت لتصف عددياً مبدأ الطبقة الكهربائية المزدوجة هذه النظرية قد اقترحت في البداية من قبل هلموهولت Helm Holtz في عام ١٨٧٩ ومن ثم عدلت بواسطة عدد من العاملين ومنهم Gouy وشائجن mapman وسيترن Stem والنظرية الجديدة كانت مقبولة بشكل عام وأكثر هذه النظريات معقدة جداً لكي يتم بحثها بالتفصيل ولكن يمكن شرحها بطريقة مبسطة أن هذه النظرية تقول بأن الجزيئات المعلقة في الماء وهي - Hy ولكن يمكن شرحها بطريقة مبسطة أن هذه النظرية تقول بأن الجزيئات ألما الطبيعية هذه الشحنة على سطوحها للجزيئات في المياه الطبيعية هذه الشحنة على سطح الجزيئة وذلك عن طريق استبدال العناصر في الطبقة البلورية بعناصر تحتوي على شحنة مخالفة أو جزيئات قد تتطلب الشحنة بواسطة ادمصاص الأيونات على شحنة مخالفة أو جزيئات قد تتطلب الشحنة بواسطة ادمصاص الأيونات وبالتحديد أيونات الهايدروكسيد أن هذه الأيونات يتم ربطها بشده إلى سطح الجزيئة وجذب الأيونات ذات الشحنات المعاكسة من خليط من أيونات في الماء ذي شحنات وجذب الأيونات ذات الشحنات المعاكسة من خليط من أيونات في الماء ذي شحنات

موجبة وسالبة هذه الطبقة من الأيونات المشحونة بشحنات معاكسة (تدعى أيونات معاكسة (Counter Ions) يتم حملها بالقرب من الجزيء بواسطة قوي الكتروستاتيكية، أن عملية التحريك الحراري للجزيئات في الماء تؤدي بالأيونات المعاكسة لتكوين طبقة منتشرة تتوسع إلى إلخارج من سطح الجزيء إلى محلول الكم وكما هو موضح في الشكل التالي (٢٩) الجهد إلخارج من سطح الجزيء وفي النهابة يصبح صفراً حيث تراكيز الكايتونات والأنيونات المتواجدة تتساوى.

شكل (٢٩) يوضح الطبقة المزدوجة فالاعتماد على طاقة مدار سطح الجزئية

لم يعد ممكناً اعتبار الجزيئات في الماء ك discrete portions من المادة المعلقة أو المتحركة في السائل.

فالتخثير (التلبيد) أذن هما عمليتان رئيسيتان في وحدات تنقية الماء ومعالجة الفضلات السائلة وهدفها التخلص من المواد الغروانية والمواد المنتشرة الصلبة والتي تسبب العكارة واللون ويمكن إجمالها بما يلى:

أ _ المواد المنتشرة الصلبة:

وهذه المواد قد تكون معادن في الأصل (رمل، غرين، طين . . إلخ) أو منتجات عضوية معقدة تدعى عضوية معقدة تدعى

بالأحماض الفولفية Fulvic acid وكذلك الأحياء المجهرية ـ البكتيريا، البلانكتون، الاشنات، الفايروسات.

ب ـ المواد الفروية (أقل من ١ مايكرون):

هذه المواديكون مصدرها هو نفس المصادر المذكورة أعلاه ولكن بحجوم أصغر ولها معدل ترسيب واطيء .

جـ - المواد الذائبة:

وهي عبارة عن الكاتيونات والأنيونات الناتجة من المواد العضوية والذائبة في الماء وكذلك الغازات أيضاً والتي تتواجد في الماء كالأوكسجين وثاني أكسيد الكربون وكبرتيد الهايدروجين إلخ وأن جميع المواد الذائبة.

دور التلبيد والترويب:

أن عملية التلبيد والترويب تساعد في إزالة المواد الصلبة الذائبة والغرويات وذلك بزيادة سرعة الجزيئات لكي تترسب نتيجة زيادة تصادم الجزيئات واتحادها لأجل تصليدها وبالتالي ترسيبها والجدول التالي يوضح نوع الدقائق أو الجزيئات وأقطارها وزمن ترسيبها.

جدول (٤٥) يوضح العلاقة ما بين قطر الدقائق ونوعها وزمن الترسيب

قطــر الدقائق		زمن الترسيب من نوع الدقائق		المساحة النوعية	
mm	Mm	Α°		خلال أم ماء	9 9
10	104	108	حصى	ثانيه واحده	6.102
1	103	107	رمل	۱۰ ثواني	6.103
10-1	102	10 ⁶	رمل دقيق	۲ دقیقه	6.104
10-2	10	105	طينه	۲ ساعه	6.105
10-3	1	104	بكتيريا	۸ أيام	6.106
10-4	10-1	10^{3}	غرويات	۲ سنه	6.107
10 ⁻⁵	10-2	10 ²	غرويات	۲۰ سنه	6.108
10 ⁻⁶	10-3	10	غرويات	۰ ۰ ۲ سنه	6.109

ومن الجدول يمكن أن نعرف الاحتياج الزمني لكل نوع من الدقائق لكي تترسب أفقياً من خلال ام من الماء عند ٢٠ م تحت تأثير الجاذبية فقط، أما الغرويات وتعتمد سرعة ترسبها على كثافتها وكذلك على حجمها.

ولأجل سرعة الترسيب للدقائق أو الجزيئات يجب إجراء بعض الإضافات لأجل تصليب (تلبيد) هذه الدقائق بمحاليل معروفة ذات المرجعية كملبد.

حيث أن السبب الجانبي لاستقرارية الغرويات تمثل بالشحنات الكهربائية التي تحملها الدقائق حيث عندما تكون الدقائق حاملة الشحنات متماثلة فأن عملية التنافر مستمرة ولهذا السبب عملية التلبيد لا تتم والترسيب بالنتيجة لا يتم تحت هذه الظروف والطريق الأفضل هو معادلة هذه الشحنات وبالتالي عملية التلبيد تكون ناجحة وهنا لابد من ذكر بعض المعلومات عن عملية التلبيد Coaqulation حيث كان في البدء يعزى سببها إلى الأيونات وشحناتها المتضادة إلى أن تصل إلى حالة الاستقرار والتعادل. وبعدها تم اكتشاف قوة التلبيد والتي تعتمد قوة الأواصر للأيونات فمثلاً الأيونات ذات الأواصر الثنائية Divalant هي أقوى من الأيونات ذات الأصرة الواحدة اكثر تأثير من monovalent بعدود ٣٠-٢٠ مرة والأيونات ذات الأواصر الثلاثية أي معلق أكثر تأثير من monovalent بعض غروي يعتمد على توفير حالة التعادل لشحنات المعلق الغروي لذا نشأت بعض العلاقات مثل جهد زيتا وقوى فأن ديروولس إلخ لذا فأن المعلق الغروي يتأثر بقوى رئيسية اثنتان:

١ ـ قوة جاذبية Van der waals : وهذه القوة لها علاقة بقوام وتركيب وشكل
 الغرويات وكذلك نوعية الوسط حـــ ويرمز لها [EA].

٢ _ قوة الكهرو حركية والتي لها علاقة بشحنات السطح العزوي [EB].

وأن استقرارية المطلق الغروي يعتمد على التوازن بين قوة الجاذبية والحالة الكهربائية ولهذا يكون مستوى الطاقة كما هو في هذه المعادلة.

E = EA + EB

ولأجل استمرار عدم استقرارية المطلق فمن الضروري زيادة [E_S] وهي طاقة الرحلات (الطاقة المحمولة) للوصول إلى حالة التجمع بعد حذف قوة الحالة الكهرو حركية وبذلك يحصل التلبد.

نظرية الطبقة المزدوجة للتلبد:

الماء المعلق إلخام فدقائق هذا المعلق الغروي تحمل شحنات سالبة (التركيب البلوري، التأين لمجموعة Peripheral الكيماوية ة. إلخ) من أجل.

معادلة الشحنات السالبة على السطح فالأيونات الموجبة التي تظهر في الماء إلخام أو التي تضاف تعمل معاً من اجل عمل طبقة حول الغروي كما في شكل (٣٣) وحسب نظرية Helmholtez فطبقة التأين الموجبة تغطي السطح الداخلي للمادة الغروية وتؤمن التعادلية للكتلة الداخلية. أما نظرية معادل الطبقة المنتشرة أما نظرية Stern أن طبقة التأين تحتل مكانة حول الغروي والتي تعادل الطبقة المنتشرة أما نظرية الأولى فهي تجمع ما بين النظرتين السابقتين ولكن بتقديم نظرية الطبقة المزدوجة فالطبقة الأولى الملامسة للغروي بسرعة تفقد طاقتها والطبقة الثانية تكون انتشاراً وأقل فقداناً للطاقة.

: Zeta Potential جهد زيتا

ويعرف جهد زيا بأن ذلك الجهد على السطح والذي يقوم بفصل الجزء المتحرك من الطبقة الثانية عن الطبقة المنتشرة وعلى هذا الأساس فهو عبارة عن شحنة الطبقة المنتشرة على وحدة مساحة الجسم الغروي. ويمكن قياس جهد زيتا بالمعادلة التالية:

 $ZP = (4 \times Ti \times B \times 9^{+}) / D$

حيث أن:

ZP = جهدزيتا (فولت).

B = سمك الطبقة الحرارية.

+q = الشحنة في الجسم الغروي.

D = ثابت العزل.

فالمادة الغروية تتحرك مع جزء من الطبقات المزدوجة وهذه الطبقات التي تتحد مع المادة الغروية وهي المسؤولة عن الطبقة المستقرة في نظرية Stern .

النظرية الكيماوية:

لقد كانت للأوامر الكيماوية وجاذبيتها دوراً هاماً في استقرارية المياه العالقة والتي قدرتها أكبر من ٢٠-٥٠ مرة من القوى الكهربائية لذا فالنظرية الكيماوية أعطت بعداً لاستقرار الغراوانيات. حيث أن الشحنات الأولية التي تحملها الغراونيات هي من

التأين المباشر للمجاميع الكيماوية على السطح مثل (الهايدروكسيل، الكاريوكسيل، النوسفات، السلفات إلخ) لذا فحالة عدم الاستقرار تقودنا إلى التفاعلات المتكافئة بين هذه المجاميع لذا فأن الأيونات الفلزية ذات التعددية poly valent للتلبيد هي الأكفاء في الترسيب بعمل الجسور وإظهار علامات التلبيد كما سنراها في الجدول التالي:

(العو امــــــــــــــــــــــــــــــــــــ	المرحلة
الفعــــل		
تحلى	تفاعل مع الماء ـ تأين ـ تحلل ، بلمره	اضافه لمحثر (الملبد)
	تأثير الطبقة المزدوجة	
	الادمصاص النوعي للايونات من الملبد	
	على سطح المادة الغرويه	
تلبــد	الروابط النوعية بين الأيونات وقطع من	عدم استقرار المعلق
Caaqulatiom	سطح المادة الغروية	
	تضمين المادة الغروية بالروابط	
	الهايدروكسيليه	
التلبد حول الحركي	الحركة البروانيه	
التلبد المتحرك	وحدات السرعة	النقـــل
or the Kinetic		
Flocculation		

: Coagulant (المبلدات)

: Trivalent Cation الأواصر الثلاثية

من أجل معادلة شحنات سطوح الغرويات السالبة الشحنة يتم إضافة الكايتونات للمخثرات اللاعضوية حتى تكون تأثيرها فاعل وحسب نظرية (Schulz - Hardy) فأن الأيونات ذات الأصرة الثلاثية هي أكثر فاعلية من الأيونات الثنائية الأصرة علماً بأن اختيار المخثر (الملبد) يتم على توافرة وكذلك كلفته.

فأيونات أملاح الحديد والألمنيوم الثلاثية الأصرة تكون هي المستعملة في المعالجة.

تأثير الأس الهايدروجيني (PH):

المخثرات اللاعضوية بسبب تحللها تغير من خواص الماء الفيزياوية والكيماوية والمعنى بهذا التغير هو الـ (PH) والايصالية كما هو مبين في المعادلة التالية :

$$M^{+3} + 3H_2O - M (OH)_3 + 3H^+$$

وبذلك يلعب الأس الهيدروجيني دوراً مهماً في إزالة الغرويات والأس الهيدروجيني المثالي ينحصر ما بين اله PH الضروري للمخثر (بالاعتماد على نوع الغروي) واله PH اللازم للتكتل Floculation والذي يتعلق ببناء كتل هيدروكسيدات الحديد والألمنيوم.

الـ PH المثالي للتخثر والترويب	كايتــون
٧,٤-٦	AL+3
أكثر من ٥	Fe ⁺³

ويمكن التحكم بالأس الهيدروجيني بإضافة الحوامض أو القواعد للتحكم بالوسط ويعتبر بوليمر السليكا أفضل مكتل floculant أما البوليمرات الطبيعية فهي النشا، الالجينات.

: Reagent المحاليك

المخشرات اللاعضوية كشيرة وأهمها كما أشرنا سابقاً الألمنيوم والحديد والكايتونات والبولي الكترولت. وسنشرح بعضها.

١ _ أملاح الألمنيوم:

يجري التفاعل عند إضافة أيونات الالومينا إلى المياه المراد معالجتها لتكون راسب من هيدروكسيدات الالومينا مع تحرير جزء من الحموضة كما في المعادلة التالية :

$$AL^{+3} + 3H_2O \implies AL(OH)_3 + 3H$$

والحموضة المتحررة تتفاعل مع بعض المواد في المحلول (الوسط البيئي للمياه) خصوصاً أيونات البايكربونيت.

$$HCO_3^- + H^+ \longrightarrow H_2O + CO_2$$

وإضافة إلى ذلك فأن الحموضة لها دور آخر باتحادها مع بعض المخثرات المرتبطة بقاعدة (هيدروكسيد صوديوم، هيدروكسيد الكالسيوم، صوديوم كاربونيت) كما في المعادلة التالية:

$$AL^{+3} + 3OH \longrightarrow AL (OH)_3$$

المعادلة التالية توضح عمل سلفات الالومينا في المياه المراد معالجتها.

$$AL_2 (SO_4)_3 + 6HCO_3$$
 $2AL (OH)_3 + 3SO_4 + 6CO_2$ $2AL (OH)_3 + 3SO_4 + 6CO_3$ $2AL (OH)_3 + 3SO_4 + 6CO_4$ 2

٣ - كلوريد الألمنيوم (السائل):

هذا الملح دورة في عملية تنقية المياه كما تشير إليه المعادلة التالية :

$$2ALCL_3 + 6HCO_3 \longrightarrow 2AL (OH)_3 + 6CL + 6CO_2$$
 علماً أن هذا الملح فعال ويعطي نتائج جيدة .

٤ - سلفات الالومينا مع هيدروكسيد الكالسيوم:

$$AL_2 (SO_4)_3 + 3Ca (OH)_2 = 3Ca^+ + 3SO_4 + 2AL (OH)_3$$

أما الجرع فتستعمل حوالي الله من سلفات الألمنيوم حيث تضاف كمادة صلبة تجارية. علماً أن فعالية العملية تعتمد على تحميض الوسط.

الألمنيوم + كاربونات الصوديوم :

هنالك نوعان من التفاعل يمكن أن يأخذ مكانة بالاعتماد على معادلة أيونات الكاربونيت أو بالاحرى البايكاربونيت أو Co₂ الحر .

$$AL_2 (SO_4)_3 + 6Na_2 CO_3 + 6H_2O = 2AL (OH)_3 + 12Na + 6HLO_3 + 3SO_4$$

$$AL_2 (SO_4)_3 + 6Na_2 CO_3 + 6H_2O$$
 \longrightarrow $4AL (OH)_3 + 12Na + 6SO_4 + 6CO_2$

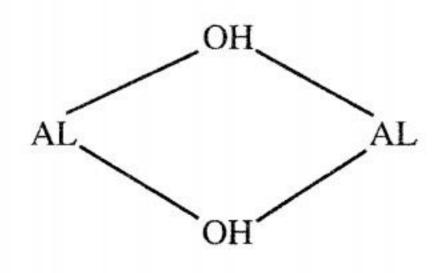
كمية الكاربونات (كاربونات الصوديوم) تعادل ما بين ٥٠ إلى ١٠٠٪ من كمية سلفات الألمنيوم كمادة صلبة تجارية .

٦ - الومينات الصوديوم:

لإ يضاح العملية في هذه الحالة فالالومينا هي بالشكل الأساسي :

$$ALO_2 + 2H_2O \longrightarrow AL(OH)_3 + OH$$

ويمكن الاستعاضة بأيونات الكاربونيت وثاني أوكسيد الكاربون الذائب


$$NaALO_2 + Ca (HCO_3) + H_2O$$
 $\longrightarrow AL (OH)_3 + Na^+ + HCO_3$

$$2NaALO_3 + 2CO_2 + 4H_2O$$
 $\longrightarrow 2AL (OH)_3 + 2Na^+ + 2HCO_3$

أما الجرعات المستخدمة لأجل التنقية للمياه السطحية هي (٥-٠٥غم/ م٣) من المحاليل التجارية مع ٥٠٪ Al₂O₃ .

: A Luminum Flymers الألومينية

البوليمرات الالومينة تستعمل لأجل التعادل neutralization وتجسير المواد الغروية حيث تأخذ عملية التخثير (التلبيد) أكثر كفاءة. وأكثر من ذلك فأن استعمال البوليمرات تزيد من عملية التشكيل البلوري الهيدروكسيدات الالومينا مثل bayerite أو gibbsite وأن عملية البلورة لهيدروكسيدات الالومينا هي نفس تركيبة البلورات وأن الوحدة القياسية هي Al₆ (OH) والبلمرة تبدأ بتكوين الجسور.

وهنالك السلاسل المستمرة للبوليمر والتي يزداد حجمها مع درجة الهدركسله (المعدل الجزئي R = OH/ Al) وبذلك فالبلمرة تعطي أكثر تكتلاً (floc) والذي يقترب من التركيب البلوري وأكثر انضغاطاً وأكثر كثافة .

أما المنتوجات التجارية لهذه المنتجات هي Al_n (OH)_p (CL)q (SO₄)_r والتي تتصف بالمعدل الجزئي (OH/ AL) بين ٤,٠ و ٦,٠ ودرجة حموضة أقل من الملح كما أن استقرارية مضمونة بوجود أيونات السلفات.

علماً أن استعماله يعطي نتائج أقل درجة من سلفات الألمنيوم.

أملاح الحديد:

أن الأساس في عملية التفاعل لأملاح الحديد هي مشابهة لما شرحناه في حالة أملاح الألمنيوم.

$$Fe^{+3} + 3H_2O \longrightarrow Fe (OH)_3 + 3H$$

ولكن أيون الحديد يعطي لون للمياه المعاملة.

١ ـ كلوريد الحديد (سائل) وأحياناً بلوري :

Fecl₃ + 6HCO
$$^{-}_3$$
O \longrightarrow 2Fe (OH)₃+6CL+6CO₂

أما الجرع المستخدمة للمياه السطحية فهي ما بين ٥-١٥٠عم/ م من Fecl₃. H₂0 أما المياه الفضلات فهي ما بين ٥٠-٣٠٠عم/ م .

۲ - کلورید الحدید » هیدرو کسید الکالسیوم :

$$2\text{FeCl}_3 + 3\text{Ca} (OH) \longrightarrow 2\text{Fe} (OH)_3 + 6\text{CL}^- + 3\text{Ca}^{++}$$

أما الجرع المستخدمة فهي ما بين ٥٠-٠٠٠ عم/ م٣من Ca (OH)₂ و٥٠-٠٠٠ عم/ م٣ من كلوريد الحديد التجاري .

$$Fe_2 (SO_4)_3 + 6HCO_3 \implies 3SO_4^{-2} + 6CO_2$$

أما الجرع المستخدمة للمياه السطحية هي 1 - 1 - 10 من المحاليل التجارية . Fe $_2$ (SO $_4$) $_3$. 9H $_2$ O

\$ _ سلفات الحديد + هيدروكسيد الكالسيوم:

$$Fe_2 (SO_4)_3 + Ca (OH)_2 \longrightarrow 2Fe (OH)_3 + 3SO_4^{-2} + Ca^{+2}$$

أما الجرع لأجل تنقية المياه السطحية . فكمية Ca (OH)2 تعادل ٥٠٪ من كمية لسلفات الحديد 9٠٪ Fe₂ (SO₄)₃ - 9H₂O .

٥ _ سلفات الحديدوز (صلب):

$$FeSO_4 + 2HCO_3 \longrightarrow Fe (OH)_2 + SO_4 + 2CO_2$$

أما الجرع المستخدمة فهي ما بين ٥-٠٥١ غم م من FeSO4. $7H_2O_3$ 0 أما لأجل معاملة مياه الفضلات فالكمية تكون ما بين 100-1000 . FeSO4. $7H_2O_3$ 0 معاملة مياه الفضلات فالكمية تكون ما بين 100-1000 .

٣ _ سلفات الحديدوز+ الكلورين:

$$2\text{FeSO}_4 + \text{Cl}_2 + 6\text{HCO}_3 \implies 2\text{Fe (OH)}_3 + 2\text{SO}_4^{-2} + 6\text{CO}_2$$

الجرع: الكلور يكون بما يعادل ١٢٪ من كمية سلفات الحديدوز FeSO₄. 7H₂O .

٧ _ سلفات الحديدوز:

$$FeSO_4 + Ca + (OH)_2 \longrightarrow Ca^{++} + SO_4$$

الجرع المستخدمة للمياه السطحية حيث تكون كمية Ca (OH)₂ تعادل ٣٠٪ من كمية سلفات الحديدوز FeSO₄. 7H₂O .

أما المياه الفضلات فيستخدم ١٠٠-١٥٠ غم من $\mathrm{Ca}\,(\mathrm{OH})_2$ والمعادلة له وما المياه الفضلات فيستخدم ٢٥٠-١٥٠ غم من سلفات الحديدوز .

المخثرات (الملبدات) ومساعدات التلبد والمطهرات ومعدلات الـ PH:

الجدول التالي يوضح المخثرات ومساعدات التخثير والمطهرات وكذلك معدلات الاس الهيدروجيني .

جدول (٤٦) يوضح المخثرات ومساعدات التخثير والمطهرات

معدلات الـ PH	المطهرات	مساعدات التخثير	المخشــرات	
١ ـ كاربونات الكالسيوم	١ -الامونيا المائية	١ ـ الأكاسيد	١ ـ سلفات الألمنيوم	
۲ ـ ثاني أوكسيد الكاربون	NH ₄ OH. Y	٢ ـ عوامل الامتصاص	۲ ـ سلفات الحديدوز	
٣ ـ حامض الهيدر كلوريك	٣ - سلفات الأمونيوم	٣ ـ السليكا النشيطة	٣ ـ سلفات الحديديك	
CaO. ٤	٤ ـ برومين	٤ ـ اليولي الكتروليت	٤ - الومنيات الصوديوم	
NaoH. •	٥ _كلورين		٥ ـ هيدروكسيد الكالسيوم المائي	
H ₂ SO ₄ - ٦	٦ ـ صوديوم كلورايت		٦ ـ سلفات الألمنيوم الامونيه	
	٧ ـ هيدروكسيد الكالسيوم المكلور		٧ ـ سلفات الألمنيوم البوتاسيه	
	٨ ـ هايبو كلورايت			
	٩ ـ الأوزون			

أما بالنسبة لمساعدات التخثير:

الفقرة (١) تتضمن الأكاسيدن الاوزون، ثاني أوكسيد الكلورين، برمنغنات البوتاسيوم.

الفقرة (٢) تتضمن البنتوناين وبنسبة ٥٪ إلى ١٠٪.

الفقرة (٣) تتضمن سليكا النشطة.

الفقرة (٤) تتضمن النشا، سليلوز ومشتقاته، الاصماغ، مواد بروتينية.

التهوية Oeration:

عملية التهوية في معالجة مياه الفضلات أصبحت عاملاً أساسياً وضرورياً حيث تعمل التهوية على أكسده الحديد والمنغنيز وذلك بزيادة الأوكسيجن إلى المياه كما أن التهوية تعمل على إزالة كبرتيد الهيدروجين وبذلك يمنع من تكون الرائحة والطعم في المياه مع تقليل التآكل للفلزات، إضافة إلى ذلك تعمل التهوية على إزالة غاز الميثان وغاز ثاني أوكسيد الكربون لتقليل الحرائق بالنسبة للحالة الأولى وتقليل درة التآكل بالنسبة للثانية علماً أنه بهذه الحالة يلعب دوراً في موازنة الـ PH ، كما وتلعب التهوية دوراً في إزالة الزيوت الطيارة المسببة للطعم والرائحة وكذلك غاز الأمونيا.

وعملية التهوية يمكن تعريفها وذلك بملامسة الهواء سطح الماء ولزيادة نقل الهواء عبر الماء، على أن تكون عملية التهوية مستمرة لتجديد الهواء علماً أن :

أنواع التهوية.

١ - أجهزة التهوية الفقاعية .

٢ - التهوية بالمساقط المائية الصناعية.

٣- التهوية الميكانيكة.

فالأجهزة الفقاعية والتي تعتمد على مرور الهواء بشكل معاكس لمسكب المياه بحيث يحدث التلامس ما بين الفقاعات وبسطح جزئيات الماء وبذلك يزداد مرور الهواء عبر الماء وبالتالي تعمل فعلها العملي والمقصود.

أما التهوية بالمساقط المائية الصناعية فهنالك المسقط الصناعي المنحدر أو المسقط الصناعي المتعدد الدرجات وهنالك من أصناف مضخات لتسهيل عملية هذه المساقط لتكون أكثر كفاءة. علماً بأن طريقة المساقط هي أقل كلفة من الطرق الأخرى.

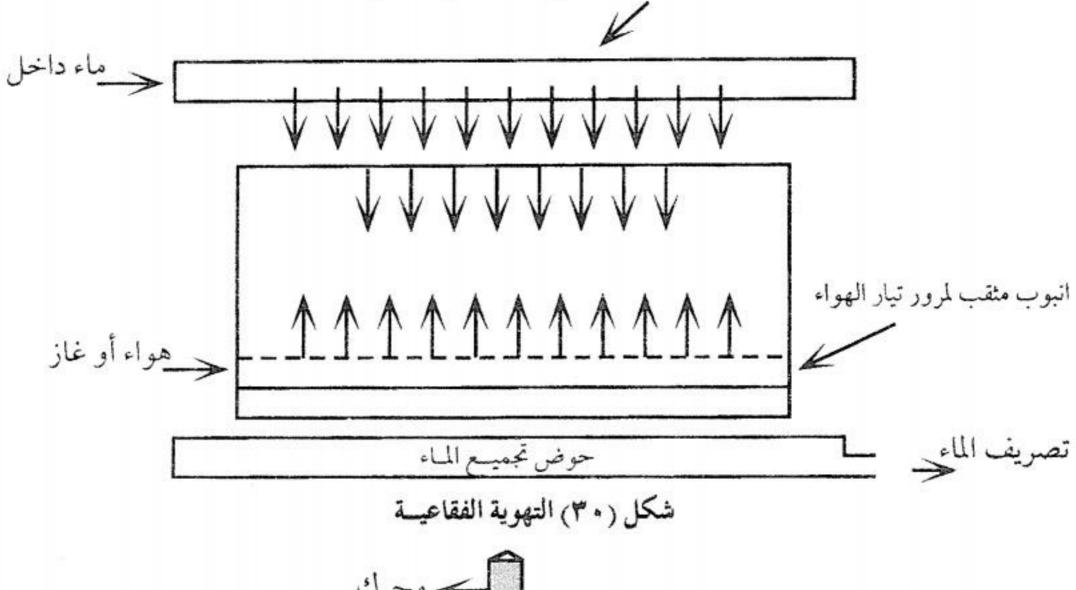
كما ويمكن أنجاز عملية التهوية ميكانيكاً والذي ينتشر فيها الهواء بشكل فقاقيع فوق السطح .

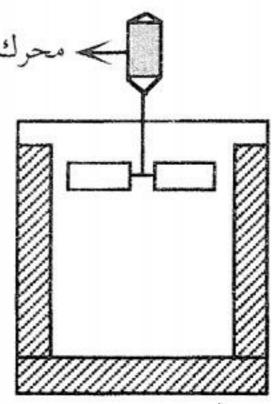
أن عملية التهوية تعتمد على عدة عوامل وأهمها ما يلي :

١ ـ طبيعة الغاز .

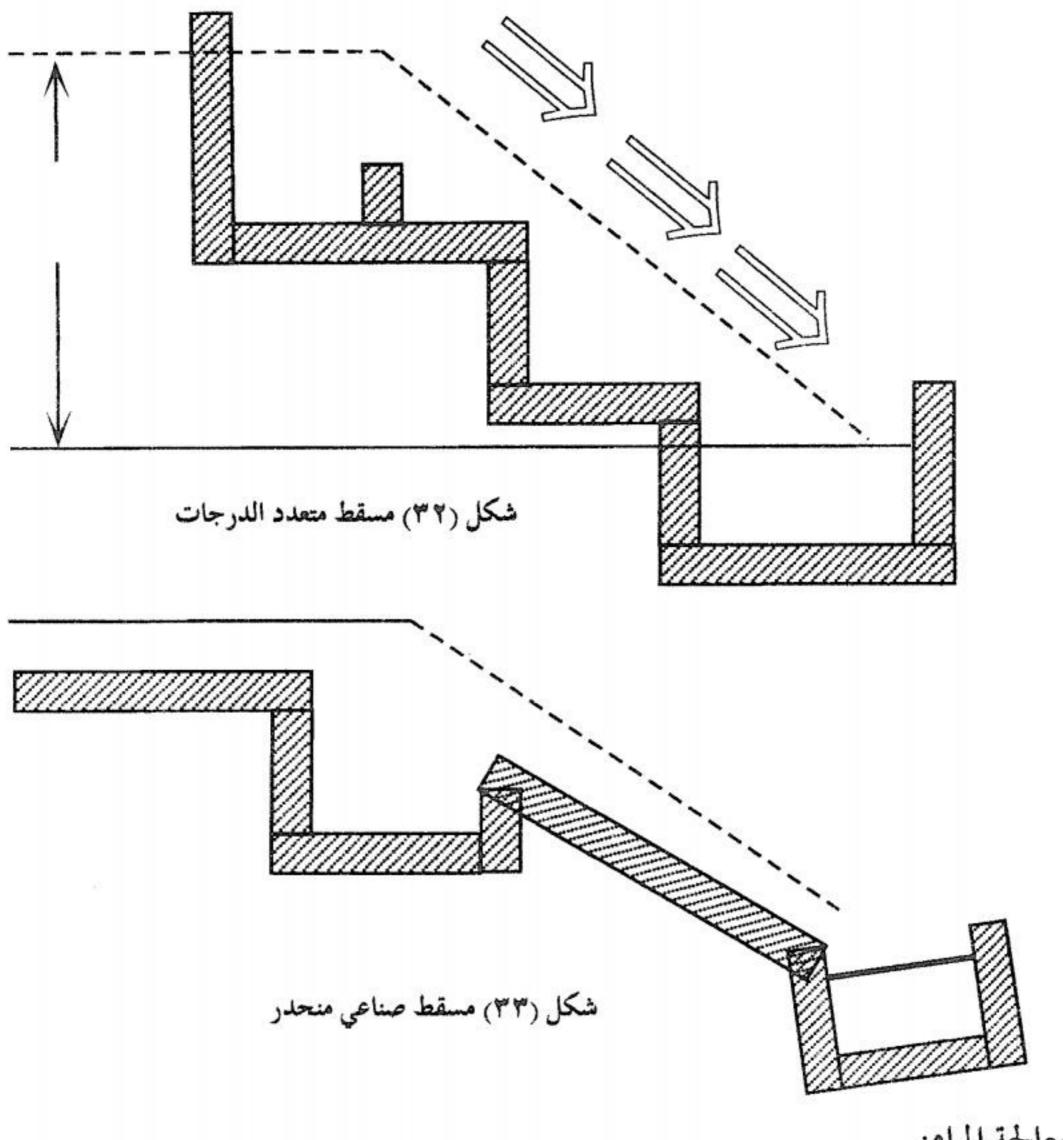
٢ ـ درجة تركيز الغاز.

٣_ قابلية ذوبان الغاز .


أما معامل التوزيع لبعض الغازات في الماء. فالجدول التالي يوضح هذا المعامل. جدول ٧٤ يوضح معامل التوزيع للغازات في الماء


	معامل التوزيـــع K _D				
الغـــاز	درجـــة الحــرارة				
	صفر	1.	4.	۳.	
الهواء	٠,٠٢٨٨	٠,٠٢٣٤	٠,٠٢	.,.1٧9	
الأمونيا	١,٣	.,984	٠,٧٦٣	_	
CO_2	١,٧١	1,78	.,987	٠,٧٣٨	
H	., . 7 2 1	.,.۲.۳	.,.190	.,119	
H_2S	٤,٦	4,70	Y, AV	-	
ميثاق	٠,٠٥٥٦	. , . 844	٠,٠٣٣٥	.,.٣.7	
N	٠,٠٢٣	.,.197	٠,٠١٦٦	.,.101	
O	., . ٤٩٣	.,. ٣٩٨	.,.٣٣٧	.,. ٢٩٦	
أوزون	• , 7 8 1	.,049	., 490	., 709	

أما ثابت الانتشار الجزيئي لبعض الغازات في الماء فيوضحها الجدول التالي: جدول ٤٨ يوضح ثابت الانتشار الجزيئي للغازات في الماء


الغسساز	درجــة الحـرارة (م°)		
	١.	٧.	۳.
CO_2	١,٣	1,71	7,77
H	4,91	0,14	7,9
H_2S	1,.9	1, 21	1,9
CH_4	1,17	1,0	۲,۰۲
N	1,77	1,78	۲,۲
O	1,49	١,٨	۲, ٤٢

أنوب مثقب لسريان الماء إلى الأسفل

شكل (٣١) يوضح التهوية الميكانيكية

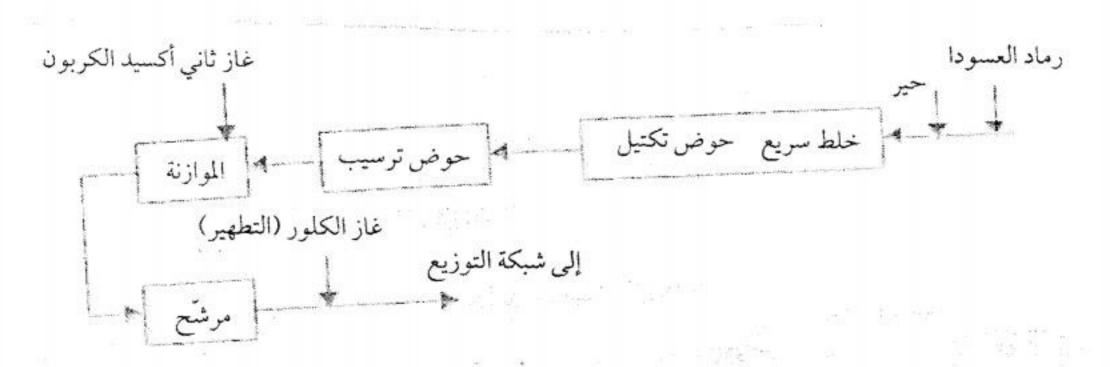
معالجة المياه:

تعتمد معالجة مياه الشرب تقليدياً على مصادر تلك المياه ونوعيتها (مواصفاتها) علماً بأن أي تغيير في مواصفات مصدر المياه يؤدي أيضاً إلى تغيير في عملية المعالجة وهذا أيضاً اعتماداً كلياً على بعض العوامل وهي:

١ ـ التطور في تقنيات التحليل وعمليات المعالجة.

٢ ـ الاكتشافات الجديدة لبعض محتويات المياه والتي تهتم معالجتها.

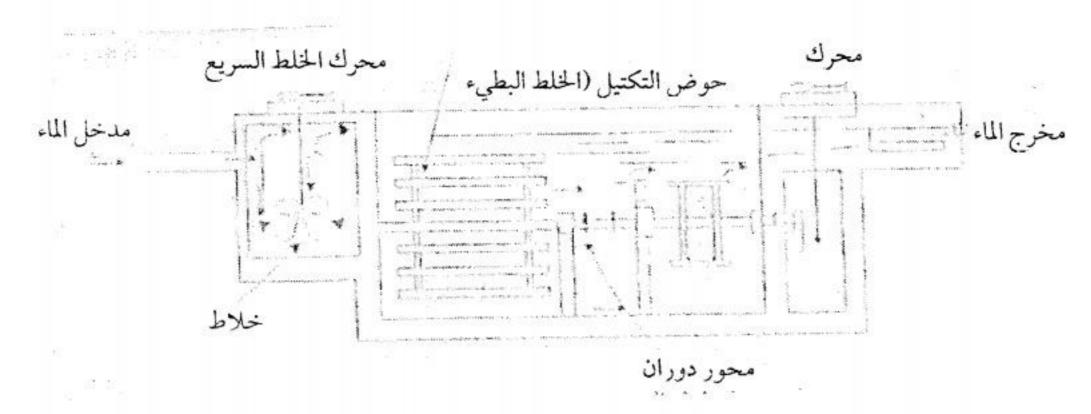
٣- التغلب على بعض المشكلات التي تحدثها بعض المحتويات الموجودة في المياه.


فمعالجة المياه السطحية والتي تحتوي على نسب أملاح قليلة مقارنة بالمياه الجوفية فتعتمد معالجتها على ما يلي :

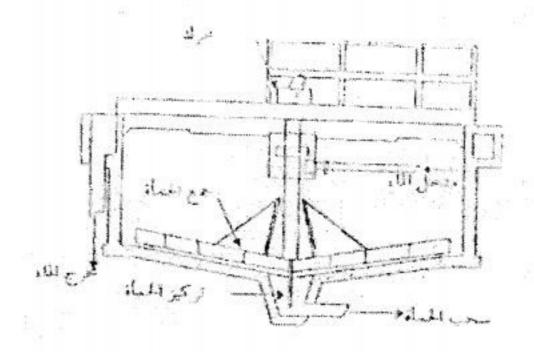
- ١ _ إزالة المواد العالقة.
- ٢ _ إزالة المواد العكره.
- ٣- إزالة المواد الملونة والمواد التي تسبب الرائحة وهذه تتم بالعمليات التالية:
 - ١ _ عمليات الترسيب.
 - ٢_ عمليات الترشيح.
 - ٣ ـ عمليات التطهير.

وإذا كانت هنالك مواد عالقة وكائنات ومواد عضوية والتي لا تترسب فيمكن أستعمال طريقة التخثير والترويب والتي تم شرحها سابقاً.

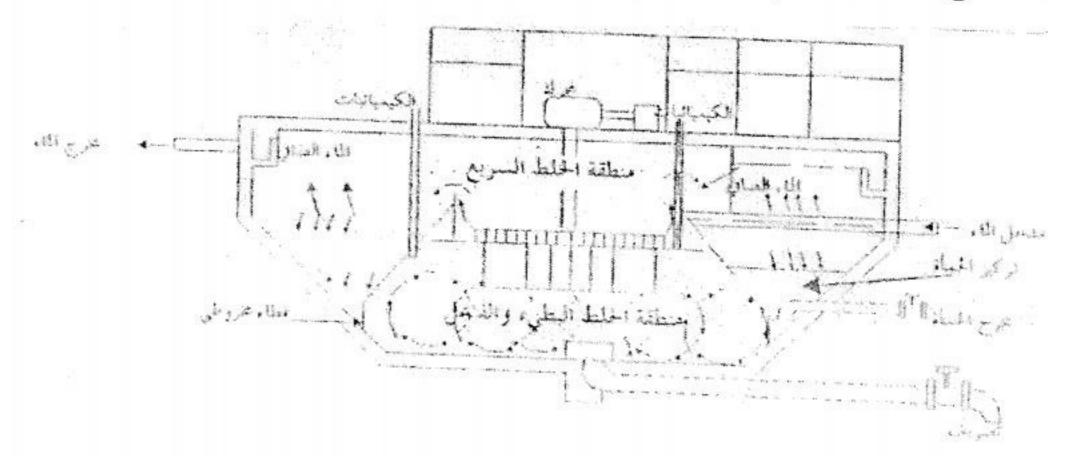
أما المياه الجوفية والتي تضم مياه الآبار فإضافة إلى ما ذكره في معالجة المياه السطحية فأن المياه الجوفية تحتاج إلى معالجات فيزيائية وكيميائية لإزالة الغازات الذائبة مثل H₂S,CO₂ ، إزالة المعادن (الحديد والمنغنيز والمعادن المسببة لعسر الماء . حيث تتم إزالة الغازات بالتهوية إضافة إلى أن التهوية يزيل جزء من الحديد والمنغنيز عن طريق الأكسدة .


علماً أن عملية الكلورة هي الأخرى تزيل المعادن (الحديد، المنغنيز)، أما إزالة العسرة في المياه الجوفية فتتم عن طريق عملية الترسيب خصوصاً (Mg, Ca) وكمحطة تقليدية يمكن أن يوضحها الشكل التالي:

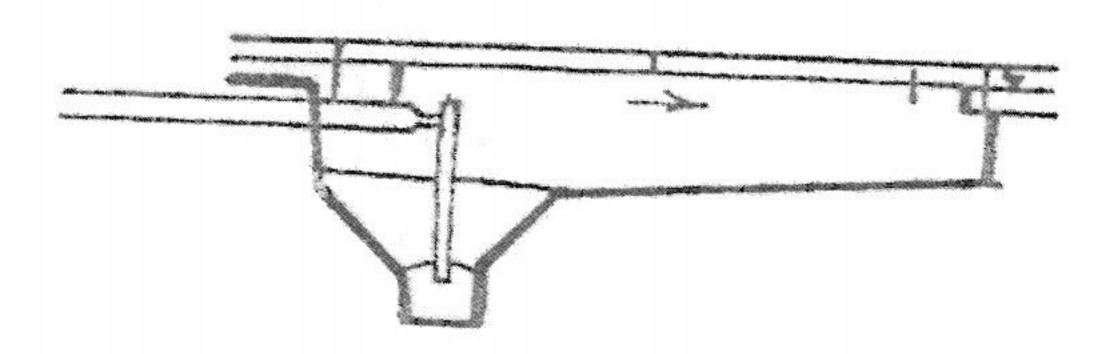
شكل (٣٤) يوضح إزالة العسرة في المياه الجوفية


إزالة العسرة بالترسيب:

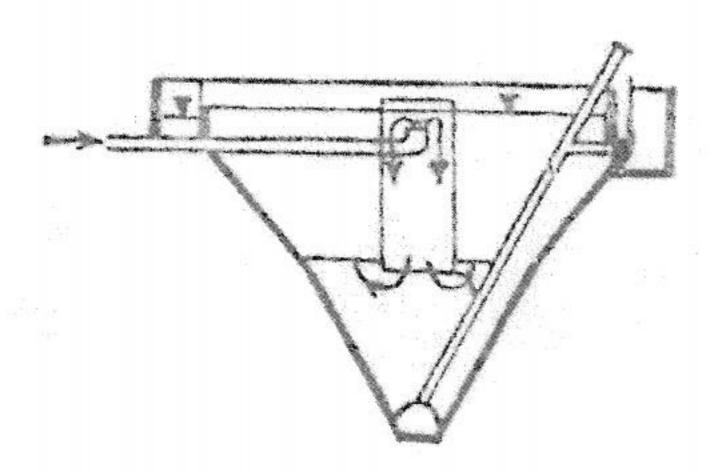
كما أوضحنا بأن عملية إزالة العسرة تعني إزالة عنصري الكالسيوم والمغنيسوم من الماء عن طريق الترسيب الكيماوي بإضافة (هيدروكسيد الكالسيوم) إلى الماء بكميات معينة وبنتيجة التفاعلات تتشكل رواسب من كربونات الكالسيوم وهيدروكسيد المغنيسيوم وأحياناً يضاف رماد الصوديوم (كربونات الصوديوم) مع هيدروكسيد الكالسيوم للتخلص نهائياً من جميع صور العسرة والشكل التالي يوضح حوض المعاملة والذي يعتمد على عملية إلخليط السريع لتوزيع المادة المضافة ومن ثم نقلها إلى حوض كبير لتأخذ هذه المواد فترتها لإكمال تفاعلاتها وبالنتيجة تكوين الرواسب.

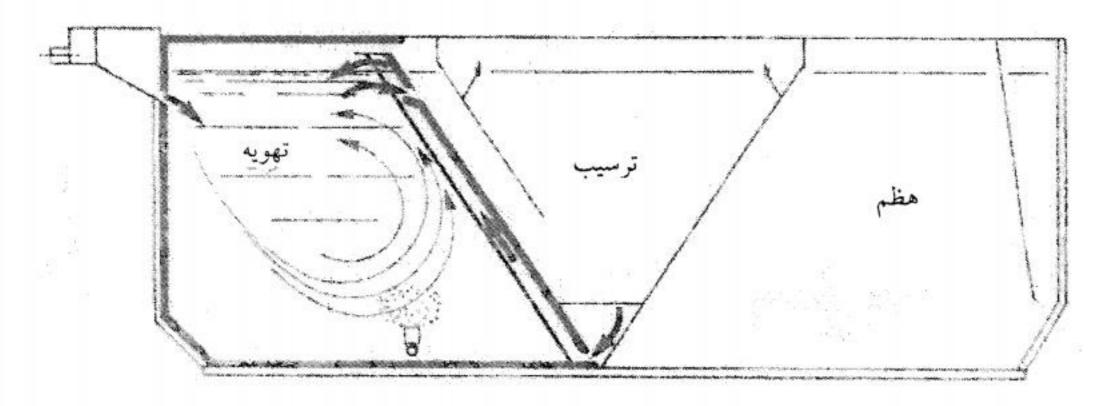

شكل (٣٥) يوضح عملية إزالة العسرة في الماء

أما عملية الترسيب فهي عملية عرفت منذ قديم الزمان لمعالجة المياه وآلية عملية الترسيب تعتمد على فعل الجاذبية حيث تترسب المواد تحت تأثير الوزن أما أحواض الترسيب فتنشأ عموماً من الخرسانة وبأشكال مختلفة وفيها مدخل ومخرج (تصريف) للمياه وأن تصميم أحواض الترسيب تعتمد على الحركة الهيدروليكية لحركة الماء إضافة إلى الأخذ بنظر الاعتبار قاعدة الحوض بحيث يكون ملائماً لترسب الحمأة وبالتالي سحبها. كما في الشكل التالي.

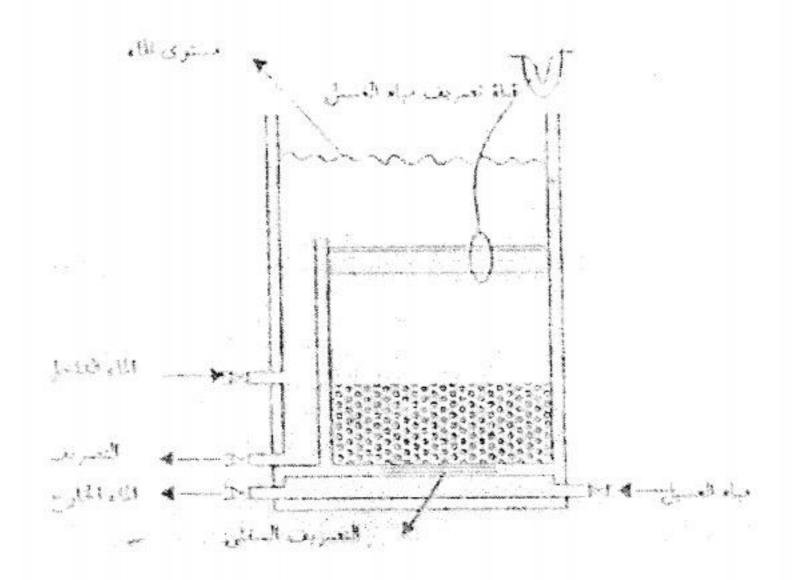


شكل (٣٦) يوضح حوض الترسيب


و يمكن جمع العمليات في وحدة واحدة كما هي في المرسب المرفق العلوي كما هو موضح بالشكل التالي .


شكل (٣٧) مرسب الدقق العلوي (يضم عملية اضافة المواد ، الخلط السريع والترسيب

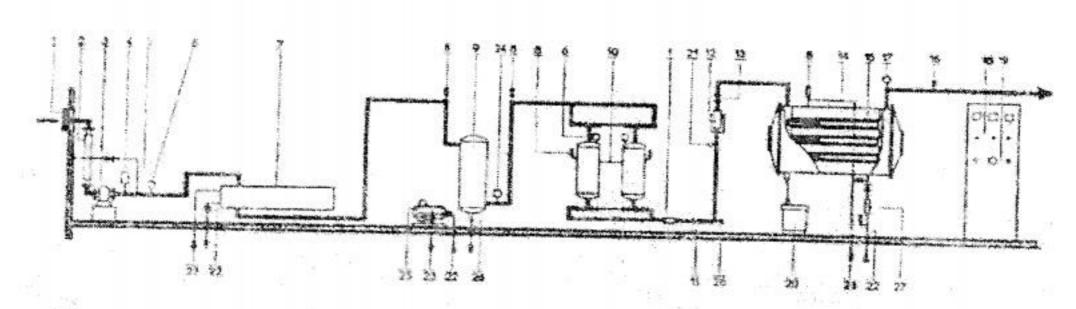
شکل (۳۸) حوض ترسیب مستطیل


شكل (٣٩) يين حوض ترسيب دائري

شكل (٠ ٤) أشكال أحواض الترسيب

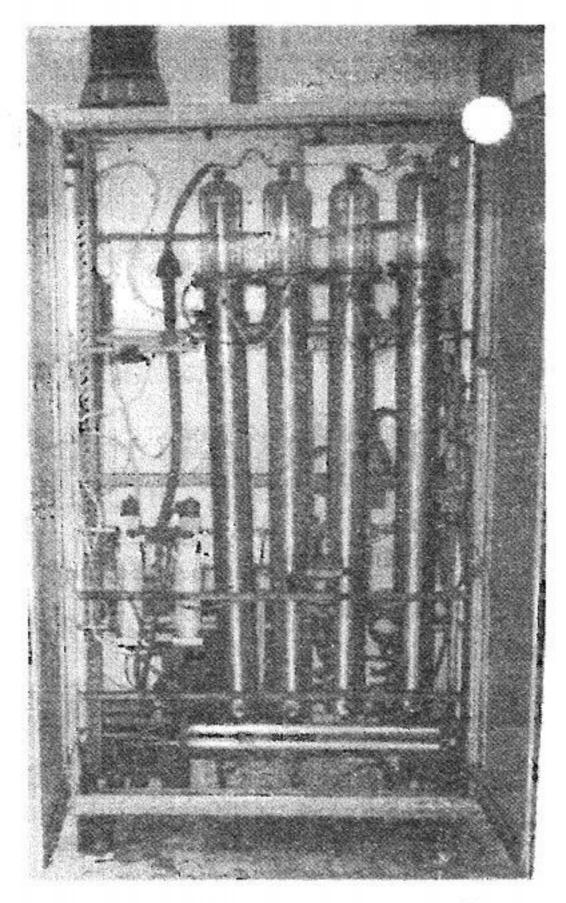
أحياناً تظهر ظاهرة غير محسوسة حيث يستمر التفاعل لبعض المواد الكيميائية وبالنتيجة تترسب بعض المواد على المرشحات أو شبكات التوزيع وعموماً هذه الظاهرة ناتجة عن إضافة الجير (هيدروكسيد الكالسيوم) فيتم معالجتها في حوض الموازنة حيث يتم إضافة 200 لتكوين البيكربونات الذائبة.

الترشيح هو العملية المساعدة في إزالة المواد العالقة أو العكارة عن طريق إمرار الماء من خلال وسط مسامي مثل الرمل وعملية الترشيح لها فوائد مهمة فإضافة إلى إزالة المواد العالقة فأنها تحمي شبكات التوزيع ولها دور مهم في حماية الصحة العامة والشكل التالي يوضح أجزاء المرشحات.

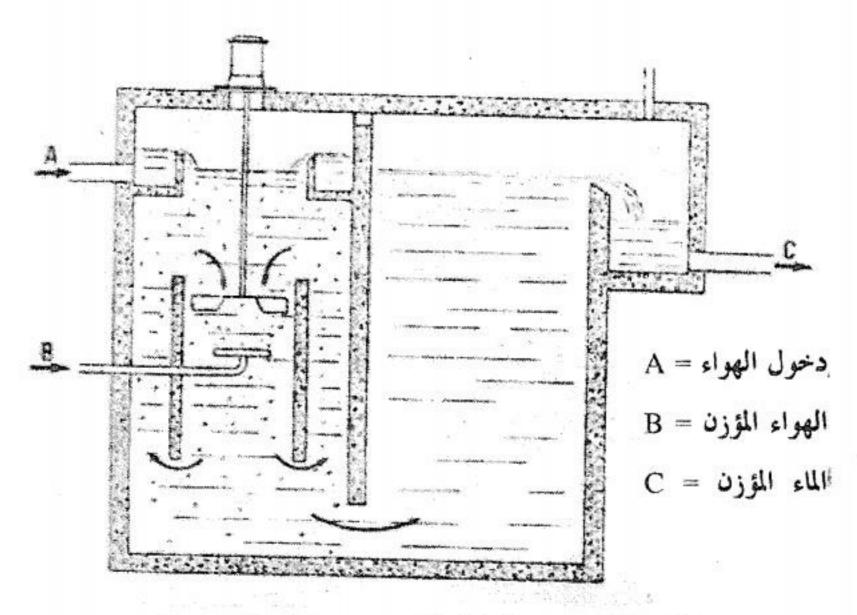

شكل (1 ٤) يوضح أجزاء المرشحات

أما عملية التطهير فهي عملية مهمة في معاملة المياه للقضاء على الأحياء المجهرية وعملية التطهير تتم بالوسائل التالية:

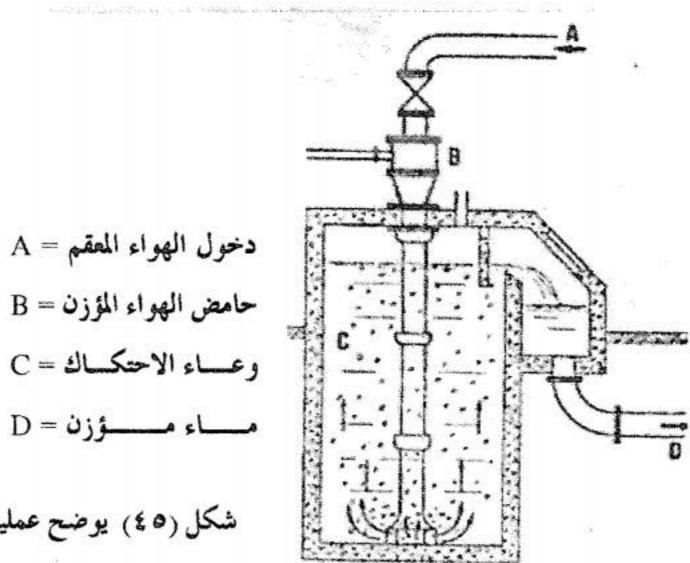
١ _ التسخين (الغليان).

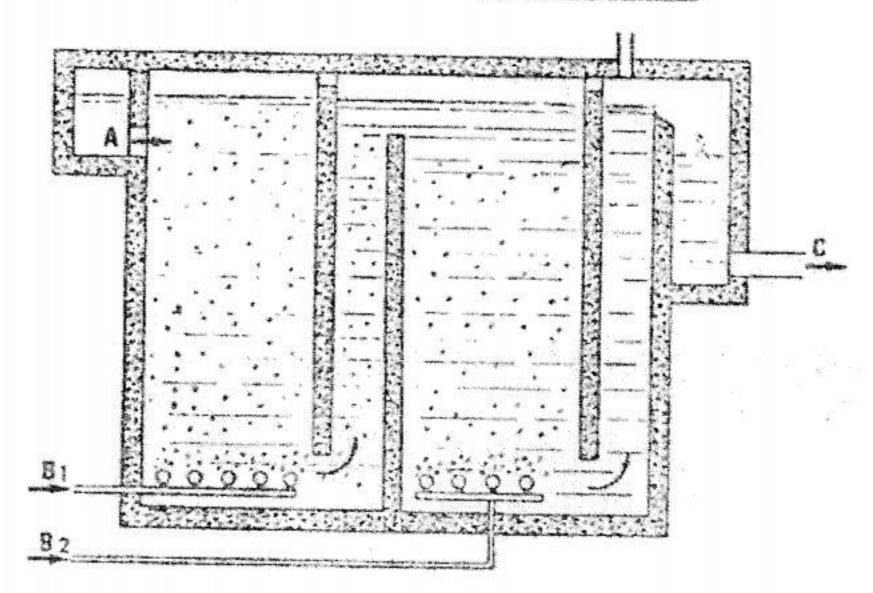

٢ _ الأشعة فوق بنفسجية .

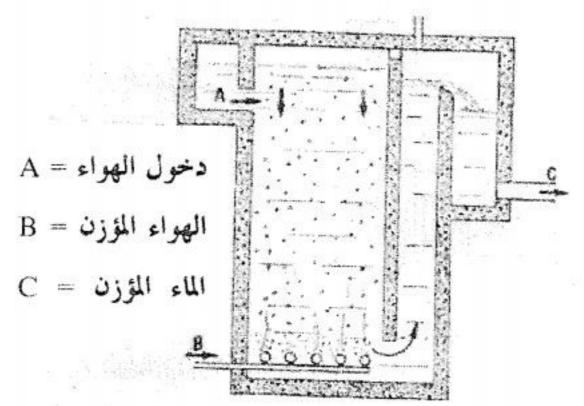
٣-استخدام بعض المواد الكيميائية (بروم، يود، أوزون، كلور وبتراكيز لا تضرصحة الإنسان ولأسباب اقتصادية فقد استخدم الأوزون والكلور في أكثر دول أوروبا والكلور في أمريكا وفي الآونة الأخيرة تم استخدام الأوزون عموماً بسبب أن الكلورة لها آثار سلبية نتيجة آلية تفاعل الكلور حيث يتفاعل الكلور مع الماء مكوناً حامض الهيبوكلوروز وأيونات الهيبوكلورايت وهذه بدورها تتفاعل مع الأمونيا في الماء مكونة أمينات الكلور (خصوصاً حامض الهيبوكلوروز) وهذه بدورها التي تؤثر على الجراثيم.



- 3. Air filter.
- 2. Silencer.
- 3. Blower.
- 4. Cultbrated discharge valve.
- 5. Air discharge pipe.
- ü. Pressure gange. 7. Exchanger cooks.
- 8. Thermometer.
- 9. Resementing set.
- 10 Desers using absorbent product,
- 11. Non-retian valve.
- 12. Air flow meter with electrical contact.
- 13. Regulating valve.
- 14. Ozonizer.
- 15. Ozone generoting takes.
- 16. Orenited oir sampling point.
- 17. Pressurestat.
- 18. Electric cabinet.
- 19. Voltage switch.


- 20. Step-up transformer.
- 21. Hygrometer,
- 22. Cooling water inlet.
- 23. Cooling water outles.
- 24. Thermostar.
- Coolant compressor.
 Condensation water antiet.
- 17. Cooling water flow merce with
- electric contact.
 28. Dry air sampling point.


شكل (٤٣) مولد الاوزون (الكترودات)



شكل (٤٤) يوضح أشكال أخرى من عمليات التعقيم بالاوزون

شكل (٤٥) يوضح عمليات التعقيم بواسطة الهواء المؤزن

 B_2 و B_1 الهواء المؤزن B_1 مصدر الماء المؤزن B_2 المؤزن B_1 مصدر الماء المؤزن

الفصل التاسع

- الترشيح .
- التعقيم والتطهير .
- التنقية المايكروبية .

الفصل التاسع

الترشيح Filtration

تعتبر عملية الترشيح من أهم الأعمدة الأساسية في تنقية المياه. ورغم التطور الكبير في عالم تنقية المرشحات ولكن يضل المعول الأساسي على الطرق الأساسية التي عرفت منذ القدم فعملية الترشيح بالرمل رغم قدمها ولكنها الطريقة المثلى والأقل تكلفة في عالم ترشيح المياه، ويمكن تعريف الترشيح بأنه عملية فصل الجزيئات الصلبة عن السائلة عبر فاصل أو حاجز مسامي تمنع مرور الجسيمات الصلبة وتسمح بمرور الراشح وقد تطور هذا الفاصل أو الحاجز إلى حدود مسامية صغيرة جداً ٢٠,٠ مليمابكرون والذي يمنع حتى مرور البكتيريا. ولكن في محطات ترشيح المياه يستخدم المرشح الذي يزيل المواد الصلبة والغروية والعالقة وقد تنوعت أجهزة الترشيح تبعاً لنوع وغاية الترشيح.

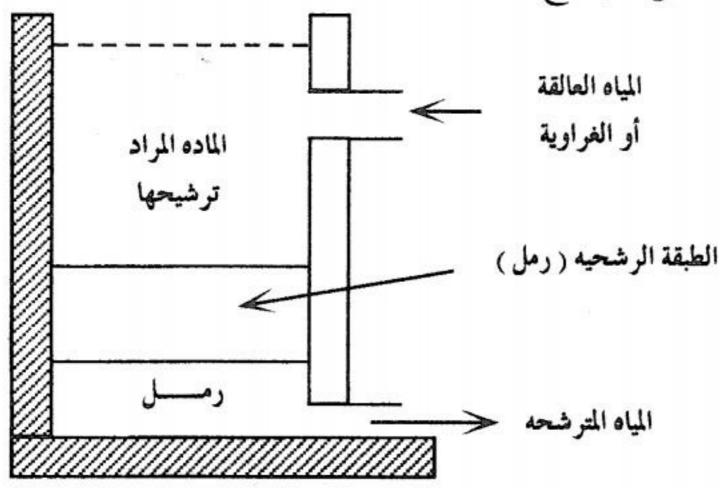
فوائد الترشيح:

- أ _ إزالة المواد الصلبة والجسيمات الغروية.
 - ب_ تقليل الاعداد من الأحياء المجهرية.
- ج _ تغير خواص المواد الموجودة من الناحية الكيميائية .
 - د _ إزالة اللون والطعم والرائحة.
 - هـ _ إزالة الحديد والمنغنيز.

ميزات مياه الترشيح:

يجب أن تتوفر في مادة الترشيح (حاجز الترشيح) الخواص التالية :

- أ _ قلة التكاليف.
- ب_ توفرها بكميات مناسبة.
- ج _ يجب أن تكون من المواد إلخاملة.
 - د _ سهلة الاستعمال والتنظيف.
 - ه _ تحملها للضغط.


المواد المرشحة:

- ١ _ الرمل.
- ٢ ـ اللدائن.
- ٣_ إلخرسانة المسامية.
- ٤ _ الحجارة المكسرة.
 - ٥ _ الانتراسايت .
- . Diatomaceious earth التربة

آلية الترشيح:

من التجارب أثبت الرمل امتيازاته عن الأنواع الأخرى المستخدمة عموماً، فعملية الترشيح هي عامل مساعد للتنقية إضافة للعمليات التي تحدثنا عنها سابقاً مثل التخثير، الترسيب، التهوية، الفعل الحيوي والكيماوي، لذا فالية الترشيح تعتمد على التصفية الميكانيكية وهي ظاهرة سطحية تعمل على فصل المواد الصلبة والعالقة ذات الأقطار الكبيرة من الفتحات الموجودة بين حبيبات الرمل في الجزء العلوي من الطبقة الرملية ومن ثم تزداد التصفية مع مرور الزمن أما العوامل التي تؤثر على التصفية (الترشيح) فهي:

- أ _ سرعة الترشيح.
- ب_ زمن الترشيح.
- جـ _ كثافة المواد العالقة.
- د _ طبيعة وخواص فاصل الترشيح.

شكل (٤٦) حوض ترشيح

التعقيم والتطهير:

يعتبر التعقيم أهم عملية في معالجة المياه إلخام وذلك باستخدام طرق الأكسدة المختلفة الجزئية أو الكاملة والتي تتيح القضاء على العديد من المكونات العضوية وغير العضوية الموجودة في المياه إلخام وأهم هذه الطرق:

١ _ الأكسدة الكيميائية:

أ _الكلور.

ب_غاز الكلور (أو أكسيد الكلور).

جـ الأوزون.

د _ برمنغنات البوتاسيوم.

هـ _ بروكسيد الهيدروجين.

٧ _ الأكسدة الفيزوكيميائية:

أ_الأكسدة الأنودية (نظام A. N. O).

٣ _ الأكسدة البيولوجية:

أ _ التصفية البطيئة.

ب_المر الأرضي.

ج_ المصافي العاملة بيولوجياً.

أما الطرق الأخرى فلا تعتمد على الأكسدة ومنها:

أ _ المعالجة بالأشعة الفوق البنفسجية .

ب_المعالجة بأشعة كاما.

جـ المعالجة بالموجات فوق الصوتية.

د _ المعالجة بالأساليب الحرارية.

ه _ المعالجة بالتصفية النفوذية (عبر الأغشية الرقيقة).

الكلور: يعتبر الكلور مادة مؤكسدة جيدة وتضمن تعقيماً مؤكد ويستعمل الكلور بصور مختلفة، كغاز، حامض الهيبوكلوروز Hocl ، أو هيبوكلوريت الكالسيوم يصور مختلفة، كغاز، حامض الهيبوكلوروز Naocl ، أو هيبوكلوريت الكالسيوم كرورامين والمفضل استعماله بكثره هو هيبوكلوريت الصوديوم . وأن العنصر الفعال (المتفاعل) فهو Hypochlorition أما أوكسيد الكلور فلا يتفاعل على هذه الصورة على الرغم من أنه مركب كلوري أما مساوىء استخدام الكلور فتتلخص بما يلي فأولاً تحتاج إلى كميات كبيرة منه وكذلك التأكد من نقاوته . بالإضافة إلى هذا فأنه مؤكسد قوي ويؤدي إلى الصدأ ويكون ترسبات على الصمامات . كما أنه التعرض لغاز الكلور سيء جداً لأنه سام . أما التراكيز المسموح بها فهي ١٠٠٠-٢٠٠ ppm ولمدة ١٠ دقائق .

٢ _ أو كسيد الكلور:

أوكسيد الكلور بالرغم من نجاحه في عملية التعقيم إلا أنه يؤثر في المياه مما يعطي الرائحة والمذاق الغير مستساغ وأن دور أوكسيد الكلور مشابه لدور الأوزون حيث يقتضي إنتاجه في الموقع. وذلك بطريقة كلوريد الصوديوم مع الكلور، أما الثانية فهي تفاعل كلوريد الصوديوم وحامض الهيدر كلوريك والتي ينتج عنها أوكسيد كلور خال من الكلور. أما المساوىء فهي تكاليفه المرتفعة وكذلك فأنه بسبب اخضرار المياه عند إضافته بكميات كبيرة أما أشد مساؤه فهي تكون الكلوريت والكلورات السامين.

٣ _ الأوزون Ozone :

يعتبر الأوزون من المطهرات ذات الفعالية المتميزة في تعقيم وتطهير المياه ويستعمل بكثرة حالياً في العالم .

كان فيرنرفون سيمنس أول من حصل في عام ١٨٥٧ على الأوزون ولقد استخدم لأول مرة عام ١٨٩٣ في التعقيم في هولندا ويعتبر الأوزون أقوى المواد المؤكسدة بعد الفلور علماً بأنه تحضيره يكون دائماً في موقع المعالجة مباشرة ويتم تحضيره بواسطة مولد الأوزون أما مساوىء استخدام الأوزون فهي كلفته العالية مع استهلاك كبير للأوزون وتحتاج إلى معالجة ثانوية.

٤ _ يرمنجنات البوتاسيوم:

تعتبر هذه المادة من المواد المؤكسدة الفعالة وتتميز بأنه تزيل الشوائب الحديدية والمنغانيزية وكذلك يقضي على رائحة وطعم في الماء، كما وأن البرمنغنات تكافح الطحالب وتقتل الجراثيم وأن سرعة تفاعل هذه المادة يعتمد على اله (PH) أما مساوىء هذه المادة فهي مشابهة لما ذكر في مساوىء الكلور.

الهيدروجين H₂O₂ : H₂O₂

يستخدم هيدروجين بيروكسايد في مجال تكرير مياه المجاري وذلك لأجل أكسدة السيانيد والنتريبت والسولفيت الثيوسولفايت والمركبات الكبرتية العضوية والفينولات كما ويستعمل لأجل خفض نسبة الكلور في المحاليل القلوية وقتل الجراثيم.

٦ _ الفينول و مشتقاته:

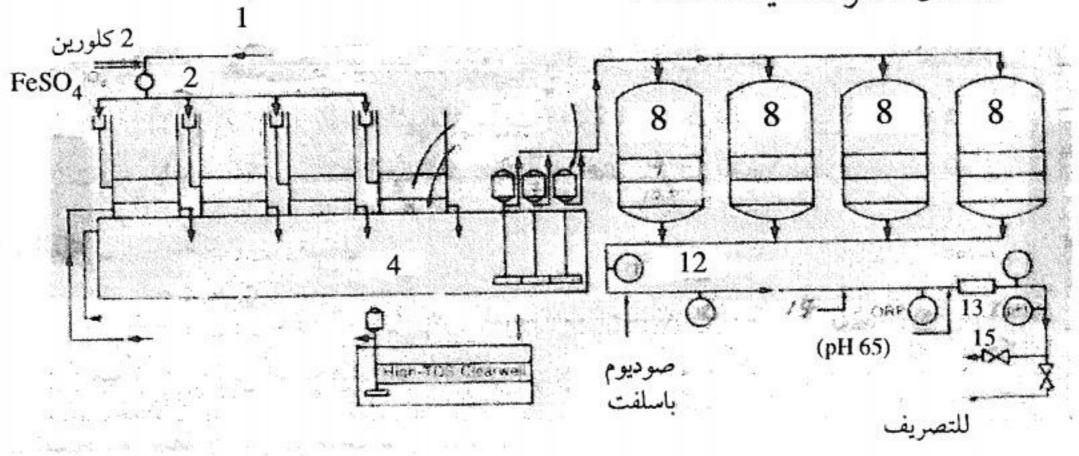
يعتبر الفينول ومشتقاته من المطهرات الجيدة ولكنها ذات أثر سيء بالنسبة للرائحة إضافة إلى أنه يكون مع الكلور مركبات فينولية مكلورة غير مأمونة .

٧ _ استخدام أشعة جاما والموجات فوق الصوتية :

لا تستخدم أشعة جاما ذات الطاقة الوفيرة والموجات فوق الصوتية الغنية بالطاقة أيضاً إلا في القطاعات الحدودية من معالجة المياه.

٨ _ استخدام الأشعة فوق البنفسجية :

تستخدم الأشعة فوق البنفسجية في تعقيم الهواء منذ زمن لتعقيم حجرات التبريد وقاعات العمليات الجراحية أما في المياه فيستخدم مقطع من الطيف ذا الموجات من طول ٢٥٠-٢٨٠ نانومتر .


٩ _ الأكسدة الأنودية :

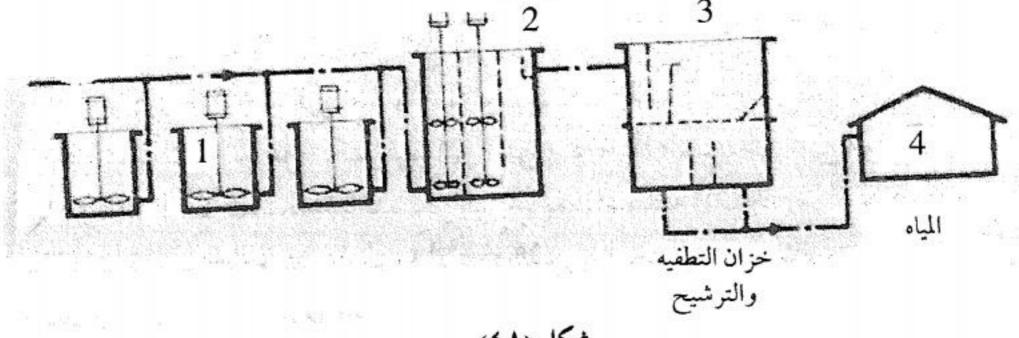
تعتبر هذه الطريقة الفيزيوكيميائية لتعقيم المياه من الطرق الحديثة والتي هي طريقة أكسدة كهروكيميائية تنتج من الماء المعالج بها نفسه مواد مؤكسدة محررة للأوكسجين ما تلبث هي نفسها أن تتحول بعد وقت قصير إلى أوكسجين وماء ويحدث ذلك بالتفاعل الكهركيميائي على سطح القطب الكهربائي موجب الشحنة (الأنود) وأن الأكسدة هذه تستمر إلى ما بعد عملية المعالجة مباشرة وتتحقق بالأكسدة الأنودية غايتان أولهما الابادة الفورية للجراثيم أما الثانية فهي ضمان بقاء المفعول المعقم لما بعد المعالجة .

١ _ الأكسدة البيولوجية :

وهذه الطريقة تقوم بها الأكسدة على مبدأ خاصية بعض الأحياء المجهرية الأكسدة بعض المواد العضوية ولكن هذه الطريقة تحتاج إلى إضافة الأوكسجين إلى الماء على شكل محلول .

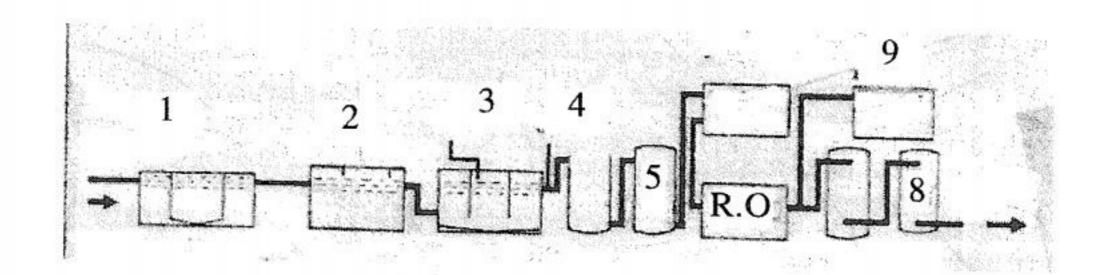
أشكال لخطوط تنقية مختلفة:

شکل (٤٧)


- ۹ ـ انثر سایت .
 - ١٠ درمل أخضر .
- ١١ـ شاشة الكلدرس .
 - ۱۲ شاشة ORP .
 - . PH-17
 - ١٤ اضافة صوديوم ، سلفيت .

You are hope to the

2.3 (2.3)


ه ۱ ـ نظام R.O .

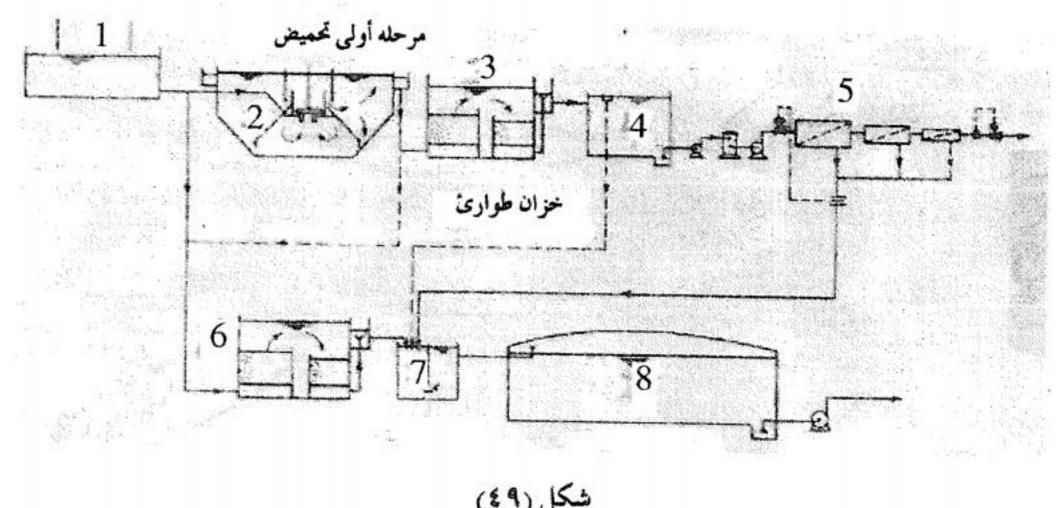
- ١ ـ تغذية المياه الحام .
- ٢ ـ اضافة الكلورس ، FeSO₄.
 - ٣ـ مرشحات جاذبية .
- ٤ ـ حوض جمع آلية المرشحه.
 - ٥ ـ رمل خشن .
 - ٦ ـ رمل ناعم .
 - ٧ ـ مضخات نقل .
 - ٨ ـ مرشحات .

شکل (٤٨)

- ١ ـ خلاطات إضافة المواد الكيماوية .
 - ٢ ـ خزانات التكتل.
 - ٣ ـ خزان التطفيه والترشيح .
 - ٤ ـ خزان المياه المعامله .

شکل (٤٩)

١ ـ خزان أو مدخل المياه (نصلات) .


٢ ـ خزان الموازنة .

٣- اضافة المواد الكيماوية والنفطية .

٤ ـ مرشحات رمليّة .

٥ ـ مرشحات كارتون .

٦ ـ مرشحات أنيون . ۷ ـ تحليه R.O . ٨ ـ مياه معامله للمراجل . ٩ ـ خزان التجميع .

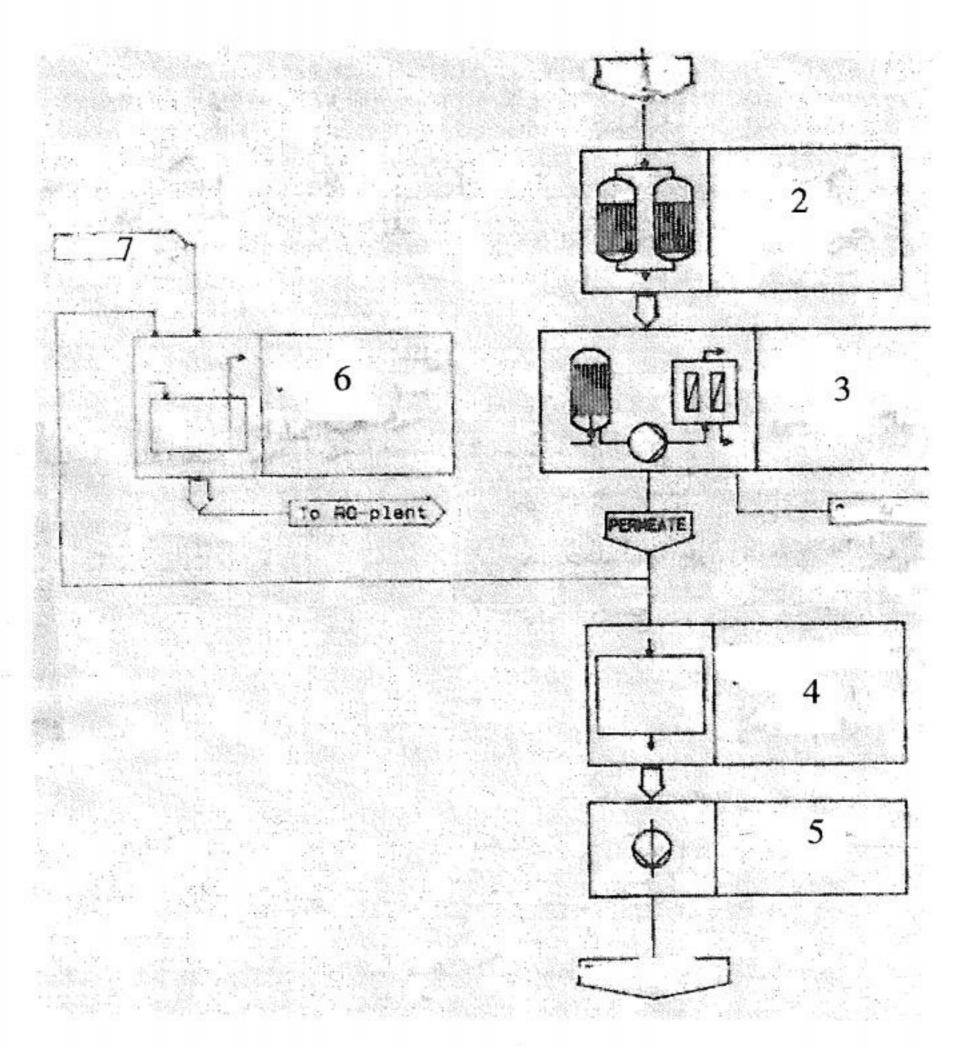
شکل (٤٩)

١ ـ جهاز تبريد المياه الخارجة من الآبار .

٢ ـ مرحلة أولى تحميض (ترسيب وتحليه).

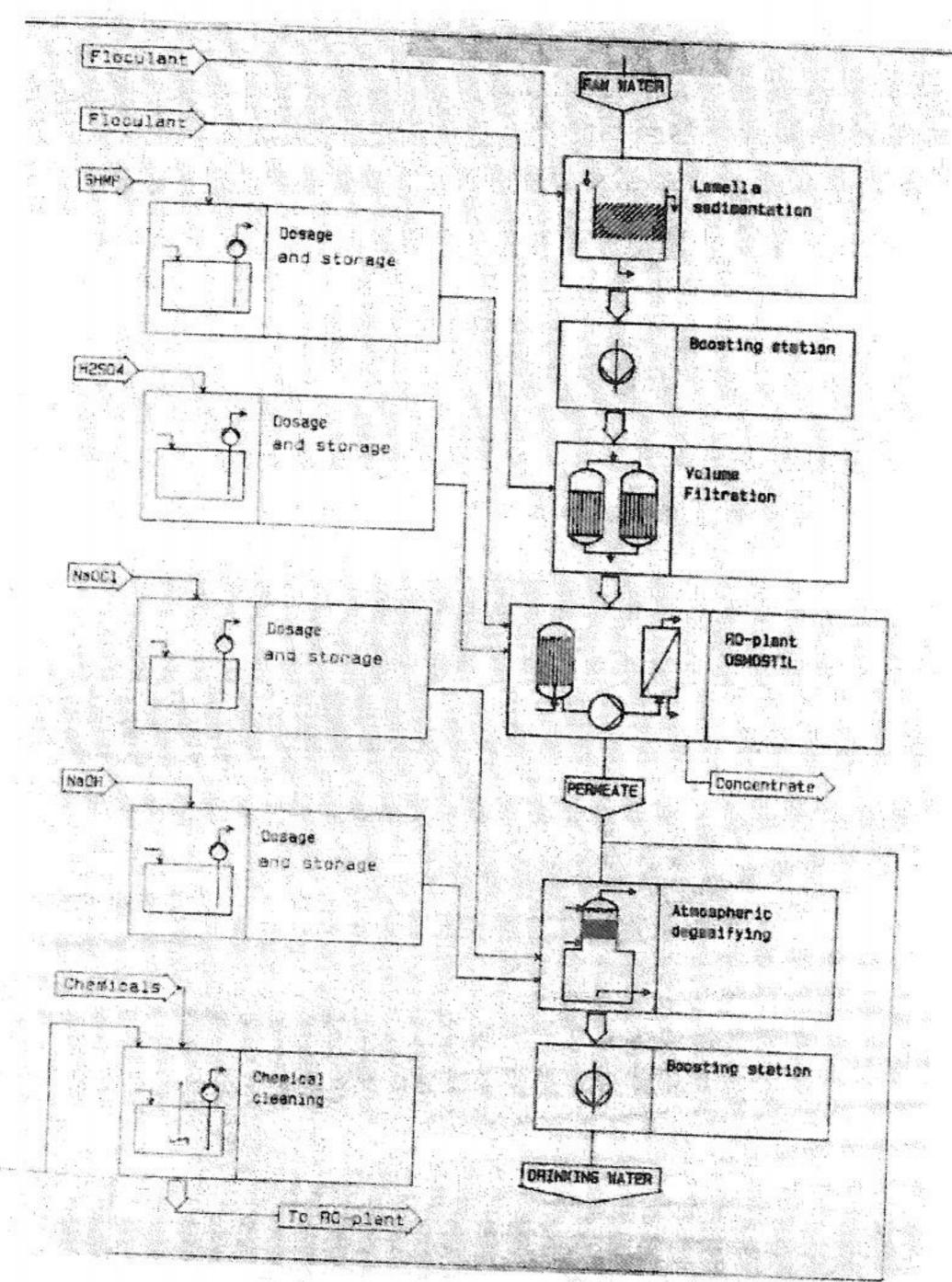
٣ ـ ترشيح .

٤ ـ خزان اضافة المواد .


٥ ـ تحليه .

٦ ـ تخثير مع ترشيح .

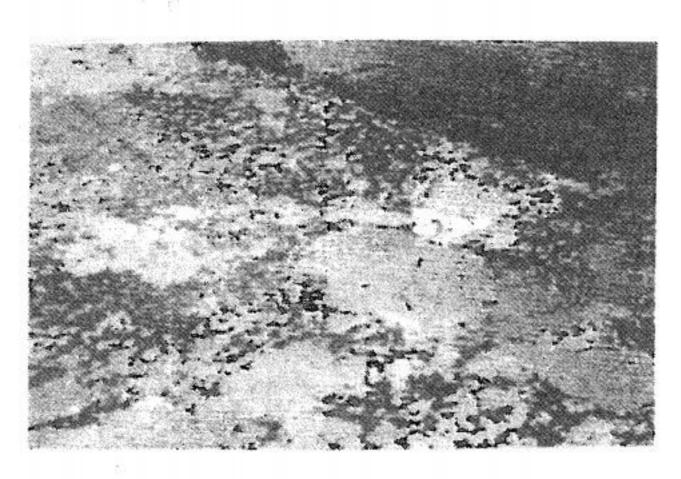
٧ ـ خلط مع معادله .


٨ ـ خزان مياه معامله .

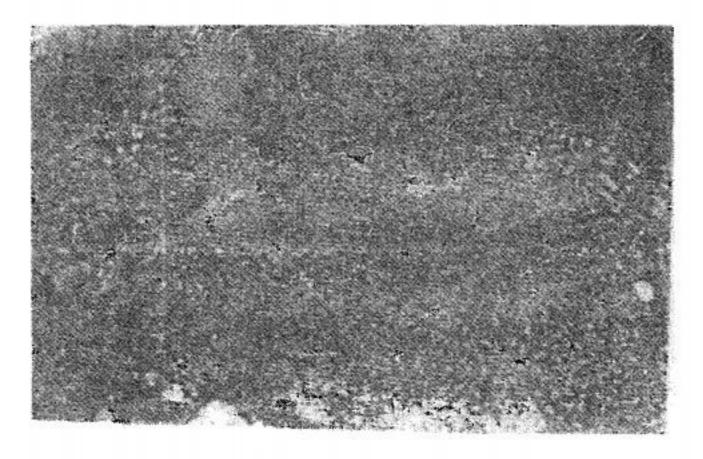
٩ ـ للمستهلكين .

شکل (۵۰)

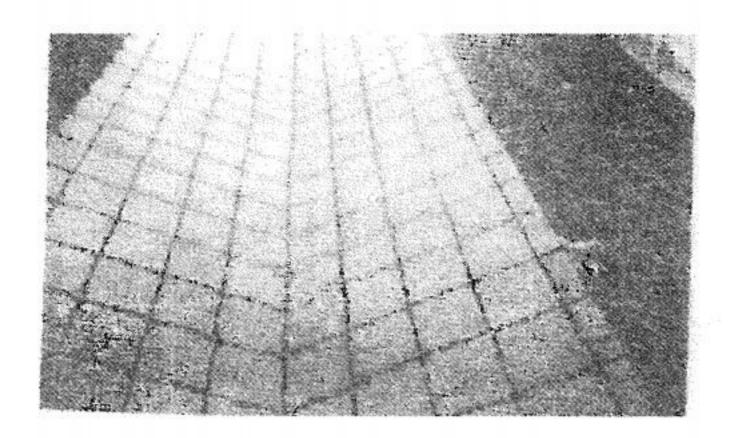
- ١ ـ مياه خام .
 - ۲ ـ ترشيح .
 - ٣۔ تناضح عكسي .
 - ٤ ـ خزان ماء صالح .
 - ٥ ـ مضخة للتوزيع .
 - ٦ ـ وحدة R.O .
 - ٧ ـ كيماويات .


شكل (١٥) يوضح نظام معاملة المياه

المعالجة الميكروبية للمياه:


ابتكرت في السنين الأخيرة طريقة جديدة لتنقية المياه بواسطة سلوكية بعض الأحياء المجهرية المنتخبة وغير المرضية والتي لها القابلية على التهام والتحليل والأكسدة لبعض المواد في المياه والتخلص منها ومن هذه الأحياء ما تكون هوائية أو لا هوائية والمياه المنتجة بهذه الطريقة تكون نقية وطبيعية وجاهزة للاستعمال علماً أن هذه الأحياء تنتخب بعد معرفة بعض المعلومات عن المياه المراد تنقيتها فمثلاً يجب معرفة :

- . B.O.D _ 1
- . COD _ Y
- . TSS _ ٣
 - . PH _ &
- ٥ _ النايتروجين الكلي .
 - ٦ _ الفوسفور الكلي .
 - ٧ ـ الكلورايد .
 - ٨ _ الكبريتات .
 - ٩ _ الكاربونات .


ومن هذه المؤشرات تجرى خلطه مايكروبية لكي تعمل على تنقية المياه وقد سميت هذه الطريقة تجارياً microbe Left والأشكال التالية توضح عملية التنقية بواسطة هذه الأحياء .

شكل (٥١) فضلات مياه صناعية

شكل (٣٥) بعد ٣٠ يوم من المعامله بالأحياء (مايكرولفت)

شكل (٣٥) بعد ٢٠ يوم من المعامله بالاحياء (مايكرولفت)

الفصل العاشر

- تحلية المياه .
- التحلية بالتقطير الشمسي.
- التحلية بالتقطير الصناعي .
 - التحلية بالتجميد .
- التحلية بتكوين الهايدرات
- التحلية بواسطة الانتشار الغشائي .
 - التحلية بالتناضح العكسي .

أن أكبر تركيز لهان المواد في المياه السطحية يكن ملاحظتها من كمية الأطيان المراية بالأبياء المواد بالمراية بالأمياه المواد في المياه المواد المحمولة بالأنهار كال المواد المواد المحمولة بالأمياع المواد المراحية بالإمانية بالمينية بالتبنية بالتبنية بالمناه المناه المناه المناه المناه المناه المناه بالإمانية بالإمانية بالإمانية بالإمانية بالمناه بالإمانية بالأمانية بالأمانية بالمناه بالمن

: ت ال عاماً

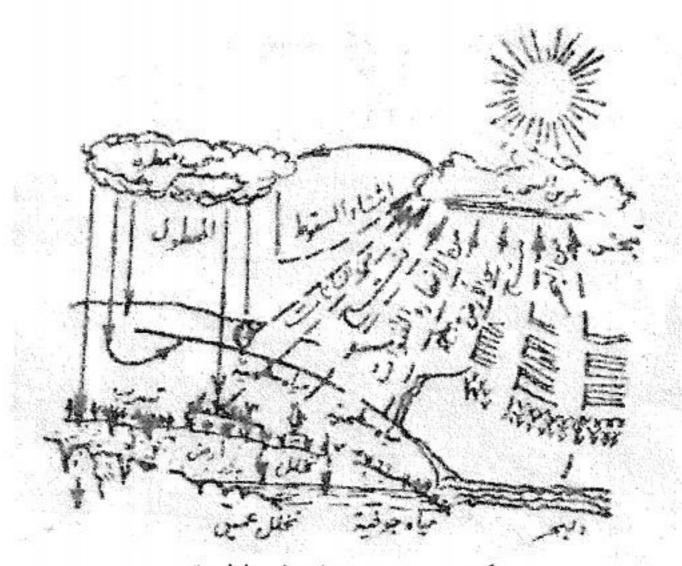
أن المواد العضوية أو المعانية عكن أن تتواجد في المياه الطبيعية بشكل غروي فروي المواد الماه المواد الماه المواد الماه المواد المينة لا يكرو مكرو سكوبياً وجزيئاتها لا تترسب بسهواة كالمواد الماسية لا يكن مشاهد ميكرو سكوبياً بنصل بفوا المواد بسبب المال بن الماله المهاد وي المحتود بمناطن المحتود الميلما الميلما الميلما الميلما الميلما وي المحتود الميلما الميلما بيكن أن تتواجد شكل غروي والهيو مس عكن أن نشاهده في البحيرات وبكميات كبيرة والتي تعطي اللون الأمغر القهوائي.

الإبار ألب إلما الإبار الميون الميون العدون اليابع) فالقال جداً من الأبار المعلى من الأبار المعلى من الأبار الميون و المنابع المناد الميون المام المناد المنا

ساء البحيرات المهار المار أسود تتجمة تأكسا المار الميوات والمين من المير الميوات المين من المير المير المير المير الميرة المين من أو الميرة والمين من قبل الغروية والمين ولان الميرة وفي المياد دور في ما المباد الميرة الميرة الميرة وفي المياه حيث يوضع الميرة الميرة الميرة وأيون معدني. أما الانحراف الأخير فهو الميزان بين المتحنات الموجمة وأسالية في المحلول.

الفصل العاشر تحلية المياه المالحة

أن الحاجة المتزايدة للمياه العذبة في كافة مجالات الحياة علماً بأن المصادر الطبيعية للماء العذب لا تزيد عن واحد في المائه من جملة المياه المتوفره في العالم. ولهذا السبب جعل الإنسان أن يفكر جدياً بتوفر احتياجاته من الماء العذب من المصادر الأخرى وأهمها مياه المحيطات والبحار والتي تتميز بملوحتها العالية إلى متر تصل من ٢٣٦٠٠ إلى ٢٣٨٠٠ جزء بالمليون أما البحار المقفله فتحدد درجات تركيز الملح فيها كالآتي :


١ ـ البحر الأحمر ٢٠٠٠ جزء بالمليون .

٢_ بحر البلطيق ٢٠٠٠٠ جزء بالمليون .

. Kcl ، CaSO $_2$ ، MgSO $_4$ ، Mgcl $_2$ ، Nacl وأهم الأملاح المتوفرة هي

وعملية التحلية تعتمد على خفض نسب الأملاح في هذه المياه لكي تتناسب مع حاجة الإنسان وأستساغته لهذه المياه وإلى احتياجاته الزراعية والصناعية وكما أشرنا إليها سابقاً .

وتعتبر دورة المياه في الطبيعة هي الطريقة الأولى والمثلى لتحلية المياه حيث تجرى عملية التبخر من سطوح البحار والمحيطات نتيجة حرارة الشمس وتكاتفها في الجو ونزولها على شكل أمطار نقية خالية من الأملاح والشكل التالي يوضح هذه العملية .

شكل (٤٥) دورة المياه في الطبيعة

أما الطريقة الثانية فقد حددها العالم العربي جابر بن حيان في أواخر القرن السابع الميلادي كما أن العالم أبو المنصور موفق أول من أوضح بأن عملية التبخير هي الوسيلة الوحيدة للحصول على ماء عذب كما أن أول محطة لتحلية المياه كانت في عام ١٦٥٠م على شواطئ تونس وبعدها تطورت عند الدخول في عصر البخار ١٨٠٠م ، وبعدها تتابعت الدراسات إلى أن أنشئت أول وحدة أنتاج ذات سعه كبيرة ٢٢٥٠٠ كالون يومياً في جزر الانتيل الهولندية وعموماً فطرق تحلية المياه يمكن إيجازها بثلاثة مجاميع :

- المجموعة الأولى: تحلية بواسطة فصل الأملاح عن الماء وذلك يتغير حاله الماء من حاله سائله إلى حاله غازيه (بخار) والمثال عليه عمليات التقطير المختلفه (تقطير ومضي، تقطير مع ضغط، تقطير متعدد الفعالية أو تحويل الماء من سائل إلى صلب كالتجميد.
- ب- المجموعة الثانية: تحلية المياه بفصل الأملاح عن الماء بدون تغير حالة الماء وهذه تعتمد بالأساس
 على خصائص بعض سطوح الأغشية والمثال عليها الديلزه الكهربائيه والتناضح العكسي.
- ج _ المجموعة الثالثة: تحلية المياه بفصل الأملاح عن الماء بالاعتماد على خصائص التبادل الأيوني (المبادلات الأيونية ، التحلية باستخدام المذيبات وكل مجموعة من هذه المجاميع لها محاسنها ولها مساؤها والأهمية هنا في تقدير أي مجموعة تعتمد على كلفة الطريقة والجدول (٤٩) التالي يوضح:

جدول (٩٦) يوضح الكلف التقديرية لأنواع التقطر

ة الإنتاج	كلفة إنتاج المتر النسبة المئوية من كلفة الإنتاج		النسبة المئوية من كلفة الإنتاج		
مصاریف أخری	طاقــة	رأسمال	المكعب (دولار أمريكي)	التقنيــة المستخدمـــة	
				أولا : إعذاب مياه البحر	
7	٥٢	27	7,40	تقطير وميضي متعدد المراحل	
٥	٥٨	77	7,11	تقطير متعدد المراحل (أنابيب عمودية)	
7	OY	2.4	1,18	تقطير بضغط البخار	
71	77	77	1,80	تناضح عكسي	
٨	70	٥٧	١,٧٨	تقطير وميضي متعدد المراحل بالتآلف مع إنتاج الكهرباء . تقطير وميضي متعدد المراحل (أنابيب	
٨	3	٥٤	1,89	عمودية) بالتآلف مع إنتاج الكهرباء .	
771	٤١	۲۸ ۱ ه	۰,۳۲	ثانياً: مياه قليلة الملوحة: تناضح عكسي ديلزة كهربائية (مياه ٢٠٠٠ جزء)	

وسنأخذ المجموعة الأولى.

تقطير المياه:

تعتبر عملية التقطير من أقدم عمليات تحلية المياه في العالم فقبل ٤٠٠ عام كان بحارة السفن يستفيدون من البخار الناتج عن مولدات البخار المستعملة في دفع سفنهم .

أن عملية التقطير تعتمد على أساسين أولهما عملية تبخير الماء المالح والأساس الثاني تكثيف البخار للحصول على الماء العذب ولكني يجب أن لا ننسى بأن عملية التبخير والتكثيف ينتج عنها ما يلي:

أ - ترسب الأملاح بشكل قشور في أوعيته التبخير مما يؤدي إلى هبوط فاعلية التبخير ويؤثر
 في سلامة الأجهزة .

ب- الطاقة المستخدمة وكمية الحرارة حيث كلما قلت هذه الطاقة بالنسبة لما تنتجه من مياه حلوة زادت كفاءة العملية .

وهنالك أنواع كثيرة من طرق التقطير:

١ _ التقطير الشمسي .

٢ ـ التقطير الصناعي لمرحلة واحدة .

٣ ـ التقطير المتعدد الفعالية.

٤ - التقطير الوميضى.

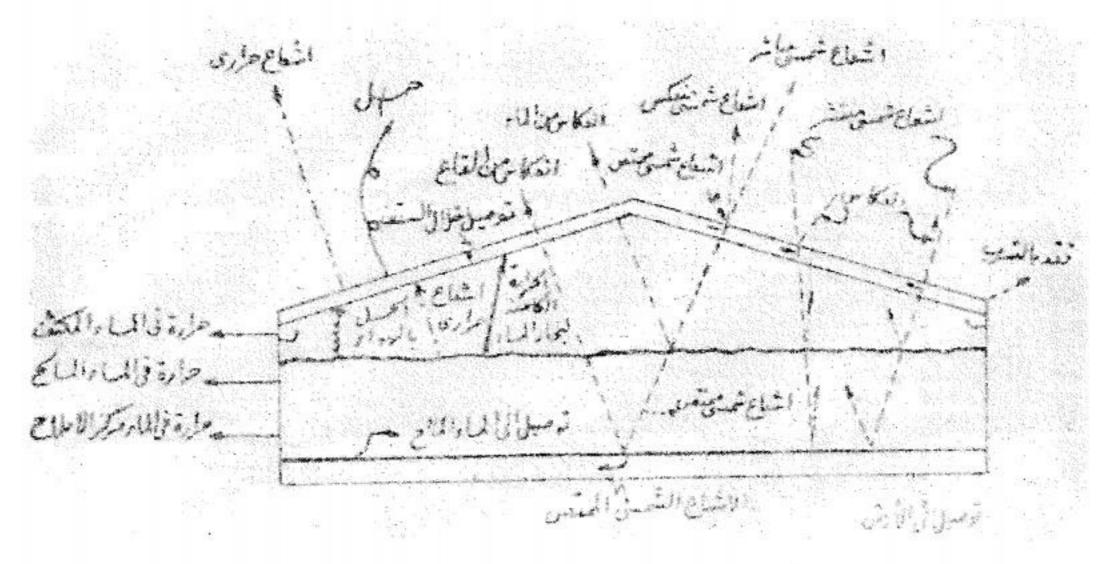
٥ _ التقطير بكبس البخار .

١ ـ التقطير الشمسي:

دائماً الطبيعة تقودنا وتمدنا بالأفكار للاستفادة من الطاقة المتاحة في الطبيعة لأغراض نتفع بها فالطاقة الشمسية نعمة من نعم الله سبحانه وتعالى فهي التي تمد البشر بالماء العذب عبر الزمن وعبر الأجيال من خلال دورة الماء في الطبيعة هذه الدورة الأزلية وإلتي تتكرر يومياً والتي نعيشها نحن لحظة بلحظة أعطت للانسان بعداً كبيراً كي يفكر ويستفيد من هذه الطاقة إذا تم جمعها في تسخين وتبخير المياه والحصول على المياه العذبة . فإذاً التقطير الشمسي يعتبر من أقدم الطرق المعروفة لتحويل الماء المالح إلى عذب . ومن الدراسات المستفيضة عن أشعة الشمس تم التعرف على بعض الأرقام التي تدل على كمية الإشعاع المستقل والذي يحتوي على :

- ١ _ الإشعابي المرئي والذي يحدد بأقل من ٠ ٤٪ .
- ٢ _ الأشعة الفوق بنفسجية والتي تمثل بحدود ٥٪ وهذه الكمية تتأثر برطوبة الجو .
- ٣_الأشعة تحت الحمراء والتي تعتبر من الأشعة عبر المرئية والتي تتحدد بـ ٥٥-٢٠٪ من جملة الطاقة .

هذه الكمية من الأشعة الهائلة تضيع هباء دون الاستفادة منها . والاستفادة تعتمد على كيفية جمع هذه الأشعة (الطاقة) وخزنها وتحويلها إلى شيء مفيد وكلنا يعلم بأن الأشعة عندما تسقط على سطح ينفذ جزءاً منها وينعكس قدر آخر وهذا الجزء المنعكس هو طاقة ضائعه حتماً لذا فلا بد من عمل أجهزة خاصة لغرض جمع هذه الطاقة والتي تتمثل في أحواض أرضيتها معزوله بطلاء أسود لكي يمتص أكبر قدر ممكن من الأشعة الشمسية وتغطى الأحواض بسقوف مائله من الزجاج أو البلاستيك الشفاف يسمح لمرور الأشعة الشمسية فعند مرور المياه المالحه من خلال هذه الأمراض فالطاقة الحرارية الناتجة من أشعة الشمس تعمل على رفع درجة حرارة الماء المالح إلى الغليان فيتبخر الماء ويرتفع فعندما يلاقي سقف الحوض يتكثف ويسيل إلى قنوات ويجمع في النهاية كمياه حلوة . وكما هو موضح في الشكل التالي :


وتعتمد كفاءة هذه الطريقة على عوامل كثيرة وعديدة:

- ١ _ الموقع .
- ٢_منطقة شمسية أو غير شمسية
 - ٣_الفصل (الموسم).
- ٤_طول النهار (زمن التسخين)
 - ٥ _ معدل الصحو المناخي .
 - ٦ _ شفافية الهواء .
 - ٧- درجة حرارة الهواء .
 - ٨ ـ درجة الرطوبة .
 - ٩_سرعة الرياح.

شكل (٥٥) طريقة التقطير الشمسي

كل هذه العوامل تؤثر في كفاءة الجهاز وانتاجيته ولكن عموماً في المناطق الاستوائية وشبه الاستوائية تكون كفاءة مثل هذه الأجهزة ناجحة جداً .

و يمكن قياس كمية الطاقة الشمسية من خلال جهاز Pyrheliometer (بيرهليومتر). ويمكن إجمال الاشعاعات الشمسية والحرارة المتكونة من خلال الشكل التالي:

شكل (٥٦) توزيع الطاقة الحرارية في التقطير الشمسي

خواص المواد المستعملة في المجمعات الشمسية:

١ - الزجاج:

الزجاج شائع الاستعمال في المجتمعات الشمسية لما لخواصه من أهمية بالغة في هذا المحال وهي :

- ١ ـ الشفافية .
- ٢ ـ لا يمرر الأشعة الحرارية تحت الحمراء.
- ٣ ـ يستفيد منه كمراة في المجمعات التركيزية .
- ٤ ـ الزجاج ذو سمك ٣ملم لا يتأثر بالعوامل الجوية .
 - ٥ ـ يستفاد منه كعازل للحرارة .
- ٦ ـ عاكس للأشعة الساقطة على سطحه بنسبة ٤٪ ويمتص ٦٪ .

٢ ـ البلاستيك :

يستعمل البلاستيك حالياً في المجتمعات الشمسية لما لخواصه أيضاً الأهمية في هذا المجال.

١ ـ خفيف الوزن .

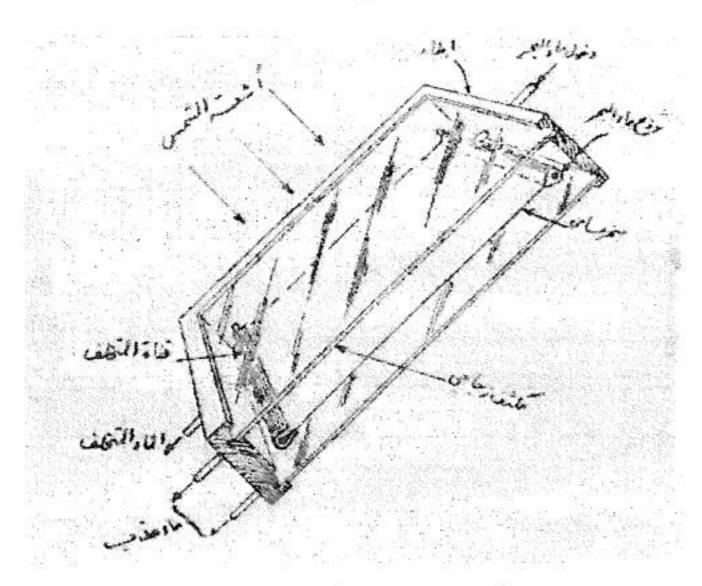
۲ ـ شفاف .

٣ ـ غير قابل للكسر.

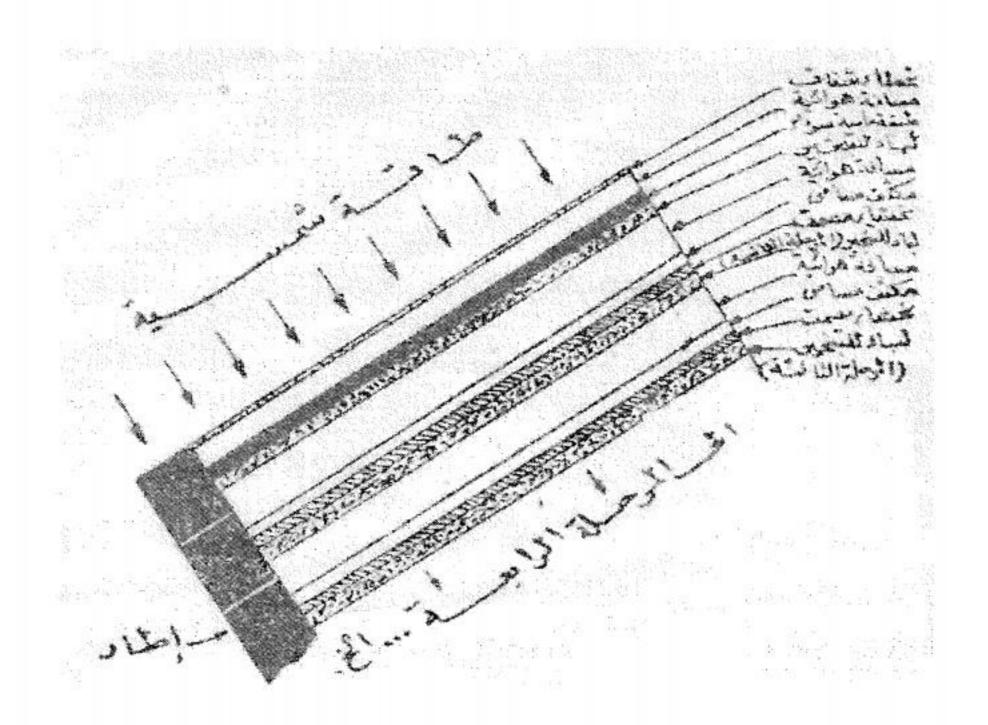
٤ ـ ينقل بسهوله .

٥ ـ لا يتأثر بالحرارة والتغيرات الجوية .

٦ ـ يتميز بأمرار ٩٠٪ من الأشعة الشمسية رغم أنه أقل كفاءة من الزجاج.

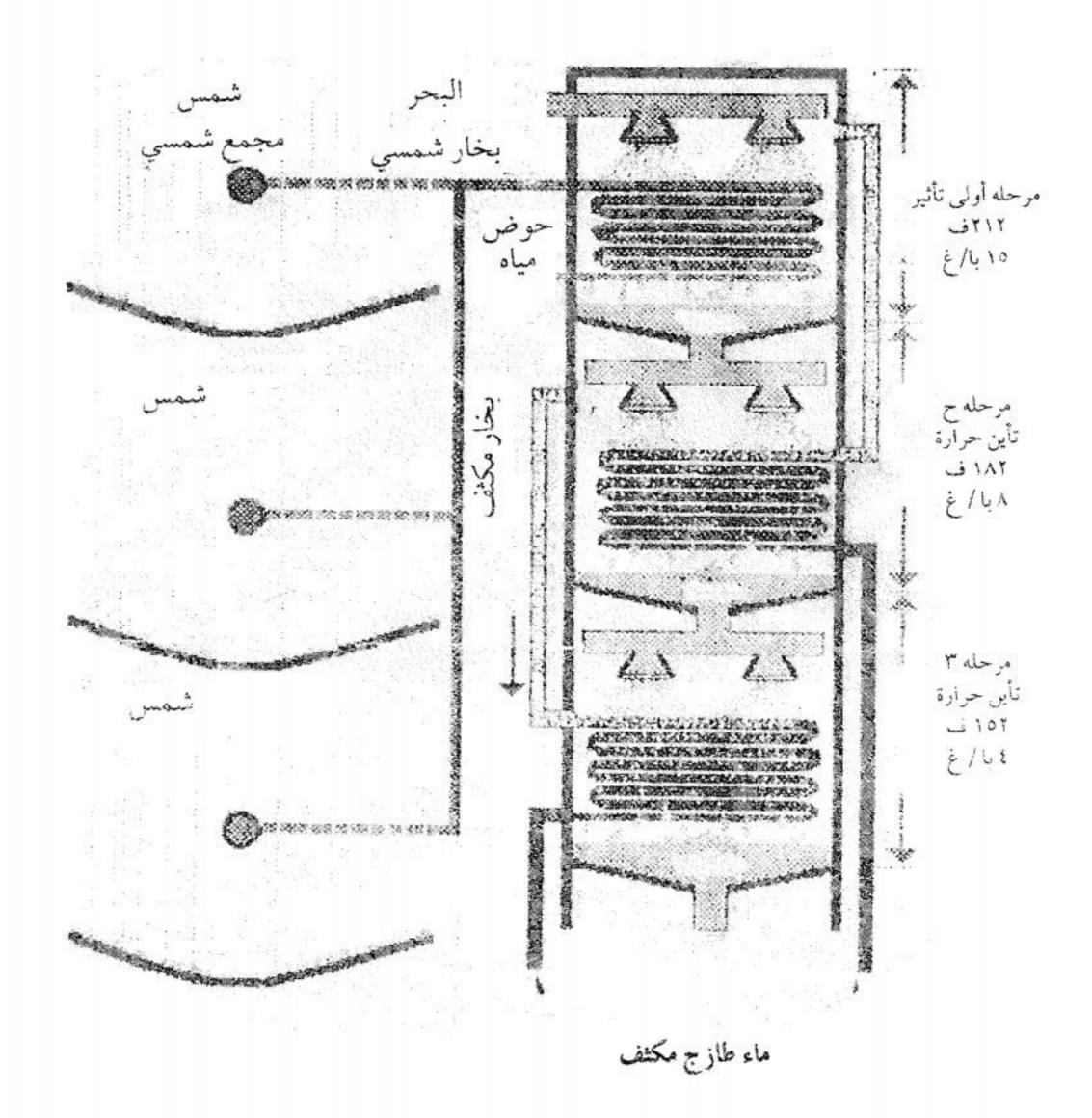

٧ ـ تعتبر التفلون والكلس وأخيراً ستيايروسل Styrocel من أفضل الأنواع .

٣ ـ المعادن:


تعتبر الفضه والنحاس والنيكل والكروم والحديد من المواد التي تعكس أشعة الشمس ولكن بعضها لا يدوم وذلك لصدأها بسرعة أو تحول لونها إلى الاسوداد ولكي يبقى النيكل والكروم من المواد الجيدة لعكس أشعة الشمس بصورة ثابتة أما الألمنيوم فيعتبر من أرخص المعادن لعكس أشعة الشمس وبحدود ٧٠٪ رغم تكون طبقة أوكسيد الألمنيوم عليه .

٤ - المواد العازلة :

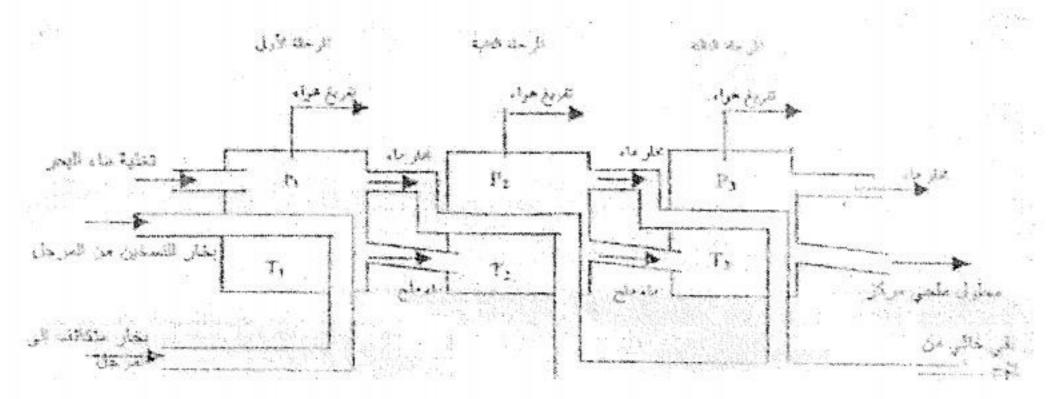
الصوف الزجاجي ، الخشب ، نشارة الخشب ، القلين ، الاسيبتسوس ، الاستايروبول تعتبر مواد جيدة للعزل الحراري بالإضافة إلى رداءة توصيلها الحراري وخفة وزنها وتكوينها الكيماوي والقيزياوي وأفضلها الصوف الزجاجي والاستايروبول والياف الاسينتسوس .


شکل (۵۷) جهاز تقطیر شمسی

شكل (٥٨) جهاز تقطير شمسي متتعدد

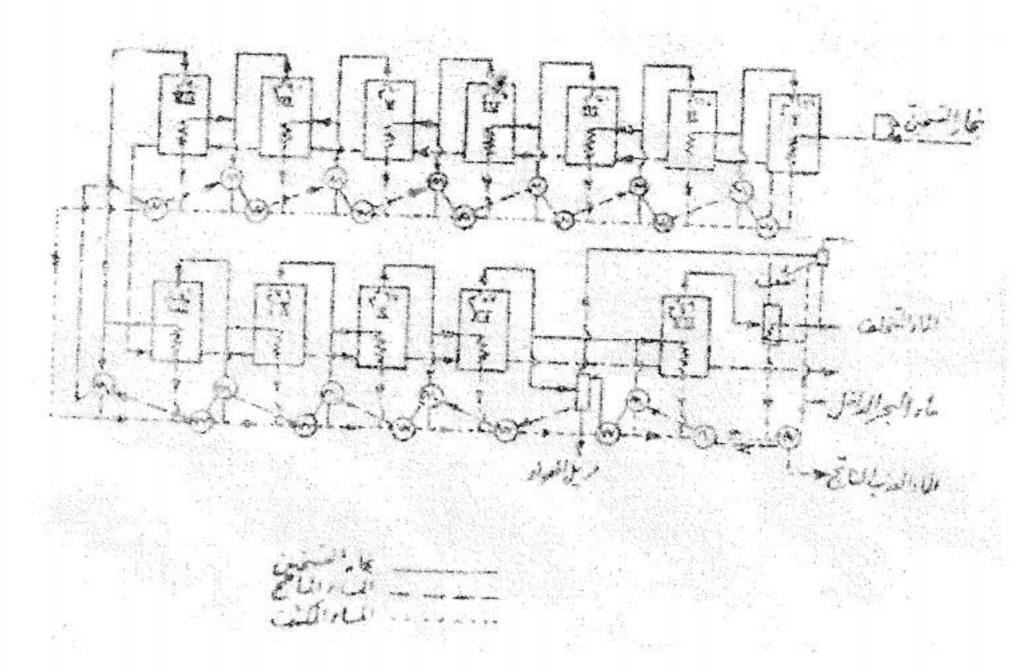
جهاز التقطير الشمسي المتطور:

يوضح الشكل التالي مخططاً لتحلية المياه بواسطة الطاقة الشمسية حيث يتكون الجهاز من خزانات شمسية مرتبطة مع بعض بمواسير خاصة تحمل مياه ساخنة وبثلاث درجات حرارية وضغط أي بثلاث مراحل والذي يدخل إلى جهاز التحلية بشكل ملف ملتوي بعدة ثنيات فالمرحلة الأولى يكون تأثرها الحراري أشد بحدود ٢١٢ ف وضغط ١٥٥ أما المرحلة الثانية فيكون تأثرها الحراري بـ ١٨٢ ف وضغط ١٥٢ أما الثالث والذي يكون حراري بـ ١٥٢ ف وضغط ٤ psi فالمرحلة الأولى يكون فيها عملية التحلية للمياه المالحة أعلى حيث بعملية مرر المحلول الملحي عبر ملف المرحلة الأولى فيجد جزء من الماء من المحلول الملحي والذي يتكثف عبر مواسير تجميع أما المحلول الملحي المتبقي فيمر بالمرحلة الثانية والثالثة وهكذا ويجمع الماء العذب الناشىء من هذه العملية في وعاء المحلول الملحي المركز يجمع أيضاً أو يعاد وهكذا. والتغذية تتم من الأعلى الأسفل كما هو في الشكل التالي:


شکل (٥٩) جهاز تقطير شمسي متطور

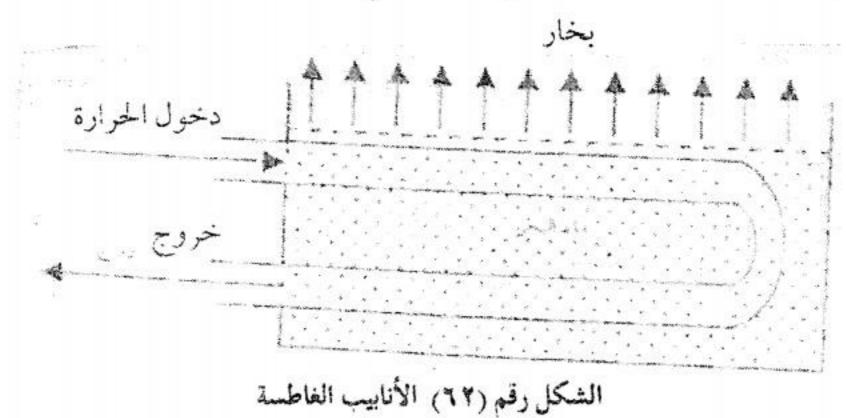
التقطير الصناعي:

عملية التقطير كما أسلفنا تعتمد على مبدأين الأول تبخير الماء والمبدأ الثاني يعتمد على تكثيفه وكلنا يعلم أو كلنا شاهد أثناء الدراسة جهاز التقطير البسيط والذي يتكون من دورق ومكثف ومستقبل ومصباح بنزن. من هذا الأساس أنطلق الباحثون في تفتيشهم العلمي المستمد إلى الوصول إلى وحدات لإنتاج المياه العذبة ومنها:


أ _ التقطير المتعدد الفعالية:

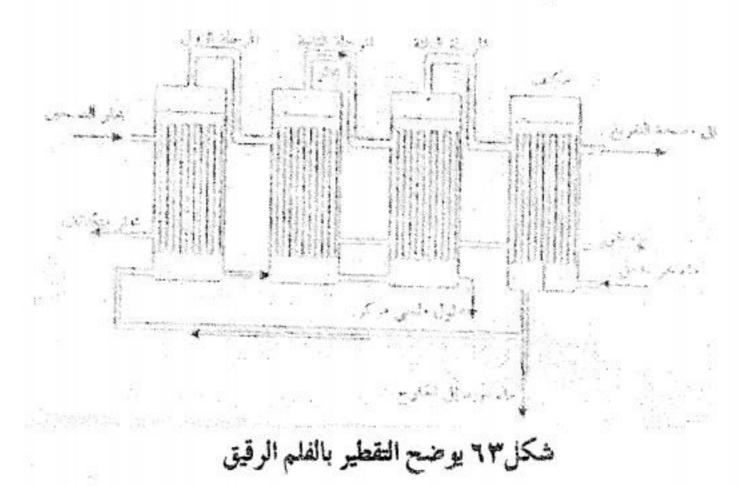
تتكون هذه الوحدة من عدد من وحدات التقطير المتتابعة فالوحدة الأولى يتم فيها تبخير الماء بمصدر حراري والبخار الساخن يدخل إلى الوحدة الثانية مستفيدين من حرارته الكامنة لتسخين الماء الموجود في هذه الوحدة وهكذا فالبخار الذي ينتج من الوحدة الثانية ينتقل إلى الوحدة الثالية لتسخين المياه في هذه الوحدة وهكذا كما يوضحه الشكل التالي (٦٠):

شكل ٦٠ يوضح التقطير المتعدد الفعالية

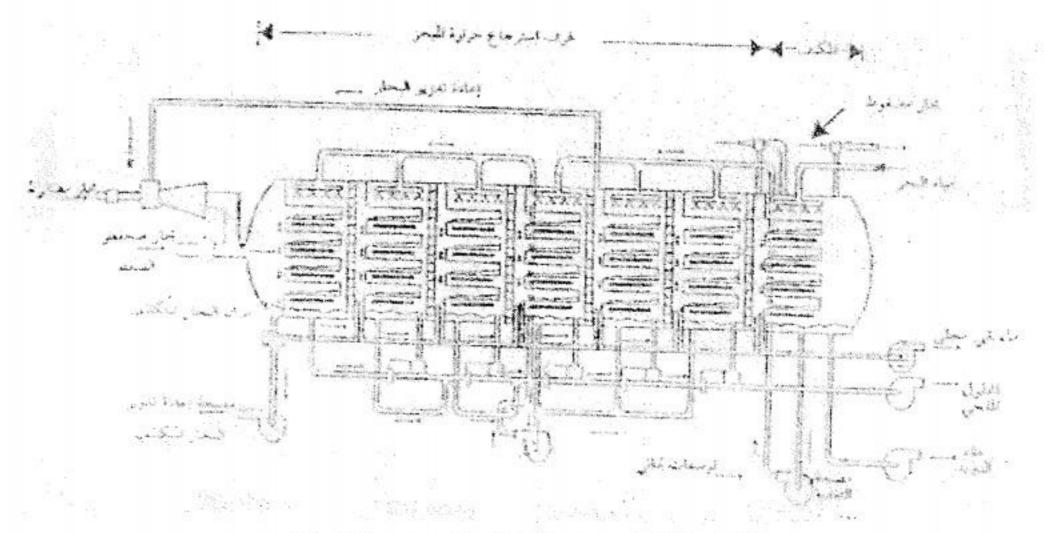

وبعد هذه العملية ذات المراحل الثلاث تم الوصول إلى أجهزة تقطير ذات ١٢ فعالية كما في الشكل (٦١) التالي:

شكل (٢٦) رسم يبين خط سير البخار والماء العذب وماء البحر في جهاز تقطير ذي ١٢ فعالية

ب ـ طريقة الأنابيب الغاطسة Suhmerger Tube :


تعتمد هذه الطريقة على غمر أنابيب في أوعية تحتوي على ماء البحر ونتيجة لدخول غاز ساخن في هذه الأنابيب تعمل على رفع درجة حرارة ماء البحر وتبخرها وجميعها في أنبوب آخر وهكذا كما يوضحها الشكل (٦٢) التالي:

ولكن هذه الطريقة مساوىء وأهمها الترسبات الكبيرة من كبريتات وكربونات الكالسيوم على الأنابيب.

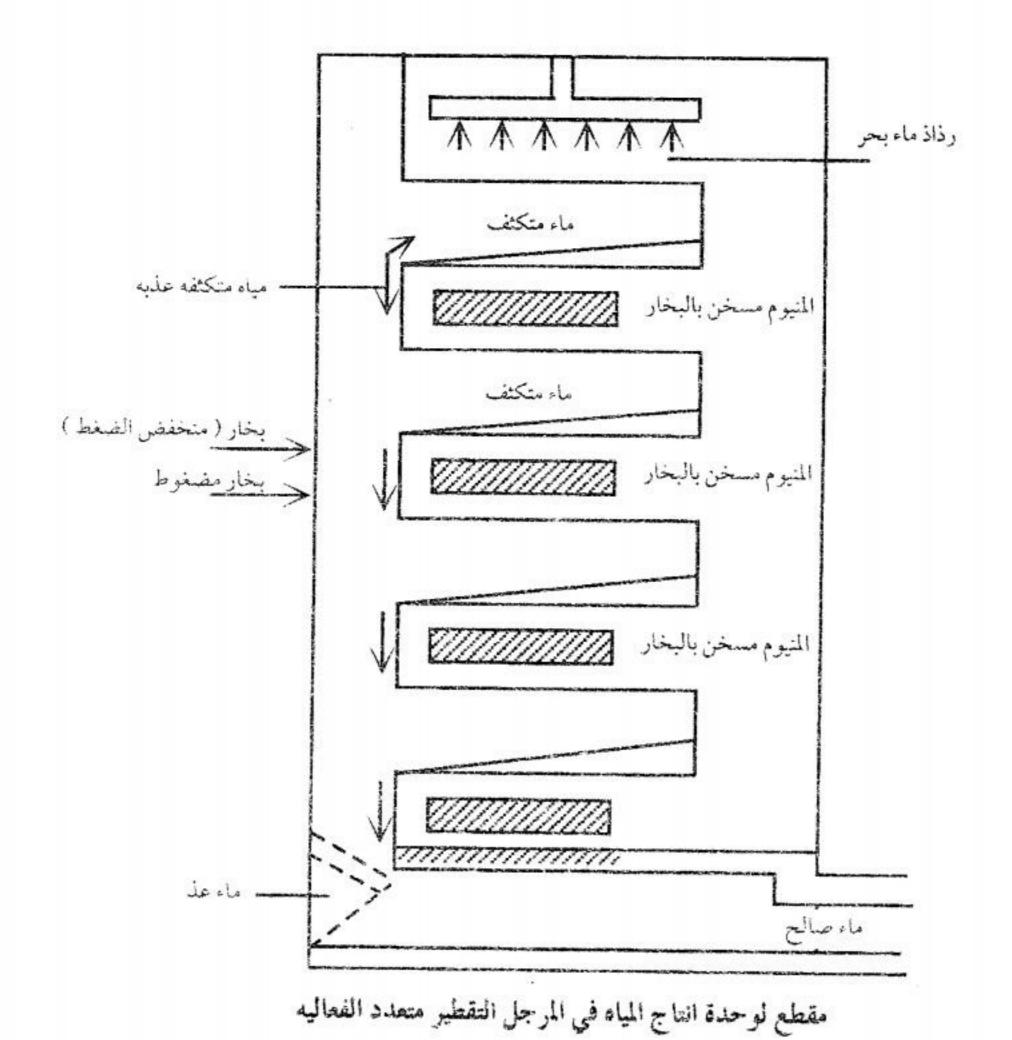

جـ - الفيلم الرقيق Thin Film :

مبدأ هذه الطريقة هو التبادل الحراري حيث يدفع الماء المالح من خلال وحدات تحتوي على أنابيب مسخنة ومن خلال تلامس الماء لهذه الأنابيب ترتفع درجة حرارتها وتتبخر ويرتفع البخار إلى الأعلى وينتقل إلى الوحدة الثانية والثالثة كما في الشكل التالي. ومن خلال التجارب ظهرت عدة أنواع من هذه الطريقة كالفلم النازل والصاعد والمنتشر.

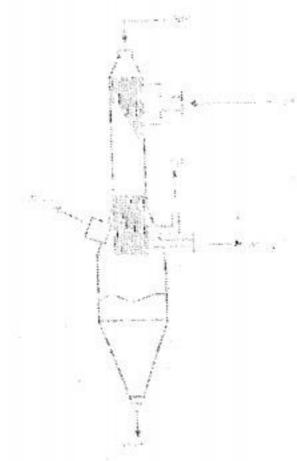
د ـ التقطير متعدد الفعالية مخفض درجة الحرارة Low Temp Multiple Effect Distillation د

تعتمدهذه الطريقة على إتمام عملية التقطير تحت درجة • ٧م حيث يدخل الماء المالح إلى المبخر على شكل رذاذ وحين ملامسته الأنابيب الساخنة تتبخر هذه المياه وتجمع ويحتوي المبخر على العديد من وحدات التسخين من معدن الألمنيوم أو من PVC أو الفايبر كلاس وأن طريقة التقطير في هذا النوع من المحطات هو الفلم المنتشر حيث يدخل ماء البحر إلى المحطة على شكل رذاذ ونتيجة الحرارة التي تقابله بحدود • ٧م وكما هو موضح بالشكل (٦٤) التالي:

شكل ٢٤ التقطير متعدد الفعالية مخفض درجة الحرارة

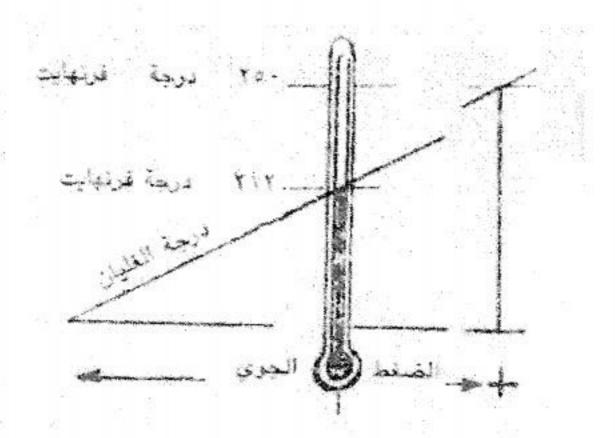

ويمكن إنجاز العملية بالخطوات التالية:

١ _ مياه البحر تدخل من خلال الأنابيب ذات النوزلات (مرشات رذاذية)؟


٢ مدخل بخار الماء المنخفض الضغظ من الفتحة الجانبية لكي يرفع درجة حرارة ماء البحر
 ويسخن الأنابيب .

٣_مع بخار الماء المنخفض بدخل من فتحة جانبية أيضاً بخار مضغوط يساعد في عملية رفع
 درجة الحرارة دال المبخر .

٤ ـ البخار يتصاعد في المرجل البخاري ويتكاثف بالجانب الأيسر من المخطط لكل وحدة بينما الماء المالح يأخذ الجانب الأيمن ولكل منهما مجرى يجمع في نهاية المرجل كما هو ملاحظ في المخطط.


٥ _ وهنالك أشكال أخرى تعمل على نفس الأساس مثل الأنانيب المستخدمة في محطة تكساس كما في الشكل التالي:

شكل ٦٥ يوضح تقطير مخفض الحرارة (وحدة تقطير)

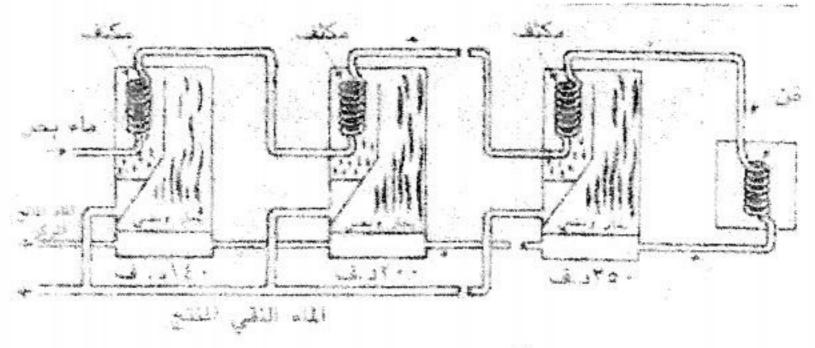
التقطير الوميضي:

يعتمد التقطير الوميضي من حقيقة علمية وهي أن الماء يغلي عند درجات حرارة تقل باستمرار عندما يتعرض لضغوط أقل وفقاً للشكل البياني التالي :

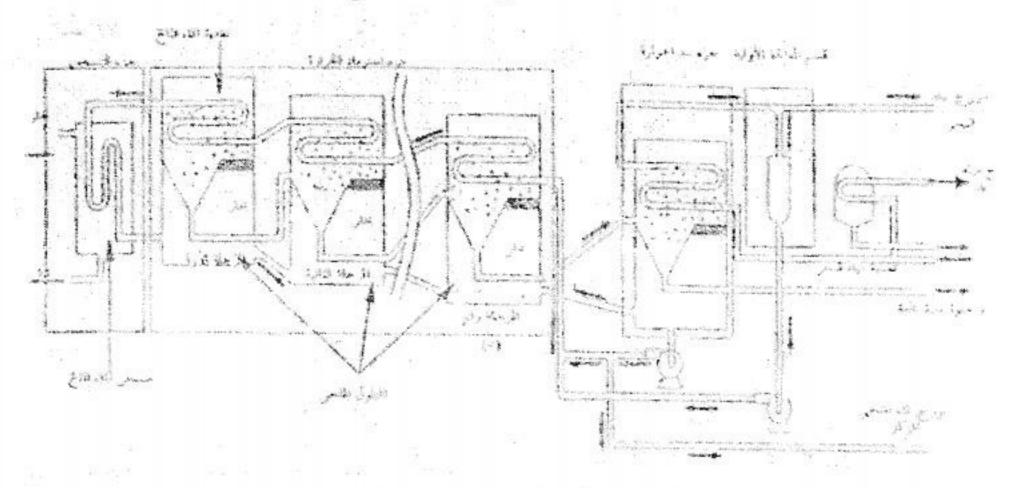
شكل ٦٦ العلاقة بين الحرارة والضغط

ولأجل التوضيح حيث يتم تسخين ماء البحر ثم يدخل في غرفة مخلخله الضغط ليحدث الغليان المباشر أو ما يسمى بالومض ويتصاعد البخار في المياه المالحة وبنفس الوقت تنخفض درجة حرارة المياه المالحة المتبقية فيدفع إلى الغرفة الثانية ذات ضغط أقل من الغرفة الأولى بحيث تحدث عملية الغلي مباشر (بالومض) وتقل بنفس الوقت درجة المياه المتبقية وهكذا والمياه المتبخرة تكثف بملامستها مبادل حراري بارد (ملف) كما في الشكل (٦٧) التالي:

ويمكن أيجاز العملية بالخطوات التالية:

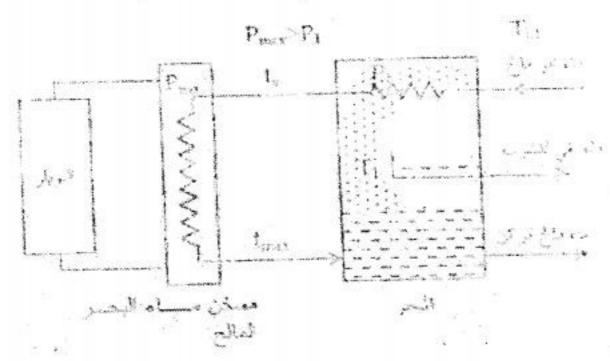

١ _ تسحب مياه البحر من عمق ٨ إلى ١٠م وعلى بعد ١٠٠م من الشاطيء.

٢ _ تعقيم مياه البحر بالكلور للتخلص أو القضاء على أي حيوانات أولية أو ميكروبات.


٣_التخلص من الهواء والغازات الزائدة وثاني أوكسيد الكربون.

٤ _ تسخين المحلول الملحي في المسخن الرئيسي إلى درجة حرارة (٢٥٠ف) بواسطة البخار المشبع .

ه - بعدها تدخل المياه إلى الغرف التي ذكرناها سابقاً لأجل تبخيرها بالومض كما في
 الأشكال التالية:

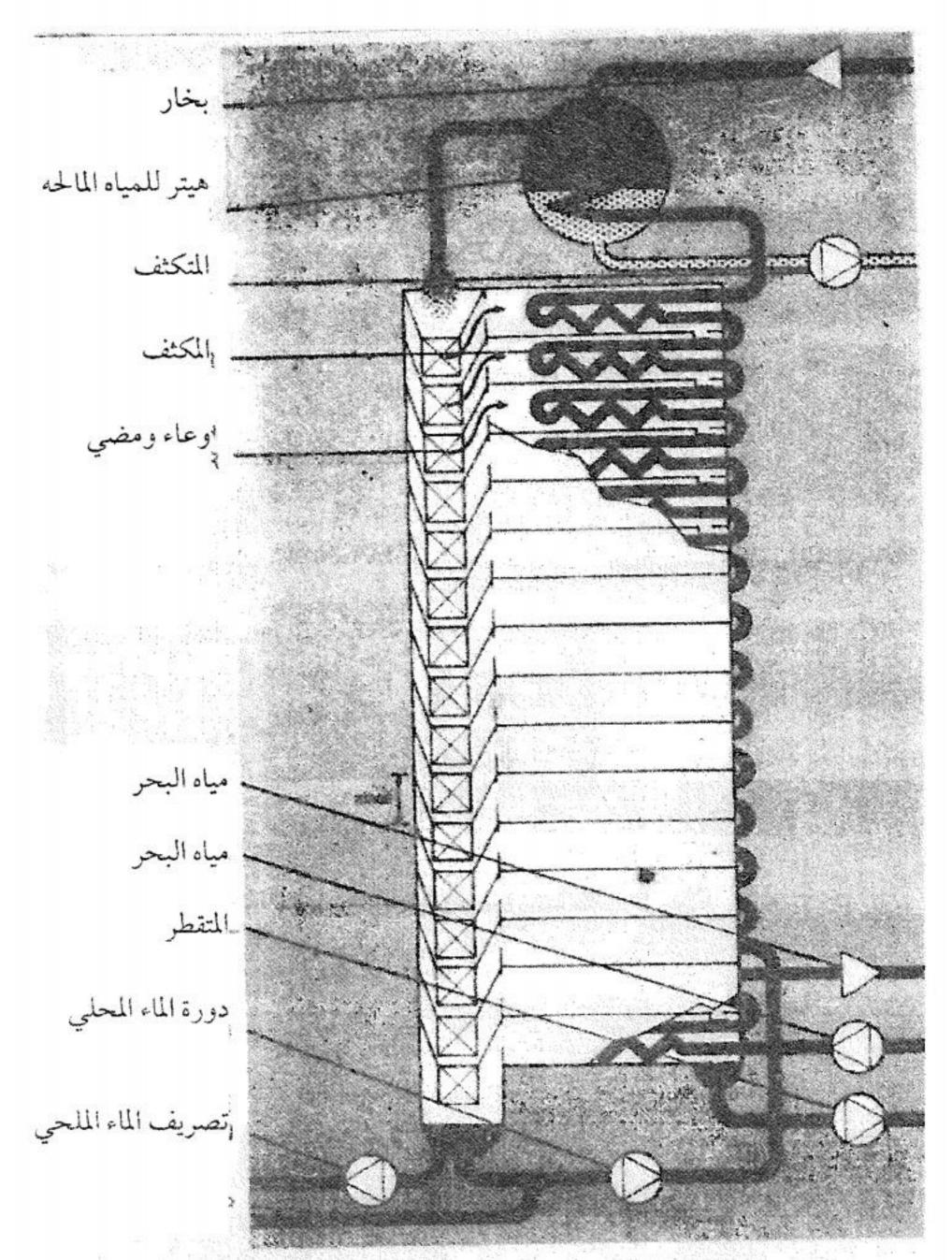


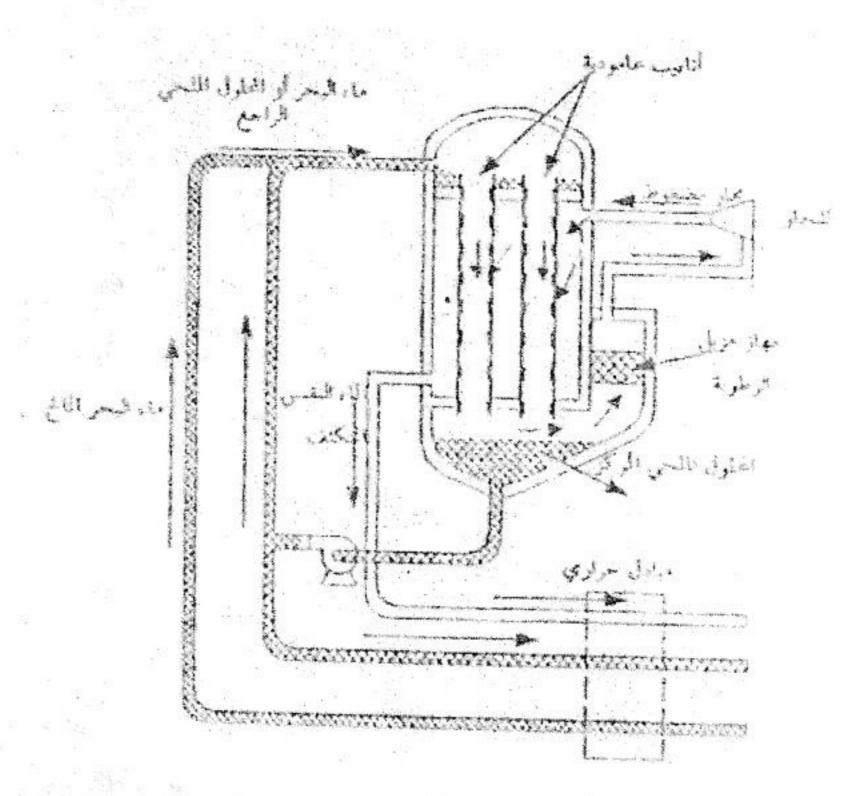
شكل ٦٧ يوضح التقطير الومضي

٦٨ وحدة تقطير وميض متعدد المراحل

ونتيجة لأهمية هذه الطريق فقد لُفتت الأنظار إلى استخدام الطاقة الذرية في هذه الطريق حيث أنها لا تتطلب تسخيناً مرتفعاً ومن ثم يمكن استخدام البخار منخفض الضغط في التسخين والذي يتراوح ضغطه ما بين ١- ١٥ ضغط جوي بخار منخفض الضغط وتكون درجة تكثفه تبعاً لهذا الضغط ما بين ١٠٠ م - ١١٢ م ومثل هذا الضغط يمكن أن ينتج من المفاعلات الذرية وبشكل رخيص كما في الشكل التالي:

شكل (٦٩ يوضح استخدام البخار منخفض الضغط باستخدام المفاعلات

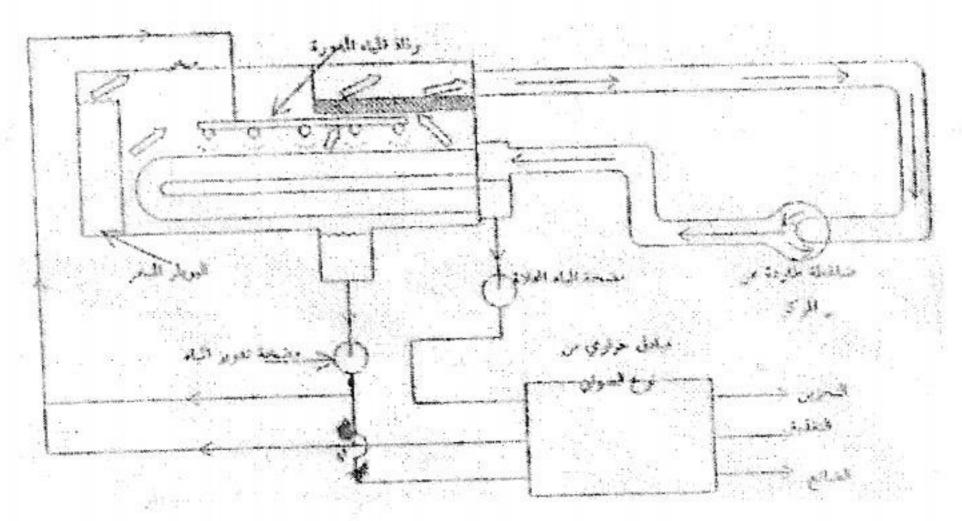



Fig 2 Specific flow diagram of the Aquanova process.

شكل ٧٠ طريقة التحلية بعملية اكوانوفا

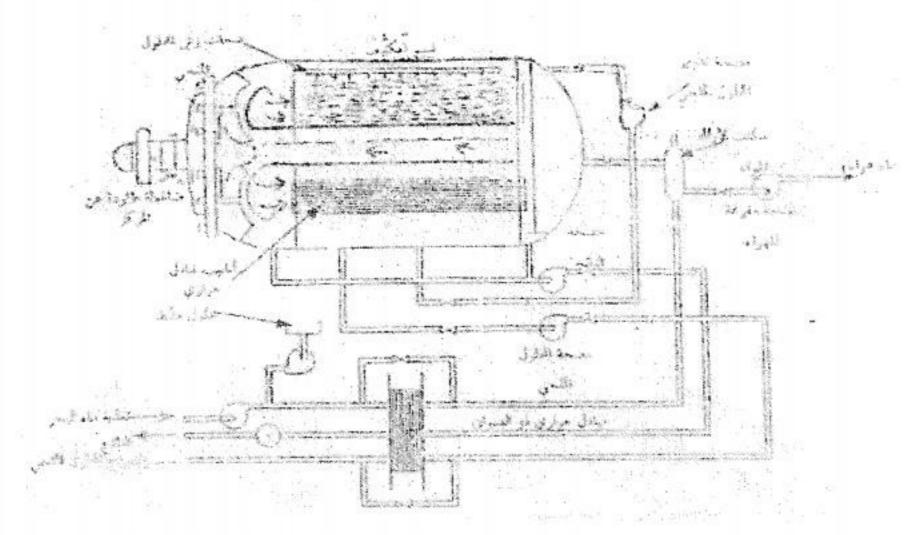
التقطير بكبس البخار:

الأساس أو المبدأ في عملية التقطير بكبس البخار تعتمد أولاً على تبخير مياه البحر أولاً ومن ثم كبسها بواسطة مضخة حيث يتم كبس هذا البخار حتى ترتفع درجة حرارته ومن


ثم تجري علية عملية تكثيف بواسطة المكثف الذي يكون عادة تحت المبخر فيتكاثف على الملف وبذوره يسخن ماء البحر كمرحلة أولية فإذا ما بلغ المبخر الغليان يغلي هذا الماء ويتصاعد البخار الذي يسحب مرة ثانية إلى المكثف ليقوم بعمل الوقود وهكذا كما في الشكل التالي:

شكل ٧١ التقطير بكبس البخار

التقطير بالكبس الوميضى:

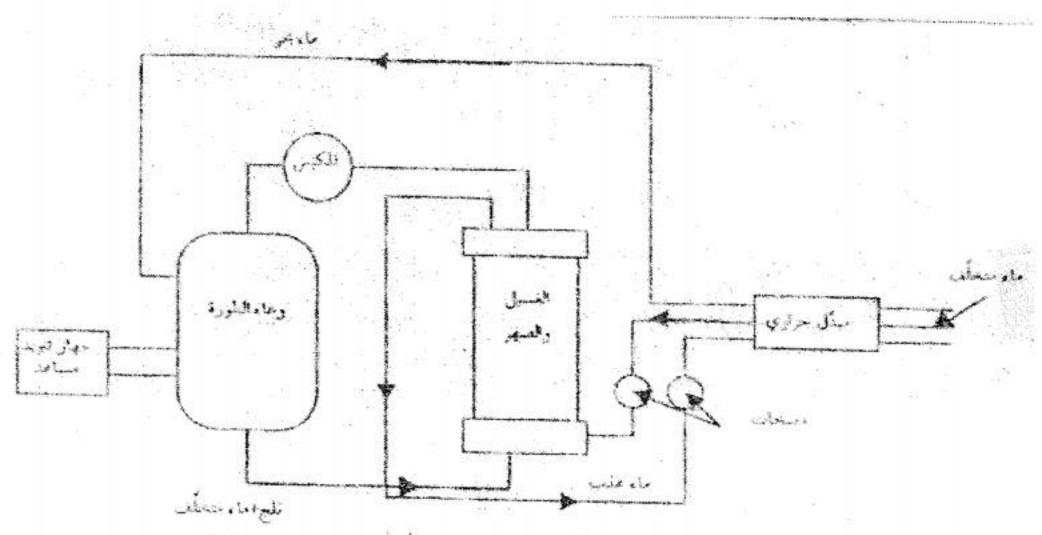

يعتمد أساس هذه العملية بأن تكون عملية التسخين إلى حد الغليان في مكان ومن والغليان في مكان آخر. حيث يسحب ماء البحر إلى عملية التسخين إلى حافة الغليان ومن ثم يدخل إلى غرفة التبخير حيث يومض ويتطاير البخار نتيجة الضغط وعملية التسخين تتم من خلال مبادلات حرارية حيث يكبس ماء البحر وترتفع درجة حرارة الماء إلى ٠٠٠م ومن ثم يدخل إلى غرفة الغليان تحت الضغط (الومض) وهنالك أشكال مختلفة التصاميم لهذا النوع من التقطير وهي كما في الشكل التالي:

شكل (٧٢) يوضح التقطير بالكبس الوميضي

التقطير بالكبس مع استعمال الطرد المركزي:

وهي نوع من طرق الكبس حيث يحدث الكبس عند درجة الغليان العادية ويوضح الشكل طريقة عمل الجهاز حيث تعدي ماء البحر إلى الجهاز عن طريق أنبوب ذات فتحتين وتلف حولها غرفة تسخين (٥٥٠) على هيئة مخروطين متقابلين فيرش ماء البحر على سطوح غرفة التسخين ويذلك يتبخر ويتطاير البخار وبسحب هذا البخار إلى المكبس ليضغط وترفع درجة حرارته ومن ثم يبعث به إلى الجانب الخارجي من الداخل لكي يعمل دوراناً وأن هذا الدوران يرفع من معدل الانتقال الحراري وأن هذه الحركة (حركة الطرد المركزي) الناجمة عن الدوران تسبب انتشار ماء البحر على هيئة رقائق يسهل تبخره وقد تطورت عملية الغرفة الساخنة إلى غرفة مركبة أو متعددة.

شكل ٧٣ يوضح التقطير بالكبس مع الأستعمال الطود الركزي،

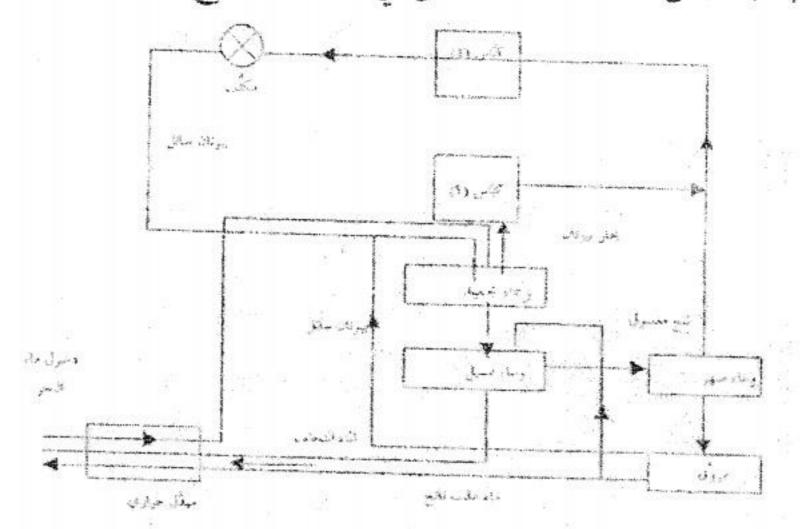

جدول (٥٠) محاسن ومساوىء طرق التقطير المختلطة

الأنابيب الضاغطة	التقطير بكبس البخار	التقطير الومضي	تقطير متعدد الفعالية	تقطير متعدد الفعالية
			منخفض الحرارة	
١ ـ ترســــات في	١ . استخدم للطاقة اقل	١ ـ استخدام وقود أقل	١ ـ استخدام وقود أقل	١ ـ تراكم القشور
الأملاح	أي كلفة أقل	أي كلف أقل	أو كلف أقل	
٢ ـ انخفاض في الكفاءة	٢ ـ اختصار للزمن	٢ ـ الضياع من الطاقة	٢ ـ التقليل من ضياع	٢ ـ استهلاك وقود
بعدمرور الزمن		أقل	الطاقة الكامنة	
٣ ـ يعتمد على التبادل	٣ ـ في عـ مليـة كـبس	٣. عملية التبخر على	٣ـ يحتاج إلى تهوية	٣ ـ يحمنساج إلى إزالة
الحراري	للبخار	مر حملتين		الهواء
٤ ـ الزمن معتدل	٤ . ثمكن استخدام الطاقة	٤ ـ اختصار الزمن	٤ ـ اختصار للزمن	٤ . اختصار للزمن في
للعملية	الكهربائية أو محرك			إنتاج البخار والماء
	احتراق داخلي			
٥ ـ من ضياع للطاقة	٥ ـ تقليل تكون القشور	٥ ـ يحتاج إلى سراحل	٥ ـ يستخدم ماء البحر	٥ ـ فيه ضياع للطاقة
	أو التراكمات	متعددة	كرذاذ	
		٦ - يحتاج إلى ضغط	٦ ـ التخلص من تراكم	٦ ـ يستخدم ماء البحر
		مخلخل	الأملاح	كماهو
		٧. يستخدم الماء كما هو	٧.عملية التبخر مرحلة	٧.عملية التبخر مرحلة
		وليس رذاذ	واحدة	واحدة
		٨ ـ ليس في علمــيـــة	٨. تحتاج إلى مراحل	٨ ـ في عــمليــة تدوير
		تدوير	متعددة	للماء أو
			٩ ـ عملية تدوير للماء	

التحلية بالتجميد:

التجميد المباشر:

١ ـ يتم امرار ماء البحر من خلال مبادلات حرارية إلى وعاء البلورة وفي وعاء البلورة سيقابل ماء البحر ضغطاً منخفضاً أي (٥٠٠٥) ضغط جوي وهذا بدوره سيسبب تبخر الجزء من الماء وتبريداً قوياً للجزء الباقي إلى درجة الانجماد والبخار يسحب عن طريق مضخة باستمرار إلى وعاء صهر الثلج فيتكثف معطياً ماء عذباً وبنفس الوقت يصهر الثلج متحولاً إلى ماء عذب كما في الشكل التالي:



شكل ٧٤ يوضح عملية التحلية بالتجميد المباشر

التجميد غير المباشر:

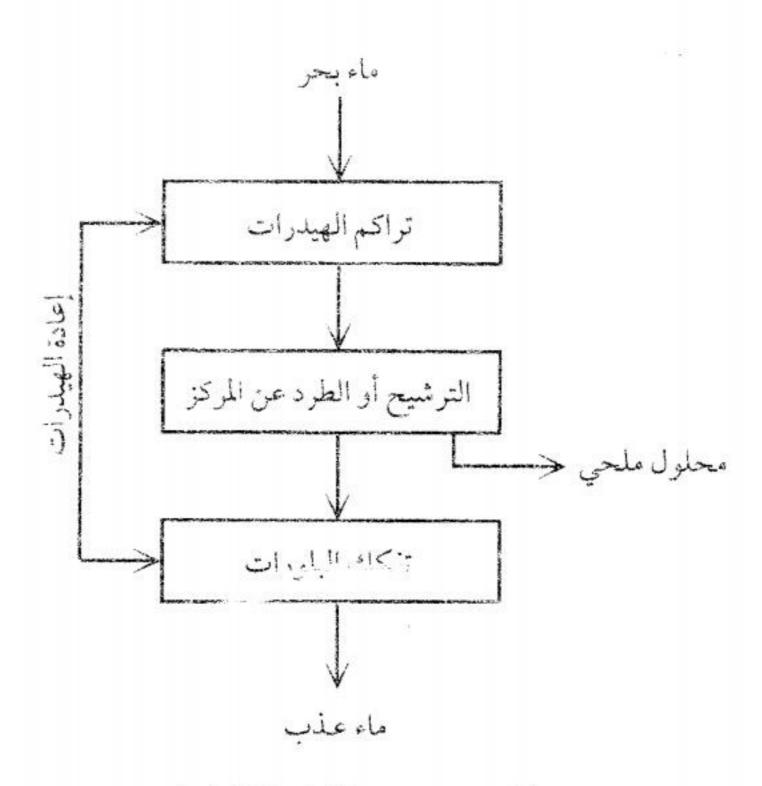
أفضل الأمثلة على هذه الطريقة هي الثلاجات المنزلية وذلك باستعمال مادة سهلة التطاير مثل النشادر أو الأمونيا أوالفريون حيث تدفع هذه المادة بشكل سائل إلى ملف داخل حجرة التبريد فتتطاير متحولة إلى بخار نتيجة حرارة الملف ثم يسحب البخار إلى مكبس فتحول البخار إلى سائل يدفع به مرة أخرى ليؤدي دوره مرة ثانية في التبريد ويمكن أن يمر في وعاء يحتوي على ماء البحر فتسبب التجمد للماء وتكوين الثلج كما في الشكل التالي وباستخدام غاز البيوثان.

حيث يدخل ماء البحر من خلال مبادل حراري إلى وعاء التجميد مخلقاً وراءه بخاراً وثلجاً ومن ثم يسحب البخار من خلال مضغط ويكبس في وعاء صهر الثلج كما أوضحنا سابقاً .

شكل (٧٥) توضح التحلية بالتجميد غير المباشر

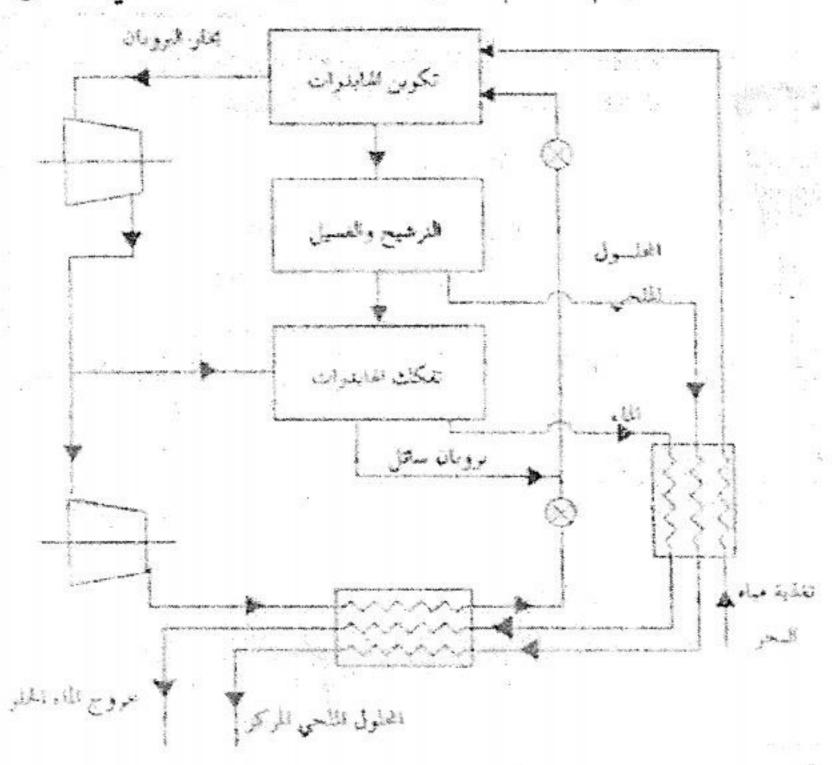
التحلية عن طريق تكوين الهايدرات:

الأساس في هذه الطريقة هو استعمال مواد تبريد تكون مع مشاركة الماء بلوارت وهذه البلوارت جزيئاتها تظهر بأنها متحدة ولكنها غير متحدة بل محتضنة الواحدة الأخرى والميزة في هذه الطريقة أن هذه البلوارت المتجمدة لا تسمح للأملاح من المشاركة أي أن المياه الخارجة من هذه الطريقة هي مياه عذبه ومن أمثلة هذه الهابدرات هو البروبان بيوثان وميكانرم هذه العملية يمكن إيضاحها بما يلي:

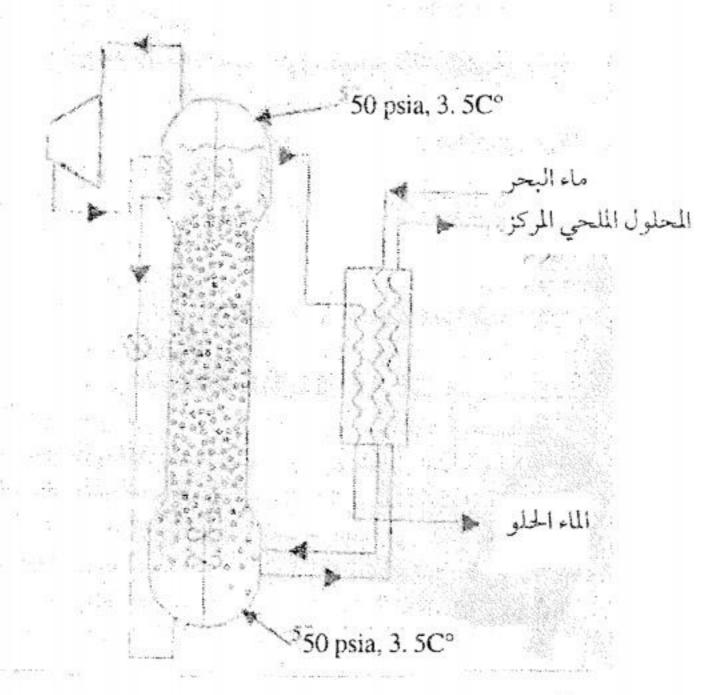

١ ـ أن درجة انجماد الماء هي الصفر المئوي.

٢ ـ أن درجة انجماد بلوارت الهايدرات هي أعلى من درجة انجماد الماء بـ (٧,٥م).

٣ ـ فإذا كان الماء خالياً من الأملاح ستجمد في الصفر المئوي.


٤ ـ إذا كان الماء خالياً من أملاح فأنه سيجمد بحدود -٧م.

لذلك فأن الهايدروات تؤثر على جزيئات الماء وتساعد على فصلها من الأملاح وبالنتيجة تكوين البلورات المشتركة وبعدها يفصل الملح وتطرد البلورات ومن ثم إذابة الهايدرات والحصول على المياه العذبة كما في المخطط التالي:

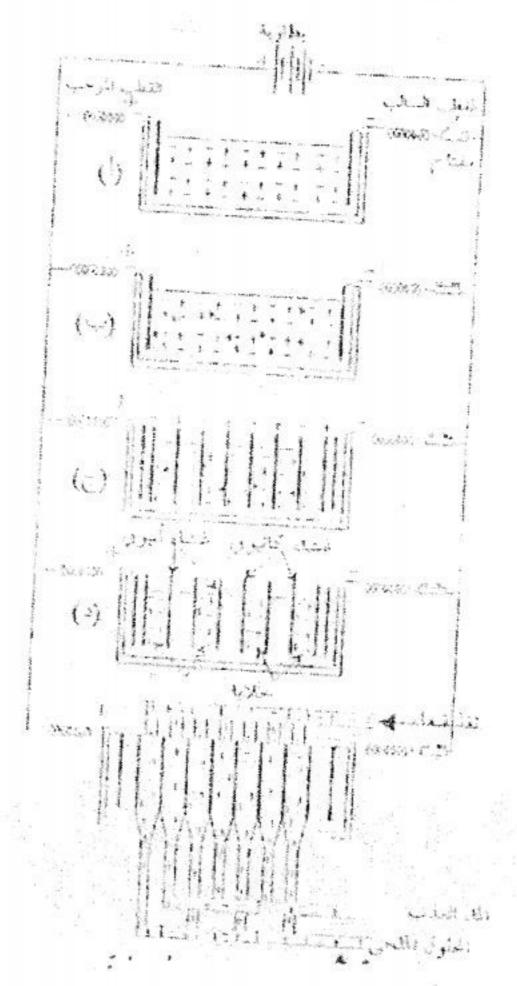


شكل (٧٦) يوضح مطط التحلية بالهايدرات

وعلى هذا الأساس تم تصميم بعض المحطات الإنتاجية وكما في الشكل التالي:

شكل (٧٧) يين عملية تحلية الماه بطريقة الهايدرات

شكل (٧٨) تصميم محتمل لتحلية المياه باستخدام هايدرات البروبان


التحلية بواسطة الانتشار الغشائي الكهربائي (الديلزة):

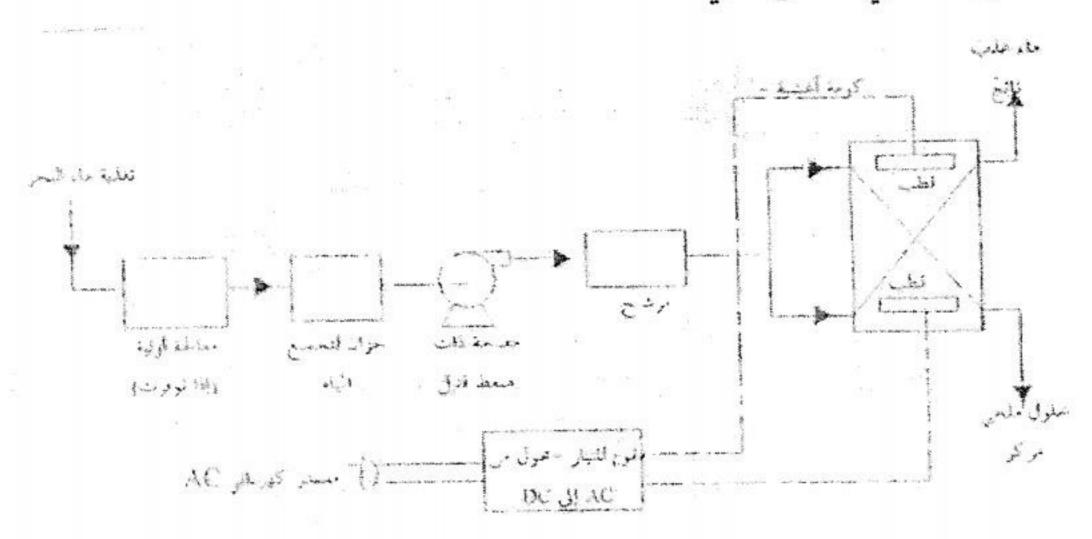
الأساس في هذه العملية هي أقتناص الأملاح من المياه عن طريق ذوبانها وتأينها إلى أيونات موجبة وهي الأيونات المعدنية وأيونات سالبة وهي الأيونات الحامضية وبالاستفادة من خاصية امرار تيار كهربائي في الماء المالح فأن الأيونات السالبة تجذب إلى القطب الموجب والأيونات الموجبة تجذب إلى القطب السالب وبذلك يسهل اقتناص هذه الأيونات بواسطة أغشية خاصة وهي على نوعين.

١ _ أغشية كتيونيه ـ تسمح بنفاذ الأيونات الموجبة .

٢ ـ أغشية الأينوتية ـ تسمح بنفاذ الأيونات السالبة .

والشكل التالي يوضح هذه العملية:

شكل (٧٩) يوضح مبدأ عملية الديلزة الكهربائية

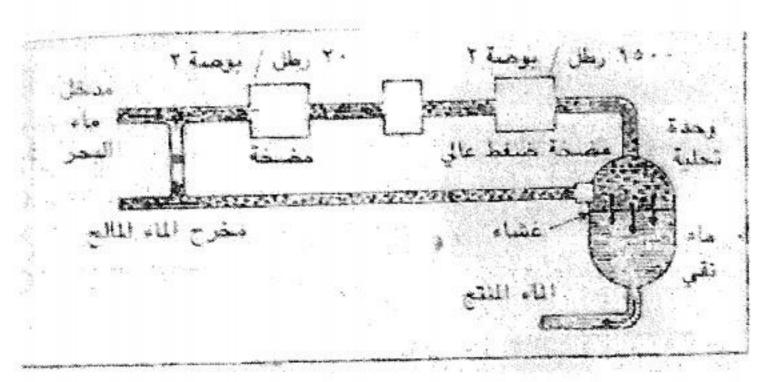

ويمكن إيجاز العملية بالخطوات التالية:

۱ _عند امرار التيار الكهربائي فستتواجد الأيونات التالية +Na ، Ca++، So=، Mg++، Cl-، Na ، Ca++، So=، Mg++، Cl-، المحلول.

٢ ـ سيتكون تيار لهجرة الأيونات السالبة إلى القطب الموجب والموجبة إلى القطب السالب.

٣-سنلاحظ عبور أو انتقال الأيونات عبر الأغشية إلى خلايا المصيدة.

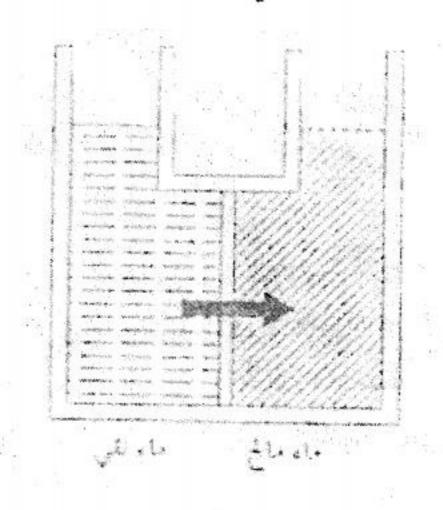
٤ ـ يجمع الماء العذب من جانب ويخرج الماء المالح من جانب آخر وتستمر العملية بهذا
 المنوال كما في الشكل التالي:



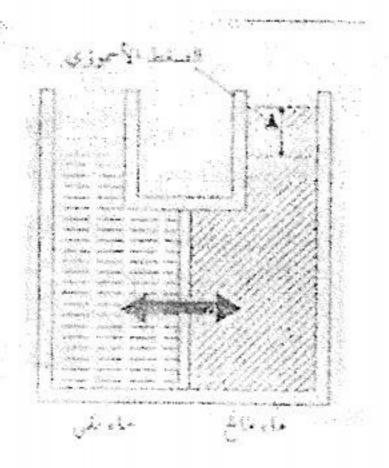
شكل (٨٠) يوضح مكونات جهاز الديلزة الكهربائية

التناضح العكسي:

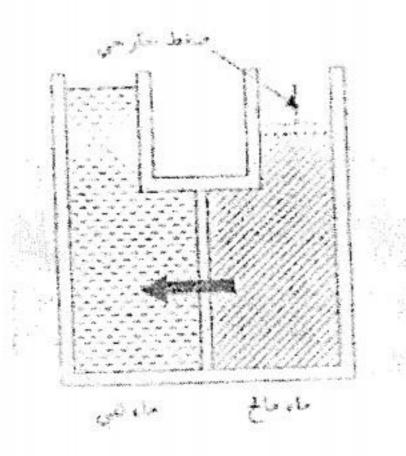
تعتبر طريق التناضح العكسي من الطرق الحديثة نوعها حيث تعتمد العملية على فصل الماء العذب عن الماء المالح بواسطة غشاء نصف نافد والأساس في هذه العملية هي نفاذ الماء العذب عبر الغشاء في اتجاه الماء المالح حسب ظاهرة التناضح أو الازموزية بسبب الفرق في التركيزين فأن الماء العذب سيستمر بالنفوذ من خلال الغشاء حسب ظاهرة الازموزية أو الضغط التناضحي. أما إذا انعكست العملية بحيث يتم تحويل الضغط على الماء المالح فأن عملية التنافذ تنعكس بسبب الضغط المبذول على الماء المالح فينتقل عبر الغشاء الماء تاركاً وراءه الأملاح ونتيجة الاستمرار بهذه العملية ستصبح الأملاح مركزة جداً في جانب الماء المالح وبواسطة مضخه يتم تصريف الأملاح المركزة في المحلول الملحي.


أما الماء العذب فيجمع. وقد تنوعت وحدات تشغيل التناضح العكسي من حيث التصاميم فمنها من يستعمل اللوح والإطار والأنبوب ووحدة الغشاء الحلزوني وكذلك الوحدات الليفية وجميعها تتصف بأساس واجد إلا وهو الغشاء النصف ناضح والشكل التالي يوضح عملية التناضح العكسي.

شكل (٨١) يوضح عملية التناضح العكسي

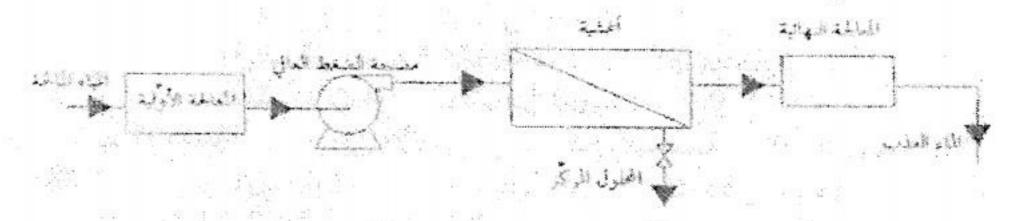

آلية عمل التناضح العكسي:

١ ـ كلنا نعلم أن عملية التناضح الطبيعي تتم بمرور الماء خلال الغشاء من الماء العذب أو النقي إلى المحلول الأكثر تركيزاً علماً أن لكل محلول ضغط أزموزي محدد من قبل تراكيز الأملاح والمواد الذائبة كما في الأشكال التالية :


شكل (٨٢) أ- التاضح الطيعي

٢ ـ أن عملية التدفق هذه تستمر إلى أن تحصل حالة اتزان وتصبح محصلة تدفق الماء عبر
 الغشاء صفراً كما هو في الشكل التالي :

شكل (٨٣) ب. التناضح الأسموزي


٣ أما إذا سلطنا ضغطاً على المحلول المركز أعلى من الضغط الأزموزي فأن تدفق الماء
 ينعكس وتحصل على كميات مياه عذبة أكثر كما في الشكل التالي :

ح- التناضح العكسي

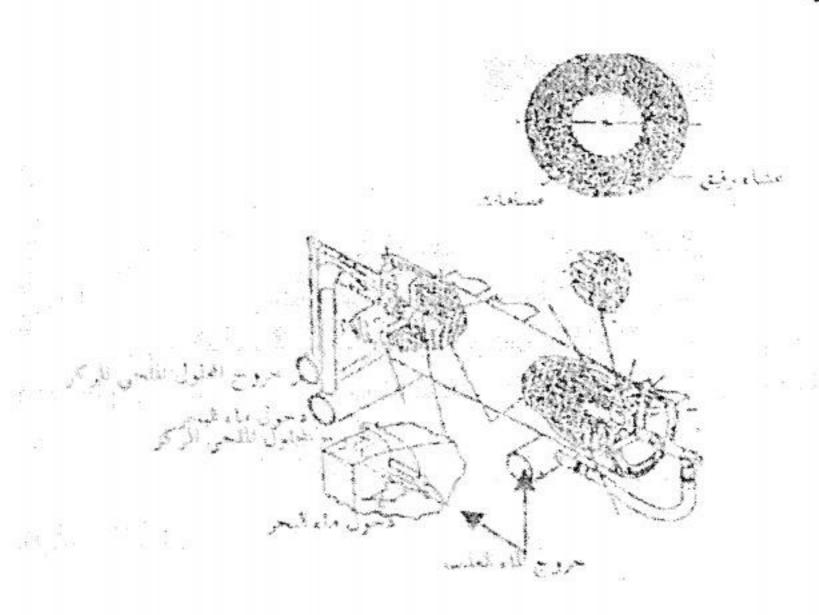
شكل (٨٣) ج - التناضح العكسي

٤ ـ لذا تم تصميم محطات متنوعة على هذا الأساس مستفيدين من هذه الظاهرة كما في الشكل التالي:

شكل (٨٤) وحدات التناضح العكسي

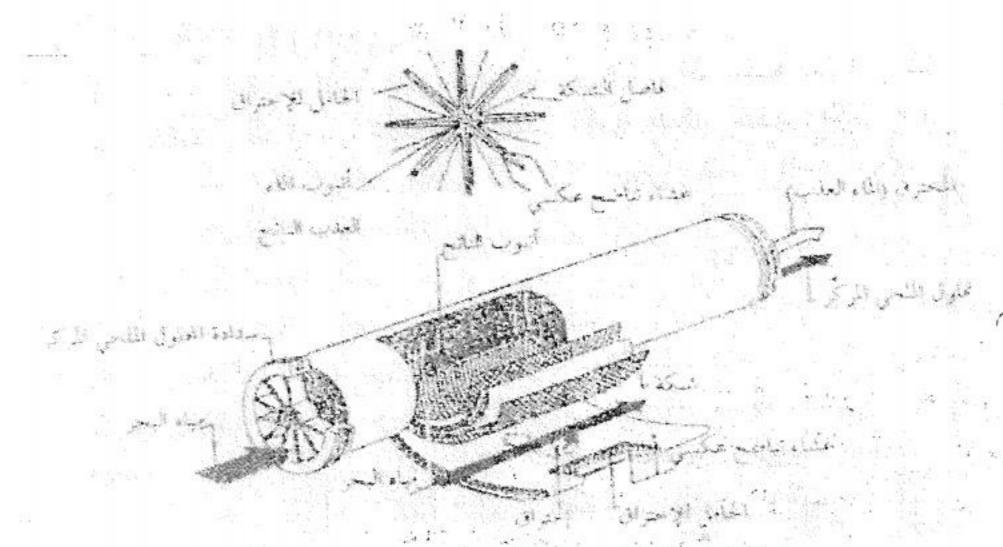
ومن التصاميم المختلفة لهذا النظام نشأت أربعة أنواع:

أ) الأغشية ذات الصفائح المعدنية .


ب) الأغشية من النوع الأنبوبي.

ج) الألياف الزجاجية الدقيقة المجوفة.

د) أغشية ذات اللف الحلزوني.


فبالنسبة للفقرتين أو ب فأنها تحتاج إلى مساحات كبيرة لذا فقد اعتمدت الطريقة جود.

فالتصميم (ج) يعتمد على حزمة متآلفة من أعداد كبيرة من الألياف ومن وعاء يحيط بهذه الألياف وهذه الألياف تكون حساسة جداً إلى مشاكل العكورة. كما في الشكل التالي:

شكل (٨٥) يوضح عملية التناضح العكسي عبر الأغشية HF

أما التصميم (د) فهي الأغشية ذات اللف الحلزوني وهذه الأغشية تكون على شكل طبقات في الأنبوب محتضنة بداخلها فراغات والتي تكون وسطاً لنقل الماء المغذي لسطح الغشاء وكما موضح في الشكل التالي.

شكل (٨٩) رسم توضيحي للأغشية من نوع (SW)

أما مواد الأغشية فهي من استينات السليلوز أو البولي آمايد.

وأهم مزايا التناضح العكسي:

١ - استهلاك قليل للطاقة وأهمها الكهرباء وعدم المساس بصفات الماء.

٢ ـ المعدات والأجهزة المستخدمة بسيطة .

" عملية التشغيل عند درجات حرارة عادية وبذلك تتخلص من المشاكل كتكوين القشور أو التآكل.

٤ ـ ليس هنالك أي مجال للتآكل أو الصدأ.

٥ - الوقت اللازم قليل.

٦ ـ لا تحتاج إلى مساحات كبيرة.

٧ ـ أن عملية التناضح العكسي مستقرة في كافة الفصول.

المساوىء:

١ - تتطلب خبرات عملية عالية.

٢ - كلفتها عالية قليلاً مقارنة بالطرق الأخرى.

" - حساسية الأغشية تتطلب الخبرة الجيدة والعناية.

٤ - تصريف المحلول الملحي يحتاج إلى حيطة وحذر.

٥ - التوقفات الغير محسوبة.

: SAND FILTER الفلتر الرملي

عملية الترشيح هي عملية من أقدم العمليات والأوسع استعمالاً في عالم المياه والترشيح عبارة عن مرور الماء عبر حاجز مسامي وبكميات كبيرة من الماء والرمل عموماً يستعمل كوسط بيئي للترشيح (حاجز) وهو رخيص الثمن بالإضافة إلى أنه مؤثر . حيث استعمل الرمل في ترشيح المياه قبل أن يكون مشاعاً علماً بأنه مهم في عمليات التعقيم والتطهير وأول من سجل الرمل كمرشح للمياه الجاهزة للشرب كان في بيسلي في اسكتلندا عام ١٨٠٤ من خلال ١٨٧٠ فلتر ضغط سريع يتبعه فلتر جاذبية سريع وتصميمه لا يختلف كثيراً عن المتوفر حالياً ولكن في السنين الأخيرة ظهرت بعض التطورات في تشكيل وتصميم وتشغيل الفلاتر والتي أصبحت أكثر كفاءة وأقل كلفة وأبسط صيانة وأجود ترشيحاً لأن عملية الترشيح أصبحت مهمة في عالم معالجة المياه .

حيث يمر الماء عبر فراش رملي أو أي حاجز جيبي وبمعدل جريان صحيح مع ملائمة للمعاملة والإزالة ليس فقط للدقائق العالقة والخشنة بل إزالة الدقائق الغروية والمنتشرة وتتداخل عملية الترشيح مع عمليات التخثير والترويب والترسيب والحركة البراونية وقوى فأن ديرولس Van der waals وتأثيرات حركته الكترو ستكتيكية عدة وآليات كيماوية وفيزياوية تتدخل في إزالة الدقائق بواسطة الفلاتر الرملية بعضها تزال وهي على سطح الفلتر وذلك لعدم إمكانياتها من التسرب داخل الرمل بسبب كبير حجمها. أما الدقائق الصغيرة فتنقل إلى سطح الجينات نتيجة الاحتكاك.

الفلاتر الرملية البطيئة:

تصميم هذه المرشحات على قاعدة (أ) معدل الجريان لوحدة المساحة بطيء أو سريع (ب) نوع الفلتر (بيئة الفلتر) متضمنة رمل، فحم أو انتر سايت أوداي أتوماسس Diatomaceous (ج) اتجاه الجريان من خلال فراش الرمل إلى أعلى أو إلى أسفل (د) بالضغط أو بالجاذبية فأن كفاءة وكلفة الترشيح هو دالة (۱) لتركيز وصفات المواد الصلبة المنتشرة والعالقة (حجم الدقائق, توريعها، خواصها السطحية، عضوية، غير عضوية (۲) خواص مسامية البيئة (المرشح) حجم الدقائق، توريعها خواص السطح. (۳) خواص المواد الصلبة في الماء (٤) خواص المرشح وطريقة تشغيل المرشح فالمرشحات الحبيبة هي مستعملة بكثرة في حواص المرشح وطريقة تشغيل المرشح فالمرشحات الحبيبة هي مستعملة بكثرة في الماء في Soda Ash والرواسب المحدمولة على اللايم أو Soda Ash ولأجل إزالة العسرة من الماء (٣) إزالة الرواسب المحدمولة على اللايم أو Soda Ash ولأجل إزالة العسرة من الماء (٣) إزالة التحتلات عبر عملية التخثير والترويب. (٤) إزالة الأحياء المجهرية.

تصاميم فلاتر الرمل:

المرشح الرملي يكون على شكل وعاء مكعب من البولي ايثلين وله مقطع عرضي ذو مساحة ٤٠ سم × ٤٠ سم وارتفاع (٤٥ سم) أما ارتفاع فراش الرمل فيكون ٣٥ سم وتتكون من ستة طبقات من الرمل أو الحجر فالطبقة العليا هي الرمل الناعم أما الطبقة السفلي فهي من الصخور الحجرية فلذلك يدخل الماء من الأعلى فهي من الصخور الحجرية فلذلك يدخل الماء من الأعلى فهي من الصخور الحجرية فلذلك يدخل الماء من الأعلى الأسفل متخللاً الطبقات .

المرشح الكاربوني Carbon Filter

المرشح الكاربوني هو المرشح ذو الحبيبات السوداء والذي يستعمل لإزالة اللون والرائحة والمذاق من الماء بالاعتماد على تركيبه الحبيبة الكاربونية وكثافتها فالتركيب الداخلي للحبيبة الكاربونية نراها ي توازن ما بين الأقطار الصغيرة والكبيرة وتسمى هذه الموازنة بالبورس Pores وهذه لها دور كبير في قابلية امتصاص المذاق واللون والرائحة. ولكن من المشاكل التي تصادفنا والشائعة في المياه هي تواجد الكلورفينول والذي يعطي الطعم الغير مقبول للمياه حتى في أقل النسب O.I ppm وهذا ينتج من كلورة الماء المحتوي على فينولات والتي هي اعتيادية في المياه الصناعية فالكاربون الفعال له القابلية على امتصاص أورثوكلورفينول وعلى هذا الأساس يجب عمل دورة غسيل منتظمة لفراش الكاربون الفعال.

فوائد المرشح الكاربوني:

1 _ المساحة الكبيرة لـ Pores تعمل على إزالة المواد الصناعية .

٢ ـ الكثافة العالية والتركيب الصلب للكاربون الفعال يمكن أن يزيل المذاق واللون
 والرائحة من المياه.

٣_هذه المرشح يستعمل للمياه ذات معدل PH واسع.

٤ _ الكاربون الفعال له رماد قليل.

توصيات عند استعمال مرشح الكاربون:

١ ـ أن المياه المياه التي تمرر من خلال المرشح الكاربوني يجب أن تكون غير ملوثة بالزيوت.

٢ _ المياه التي تمرر من خلال المرشح الكاربوني يجب أن تكون مرشحة أولاً وخالية من الحديد .

٣ ـ مرشح الكاربون الفعال مع Silver 0.1% يمنع نمو الأحياء المجهرية.

٤ - مرشح الكاربون الفعال له القابلية لإزالة المبيدات، الأسمدة، شظايا المعادن
 كالألمنيوم، الزرنيخ، الكادمنيوم، الرصاص.

: Birm Flter موشيح برم

مرشح البرم هو مرشح ذو حبيبات سوداء وهذه الحبيبات لها القابلية لإزالة الحديد والمنغنيز من المياه في الضغط أو بنظام الجاذبية حيث يحتوي هذا المرشح على مواد مساعدة غير ذائبة لترسيب الحديد والمنغنيز حيث يتم ترسيب الحديد على شكل هيدروكسيدات لذا يجب عمل دورة غسيل لهذا المرشح للتخلص من الترسبات.

فوائد مرشح برم:

١ - لا يحتاج إلى مواد كيماوية للإدامة.

٢ _ يزيل الحديد بكفاءة.

٣ ـ تكاليفه رخيصة.

٤ - له عمر طويل.

٥ _ له معدل و اسع من درجة الحرارة .

ظروف عمل مرشح برم:

أ ـ لأجل إزالة الحديد:

١ _ يجب أن تكون المياه خالية من هايدروجين سلفايد .

٢ ـ المواد العضوية يجب أن لا تزيد عن ٤-٥ جزء بالمليون.

٣ ـ يجب أن تكون المياه خالية من الزيوت.

٤ ـ محتوى الأوكسجين الذائب على الأقل ١٥٪ من الحديد وعلى سبيل المثال الحديد (١٠) جزء بالمليون فيكون الأوكسجين الذائب ٥,١ جزء بالمليون.

(ب) لإزالة المنغنيز:

١ ـ إن إزالة المنغنيز من المياه بواسطة مرشح برم يفضل أن يكون عند PH عالي ما بين (٩-٩).

٢ ـ سحتوى الأوكسجين الذائب يجب أن يكون ١٥٪ أو أكثر من المنغنيز الكلي ومحسوب بـ PPM .

٣ ــ الظروف الأخرى كما جاءت في الحديد.

تحلية المياه بالمبادلات الأيونية:

أن معظم عمليات التبادل الأيوني سواء التي تجري في المختبرات أو في المعامل تتم باستخدام (أعمدة) طول وقطر هذه الأعمدة تحسب بحسابات وتملأ (Packed) هذه الأعمدة بالمبادلات الأيونية التي عادة ما تكون بشكل حبيبات كروية صغيرة يمر المياه من قمة العمود إلى نهايته السفلي وخلال ذلك تتم عملية التبادل ولأجل القاء الضوء على هذه الأساسيات قبل الدخول إلى تحلية المياه بالمبادلات الأيونية.

عملية التبادل الأيوني:

لتتبع ذلك نفرض أن لدينا مبادل أيوني على عينة أيون A وغرر به محلول من BY حيث يتبادل أيون B ويحل محل أيون A الموجود في المبادل الأيوني وعادة نصل إلى حالة التوازن قبل إزالة جميع أيونات B من المحلول حيث إذا أردنا إزالة تامة لأيونات فهذا يعني أنه نحتاج إلى كمية أكبر من المبادل الأيوني أو بتكرار مرور المحلول على المبادل الأيوني بعد تنشيطه.

يتلامس المحلول المار مرة بعد أخرى مع طبقات المبادل الأيوني الذي ما زالت حبيباته على هيئة A ونستطيع القول أن المحلول يمر بصورة تلقائية (اتوماتيكية) خلال سلاسل من طبقات المبادل التي عندئذ تصل إلى حالة التوازن. وعلى ذلك فإن كل الأيونات/ أخيراً تحل محل A قبل ظهور المحلول عند نهاية العمود. وباستمرار تكون الطبقات العليا معرضه للمحلول النقي من BY وبعد ذلك تتحول كلياً إلى هيئة أيون B وتفقد فعاليتها وكفائتها وتصبح مستهلكة عندئذ تكون المنطقة التي يحدث فيها التبادل الأيوني هي الطبقات التي أسفل من هذه وبالتالي تكون هي الأخرى مستهلكة أيضاً وهكذا إلى أن تصل نهاية العمود فيصبح كل المبادل مستهلك ويحتاج إلى تنشيط حيث تبدأ أيونات B بالظهور عند تدفق المحلول من قعر العمود وهذا يعني أن المحلول Y بدأ يخرج من العمود دون حدوث أي تبادل.

أن الميزة المهمة في عمل المبادلات الأيونية هي قابلية استعمالها مرة أخرى بعد تنشيطها ولعدة مرات بعد كل استخدام. والمبادلات المستخدمة حالياً مختلفة فمنها مبادل موجب حامض، مبادل موجب ضعيف الخاصية، مبادل سالب قوي القاعدة، مبادل سالب ضعيف القاعدة، مبادل سالب ضعيف القاعدة الخ، وفيما يلي عملية تنشيط كل عمود.

تنشيط راتنج المبادل الموجب:

المحاليل:

- محلول حامض الهيدروكلوريك تركيز 2 مولاري (يتم تخفيف 167.5 مل من حامض الهيدروكلوريك المركز (36%) وتوضع في دورق معياري سعة لتر وتكمل العلامة بالماء المقطر).

طريقة العمل:

ينقل 50 مل من الراتنج نقل كمي بواسطة الماء المقطر إلى عمود زجاجي بأبعاد (50×1.6سم) من ثم يمرر 600 مل من محلول حامض الهيدروكلوريك ٢ مول (b. V6) وبمعدل جريان بحدود 2-8 b.v. ساعة .

يتم امرار ماء مقطر لإزالة أثر الحامض بعد عملية الإمرار ويستمر بالغسل بنفس معدل الجريان وحتى وصول الماء الخارج إلى اس هيدروجيني 1-P^H2.

تنشيط راتنج المبادل السالب:

المحاليل:

- محلول هيدروكسيد الصوديو (NaoH) بتركيز %5 (50 غرام هيدروكسيد الصوديوم توضع في دورق معياري وتخفف إلى 1 لتر بالماء المقطر).

طريقة العمل:

تتبع الخطوات نفسها بالفقرة أعلاه عدا استمرار الغسل وصولاً إلى رأس هيدروجين 8.5-8.5 PH .

١٣-١ قياس السعة التبادلية للراتنجات:

نظراً لأهمية المبادلات الأيونية وفائدتها في تنقية وتحلية المياه للوصول إلى مياه نقية وعذبه وحيث أن السعة التبادلية لها تنخفض أو تتناقص مع استمرار الاستعمال لذلك يتوجب قياس هذه السعة بين فترة وأخرى. وفيما يلي طرق قياس السعة التبادلية لهذه المبادلات:

١ - قياس السعة الكلية للمبادل الموجب القوي الحامضية:

المواد الكيميائية:

ماء خالي من الأيونات (Deionized water) .

٠١٠/ (وزن/ حجم) محلول HCL .

٣٪ (وزن/ حجم) محلول Nacl .

NacH من NacH قياسي .

دليل Methyl red (محلول ١,٠٠/).

• طريقة العمل:

- ١ يؤخذ ١٠ ١٢ مل من الراتنج (المبادل الأيوني) ويوضع في عامود ذي قطر حوالي ال-٥, ١ سم وطول ٥٠ سم مع الماء الخالي من الأيونات حيث يصب الراتنج داخل العامود.
 - ۲ ـ يمرر على الراتنج أكثر من ۱۰٪ Hcl وفي درجة حرارة ۲۰ ـ ۷۰ م لمدة ۱ ساعة. .
- " يغسل الراتنج بالماء الخالي من الأيونات إلى أن يصبح الماء الخارج من العمود متعادلاً.
- ٤ يمرر بعد ذلك مقدار من Nacl (٣) ويجمع المحلول الناتج من العمود في دورق مخروطي سعة ١ لتر ويستمر امرار الملح إلى أن يصبح المحلول الناتج من العمود متعادلاً.
- مصحح المحلول المتجمع من الخطوه (٤) بمحلول IN NaoH القياسي وباستخدام
 دليل المثيل الأحمر ويسجل حجم القاعدة ولنفرض كان يساوي "C" مل.

4.4.

1 1 - 4

- ٦ ـ ينقل بعد ذلك الراتنج إلى اسطوانة مدرجة ويقاس حجم الراتنج بعد غسله بالماء الخالي من الأيونات ولنفرض كان حجم الراتنج = "٧" مل.
- ٧- يرشح الراتنج من الماء ويجفف في الفرن لمدة لا تقل عن ٤ ساعات على حرارة
 ١٠٠ م وثم يوزن الراتنج الجاف ولنفرض كان الوزن = "P" غرام.

• الحسابات:

السعة الكلية لوحدة الحجم =
$$\frac{C}{Z}$$
 = مكافئ / لتر (لهيئة + Na السعة الكلية لوحدة وزن = $\frac{C}{V}$ = مكافئ / كغم (لهيئة Y) السعة الكلية لوحدة وزن = $\frac{C}{V}$ = مكافئ / كغم (لهيئة + Na) السعة الكلية لوحدة وزن الجساف = $\frac{X}{Y}$ = غم / لتر (لهيئة + Na)

قياس السعة الكلية للمبادل السالب القوي القاعدة

المواد الكيميائية

ماء خالي من الأيونات (Deionzed Water) .

٨/ (وزن/ حجم) NaoH التر.

۳٪ (وزن/ حجم) Nacl .

IN محلول Hcl القياسي.

دلیل Methyl red (٪٠,١).

● طريق العمل:

١ ـ يؤخذ ١٠ - ١٢ مل من الراتنج ويوضع في العامود كما في الموجب.

٢ - يمرر على الراتنج ١ لتر من ٨٪ NaoH عند حرارة ٦٠ -٧٠م لمدة ١ ساعة.

٣ ـ يغسل الراتنج بالماء الخالي من الأيونات إلى أن يصبح الماء الخارج من العمود متعادل.

٤ - يمرر بعد ذلك Nacl ٣٪ ويجمع المحلول الناتج من العامود في دورق مخروطي
 سعة: لتر ويستمر امرار الملح إلى أن يصبح المحلول الناتج من العمود متعادلاً.

٥ ـ يسح المحلول المتجمع من الخطوه (٤) بمحلول (IN Hcl) بوجود الدليل ويسجل حجم الحامض وليكن يساوي "C" مل.

٦- ينقل بعد ذلك الراتنج إلى اسطوانة مدرجة وبقياس حجم الراتنج وهو في الماء
 الخالي من الأيونات ويسجل الحجم وليكن = "٧" مل.

٧ ـ يرشح الراتنج ويجفف في الفرن على درجة حرارة ١٠٠ م لمدة ٤ ساعات على
 الأقل وثم يوزن الراتنج الجاف وليكن يساوي "P" غم.

الحسابات :

السعة الكلية لوحدة الحجم =
$$\frac{C}{V}$$
 مكافئ / لتر (لهيئة $\frac{C}{V}$) السعة الكلية لوحدة وزن $\frac{C}{P}$ مكافئ / لتر (لهيئة $\frac{C}{P}$) السعة الكلية لوحدة وزن $\frac{X}{Y}$ التر (لهيئة $\frac{X}{Y}$) السعة الكلية لوحدة وزن الجساف $\frac{X}{Y}$

تحلية الماء بالمبادلات الأيونية:

من التطبيقات العامة للمبادلات الأيونية هو تحلية المياه وذلك بإحلال الكايتونات أو الأنيونات الموجودة في الماء بمحل + HCO3 ، H+ ، Na ، أو OH بواسطة عملية التبادل ومن ذلك سنرى أن عسرة الماء ستنخفض أن تختزل وبذلك تكون المياه صالحة وملائمة لأغراض الصناعة ولاستخدامه في البويلرات. وأن عملية الإحلال الكايتونات بمحل الكالسيوم والمغنيسيوم والحديد والمنغنيز . الخ بواسطة الصوديوم أو الهيدروجين . أما من الناحية الثانية فهو إحلال الأنيونات الكلورايد والفلورايد، السلفيت، النترات بواسطة الكاربونيت أو الهيدروكسايد.

عملية التبادل:

في عملية التبادل الكايتوني ـ فالكايتون للاكتروليت يذوب بالماء ويتثبت مع المواد الصلبة غير الذائبة والمعروف أن المبادل الكايتوني بصورة عامة يعطي نتائج لهذه التباينة يتحرر الصوديوم أو الهيدروجين آلية التبادل الكايتوني الصوديومي .

14.11.

المعادلات التالية توضح التفاعل الكيمياوي للإحلال.

$$Na_2Z + Ca^{++} \longrightarrow CaZ + 2Na^{++}$$
 $Na_2 + Mg^{++} \longrightarrow MgZ + 2Na^{++}$

حيث أن Na₂ Z هي التركيبة العاملة للزيولايت الكتايوني أما Z فهو الجزء الصلب للزيولايت.

$$Na_2R + Ca^{++} \longrightarrow CaR + 2Na (-)$$
 $Na_2R + Mg^{++} \longrightarrow MgR + 2Na$
 $Na_2R + Fe^{++} \longrightarrow FeR + 2Na$

حيث R تبقى كجزء من Cation bed ومن المفيد من هذه التفاعلات بأن العسرة ستنخفض في الماء وبدون أي تغيير يذكر في الأس الهيدروجيني (PH) وغالباً العسر بعد المعاملة تنخفض بعد هذه العملية . أما إذا تم التشغيل بالسعة التبادلية للكلية للمبادل E والتي تقاس كغم . مكافىء للكاتيون الممتص بواسطة ١ م من (bed) فأن القيمة ستنخفض أكثر بدرجة كبيرة . علماً أن السعة التبادلية يمكن شحنها بإمرار كما أوضحنا ذلك سابقاً وعملية الشحن يمكن أن توضحها المعادلة التالية :

$$CaR_2 + 2X_{salt}^{NaCl} \longrightarrow 2NaR + CaCl_2 + 2(X_{salt}^{-1}) Nacl$$

$$MgR_2 + 2X_{salt}^{NaCl} \longrightarrow 2NaR + MgCl_2 + 2(X_{salt}^{-1}) Nacl$$

حيث Xsalt هو غم مكافى الله Nacl لكل وزن مكافى اللكايتون Replaced) (Cation أن قيمة X salt اعتيادياً تتراوح ما بين ٢-٤ أما (Xsalt -۱) فهي ما بين السين الله الله (Replaced Cation). ١-٣عم مكافى الله Nacl مقدرة بالغرام مكافى الله (Replaced Cation).

عملية التبادل الأيوني الهايدروجيني :

أن عملية التبادل الأيوني الهايدروجيني يمكن أن توضحها المعادلات التالية :

$$H_2R + Ca^{++} \longrightarrow CaR + 2H^-$$

 $H_2R + Mg^{++} \longrightarrow MgR + 2H^-$
 $H_2R + Fe^{++} \longrightarrow FeR + 2H^-$
 $H_2R + 2Na^+ \longrightarrow Na_2R + 2H^-$
 $H_2R + 2K^+ \longrightarrow K_2R + 2H^-$
 $H^+ + HCo_3 \longrightarrow Co_2 + 2H^-$

من المعادلات نرى أن دورة المبادل الهيدروجيني تعمل على إزالة القاعدية بالكامل من الماء والمواد الصلبة ستنخفض وكذلك العسرة أما الحموضة فيمكن القول أن تركيز الأيونات المختلطة من HCO₃ الموجودة في الماء قبل التحلية تعمل على ثباتها .

أما شحن (exhausted bed) فيمكن شحنة مرة أخرى بإمرار حامض الكبريتك المخفض (١-٥, ١٪) كما أوضحنا ذلك سابقاً.

 $CaR_2 + X_{acid} H_2SO_4 \longrightarrow 2HR + (X_{acid}^{-1}) H_2SO_4 + CaSO_4$ $MgR_2 + X_{acid} H_2SO_4 \longrightarrow 2HR + (X_{acid}^{-1}) H_2SO_4 + MgSO_4$

هذه المعادلات تأخذ دورها من خلال عملية الشحن حيث Xacid هي الوزن المكافىء كل H₂SO4 لكل وزن مكافىء للكابتون (replaced cation) والتي اعتيادياً تتراوح ما بين (٥, ١-٢) والتي هي بحدود ٧٥-١٠٠ غم/ عم مكافيء والتي هي قيم . H₂So₄ عم مكافىء Stoichiometic

مواد المبادلات الأيونية:

الزيولايت هو أحد المواد المستخدمة ويمكن الحصول عليها طبيعياً أو نخليقياً والزيولايت يحتوي green sand أما الزيولايت المخلق فأنه خليط من سليكات الصوديوم أو ألمنيوم سلفيت أو صوديوم الومينيت. أما خواص الزيو لايت فهي:

أ ـ الوزن النوعي ٢٠٥٠.

ب_المحتوى الرطوبي ١٠٪ للطبيعي .

٥٠/ للصناعي.

جـ الكثافة الظاهرة ١,٥ عم/ سم للطبيعي. ٩,٠-١,١عم/ سم للمخلق.

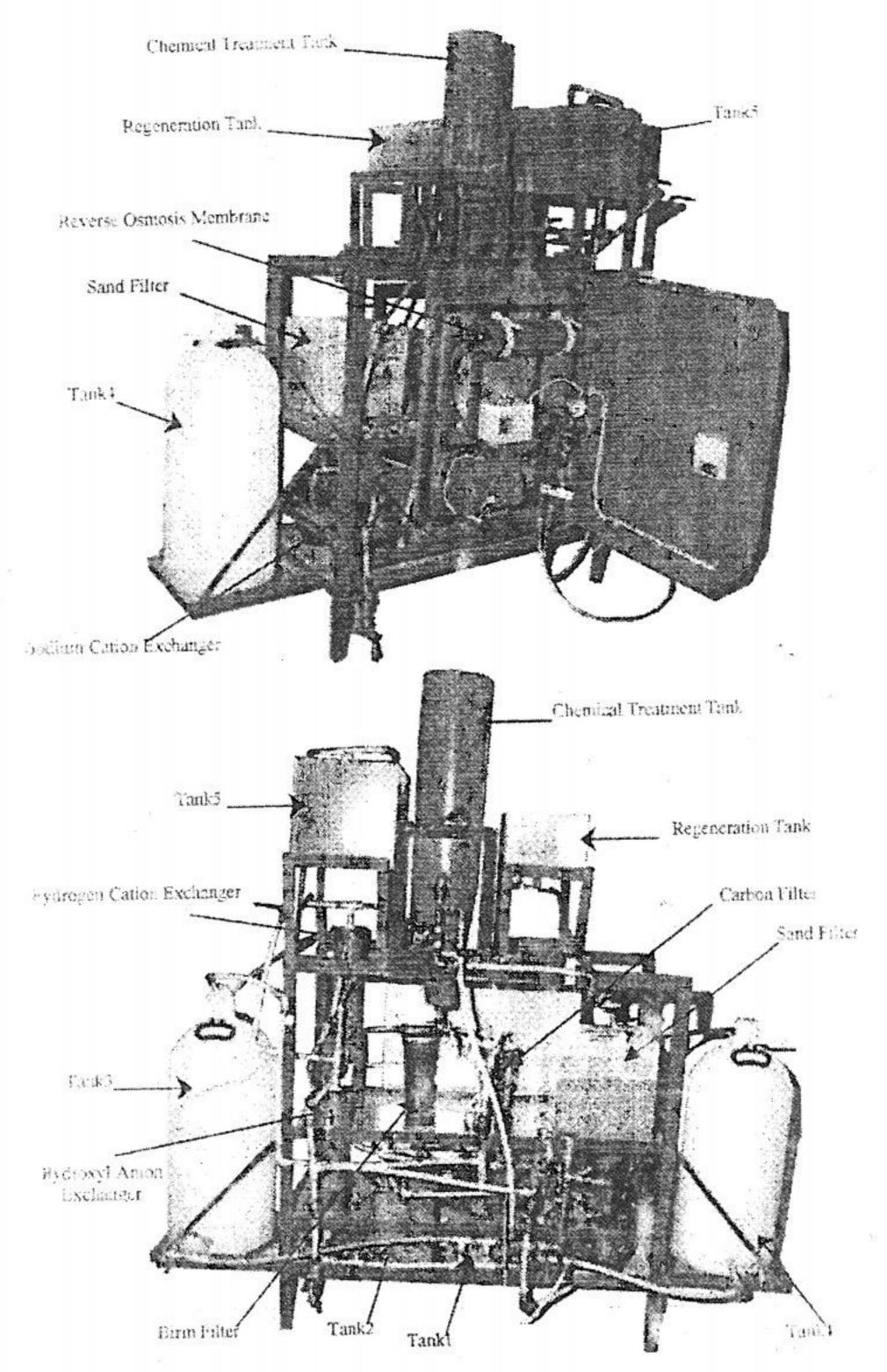


Figure (32): The parts of the uni-

وحدة التناضح العكسي R.O

الفصل الحادي عشر

• المياه المعدنية والخطوط الانتاجية

الفصل الحادي عشر المياه المعدنية والخطوط الإنتاجية

نتيجة للتطور العلمي الحاصل في العالم في جميع مجالات العلوم الهندسية والكيميائية والرياضيات، والفيزياء، والبيولوجي. الخ وكذلك التقدم التقني الهائل في تصنيع الخطوط الإنتاجية إضافة إلى كل هذا فأن الوعي الصحي قفزت قفزات كبيرة خلال الثلاثين عاماً الماضية نتيجة التطور الإعلامي الكبير الحاصل في العالم في المواد الإعلامية صحف، مجلات، أشرطة مسجله أفلام، إذاعة، تلفزيون، محطات فضائية، انترنت التي تؤدي دوراً كبيراً في مسألة الوعي الصحي والإطلاع على التقنيات الحديثة أن هذا التطور الكبير جلب الانتباه إلى كافة المجتمعات بحيث تهتم بالموارد المائية ونوعيتها وخصوصاً مياه الشرب ولأجل هذا وضعت الاشتراطات بالموارد المائية ونوعيتها وخصوصاً مياه الشرب ولأجل هذا وضعت الاشتراطات القياسية لكل نوع من أنواع المياه وخصوصاً للاستهلاك البشري فهنالك المياه المعدنية الطبيعية، المياه المعدنية الطبيعية، المياه المعدنية الطبيعية المكربنه، المياه المعدنية الصالحة للشرب.

والمياه المعدنية هي المياه التي تتميز بما تحتويه من أملاح معدنية بنسب محددة وعناصر هذه الأملاح مصدرها الأساسي هي المصادر الطبيعية كالينابيع والآبار وهي ثابتة التركيز ومستقرة التدفق والحرارة مع الأخذ في الاعتبار دورات الفصول الطبيعية وتجمع تحت شروط نقاءها الأصلي من الناحية الجرثومية وتعبأ في عبوات محكمة مع اتخاذ كافة الاحتياطات الصحية الخاصة، ومن هذه المياه الآتي:

- ١ ـ مياه معدنية طبيعية مكربنه طبيعياً وهذه المياه تحتوي على غاز ثاني أوكسيد الكربون بالكمية المحددة من قبل المنظمات العالية بما لا يقل عن ٢٥٠ ملغم/ لتر .
- ٢ ـ مياه معدنية غير مكربنه: وهذه المياه لا تحتوي على غاز ثاني أوكسيد الكربون الحر بالمقدار الضروري للمحافظة 'لى ذوبان أملاح البيكربونات.
- ٣ـ مياه معدنية مكرينة (فوارة) وهذه المياه يضاف إليها غاز ثاني أوكسيد الكربون من
 مصادر صناعة أخرى.
- عدنية مزال منها ثاني أوكسيد الكربون: وهي مياه معدنية لا تحتوي بعد معادلتها و تعبئتها على نفس نسبة ثاني أوكسيد الكربون الموجودة في المنبع أو البئر.

أمامن الناحية الأخرى وهي كمية الأملاح (T. D. S) الموجودة في المياه فهي الأخرى قد حددت من قبل المنظمات الدولية والإقليمية والمحلية اشترطت على أن تكون تسمية (المياه المعدنية الطبيعية) للمياه التي لا يقل محتواها عن ١٠٠٠ ملغم/ لتر أملاح أما المياه التي يقل محتواها عن ١٠٠٠ ملغم/ لتر أملاح فتكون التسمية (مياه معدنية طبيعية) ولأجل تميزها عن أنواع المياه الأخرى فتسمى ماء نبع (Spring Water) أو أي تسمية أخرى تشير إلى طبيعة المنتج وما زاد عن هذا التركيز من الأملاح أو خلا من الأملاح فيشار غليها بأنها مياه صحية وأن نسب العناصر للمياه المعدنية والمسموح بها محددة من قبل المنظمات في مواصفاتها الدولية والإقليمية والمحلية والمواصفة الأردنية التالية:

توضح مواصفة المياه المعدنية على أن لا يزيد T.D.S عن ١٥٠٠ إلى ١٥٠٠ والـ PH لا يقل عن ٦,٥ ولا يزيد عن ٥,٥ وأن يكون خالياً من المكونات المركبات الفينولية، المبيدات وثنائيات الفينانيل المتعددة الكلورة وكذلك من العوامل النشطة على السطح.

محسوبه على أساس	الكمية (حد أعلى)	العنصر أو المادة
	١ ملغم/ لتر	نحاس
	۲,۰ ملغم/ ليتر ٥,٠	منغنيز
	٥ ملغم/ ليتر	خارصين
H_3BO_3	٣٠ ملغم/ ليتر	بورات
	۳ ملغم/ كغم الممتص بـ KMNO ₄	مواد عضرية
	۰۰,۰۵ ليتر	زرنيخ
	١ ملغم/ ليتر	باريوم
	۰۱ , ۰ ملغم/ ليتر	كادنيوم
Cr+6	۰۰,۰۵ ليتر	کروم (+ ٦) سداسي
	۰۰,۰۰ ملغم/ ليتر	رصاص
	۰۰۱, ملغم/ ليتر	زئبق
	۰۱ , ۰ ملغم/ لتر	سيلينوم
F	۰,۰۲ مغلم/ ليتر	فلورايد

محسوبه على أساس	الكمية (حد أعلى)	العنصر أو المادة
NO ₃	٥٤ ملغم/ ليتر	نترات
H ₂ S	۰,۰۰ مغلم/ ليتر	كبريتيد
	۳۰ بیکو کوري (۸) لیتر	راديوم ٢٢٦ ـ النشط
NH_4^+	۰,۰٥ ليتر	الامونياك
SO_4 =	۲۵۰ ملغم/ ليتر	الكبريتات
Fe ⁺⁺	٣, ٠ ملغم/ ليتر	الحديد
Ca ⁺⁺	۲۰۰ ملغم/ ليتر	الكالسيوم
Mg ⁺⁺	١٥٠ ملغم/ ليتر	المنغنيسوم
CL-	۲۵۰ ملغم/ ليتر	لكلوريد
CaCo ₃	۳۰۰ ملغم/ ليتر	لعسر الكلي (١٠) (T.H)
Ag ⁺	۰,۰۰ ملغم/ ليتر	لفضة
Sb	٥,٠ ملغم/ ليتر	لانتيمون
Co ⁺⁺	١ ملغم/ ليتر	كوبالت
Ni ⁺⁺	۰,۰٥ ملغم/ ليتر	نیکل
Ti ⁺⁺	۱, ۰ ملغم/ ليتر	تيتانيوم

الخطوط الإنتاجية للمياه المعدنية:

لأجل إقامة أي مشروع إنتاجي للمياه المعدنية هو إيجاد النبع المثالي أو البئر المثالي الذي يضمن الاشتراطات القياسية والصحية التي وضعت من قبل المنظمات المحلية والإقليمية والدولية من حيث تراكيز الأملاح وكذلك T.D.S فإذا كان ضمن هذه الاشتراطات فليست هنالك مشكلة أما إذا كانت هذه التراكيز أعلى فيجب حلها للوصول إلى المعادلة الصحيحة التي وضعت من الجهات القياسية ونتيجة للتطور العلمي والتقني أمكن السيطرة على هذه المشاكل فإذا كانت كمية الأملاح عالية يمكن خفضها بالتقنيات الحديثة والتي أشرنا إليها في موضوع التحلية أما إذا كانت هنالك

مشكلة في النقاوة فيمكن السيطرة عليها عن طريق طرق الترشيح المختلفة أما إذا كانت هذا هنالك رائحة ولون فيمكن استخدام طرق الادمصاص. وقد تطرقنا إليها في متن هذا الكتاب لذا فاختيار النبع والبئر هو الأساس في تحديد الموقع والبدء في إقامة المشروع لإنتاج المياه المعدنية وفق المقاييس والمعايير.

ويمكن إجمال الخط الإنتاجي بما يلي:

١ _ المقطف _ (البئر أو النبع).

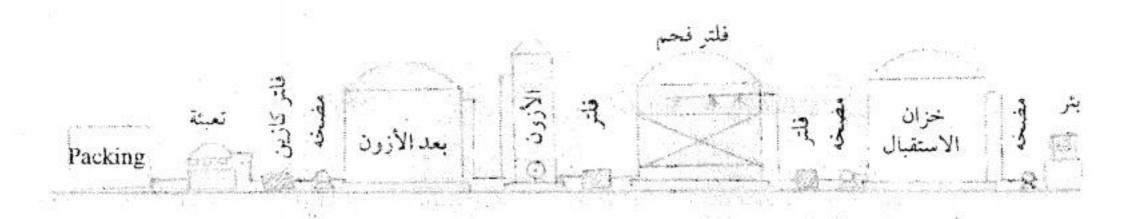
٢ ـ عملية استخراج المياه (مضخات متخصصة).

٣- خزانات الجمع.

٤ ـ عملية الفلترة من خلال فلاتر 0.5 مايكرون.

٥ ـ عملية الفلترة من خلال الفحم Charcool Fliter .

٦ ـ عملية الفلترة الثانية من خلال فلتر 0.5 مايكرون.


٧ عملية الفلترة من خلال التناضخ العكسي R.O (إذا كانت هنالك ضرورة من حيث ارتفاع T.D.S).

٨ _ خزانات المعاملة بالأوزون.

٩ ـ وحدة الفلترة الرقيقة 0.02 مايكرون.

١٠ وحدة التعبئة تحت ظروف

هذه هي الخطوات الأساسية في إقامة المشروع الإنتاجي للمياه المعدنية.

شكل (٨٧) يوضح مخطط إنتاجي لتعبئة المياه المعدنية.

المراجع العلمية References

- ١- أبو سفلي، أياد ١٩٩٤ الصحة والحياة.
- ٢- الياس سلامة ١٩٩٠ الجيولوجي الأردني تلوث الميه الجوفية، المسببات، طرق الحماية.
- ٣- أ. م. دوبري ١٩٩٣ مؤتة للبحوث والدراسات السلسة د، العلوم الطبييعة، والتطبيقية.
 - ٤ أحمد عبد الباسط الرجوب ١٩٩٤ هندسة المياه.
- ٥ ـ أحمد جودت العودات ١٩٩٣ صامد الاقتصادي ـ الطاقة والثروة المعدنية في فلسطين.
 - ٦- إبراهيم القعبي ١٩٩٠ المياه أنواعها والكشف عنها.
 - ٧- أ. يتريانوف مفتوح ١٩٨٧ ـ الماء تلك المادة العجيبة.
 - ٨ ـ أحمد عبران فحوص ومعالجة المياه المخصصة صناعياً.
 - ٩ ـ بليغ عبد المنعم ـ الماء ودورة في التنمية ١٩٨٦ .
 - ١٠ _ جان صقر ١٩٩٢ ـ الهندسة. الوضع الراهن لتحلية المياه.
 - ١١- جمال أبو سالم ١٩٩١ تحلية المياه المالحة المهندس الأردني.
 - ١٢ جمال عبد المنعم الكومي الماء سائل الحياة.
 - ١٣- زكريا شويش ١٩٩٢ العمران العزبي.
 - ١٤ ـ طلعت إبراهيم الأعرج التلوث المائي ج، ، جم .
 - ١٥_ يوسف مصطفى الحاروني ١٩٩١ تحويل الماء المالح إلى ماء عذب.
 - ١٦_مجلة الزراعة والمياه عدد ٦، ١٩٨٧.
 - ١٧_ مجلة علوم التقنية عدد ١٢ ، ١٩٩٠ .
 - ١٨ ـ مجلة العلم والتكنولوجيا عدد ١٧، ١٨، ١٩٨٩.
 - ١٩ ـ مجلة المهندس الأردني عدد ٤٧، ١٩٩٠.
 - ٠٠- مجلة الخليج العربي للبحوث العلمية ـ عمر الريماوي ١٩٩٢.
 - ٢١- المجلة العربية للعلوم مجلة ٩ عدد ١٥، ١٩٩٠.
 - ٢٢ ـ المجلة العربية للعلوم ـ عادل عوض ١٩٩٣ .

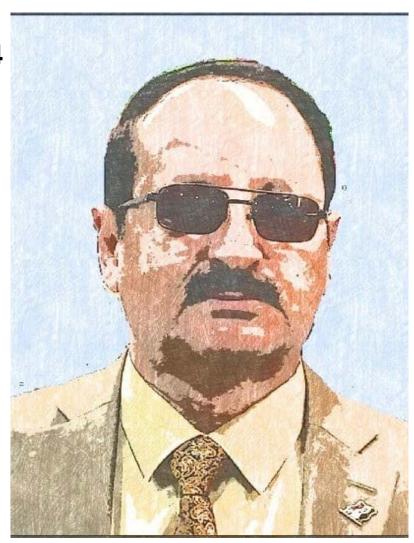
- ٢٣- المجلة العربية للعلوم عبد الله الكندي ١٩٩٤.
- ٢٤ـ المجلة العربية للعلوم والموارد المائية غير التقليدية في الوطن العربي وعلى اللبدي ١٩٩٠.
 - ٢٥- الزارعة والتنمية في الوطن العربي ساطع الراوي ١٩٩٤.
 - ٢٦ ـ تكنولوجيا اعذاب المياه في الأردن ـ ١٩٩٣ ـ عبد الرحمن فوزي.
- ٢٧ ـ تكنولوجيا اعذاب المياه في الأردن ـ المجلس الأعلى للعلوم والتكنولوجيا آذار ١٩٩٣ .
- 28- American Water Works Assocaition 1971 Water Quality and treat-Edition MCGRAW Hill Book Co. ment 3rd
- 29- Andy Goghlan 1991 Fresh Water the Sea New Scientist.
- 30- Ari Rabi 1985 Active Solan Collectors and Their application.
- 31- Bronk, J.R 1973 chemical Biology. An Introduction to Biochemistry Mc Millan Co. New York.
- 32- Black., A, P 1960 The Chemistry of Water tretment Basic Mechanism of Goagulation J. ANWA 52, 492.
- 33- Buswell, A. M. and G.P, Edwards 1922 some Facts about Residual Alum in Filtrate water Chem. Metal Eng 26: 828.
- 34- Chemical Engeneering Hand book.
- 35- C. F, Hicklins 1975 water was a productive Environment.
- 36- C. A, Sastry 1996 water tretments Norosa Publisher London.
- 37- Curd, C.R. and Hawkes H. A 1975 Ecological A spect of used water treatment Vol I.
- 38- Everett D 1980 Standard Method for the Examination of water of waste water.

- 39- Fennema, O 1976 water and Ice in Principle of Food Science Pant I Food Chemistry.
- 40- F. I, Belan 1995 water treatment.
- 41- Honey, P.D. 1956 Principle of Flocculation Related to water treatment Am Soc Chem Ens 82. H44.
- 42- Hasen S.P and G.L Culp (1967) Applying Shallow Dept Sedimentation Theory J. AWWA 59. 1134.
- 43- Hopkins, ES.(1924) Composition of Alum Floc in Mixing Basin J AWWA 12, 405.
- 44- Hiestand, E.N. 1964. Theory of Coarse Suspension Formulation J. pharm.
- 45- Kruyt H.R. 1952 Colloid Science Vol. 192 Elesvein Publisher.
- 46- Langelier w.f 1949 Mechansim of Flocculation in the Clarification of Turbid water JAWWA.
- 47- N Voznaya 1983 chemistery of water and microbiology.
- 48- O. Media C.R 1959 a review of the Coagulation process in inter sicence publisher.

مع تحيات د. سلام حسين عويد الهلالي

https://scholar.google.com/citations? user=t1aAacgAAAAJ&hl=en

salamalhelali@yahoo.com


فيس بك... كروب... رسائل وأطاريح في علوم الحياة

https://www.facebook.com/groups/Biothesis/

https://www.researchgate.net/profile///Salam_Ewaid

https://orcid.org/0000-0001-9734-7331

07807137614

WATER TRETMENT TECHNOLOGY

Dr. Hassan Khalied Hassan

المتخصصون في الكتباب الجامعي الأكاديمي العربي و الأجنبي والأجنبي والمتعصون في الكتباب الجامعي الأكاديمي العربي و الأجنبي والمتعربي و الأجنبي والمتعرب و المتعرب و المتعرب و المتعرب ا

Email: zahranco@maktoob.com