دراسة محطة معالجة مياه الصرف الصحي مينة

- الفصل الثاني – التحاليل المخبرية)

الفصل الثاني: (التحاليل المخبرية)

- ١ مقدمة :
- ٢- المعالجة البيولوجية ومواصفات مياه المجاري.
- ٣- مياه الصرف الصحي المعالجة لأغراض الري.
- ٤- تفسير نتائج التحاليل واستنتاج المؤشرات التصميمية للمحطة .
 - ٥- الخلاصة.

١ - مقدمة :

تعاني التجمعات السكنية للمحافظة بشكل عام وأحواض مصادر المياه بشكل خاص من تلوث كبير ناجم عن الصرف الصحي العشوائي الذي يصرف إليها بدون أي معلجة ونظراً لأهمية القيام بمعالجة هذه المتصرفات من أجل حماية هذه المصادر من التلوث ولتحسين الواقع الصحي والبيئي

٢ - المعالجة البيولوجية ومواصفات مياه المجاري:

تعتبر المعالجة البيولوجية هي الحل الأفضل والأكثر اقتصادية وشيوعاً من أجل معالجة مياه المجاري المعيشية ، وتضع معظم الكودات العالمية شروطاً خاصة لهذه المياه حتى تؤمن سير عملية المعالجة البيولوجية بشكل سليم ومجدى . من هذه الاشتراطات :

 $^{\circ}$ ان لا تكون درجة حرارة هذه المياه أقل من $^{\circ}$ 6 أو أكثر من $^{\circ}$ 1 أن لا تكون درجة حرارة هذه المياه أقل من

۲- رقم PH لا يتجاوز الحدود التالية

m- التركيز الكلى للأملاح الذائبة لا يتجاوز 10 g/L

ً ٤ - أن لا تحتوي على زيوت أو مواد نفطية أو مواد صعبة الأكسدة بيولوجياً

٥- أن لا توجد فيها مواد ضارة تتجاوز الحدود المسموحة

1- أن لا تتجاوز قيمة BO D القيمة التصميمية لمحطة المعالجة

ُ٧- أن لا تكون قيمة COD أكبر من قيمة BOD بأكثر من ١,٥

٨- التركيز الأدنى للمغذيات العضوية (P, N) نسبة إلى تركيز BOD بالشكل التالي:

BOD:N:P= 100:5:1

وا ذا لم تتوفر هذه النسبة فإنه يتم إضافة كمية كافية من مركبات الآزوت والفوسفور إلى مياه المجاري قبل إدخالها إلى المعالجة البيولوجية . وعلى ضوء هذه الاشتراطات العامة فقد توجب إجراء عدد من التحاليل المخبرية لعينات مياه المجاري وخاصة للمؤشرات الهامة منها وهي:

آ- الاحتياج البيوكيميائي للأوكسجين (BOD):

وهو كمية الأوكسجين المستهاك من قبل البكتريا الهوائية في عينة المياه المختبرة عندما تقوم هذه البكتريا بأكسدة المواد العضوية المنحلة والمعلقة الموجودة في هذه العينة أثناء فترة الحضانة بدرجة حرارة معينة غالباً (20°C) ولفترة محدودة زمنياً خمسة أو عشرين يوماً لتعطي قيم (20°C) ويقدر قيمها بـ (20°C) وبالنسبة لمياه المجاري المعيشية ومياه المجاري الصناعية القريبة إليها من حيث المواصفات فإن كمية الأوكسجين المستهلكة في الأيام الأولى للحضانة تساوي حوالي (20°C) وبعد خمسة أيام من الحضانة تصل إلى حوالى (20°C) من الأوكسجين المستهلك.

وتعتبر قيمة BOD لمياه المجاري من أهم المؤشرات التصميمية عند دراسة وتصميم منشآت المعالجة البيولوجية مثل أحواض الأكسدة والمرشحات البيولوجية وأحواض التهوية .

ب- الاحتياج الكيميائي للأوكسجين (COD):

يستخدم اختبار الاحتياج الكيميائي للأوكسجين من أجل تحديد أسرع لمحتوى المواد العضوية الموجودة في مياه المجاري خاصة في حال كون هذه المياه عبارة عن خليط لمياه مجاري معيشية وصناعية ، ويتم تحديد قيمة (COD) عن طريق تعريض عينة المياه الحاوية على الملوثات العضوية للغلي مع حمض الكبريت المركز ويضاف إلى المزيج مؤكسد قوي هو ديكرومات البوتاسيوم (K2 Cr2 O₇) الذي يعطي الأوكسجين الداخل في تركيبه لعملية الأكسدة .

يمكن إجراء اختبار (COD) بسرعة لذلك يمكن أن يكون مفيد في التحري عن التدفقات الكبيرة لمياه المجاري الصناعية ويقدر بـ mg/n أو mg/n.

ج- المواد المعلقة (SS):

وهي المواد التي نتم إزالتها عند ترشيح عينة مياه المجاري عبر وسط ترشيح نظامي وهي مؤشر هام عند تصميم محطة المعالجة لأنه يشير إلى كمية الرواسب و (الحمأة) المتوقع أن تنتج عن المحطة .

د- قيمة (PH):

تعتبر قيمة (PH) لمياه المجاري من المؤشرات الهامة سواء على شبكات الصرف الصحي أو لمنشآت المعالجة وبنيتها الهيكلية ، إذ أن المياه الحامضية تقوم بتخريب شبكة المجاري ومادة البناء لوحدات المعالجة ، وتعتبر درجة PH=7-8 .

وتدل قيمة (PH) الأكبر أو الأصغر على مياه مجاري قلوية أو حامضية ذات منشأ صناعي ولا بد عندها من معالجة مسبقة لهذه المياه قبل صرفها إلى المجمع الرئيسي الواصل إلى محطة المعالجة .

هـ المواد السامة والمعادن الثقيلة :

إن وجود المواد السامة (السيانيد ، مركبات السيانيد مع الزئبق والتوتياء ، مركبات السولفيد أو كبريتيد الهيدروجين) ووجود المعادن الثقيلة مثل (الحديد ، الكروم ، الزئبق ، التوتياء ، النيكل ، الكوبالت ، الرصاص، الكادميوم) في مياه المجاري دليل على تلوث مياه المجاري المعيشية بمياه المجاري الناتجة عن الصناعات الثقيلة (مثل صناعات التعدين والصناعات الكهربائية والالكترونية والكيميائية ، وصناعة النسيج ودباغة الجلود ، مصافي النفط) ويجب معرفة الحدود المسموحة وفق المواصفات لصرف المواد إلى مياه المجاري ، وذلك لأنها مواد ضارة ومثبطة لعملية المعالجة البيولوجية .

٢-١- المعالجة البيولوجية ومواصفات مياه المجاري (المواصفات العالمية) :

General Composition of Raw Domestic Wastewater


Contaminants	Units	Weak	Medium	Strong
Total solids (TS)	mg/L	To.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	17
Total dissolved solids (TDS)	mg/L	70.	0	۸٥٠
Fixed	mg/L mg/L			
Volatile	mg/L mg/L	1 80	٣٠٠	070
		1.0	۲.,	440
Total suspended solids (TSS)	mg/L	١	77.	٣٥.
Fixed	mg/L	۲.	00	٧٥
Volatile	mg/L	٨٠	170	740
Settable solids	mg/L	٥	١.	۲.
Biological oxygen demand (BOD)	mg/L	11.	77.	٤٠٠
Total organic carbon (TOC)	mg/L	٨٠	17.	۲٩.
Chemical oxygen demand (COD)	mg/L	70.	0	1
Nitrogen (as N)	mg/L	۲.	٤٠	٨٥
Free ammonia	mg/L	17	70	٥,
Organic nitrogen	mg/L	٨	10	٣٥
Nitrates	mg/L	•	•	٠
Nitrates	mg/L	•	•	•
Phosphates (Total as p)	mg/L	٤	٨	10
Organic	mg/L	١	٣	٥
Inorganic	mg/L	٣	٥	١.
Chlorides*	mg/L	٣.	٥,	١
Sulfates*	mg/L	۲.	٣.	٥,
Alkalinity (as CaCO ₃)	mg/L	٥,	١	۲.,
Grease / oil	mg/L	٥,	١	10.
Total Coli forms	No/100ml	1.7-1.	1. ~-1. ^	1. ~-1. 9
Volatile organic compound (VOC)	μ g/L	<1	١٠٠-٤٠٠	>٤٠٠

Adapted from Metcalf & Eddy . Wastewater Engineering , 3 rd ed ., McGraw-Hill, Inc., 1991. With permission .

^{*} Values should be increased by amount present in domestic water supply

Quality of Industrial Effluent Acceptable for Discharge In to the Municipal Sewers

In to the Municipal Sewers							
Parameter	Units	Limits					
Temperature	°C	Maximum 45					
Color	TCU	Wastewater containing dyes should					
		be discharged after decolonization					
Ordor and taste	none	Should not cause nuisance					
Toxicity		Should not affect the biological life					
		in activated sludge process at					
		wastewater treatment plant					
Total suspended solids (TSS)	mg/L	300					
рН		6.0-9.0					
Active chlorine	mg/L	0.5-3.0					
Bromine	mg/L	1.0-3.0					
Fluorides	mg/L	5.0					
Ammonia nitrogen	mg/L	75					
Nitrites	mg/L	As low as possible					
Nitrites	mg/L	5.0					
Total kjeldahl nitrogen	mg/L	100					
Cyanides	mg/L	0.1					
Phosphorus(total)	mg/L	Should be kept as low as possible					
Sulfate	mg/L	300					
Sulfide	mg/L	0.5					
Sulfide	mg/L	5.0					
Chemical oxygen demand (COD)	mg/L	700-1.000					
Biological oxygen demand (BOD)	mg/L	500					
Chlorinated hydrocarbons	mg/L	0.1					
Phenols	mg/L	5.0					
Trace elements	mg/L						
Aluminum (AI)	mg/L	20					
Arsenic (As), lead (Pb),& boron (B)	mg/L	0.1(each)					
Cadmium (Cd)	mg/L	0.1					
Chromium (Cr) & copper (Cu)	mg/L	0.1(each)					
Cobalt (Co)	mg/L	0.5					
Nickel (Ni) & Zinc (Zn)	mg/L	2.0(each)					
Mercury (Hg) & silver (Ag)	mg/L	0.001 (each)					

Characteristics of Treated Effluent used for Irrigation in Middle East, and Permissible Limits Set up by FAO

Last, and		e Limits Set up by FA	
		Permissible	Limits Followed
		Limits set up by	in
Parameters	Uni t	FAO	Middle East
pН	pH unit	6.5-8.4	·.V-V.0
Conductivity	mho / cm	0.7-3.0	1.7-7.0
Specific ion toxicity Sodium (Na)	mg/L	-	140-54.
Calcium (Ca)	mg/L	_	V90
Magnesium (Mg)	mg/L	_	740
Sodium absorption ratio(SAR)		3.0-9.0	٤.٠-٩.٠
Chloride	mg/L	140-350	٣٤
Boron	mg/L	0.7-3.0	1
Total nitrogen	mg/L	5.0-30.0	11-40
Hardness	mg/L	90-500	702
Residual chlorine	mg/L	1.0-5.0	0-1
Trace elements Aluminum (Al)	mg/L	0	۲.۰
Arsenic (As)			0
Cadmium (Cd)		1	
Chromium (Cr)		٠.١	0
Copper (Cu)		٠.٢	1
Iron (Fe)		٥.,	•.0
Lead (Pb)			٠.٠٢
Manganese (Mn)		٠.٢	0
Mercury (Hg)		-	•.• ٢
Nickel (Ni)		٠.٢	٠.٠٣
Zinc (Zn)		۲.۰	•.0

^{*}Adapted from Metcalf & Eddy , Wastewater Engineering , 3 rd Ed ., McGraw - Hill, Inc., 1991. With permission

Quality Assessment of Water and Wastewater

The General Quality of Raw Domestic Wastewater, Secondary and Tertiary Effluents in Middle East

	Raw	Secondary	Terti ary
Parameter	Wastewater	Effl uent	Effluent
Temperature (°C)	٣٠-٤٠	-	-
pH	٦.٠-٨.٠	٦.٠-٨.٠	٦.٠-٨.٠
Total solids	1.07	۳٥	17
Total suspended solids (TSS)	۲۳	۲۳.	١.
Volatile suspended	1070.	-	-
Chemical oxygen demand (COD)	79	-	-
Biological oxygen demand (BOD)	7040.	۲۳.	١.
Sulfate (SO ₄)	۲٤	_	-
Sulfide (S ⁻²)	0۲.	_	•
Grease/oil	۳٥.	•	•
Residual chlorine	_	-	0-1
Ammonia (as N)	۳٥.	-	110

All the parameters except pH and temperatures are measured in mg/L.

Quality of wastewater Acceptable For Discharge into the Sea

T UI DI	scharge into the b	/Ca
Parameters	Uni t	Limits
pН	Ph unit	6.5-8.5
Total suspended solids (TSS)	mg/L	70
Total dissolved solids (TDS)	mg/L	1
Ammonia	mg/L	١.
Dissolved sulfide	mg/L	٥.,
Chlorides	mg/L	1.0
Free chlorine	mg/L	•.0
Phosphate	mg/L	٥.,
Phenol	mg/L	0
Hydrocarbon	mg/L	70
Biological oxygen demand (BOD)	mg/L	١.
Trace elements	mg/L	
Copper		1.0
Chromium		0
Mercury		•.•1
Lead		0
Cadmium		0
Oil / Grease	mg/L	١.٠

٢ - ٢ - المواصفات القياسية السورية الخاصة بالمخلفات السائلة الناتجة عن النشاطات الاقتصادية المنتهية إلى شبكة الصرف العامة:

- الحدود القصوى المسموح بها في مياه الصرف الصناعي قبل طرحها إلى شبكة الصرف العامة: يجب أن تتحقق الاشتراطات التالية في مياه الصرف الصناعي التي تصرف من النشاطات الواردة أعلاه إلى شبكة الصرف العامة:

الملاحظات	الوحدة	الحد الأقصى المسموح به	الرمز	اسم العنصر
	سيليسيوس	٣٥	T	١ – درجة الحرارة
	/	7.0-9.0	рН	٢- الرقم الهدروجيني
بعد ۳۰ دقیقة	مل/ل	1.	S.S	٣- المواد الصلبة القابلة للترسيب
	مغ/ل	٥,,	T.S.S	٤- مجموع المواد العالقة
	مغ/ل	۲	S	٥- الكبريتيد
	مغ/ل	١	SO4	٦ –الكبريتات
	مغ/ل	١	NH ₄ -N NH ₃ -N	٧- الامونيا / الامونيوم
	مغ/ل	۲.	PO_4	٨- الفوسفات
	مغ/ل	١	_	٩- الزيوت والشحوم القابلة للتصبن
				والمواد الراتنجية
	مغ/ل	٣.٠	_	١٠ – الزيوت والشحوم المعدنية
	مغ/ل	١.٠	Ba	١١ – الباريوم
	مغ/ل	•.1	В	۱۲ – البورون
	مغ/ل	•.1	Cd	۱۳ – الكادميوم
	مغ/ل	۲.۰	Cr	١٤ – الكروم السداسي
	مغ/ل	١.٠	Cr	١٥ – الكروم الكلي
	مغ/ل	١.٠	Cu	١٦ – النحاس
	مغ/ل		Pb	١٧- الرصاص
	مغ/ل	۲.۰	Hg	۱۸ – الزئبق
	مغ/ل	١.٠	Ni	۱۹ – النيكل

الملاحظات	الوحدة	الحد الأقصى المسموح به	الرمز	اسم العنصر
	مغ/ل	١.٠	Se	٠٠- السيلينيوم
	مغ/ل	١.٠	Ag	۲۱ –الفضة
	مغ/ل	٤.٠	Zn	۲۲-التوتياء
	مغ/ل	•.0	CN	۲۳ –السيانيد
	مغ/ل	٠.١	As	۲۶–الزرنيخ
	مغ/ل	۲.۰	_	٢٥–مركبات الفينول
	مغ/ل	۸۰۰	BOD	٢٦ –الاحتياج الكيمياحيوي
				للأوكسجين
	مغ/ل	17	COD	٢٧- الاحتياج الكيمياحيوي
				للأوكسجين
	مغ/ل	۲۰۰۰	T.D.S	٢٨- الأملاح الكلية المنحلة
	مغ/ل	٦	Cl	۲۹-الكورايد
	مغ/ل	۸.٠	F	۳۰ الفلورايد
	مغ/ل	0	_	۳۱–المبيدات
	مغ/ل	٥	ABS	٣٢-المنظفات
	مغ/ل	٠.١	AOX	٣٣ المركبات العضوية الهالوجينية

- المواد والمخلفات غير المسموح بإلقائها إلى شبكة الصرف العامة:

- - ردم ، رماد ، زجاج ، بحص ، رمل ، إسمنت ، مونة إسمنتية ، قمامة صلبة ، تفل ، طحل ، خميرة ، ألياف ، قطع قماش ، مواد صنعية ، أخشاب ، وغيرها .
 - - صمغ صنعي ، دهان ، سوائل مطاطية أو كاوتشوكية ، مستحلبات ، سوائل قمامة ، وغيرها .
 - - مخلفات زراعية ، حيوانية ، نباتية (روث ، تبن ، قش ، بذور نباتية) وغيرها .
 - - مخلفات مسالخ (صوف ، ريش ، شعر ، أحشاء ، عظام ، بقايا جلود) وغيرها .
- بنزین ، مازوت ، کاز ، نفط ، تینر ، شحم ، بیتومین ، قطران ، زیوت معدنیة ، زیوت و شحوم حیوانیة و نباتیة وغیرها .
 - - حموض ، قلويات ، ماءات الكالسيوم ، مواد هيدروكربونية مكلورة ، أملاح معدنية ، كربيد وغيرها .
 - - مواد مستنفذة للأوكسجين المنحل مثل سولفيت الصوديوم وسولفات الحديدي وغيرها .

٣ - مياه الصرف الصحى المعالجة لأغراض الري:

م.ق.س: ۲۰۰۳/ ۲۰۰۳	الموضوع:	الجمهورية العربية السورية
ICS: 13.060.30		وزارة الصناعة
CNC AFFALANA	مياه الصرف الصحي المعالجة	هيئة المواصفات والمقاييس
S.N.S: 2752/ 2003	لأغراض الري	العربية السورية

Reclaimed Wastewater for irrigation use

١ -المجال

تختص هذه المواصفة القياسية بالاشتراطات الواجب توافرها في مياه الصرف الصحي المعالجة والناتجة عن محطات معالجة مياه الصرف الصحي والتي يمكن استخدامها حسب الأوجه المبينة في الجدول رقم (١)

٢ – التعاريف

٢/١ مياه الصرف الصحى:

هي المياه الناتجة عن الاستعمالات المنزلية والتي قد تختلط بمياه عادمة صناعية ذات نوعية مطابقة للمواصفة القياسية السورية م.ق.س/ ٢٥٨٠/ والخاصة بـ " المخلفات السائلة الناتجة عن النشاطات الاقتصادية المنتهية إلى شبكة الصرف العامة " .

٢/٢ المسطحات الخضراء:

هي المساحات المخصصة للأغراض الجمالية والتنسيقية وغير المخصصة لغايات النترة.

٢/٣ المحاصيل الصناعية:

هي المحاصيل التي تستخدم في غايات صناعية مثل القطن والشوندر السكري وأشجار الأخشاب وغيرها.

٢/٤ أنظمة المعالجة الميكانيكية:

هي الأنظمة التي تعالج المياه بطرائق ميكانيكية تتضمن التهوية والترسيب كنظام الحمأة المنشطة ونظام الأقراص البيولوجية الدوارة والمرشحات البيولوجية وغيرها.

٥/٢ أنظمة المعالجة الطبيعية:

هي الأنظمة التي تعالج المياه طبيعياً بواسطة البرك اختيارية التهوية أو اللاهوائية أو برك الإنضاج أو غيرها .

٢/٦ التطهير:

هي عملية التخلص من الميكروبات الممرضة والدالة على التلوث من خلال استخدام مطهرات مثل الكلور أو مركباته أو الأوزون أو أية مطهرات أخرى معتمدة .

رقم قرار الاعتماد	تاريخ الاعتماد	غير إلزامية التطبيق
٧٢	۲٩/٤/٢٠٠٣	

Syrian Arab Organization for Standardization and Metrology

م. ق . س ۲۷۵۲/۲۰۰۳

٣- الاشتراطات العامة

- ٣/١ يجب أن تطابق مواصفات المياه المعالجة مع الحدود المسموحة الواردة في الجداول رقم(١) وحسب الاستعمال المباشر المخطط له.
- ٣/٢ يجب إيقاف الري قبل جني المحصول بأسبوعين عند استعمال المياه المعالجة لغايات ري الأشجار المثمرة أو المحاصيل الحقلية أو العلفية قبل رعيها أو قصها مع استبعاد الثمار الساقطة والملامسة للتربة.
- ٣/٣ لا يسمح هذه المياه لري الخضار التي تؤكل نيئة (طازجة) مثل البندورة والخيار والجزر والخس والفجل والنعناع والبقدونس والكزبرة والفليفلة والزهرة والملفوف وما شابهها .
- ٣/٤ يجب استعمال الأنابيب أو القنوات عند نقل المياه المعالجة في مناطق ذات نفاذية عالية والتي قد تؤثر على الخزان الجوفي أو المياه السطحية المستخدمة للشرب.
- ٣/٥ لا يسمح بخلط المياه المعالجة في موقع محطة المعالجة بمياه نقية بهدف تحقيق الاشتراطات الواردة في هذه المواصفة .
 - 7/٦ لا يسمح باستخدام المياه المعالجة لغايات تغذية المياه الجوفية المستغلة لأغراض الشرب
- ٣/٧ في حالة استخدام المياه المعالجة لغير الأغراض المذكورة في هذه المواصفة (مثل أعمال التبريد أو الإطفاء) ، تعتمد مواصفات أو إرشادات قياسية خاصة بكل استعمال وبعد إجراء الدراسات اللازمة على أن يؤخذ البعد الصحى والبيئي بعين الاعتبار من قبل الجهة المستخدمة .
- ٣/٨ يجب اتخاذ التدابير اللازمة عند التعامل مع المياه المعالجة وذلك باستخدام طرائق الوقاية مثل (الأحذية المطاطية القفازات ...وغيرها) .

٤ - الاشتراطات القياسية

- 1/3 يبين الجدول رقم (1) المعايير القياسية الخاصة بمياه الصرف الصحي المعالجة المستخدمة في الزراعة ؛ وفي حال تجاوزت مواصفات المياه المعالجة هذه القيم يتوجب على الجهة المستخدمة لهذه المياه إجراء الدراسات العلمية الهادفة إلى توضيح تأثير تلك المياه على الصحة العامة والبيئة واقتراح الحلول العلمية والعملية الكفيلة بتجنب الإضرار بأي منهما .
- ٢/٤ تعد نتائج فحص عصيات القولون المقاومة للحرارة بديلاً عن نتائج فحص الأيشيريشيا كولاي عند عدم توفر الإمكانات الفنية اللازمة للفحص .
 - ٣/٤ يمنع استخدام نظام الري بالرشاشات لفئة الاستخدام (ب) و (ج) وباستثناء ري المسطحات الخضراء.
- ٤/٤ عند استخدام نظام الري بالرشاشات لفئة الاستخدام (أ) وكذلك المسطحات الخضراء غير المعرضة للاستخدام البشري نهاراً عندها يتوجب ممارسة الري ليلاً.
 - ٥/ عُستتنى المحاصيل التي تؤكل ني مثل الحمص والفول الأخضر والذرة فيما يخص فئة الاستخدام (ج).
- 7/٤ يسمح لمحطات التتقية الطبيعية بتجاوز القيم الخاصة بأعداد الأيشير يشيا كولي عند طرح المياه إلى أدوية مؤدية إلى سدود يتم تخزين المياه فيها وتستخدم مياهها بالكامل لأغراض الري ؛ أما في حالة استخدام المياه قبل وصولها إلى السدود فيتم الالتزام بهذه المواصفة وذلك حسب طبيعة الاستخدام .
- النسبة لمحطات التنقية الميكانيكية التي تحتوي على برك التشذيب ومحطات التنقية الطبيعية يتم حساب $80D_5$ الاحتياج الكيمياحيوي للأوكسجين $80D_5$ بعد إجراء عملية الفلترة .
- ٨/٤ عند استخدام المياه المعالجة لأغراض تغذية المياه الجوفية يجب إجراء الدراسات الفنية اللازمة لبيان عدم تأثيرها على الأحواض المائية الجوفية المخصصة لأغراض الشرب.

م. ق . س ۲۰۰۳/۲۰۰۳

جدول رقم (١)الحدود القصوى المسموح بها للمعايير القياسية الخاصة بالمياه المعالجة المستخدمة لأغراض الري

المؤشر	1 11									
العوسر	الخضار	المنتزهات والملاعب	الملاعب	الأشجار	جوانب الطرق	المسطحات	الحبوب	المحاصيل	الأشجار	
	المطبوخة	وجوانب الطرق داخل	الرياضية	المثمرة	الخارجية	الخضراء	والمحاصيل	الصناعية	الحرجية	
		المدن					العلفية			
المؤشر		Í			Ļ				E	
BOD ₅ (mg/l)		۳.			1				10.	
COD (mg/l)	٧٥				۲				٣٠.	
DO (mg/l)	أكبر من ٤			-				-		
TDS (mg/l)		10		10				_		
SS (mg/l)		٥,		١٠.				10.		
SAR					٩					
pH				٦	— 9					
CI ₂ Residual*		٠.٥		-				_		
NO ₃ -N(mg/l)	۲.			۲٥				7 0)	
NH ₄ -N (mg/l)	٣			٥				_		
SO ₄ (mg/l)		٣.,		٥.,			٥,	•		

م. ق . س ۲۲۰۲/۲۰۰۳

تابع جدول رقم-١-

المؤشر	الخضار	المنتزهات والملاعب	الملاعب	الأشجار	جوانب الطرق	المسطحات	الحبوب	المحاصيل	الأشجار
	المطبوخة	وجوانب الطرق داخل	الرياضية	المثمرة	الخارجية	الخضراء	والمحاصيل	الصناعية	الحرجية
		المدن					العلفية		
المؤشر		Í			ب			<u>ج</u>	
PO ₄ (mg/l)					۲.				
HCO ₃ (mg/l)					٥٢.				
CI(mg/l)					٣٥.				
الزيوت والشحوم					٥				
MBAS(mg/l)					٥,				
phenol(mg/l)				•	۲				
Na(mg/l)					۲۳.				
Mg(mg/l)					٦.				
Ca(mg/l)		٤٠٠							
	معابير صحية								
Fecal coli form MPN / 100 ml		<1000			<1	• • •		PO ₄ (mg/l)	_

تابع جدول رقم-١-

				<u>· · · · </u>					
المؤشر	الخضار	المنتزهات والملاعب	الملاعب	الأشجار	جوانب الطرق	المسطحات	الحبوب	المحاصيل	الأشجار
	المطبوخة	وجوانب الطرق داخل	الرياضية	المثمرة	الخارجية	الخضراء	والمحاصيل	الصناعية	الحرجية
		المدن					العلفية		
المؤشر		Í			ح			ب	
Intestinal Helminthes Eggs (egg/l)			عدة أو أقل	بويضة واد					
			النادرة	العناصر					
	الاستعمال طويل الأجل (بشكل دائم)					حد أقصى)	تتی ۲۰ سنة ک	قصير الأجل (ــ	الاستعمال أ
AI (mg/ l)			٥			٧.			
As (mg/ l)			٠.١			۲			
Be (mg/ l)			٠.١						
B (mg/ l)						۲			
Cd (mg/ l)			1			0			
Cr(mg/ l)	1					1			
Co (mg/ l)	0					٥			
Cu (mg/ l)	٠.٢					٥			
F(mg/ l)			1				١٥	1	

م. ق . س ۲۰۰۲/۲۰۰۳

تابع جدول رقم-۱-

Fe (mg/ l)	٥	٧.
Li (mg/l)	۲.۰	Y.0
Mn (mg/ l)	٠.٢	١.
Mo (mg/l)	1	0
Ni (mg/ l)	٠.٢	Υ
Se (mg/ l)	•.•Y	••
V (mg/l)	•.1	1
Zn (mg/l)	۲	1.

٥- مراقبة النوعية وآلية التقييم

- 1/٥ على الجهة المالكة لمشروع محطة معالجة مياه الصرف الصحي التأكد من مطابقة نوعية المياه المعالجة للمواصفات والحدود المذكورة في الجدول رقم (١) وحسب الاستخدام المخطط له ، وعليها القيام بإجراء التحاليل والاختبارات اللازمة مع ضرورة توثيق النتائج ضمن سجلات رسمية .
- ٥/٢ في حالة الحاجة إلى تحديد معايير مستجدة غير واردة في هذه المواصفة يتم الرجوع إلى هيئة المواصفات والمقاييس العربية السورية لاتخاذ الإجراءات اللازمة بالتعاون مع الجهات المعينة .
- ٥/٣ في الحالات الوبائية ، على الجهات الرقابية القيام بالتحري عن الجراثيم المعوية الممرضة الممكن تواجدها في المياه وذلك من أجل متابعة هذه الحالات مع الجهات المختصة .

٦- المصطلحات الفنية

Bio-Oxygen Demand (BOD) – الاحتياج الكيمياحيوي للأوكسجين

- الاحتياج الكيميائي للأوكسجين

- الأوكسجين المنحل Dissolved Oxygen

Escherichia Coli (E. Coli) – لأيشيريشيا كو لي

- بيوض الديدان المعوية – بيوض الديدان المعوية

- المواد الصلبة العالقة

- المواد الصلبة المنحلة الكلية - المواد الصلبة المنحلة الكلية

Most Probable Number (MPN) - لعدد الأكثر احتمالاً

٧- المراجع

- ١- مشروع المواصفة القياسية الأردنية رقم ٨٩٣/٢٠٠٢ والخاصة بمياه الصرف الصحى المستصلحة.
- ٢- دليل استعمال المياه العادمة المعالجة في الري الصادر عن منظمة الأغذية والزراعة للأمم المتحدة الفاو (FAO) عام ٢٠٠٠ / المكتب الإقليمي للشرق الأدني .
 - ٣- تقرير منظمة الصحة العالمية مجلد ٧٨ رقم ٩ ، عام ٢٠٠٠ .
 - ٤- الدلائل الصحية لاستعمالات السائلة في الزراعة وتربية الأحياء المائية ١٩٨٨ WHO
- ٥- الاشتراطات الفنية لاستخدام مياه الصرف الصحي المعالجة في التشجير وري المزروعات البلدية لائحة صادرة
 عن وزارة الشؤون القروية والبلدية في المملكة العربية السعودية .
- 5- Metcalf & Eddy, Inc (1991)
- 6- www . epa.gov: (environmental protection agency USA)
- 7- Vermes laszlo (1998) Hulladekgazdalkodas, hulladekhasznositas. Mezogazda Kiado. BP. HUNGARY

٨- الجهات التي شاركت في إعداد هذه المواصفة

- وزارة الري- مديرية مكافحة تلوث المياه العامة
 - وزارة الري مركز البحوث المائية
 - وزارة الري مركز معلومات الموارد المائية
 - وزارة الري مشروع تعزيز القدرات
 - وزارة الصحة دائرة صحة البيئة
 - وزارة البيئة مديرية سلامة المياه
- وزارة الإسكان والمرافق محطة معالجة الصرف الصحى بدمشق
- -المركز العربي لدراسات المناطق الجافة والأراضي القاحلة أكساد -
 - الهيئة العامة للبحوث العلمية الزراعية
 - هيئة الطاقة الذرية
 - مركز الدراسات والبحوث العلمية
 - هيئة المواصفات والمقاييس العربية السورية

3 - تفسير نتائج التحاليل واستنتاج المؤشرات التصميمية للمحطة : 1-1- التحاليل المخبرية الحقلية :

جدول (١) التحاليل المخبرية لمياه الصرف الصحي

Sample source	مصب صرف صحي ٨٠٢	مصدر العينة ورقمها ونوعها
Sampling date	18/11/2003	تاريخ أخذ العينة
Date of analysis	19/11/2003	تاريخ التحليل

الرمز	القيمة	الوحدة	اسم المؤشر	مسلسل
$T(C^0)$	19	درجة مئوية	درجة حرارة مياه الصرف (درجة مئوية)	١
COND	925	میکروموز/سم	الناقلية الكهربائية	۲
TDS	435	mg/l	مجموع الأملاح الصلبة المنحلة	٣
PH	6.95	-	الحموضة	ź
COD	550	mg/l	الاحتياج الكيميائي للأوكسجين	٥
B.O.D	230	mg/l	الأوكسجين الحيوي الممتص	٦
H_2S	0.3	mg/l	كبريت الهيدروجين	٧
SS	180	mg/l	المواد العالقة الصلبة	٨
NH ₃	46.11	mg/l	الأمونيا	٩
NO ₂	0.06	mg/l	النتريت	١.
NO ₃	6.6	mg/l	النترات	11
P	17.5	mg/l	الفسفور الكلي	17

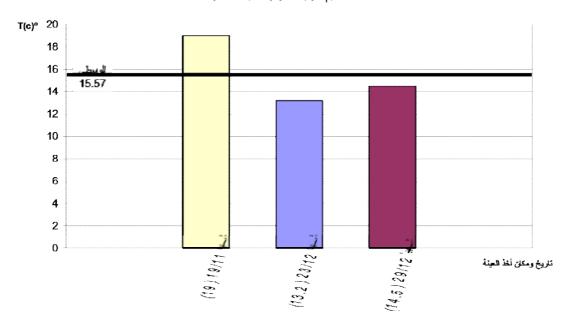
جدول (٢) التحاليل المخبرية لمياه الصرف الصحي)

Sample source	مصب صرف صحي ٩١٤	مصدر العينة ورقمها ونوعها
Sampling date	22/12/2003	تاريخ أخذ العينة
Date of analysis	23/12/2003	تاريخ التحليل

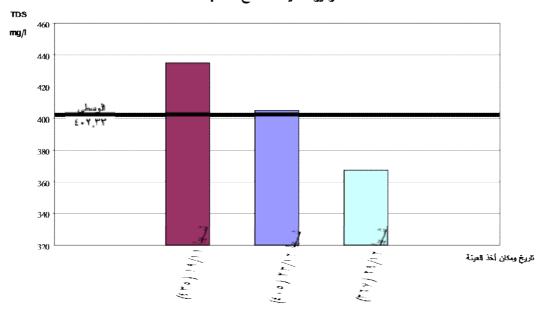
الرمز	القيمة	الوحدة	اسم المؤشر	مسلسل
$T(C^0)$	13.2	درجة مئوية	د جة حرارة مياه الصرف (درجة مئوية)	1
COND	830	میکروموز/سم	الناقلية الكهربائية	۲
TDS	405	mg/l	مجموع الأملاح الصلبة المنحلة	٣
PH	7.08	_	الحموضة	٤
COD	290	mg/l	الاحتياج الكيميائي للأوكسجين	٥
B.O.D	180	mg/l	الأوكسجين الحيوي الممتص	٦
H_2S	0.1	mg/l	كبريت الهيدروجين	٧
SS	140	mg/l	المواد العالقة الصلبة	٨
NH ₃	39.34	mg/l	الأمونيا	٩
NO ₂	0.05	mg/l	النتريت	١.
NO ₃	36.52	mg/l	النترات	11
P	11.91	mg/l	الفسفور الكلي	١٢

جدول (٣) التحاليل المخبرية لمياه الصرف الصحي

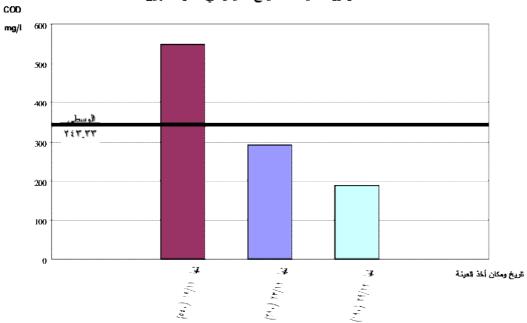
Sample source	مصب صرف صحي ٩٣٤	مصدر العينة ورقمها ونوعها
Sampling date	28/12/2003	تاريخ أخذ العينة
Date of analysis	29/12/2003	تاريخ التحليل

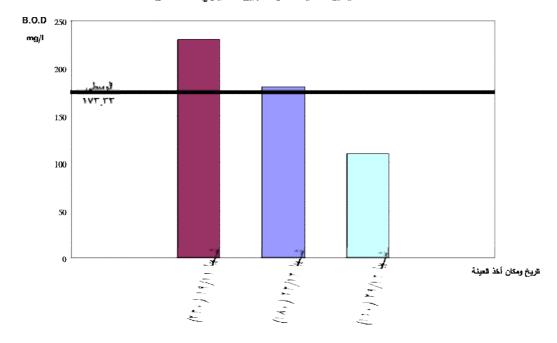

			اسم المؤشر	مسلسل
T (C ⁰)	14.5	درجة مئوية	درجة حرارة مياه الصرف (درجة مئوية)	١
	790	میکروموز/سم	الناقلية الكهربائية	۲
TDS	367	mg/l	مجموع الأملاح الصلبة المنحلة	٣
PH	7.04	_	الحموضة	£
COD	190	mg/l	الاحتياج الكيميائي للأوكسجين	٥
B.O.D	110	mg/l	الأوكسجين الحيوي الممتص	7
H_2S	0.3	mg/l	كبريت الهيدروجين	٧
SS	130	mg/l	المواد العالقة الصلبة	٨
NH ₃	27.73	mg/l	الأمونيا	٩
NO ₂	0.046	mg/l	النتريت	١.
NO ₃	27.28	mg/l	النترات	11
P	8.66	mg/l	الفسفور الكلي	١٢

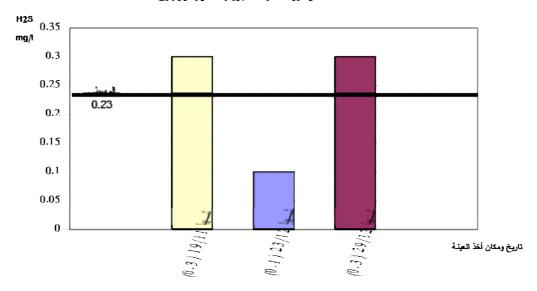
جدول (٤) التحاليل المخبرية لمياه الصرف الصحي

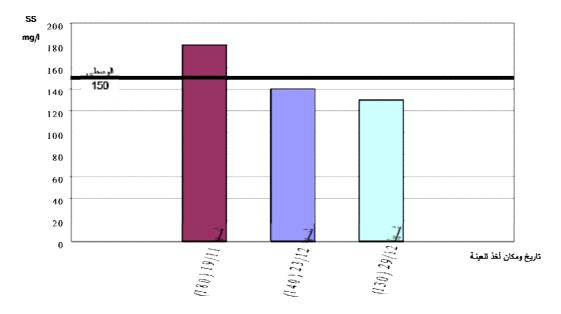

			` ,		
الوسطي	تاريخ التحليل	تاريخ التحليل	تاريخ التحليل	اسم المؤشر	المسلسل
	29/12/2003	23/12/2003	19/11/2003		
15.57	14.5	13.2	19	جة حرارة مياه الصرف T(c)°	در 1
848.3	790	830	925	COND اقلية الكهربائية	2 ال
402.3	367	405	435	جموع الأملاح الصلبة المنحلة TDS	3
7.023	7.04	7.08	6.95	Aph PH range of the Ph	4 الـ
343.3	190	290	550	حتياج الكيميائي للأوكسجين COD	11 5
173.3	110	180	230	وكسجين الحيوي الممتص ،BOD	11 6
0.233	0.3	0.1	0.3	ریت الهیدروجین H ₂ S	7 ک
150	130	140	180	واد العالقةالصلبة SS	8 1
37.73	27.73	39.34	46.11	NH ₃ مونيا	11 9
0.052	0.046	0.05	0.06	NO ₂ تريت	10 ال
23.47	27.28	36.52	6.6	راث NO₃	11 الن
12.69	8.66	11.91	17.5	سفور الكلي P	12 ال

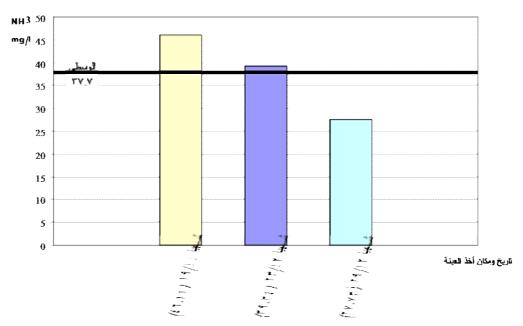
٤-٢- المخططات البيانية لنتائج التحاليل

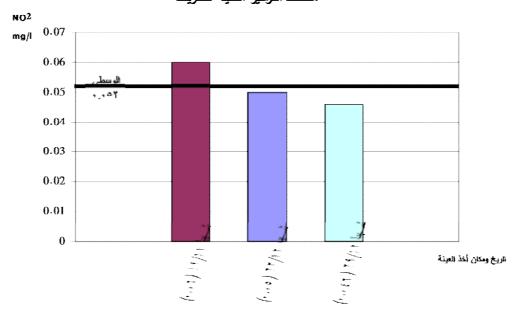

مخطط قيم درجة حرارة مياه الصرف

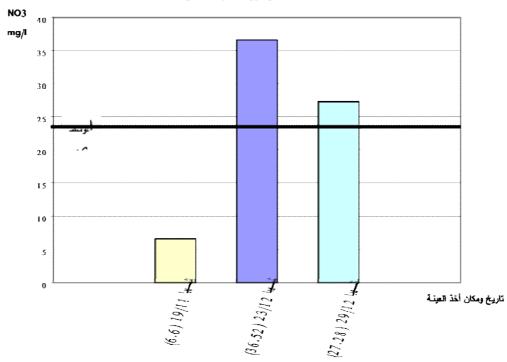

مخطط التراكيز الكلية للأملاح الصلبة المنحلة

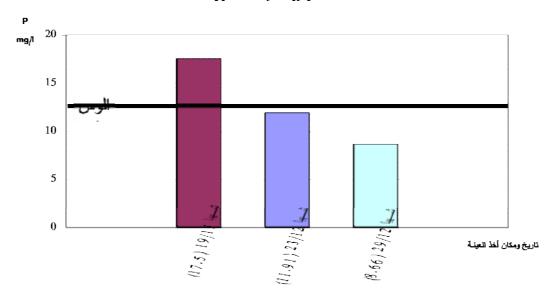

مخطط التراكيز الكلية للاحتياج الكيميائي للأوكسجين


مخطط التراكيز الكلية للأوكسجين الحيوي الممتص


مخطط التراكيز الكلية لكبريتيد الهيدروجين


مخطط التراكيز الكلية للمواد الصلبة العالقة


مخطط التراكيز الكلية للأمونيا


مخطط التراكيز الكلية للنتريت

مخطط التراكيز الكلية للنترات

مخطط التراكيز الكلية للفسفور

٤-٣- الأحمال التصميمية لمحطة المعالجة:

من نتائج تحاليل العينات التي وردت في الفقرة السابقة نجد أنه فيما يتعلق بقيمة BOD_5 فقد اتضح أن القيمة BOD_5 الوسطية لقيمة BOD_5 كانت تقريباً (ROD_5 ملغ / لتر) والقيمة العظمى لتركيزالحمل العضوي ROD_5 كانت (ROD_5 ملغ / لتر) أما قيمة ROD_5 فقد اتضح أن القيمة الوسطية لقيمة ROD_5 كانت (ROD_5 ملغ / لتر) وبالنسبة لقيمة تركيز الأمونيا ROD_5 كانت القيمة الوسطية القيمة العظمى لتركيز ROD_5 كانت (ROD_5 ملغ / لتر) وبالنسبة لقيمة تركيز الأمونيا ROD_5 كانت القيمة الوسطية القيمة العظمى لتركيز ROD_5 ملغ / لتر) والقيمة العظمى لتركيز ROD_5 ملغ / لتر) والمتعلق والمتعلقة والمتعلقة التصميمية وققاً للتالى :

المرحلة الثانية حتى عام ٢٠٣٥	المرحلة الأولى حتى عام ٢٠٢٠	الفترة التصميمية الغزارة
۱۲۱۰ م۳/ يوم	۳۹٤۸ م۳ / يوم	- الغزارة الوسطية للطقس الجاف Qav
٧٦ لتر/ ثانية	٤٦ لتر / ثانية	
2	2	$\mathbf{K}_{ ext{max}}$ عامل الانتظام الأعظمي –
۱۳۲۳۰ م۳ / يوم	۷۸۹۲ م۳ / يوم	- الغزارة العظمى للطقس الجافQmax.d
١٥٣ لتر/ ثانية	٩١ لتر/ ثانية	

<u>١ - حساب أحمال الملوثات للمرجلة الأولى للعام (٢٠٢٠) :</u>

- يبلغ إنتاج الفرد من الأوكسجين الحيوي الممتص BOD_5 بحدود ($\circ \circ g / day$) وانتاج الفرد من المواد الصلبة المعلقة SS بحدود ($\circ \circ g / day$) لكل فرد .

- عدد السكان المتوقع للسنة /٢٠٢٠/

- الحمل العضوى للفرد

۳۹٤۸۳ نسمة ٥٠ غرام / يوم

- ١ - ١ - اجمالي الحمل العضوي اليومي:

 $(B.O.D_5)_i = [50g][39483]/[1000] = [1974 \text{ kg}/\text{day}]$

- ١ - ٢ - حمل المواد الصلبة العالقة اليومي:

 $(SS)_i = [65 g][39483]/[1000] = [2566 kg/day]$

- ($BOD_5)_e = 25 \text{ mg} \ / \ L$) : المياه المعالجة الخارجة من محطة المعالجة تحوي على
 - تركيز اله (BOD₅) الداخل إلى أحواض التهوية :

- $(NH_4)_e = 12 \text{ mg} / 1$: حوي على محطة المعالجة من محطة المعالجة الخارجة المعالجة الخارجة المعالجة المعالجة الخارجة المعالجة المعالجة
 - تركيز ال NH4)I) الداخل إلى أحواض التهوية:

 $(NH_4)_i \! = \! [217kg \, / \, day \,] \, [10^3 \,] \, / \, [\, 3947m^3 \, / \, day \, \,] \! = \! [55mg \, / l]$

٥ – الخلاصة :

وبالتالي سيتم الاعتماد في القيم التصميمية للمحطة على القيم الحسابية كقيم أعظمية يجب أن تتحملها منشآت محطة المعالجة وتكون قادرة على تشغيل المحطة في حال دخول هذه الأحمال مع مراعاة أن تكون هذه المنشآت قابلة للمناروة بالتشغيل حرصاً على التفاوت الذي قد يحصل في فترات الطقس المتفاوتة ويمكن تلخيص القيم التصميمية للمحطة كالتالي:

القيم الناتجة عن المعالجة mg/l	القيم التصميمية الداخلة إلى المعالجة mg/l	اسم المؤشر التصميمي
۲.	0	BOD_5
٣.	70.	SS
١٢	55	NH ₄