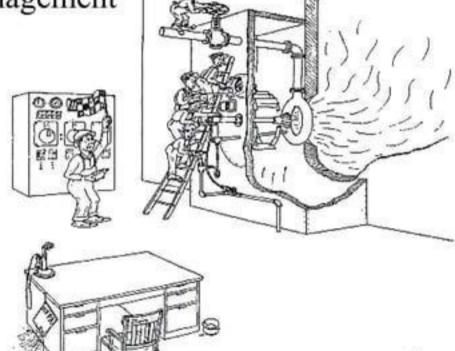


Preferred Utilities Manufacturing Corp.

Burner

Management Systems

A Technical Discussion


Preferred Utilities Manufacturing Corp.

- □ Introduction
- Burner Management System Objectives
- BMS Design Standards and Definitions
- □ BMS Logic
- BMS Strategies and Hardware
 - Types of Burner Management Systems
- BMS Interface to SCADA Systems
- Summary

Introduction

Burner Management Systems..

..a starting point.

What is a BMS?

- □ A <u>Burner Management System</u> is defined as the following:
 - A Control System that is dedicated to boiler safety, operator assistance in the starting and stopping of fuel preparation and burning equipment, and the prevention of mis-operation of and damage to fuel preparation and fuel burning equipment. ¹
 - From NFPA 8501 "Standard for Single Burner Boiler Operation"

Burner Management Objectives

- □ Sequence burner through safe start-up
- ☐ Insure a complete pre-purge of boiler
- Supervise safety limits during operation
- Supervise the flame presence during operation
- Sequence a safe shutdown at end of cycle
- Integrate with combustion control system for proper fuel and air flows

BMS Design Standards

- □ Each Burner Management System should be designed in accordance with the below listed guidelines to control and monitor all sequences of the start-up and shutdown of the burner
 - National Fire Protection Association (NFPA 8501 /8502 or others)
 - Industrial Risk Insurers (IRI)
 - Factory Mutual loss prevention guidelines
- □ Each burner management system should be designed to accomplish a safety shutdown in the event of an unsafe condition. (FAIL SAFE)

BMS Design Standards

- U.S. National Fire Protection Association (NFPA)
 - Governs safety system design on virtually all boilers (regardless of the process to be used to combust the fuel)
 - Requires the separation of the Burner Management System from any other control system
 - Requires the use of a hardwired backup tripping scheme for microprocessor based systems
 - Requires that a single failure NOT prevent an appropriate shutdown
 - Factory Mutual loss prevention guidelines.

□ NFPA 8501 Standard for Single Burner Boiler Operation

- Single Burner Boilers with fuel input greater than 12.5 mBTU/Hr (Approx. 250 BHP)
- Single Fuel or Combination of Fuels (Common being Natural Gas / No.2 Oil / No. 6 Oil)
- Simultaneous Firing

- □ NFPA 8502 Standard for Prevention of Furnace Explosions / Implosions in Multiple Burner Boilers
 - Multiple Burner Boilers with fuel input greater than 12.5 mBTU/Hr
 - Single Fuel or Combination of Fuels including Pulverized Coal
 - Emphasis on implosion protection (larger boilers with induced draft systems)

BMS Definitions

□ Furnace Explosions

- "Ignition of accumulated combustible mixture within the confined space of a furnace or associated boiler passes, ducts, and fans that convey gases of combustion to the stack"
- Magnitude and intensity of explosion depends on relative quantity of combustibles and the proportion of air at the time of ignition
- From NFPA 8502 "Prevention of Furnace Explosions / Implosions in Multiple Burner Boilers"

BMS Definitions

- □ Furnace Explosions can occur with any or a combination of the following:¹
 - Momentary loss of flame followed by delayed reignition
 - Fuel leakage into an idle furnace ignited by source of ignition (such as a welding spark)
 - Repeated Light-off attempts without proper purging
 - Loss of Flame on one Burner while others are in operation
 - Complete Furnace Flame-out followed by an attempt to light a burner
 - From NFPA 8502 "Prevention of Furnace Explosions / Implosions in Multiple Burner Boilers"

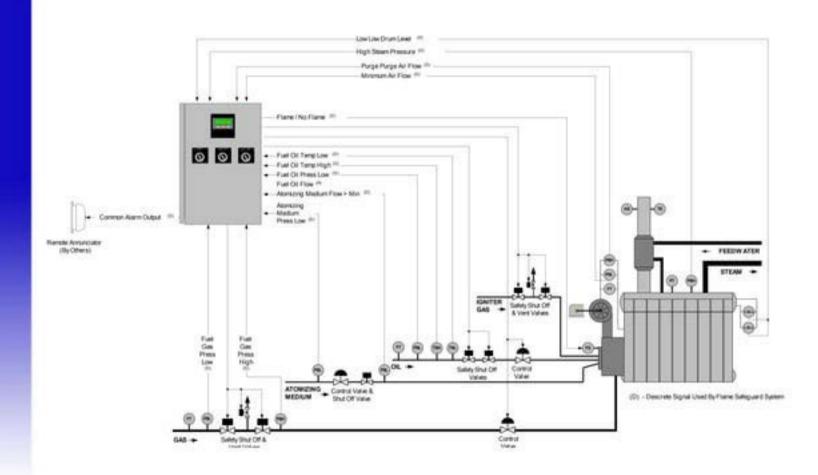
BMS Definitions

□ Furnace Implosions

- More common in large Utility Boilers
- Caused by any of the following:
 - » Malfunction of equipment regulating boiler gas flow resulting in furnace exposure to excessive induced draft fan head capability
 - » Rapid decay for furnace gas temperature and pressure due to furnace trip
- From NFPA 8502 "Prevention of Furnace Explosions / Implosions in Multiple Burner Boilers"

BMS Basic Definitions

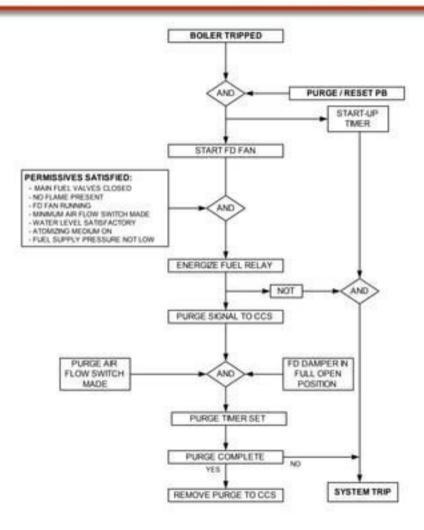
- □ Common Terminology
 - Supervised Manual
 - » Manual Burner Lightoff with Interlocks
 - Automatic Recycling (Single Burner Only)
 - » Automatic Burner Start and Stop based on preset operating range (ie.. Drum pressure)
 - Automatic Non Recycling (Single Burner Only)
 - » Automatic Burner Start and Stop based on Manual command to start.



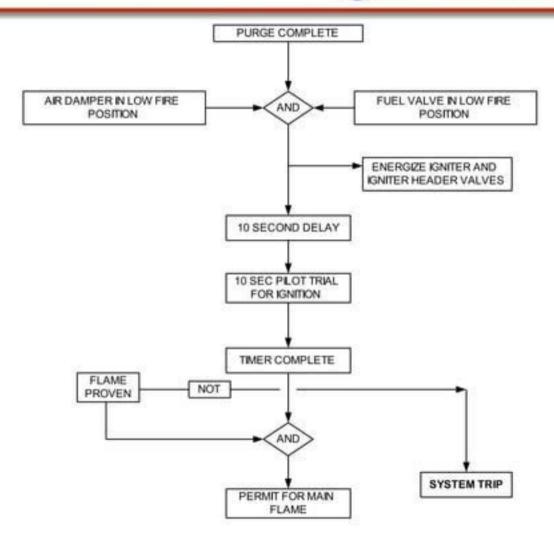
Types of Flame Scanners

- □ Infrared (IR) Detectors
 - Single Burner Applications
 - More Suitable with Oil Burning Flames
- □ Ultra-Violet (UV) Detectors
 - Multiple Burner Applications
 - More Suitable for Gas Burners and Combination Gas / Oil Burners
- □ Self Check Scanners
 - Flame Signal is interrupted at set intervals to verify proper operation of scanner

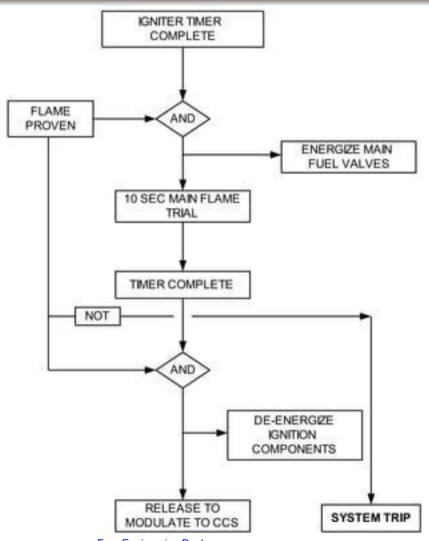
Single Burner BMS Inputs



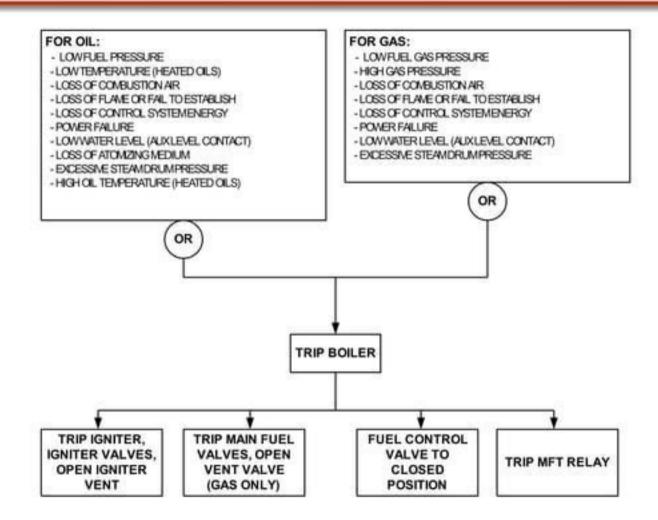
- Burner Management Systems can be broken down into "Interlock Groups"
- Typical BMS Interlock Groups:
 - Boiler Purge
 - Igniter Header Valve Management
 - Main Fuel Header Valve Management
 - MFT (Master Fuel Trip) Logic


Purge Interlocks

Free Engineering Books https://boilersinfo.com/


Igniter Interlocks

Free Engineering Books https://boilersinfo.com/


Main Flame Interlocks

Free Engineering Books https://boilersinfo.com/

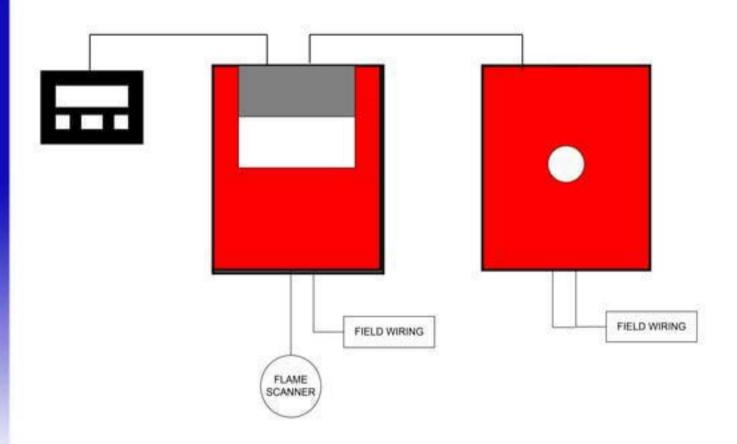
Single Burner Main Fuel Trip

BMS System Types

- Early Burner Management Systems
 - Hardwired Systems
 - Solid State Systems
- Microprocessor Based Systems
 - Fireye E110 / Honeywell 7800 series with fixed Logic.
- □ PLC Based Systems
 - Programmable Logic Controller (PLC) Based
 - Powerful, versatile, expandable, more reliable.

Early Burner Management Systems

- □ Hardwired Systems
 - Relay and Timer Driven. Found on older installations
 - Typical of Late 50's, 60's
- Solid State Systems
 - Solid State Processors and Relays
 - Found on Systems provided in the 70's and 80's
 - Proprietary Hardware (ie.. Forney and Peabody)
 - Spare Parts are extremely hard to find.



MicroProcessor Based Systems

- Microprocessor Based System providing:
 - Burner Sequencing
 - Ignition
 - Flame Monitoring
- ☐ Fixed Program with Limited Configuration Changes
- Components Selected Based on Requirements
 - Programmers, Flame Amplifiers, Message Displays

Fireye™ BMS Layout

MicroProcessor Capabilities

- □ Simple, Cost Effective
- □ Features
 - Selectable Flame Amplifiers / Scanners
 - Remote Display
 - Remote Data Communications via Modbus Port
 - Modernization kits are available to integrate with older systems
 - Spare Parts Normally Readily Available

When These Systems are Used

- "Simple" Boiler Installations
 - Packaged Firetube / Watertube Boilers (Steam / Hot Water)
 - Single Burner
 - One Fuel at a Time
 - No Flue Gas Re-Circulation
 - Upgrades from Previous MicroProcessor Based Systems

PLC Based Burner Management Systems

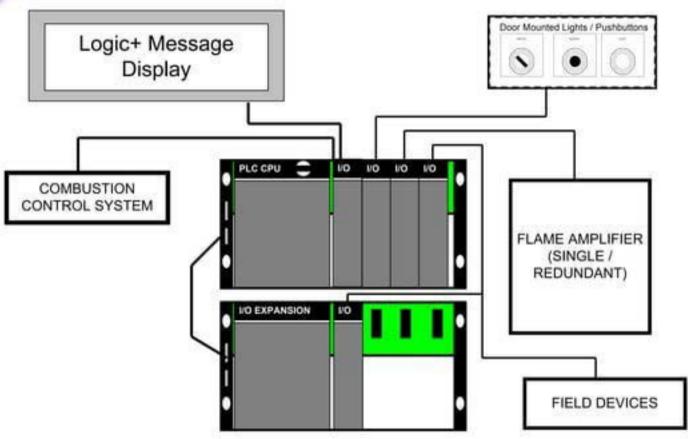
- PLC Based Features
 - NFPA 8501, 8502
 - Watchdog timer
 - UL 508 Certification
- Redundant Scanners
- Logic⁺ Message Center
 - Shows program status
 - Displays alarms
 - Prompts operator

PLC System Basic Design Features

- Each PLC based burner management system should incorporate a number of design techniques which help detect and act upon unsafe failure modes which can occur in any microprocessor based system. These design features include the following:
 - Critical Input Checking
 - Critical output channel monitoring
 - Electro-mechanical Master Fuel Trip (MFT) Relay
 - Redundant Watchdog Timers
 - Low Water Cut-out Monitoring During Blow Down

PLC Based System Capabilities

- Provision for Multiple Fuel Firing
 - Capped gas input during curtailment
 - Changeover from gas to oil at any load
 - Simultaneous firing of waste and fossil fuels
- □ Redundant Scanners, change scanner with fuel
- Single or Multiple Burner Applications
- □ Integration of BMS with SCADA


PLC Based Operator Interfaces

□ Features

- Clear Written Messages to indicate status, required operator interaction, trip/alarm indication
- High Visibility through two lines of display
- Messages reduce time consuming troubleshooting
- Prioritizes Messages
 - » First Out Alarms
 - » Warning / Alarm Messages
 - » Status Messages / Prompts Operator

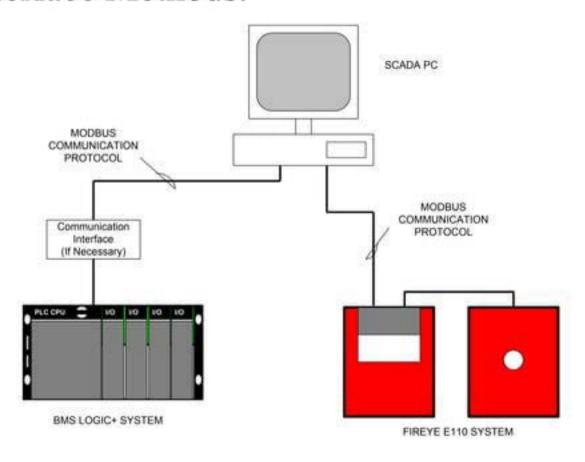
PLC System Layout (Typical)

Benefits of PLC Based Systems

- □ Flexibility / Reliability
 - Programming Software allows changes to system
- Choice of PLCs
 - GE / Modicon / Allen Bradley / Koyo
- Choice of Flame Scanners
 - PPC / Fireye / Honeywell / Iris / Coen
- Application Specific
- Quantity of Burners / Fuels is not restricted

When to Use PLC Based Systems

- "Complex" Boiler Installations
 - Larger Packaged Units / Field Erected Units
 - Multiple Burners
 - Multiple Fuels, On-line Fuel Changeovers
 - Flue Gas Re-Circulation
 - Replace Existing Relay Logic Systems
 - Requirement to maintain consistent control platform (spare parts, etc..)


BMS SCADA Interface

- BMS Systems can be integrated into a SCADA System
 - Allows Remote Monitoring of Flame Status
 - Allows Remote Control of BMS
 - Events (ie.. Burner trip) can be routed to Historical Portion of SCADA for fault evaluation
 - Burner Operation can be trended over time


BMS SCADA Interface

☐ Interface Methods:

BMS SCADA Interface

- Benefits Associated with New Burner
 Management Systems
 - Help Improve plant safety
 - Help qualify for reduced insurance cost
 - Reduce Startup and Down Time with comprehensive alarming and diagnostics

- □ Review of Topics Discussed
 - Objectives of Burner Management Systems
 - BMS Design Considerations
 - Basic BMS Logic
 - Types of Burner Management Systems
 - How BMS Systems can be integrated with Plant Wide SCADA Systems