| N D EX e Designlech

Tochnology for desigming the future

Table of Contents

AULOMALION OVEIVIBW ...ttt sttt sttt b ettt b et e e sb e et e e nbe e nb e e beennbee s 5
TYPES OF AULOMEALION ...ttt 5
Advantages & disadvantages of aUtOMALION............cueeiiiiiieiiieiic e 6
CONEIOI STFALEGIES ...ttt ettt et et e et e e nneatee s 7
TYPES OF CONTIOL ...ttt 9
Components Of AULOMALION.............cciiiieiiie e e e e e sare e e enaeeans 9
PLC INTTOTUCTION ...ttt ettt ettt e et nte e s 10
Difference DEtWEEN PC & PLC .......c.iiiiiiiiieiie et e 10
Advantages & Disadvantages 0f PLC ...........cooiiiiiii i 11
BIOCK GIAGIAIM ... et 12
SCAN CYCIE OF PLC ...ttt 12

SYSTEIM OVEIVIBW ...ttt b ettt ekt e st ettt e e e 13
SIMATIC S7 OVEIVIEW ....eeeiiiiie ettt e et e e e et e e ante e e anteeeanseeeaneeeanneeeenneeas 13
Positioning of Modular S7 CONtrolIErS ..........cviiiiiiie s 13
SIMATIC S7-1200: The Modular Mini-PLC ..........cccooiiieiiie e 13
SIMATIC S7-1500: Modular Controller for mid to upper range Performance.................. 14
SIMATIC S7-1200/1500: Technology FUNCHIONS .........ccocuvieiiiieiiiee e 17
SIMATIC S7-1200/1500: MemOry CardS.........ccovueeeiieeeiieeeiieeeeieeesirreessireeesieeeesaeeesneeas 20
DiIStriDULEd 1/ SYSTEMS ...ttt 21
SIMATIC S7-300: Modular Automation SYStEM .........cccveiiieiiiiiie e 21
SIMATIC S7-300: MOUUIES ......oeevieeiiecie ettt e et see e snae e 22

Digital FUNGAMENTALS .......eoiiiiiie e 24
Bit-Byte WOrd CONCEPLS ....ovvieiiie ettt et e et e e e e e ernee e 24
Different Logic Gates Circuit DIagrams ..........ccveeiireeiiieeeiiieeciee et see e e 25
Truth-Tables, Boolean EQUALIONS ...........cccvviiiiieiiiie e 27
Combination LOGIC CIFCUILS ......cvvieiiiee et e st e e aee e e erae e e aaeeas 30

CombINAIONAI LOGQIC .......vviiiiieeiiie s 30

Engineering Software TIA POl ..........coooviiiiiiiie e 32
TIA PORTAL-Central Engineering Framework ...........c.ccooiiriiiiiiiiiieieenec e 32
SCOPE OF TN PrOTUCTS ... 32
STEP S7 RaNGE OF PrOUUCTS ......ceeviiiiie et 32
WiINCC RANGE OF PrOTUCTS ......ooiiiiiieiiieiie et 33
Start drive Range Of PrOUCTS .........cooiiiiii i 36

Basics of PLC



| N D EX e Designlech

Tochnology for desigming the future

SIMATIC icenses at @ IANCE ........cccvvieiiiie e re e nneeas 38
Operating SYSteMS FOr PG/PCS.......cccuiiiiiie et 40
Parallel Installation “Side-DY-Side™ .........coiiiiiiiiiii e 40
Compatibility of STEP 7 with other SIMATIC products...........cccoooveiiieiieeniciieeneene 40
Compatibility of WinCC with other SIMATIC products...........ccccooveiienieeniciieneene 41
Compatibility of StartDrive with other Products ...........cccccooiieiiiniiiicee e 41
TIAPORTAL: PORTAL VIEW & PROJECT VIEW ....oovriiiiieiiieeeee e 41
HELP TUNCLIONS ...ttt ettt ettt et e e e b e snae e 44
DEVICES & NEIWOIKS: ...ttt 47
Online Tools, Configuring and Parameterizing the Hardware ............cccccoeovveviieecciee e, 47
Online Connection via Industrial Ethernet: IP Address & Subnet MasK............ccccccevvenne. 47
Online Access: Accessible Devices in the Portal VIew ... 48
CPU Memory Reset (MRES) using Mode Selector SWitCh..........cccccocveeviiniiiie e, 48
SIMATIC CARD READER.......oooi ittt e e e e e e e e e e e 49
Components of “Devices & Network™ Editor ..........cccviiiiiiiiiiiiiiiiciecee e 50
Set-point Configuration: Creating Hardware Station..............ccccoovveiiiiee e, 51
Downloading Actual Configuration into project: Inserting an Unspecified CPU .............. 51
Compiling the Hardware configuration and downloading it into the CPU ....................... 52
CPU Properties: Ethernet addreSS.........cocveeiiiee ettt 52
o I G N U PPPRRR 53
Meaning of Variables and Data TYPES ........oeiriiireiiierie it 53
o I O - o L TP P PP UPRPPPPPPP 54
Details VIBW OF PLC TAGS .. iveeitiieiiieeiie sttt sttt e e 55
Finding/Replacing/Sorting PLC TagS .....coveeiriaieeiiieriie ettt 56
Error Indication in PLC Tag TabIe .......cvoviiiiieiee et 57
Copy and Paste PLC Tags t0 EXCEL.........cceeiiiiiiiiie e 58
Using a PLC Tag as an OPErand...........cueeiiuiieiiuieeiiiieeiieeesieeesteeestee e steeeennee e nneaesnnnee e 59
Absolute & Symbolic ADAreSSING.......ccuviiiiieeiie e 60
Renaming/reWIrNG PLC TaAGS . ...veeureeieeiiiesiie ettt 61
Defining Tags While Programming ...........cooiueiie i 61
[V Lo] T 1 o] q [T I o I G I Vo S J PRSP TPR PRSP 63
REteNtiVENESS OF PLC TAGST .. .eiiitieiiieitie ittt sttt ne e 63
HMI ACCESS £0 PLC Ta0S .tttttiiieiiiiiiiiiiie e e e e ettt e e e s e e e e e e e s s s e e e e e e e e s e nnnnnnees 64
Program Blocks & Program EditOr...........ccoiiiiiiiiiiiiie et 65
Types of Program BIOCKS .........oouiiieiiiie et 65

Basics of PLC



| N D EX e Designlech

Tochnology for desigming the future

Structured ProgramMing .........eeoceeeiiiee e esieeesiee e ieeesee e e e st e e st e e s nneeeannaeeennaeeenneeas 66
PrOCESS IMAGES ... eiiiieiiiitite ettt e e e e e e e e e e s s e e e e e e e e aabnn s 67
CyClic Program EXECULION ........cccuviiiiiee s see e e et e et et e e e e et e e e e e e nneeas 67
AdAINg @ NEW BIOCK ... 69
Block Properties: Programming LangUage...........cooveeieiiiieiiienie e 69
Other Block Attributes, Editor Settings, NetWOrKS. ...........cooveiiiiiiiiiiciieesee e 70
BIOCK Programiming ........coeooioiiiiii et 73
Closing/Saving/Rejecting @ BIOCK ..........ccoooiiii i 74
BIOCK CallS......eiiiiiiiiecee et 75
ComPIliNg @ BIOCK ......coiiieeiiie et e 75
Downloading BIOCKS INt0 the CPU ..........coiiiiiiiie et 75
“Upload” blocks frOm dEVICE ........eeviuiiiiiiiiiiiie et 76
BINAIY OPEIATIONS .......utiiiiiitie ittt ettt b et e et e e e ne e 77
Binary Logic operations: AND, OR........cooiiiiiiiiiieie e 77
Sensors and SYMDOIS. ........ooiiii s 78
Signal State & Result of LOGIC OPeration...........ccveeiiieiiiee e 79
Binary Logic Operations-EXCIUSiVe-OR (XOR)......cc.cciiiiiiiiie e 83
ASSIgNMENt, SEt, RESEE, NOL.......oeiieiii e 84
LT 1 oL PSPPSRI 85
SIGNAI-EAQE DEECTION. .....eiiiiiiii ettt 86
RLO-EAQE DEIECTION.......coiiiiiiieiiieeiiee ettt ettt ne e 86
Jump Instructions JIMP, JIMPN, RET ......cccoiiiiiieiie e 87
DIgItal OPEIALION .....c.veiiiiiiiie ittt bt e et e e 89
Acquiring, Processing and OUPULtiNg Data............ccooieriiieiiiiiieiiie e 89
Integer (INT, 16 bit integer) Data TYPE ......oeeiiiieiiie e 90
Double Integer (DINT, 32 bit integer) Data TYPe ......ccovveeeiiieeiie e 90
Real (Floating Point Number, 32 bit integer) Data TYPE .....cccveevvveeiiiieeiiiee e 91
D1 £ 1Y/ 0L PP RPRTRPPP 92
L0010 ] (=] £ J PR PTPPR 93
Counters/Timers instance data DIOCKS............ooiiiiiiiiiii e 97
I L= o Vo 1 o oSSR 98
Basic Mathematical Functions: Comparison Operations .............ccooveeiveeneesiieesieeeseeenns 103
Basic Mathematical FUNCLIONS: ..........cooiuiiiiiiii e 108
Date and Time of day: RD_SYS T ..ot 113
Data BIOCKS. ...ttt e 115

Basics of PLC



| N D EX e Designlech

Tochnology for desigming the future

Data BIOCKS......coiiiiiiii i 115
Overview of Data TYPES IN STEP 7 .....oooieii ettt 115
Elementary Data TYPesS iN STEP 7.....ccoviiiiieeiee e 116
Data Types for Timers, Date and Time-0f-day...........ccccceviiiiiiiiiiiiciece e 116
COMPIEX DALA TYPES ...ttt ettt ettt be et e e nneeenbee s 117
Creating a Global Data BIOCK ............cooiiiiiiic e 119
DB Attributes: "Optimized Block Access" and "Only Store in Load Memory” .............. 119
Editing, Saving, Monitoring a Data BIOCK ..............ccooiiiiiiii e 122
Default, Start and Monitoring ValUES ............cooiuvieiiiie e 122
Retentiveness, Download DB into the CPU / Upload from the CPU ............cccccoeveeneen. 124
Downloading Changed Data Blocks into the CPU ...........ccccccveeiiieeiiie e 124
Function And FUNCEION BIOCKS.........ccviiiiiieeiicce e 125
Organization BIOCKS............oiiiiii e 129
Program BIOCKS..........ooiiiiiiiiic e 129
Organization Blocks available in SIEMENS............ccccooiiiiii e 129
Creating @ NEW OB ...t e e e e e nrae e e nneeeennes 132
OB Start Information using OB100 as an EXample..........cccccooveeviiieiiie e 133
ST-1200 STAITUD ©evvveetiieee ittt e et e e e e e s e s bbb et e e e e e s s s s sbbbbeeeaaeeeeaannes 133
Interrupting the CYCHIC Program ............coooviiiiiiii i 134
Time-of-Day INterrupt (OB 10) .......ooiuiiiiieiiieiie et 136
CyClic INTErTUPL (OB35) ...ttt 138
Hardware INterrupt (OB 40) ......ccueiiiieiiieiie ettt 139

Basics of PLC



1. Automation Overview « DesignTech

Technology for designing the future

Automation Overview

The word ‘Automation’ is derived from Greek words “Auto” (self) and “Matos” (moving).
Automation therefore is the mechanism for systems that “move by itself”.

However, apart from this original sense of the word, automated systems also achieve
significantly superior performance than what is possible with manual systems, in terms of
power, precision and speed of operation.

Definition: Automation is a set of technologies that results in operation of machines and
systems without significant human intervention and achieves performance superior to manual
operation

A Definition from Encyclopedia Britannica: The application of machines to tasks once
performed by human beings or, increasingly, to tasks that would otherwise be impossible.

Although the term mechanization is often used to refer to the simple replacement of human
labor by machines, automation generally implies the integration of machines into a self-
governing system.

Types of automation

Automation systems can be categorized based on the flexibility and level of integration in
manufacturing process operations. Various automation systems can be classified as follows

Fixed Automation: It is used in high volume production with dedicated equipment, which has
a fixed set of operation and designed to be efficient for this set. Continuous flow and Discrete
Mass Production systems use this automation. E.g. Distillation Process, Conveyors, Paint
Shops, Transfer lines etc. A process using mechanized machinery to perform fixed and
repetitive operations in order to produce a high volume of similar parts.

Programmable Automation: It is used for a changeable sequence of operation and
configuration of the machines using electronic controls. However, non-trivial programming
effort may be needed to reprogram the machine or sequence of operations. Investment on
programmable equipment is less, as production process is not changed frequently. It is typically
used in Batch process where job variety is low and product volume is medium to high, and
sometimes in mass production also. E.g. in Steel Rolling Mills, Paper Mills etc.

Flexible Automation: It is used in Flexible Manufacturing Systems (FMS) which is invariably
computer controlled. Human operators give high-level commands in the form of codes entered
into computer identifying product and its location in the sequence and the lower level changes
are done automatically. Each production machine receives settings/instructions from computer.
These automatically loads/unloads required tools and carries out their processing instructions.
After processing, products are automatically transferred to next machine. It is typically used in
job shops and batch processes where product varieties are high and job volumes are medium
to low. Such systems typically use Multipurpose CNC machines, Automated Guided Vehicles
(AGV) etc.

Integrated Automation: It denotes complete automation of a manufacturing plant, with all
processes functioning under computer control and under coordination through digital
information processing. It includes technologies such as computer-aided design and

Basics of PLC



1. Automation Overview « DesignTech

Technology for designing the future

manufacturing, computer-aided process planning, computer numerical control machine tools,
flexible machining systems, automated storage and retrieval systems, automated material
handling systems such as robots and automated cranes and conveyors, computerized
scheduling and production control. It may also integrate a business system through a common
database. In other words, it symbolizes full integration of process and management operations
using information and communication technologies. Typical examples of such technologies are
seen in Advanced Process Automation Systems and Computer Integrated Manufacturing
(CIM).

Advantages & disadvantages of automation

The main advantages of automation are:

Increased throughput or productivity.

Improved quality or increased predictability of quality.
Improved robustness (consistency), of processes or product.
Increased consistency of output.

Reduced direct human labour costs and expenses.

The following methods are often employed to improve productivity, quality, or robustness.

Install automation in operations to reduce cycle time.

Install automation where a high degree of accuracy is required.

Replacing human operators in tasks that involve hard physical or monotonous work.

Replacing humans in tasks done in dangerous environments (i.e. fire, space,

volcanoes, nuclear facilities, underwater, etc.)

e Performing tasks that are beyond human capabilities of size, weight, speed,
endurance, etc.

e Economic improvement: Automation may improve in economy of enterprises,
society or most of humanity. For example, when an enterprise invests in automation,
technology recovers its investment; or when a state or country increases its income
due to automation like Germany or Japan in the 20th Century.

e Reduces operation time and work handling time significantly.

e Frees up workers to take on other roles.

e Provides higher level jobs in the development, deployment, maintenance and running

of the automated processes.

The main disadvantages of automation are:

e Security Threats/Vulnerability: An automated system may have a limited level of
intelligence, and is therefore more susceptible to committing errors outside of its
immediate scope of knowledge (e.g., it is typically unable to apply the rules of simple
logic to general propositions).

e Unpredictable/excessive development costs: The research and development cost of
automating a process may exceed the cost saved by the automation itself.

¢ High initial cost: The automation of a new product or plant typically requires a very
large initial investment in comparison with the unit cost of the product, although the
cost of automation may be spread among many products and over time.

Basics of PLC



1. Automation Overview « DesignTech

Technology for desigming the future

e Additional training and technical help is needed for the installation as well as
maintenance.

Control strategies

There are basically two types of control system: the open loop system and the closed loop
system. They can both be represented by block diagrams. A block diagram uses blocks to
represent processes, while arrows are used to connect different input, process and output parts.
Technological Studies Control Systems

1. Open loop control system

e A simple open loop control system.

e Its operation is very simple, when an input signal directs the control element to
respond, an output will be produced. Examples of the open loop control systems
include washing machines, light switches, gas ovens, etc.

Input — | Process| — Output

e More sophisticated example of an open loop control system is the burglar alarm
system. The function of the sensor is to collect data regarding the concerned
house. When the electronic sensor is triggered off, it will send a signal to the
receiver. The receiver will then activate the alarm, which will in turn generate
an alarm signal. The alarm signal will not cease until the alarm is stopped
manually.

e The drawback of an open loop control system is that it is incapable of making
automatic adjustments. Even when the magnitude of the output is too big or too
small, the system will not make the appropriate adjustments. For this reason, an
open loop control system is not suitable for use as a complex control system.
Sometimes it may even require monitoring and response from the user.

2. Closed loop control system

e Sometimes, we may use the output of the control system to adjust the input
signal. This is called feedback. Feedback is a special feature of a closed loop
control system. A closed loop control system compares the output with the
expected result or command status, then it takes appropriate control actions to
adjust the input signal. Therefore, a closed loop system is always equipped with

Basics of PLC



1. Automation Overview « DesignTech

Technology for desigming the future

a sensor, which is used to monitor the output and compare it with the expected
result.

Comparing signal

Preset signal
—_— »| Process » Qutput
Feedback [+

e Asimple closed loop system.

e The output signal is fed back to the input to produce a new output. A well-
designed feedback system can often increase the accuracy of the output. Figure
above can be divided into positive feedback and negative feedback. Positive
feedback causes the new output to deviate from the present command status.
For example, an amplifier is put next to a microphone, so the input volume will
keep increasing, resulting in a very high output volume. Negative feedback
directs the new output towards the present command status, so as to allow more
sophisticated control. For example, a driver has to steer continuously to keep
his car on the right track. Most modern appliances and machinery are equipped
with closed loop control systems. Examples include air conditioners,
refrigerators, automatic rice cookers, automatic ticketing machines, etc.

e One advantage of using the closed loop control system is that it is able to adjust
its output automatically by feeding the output signal back to the input. When
the load changes, the error signals generated by the system will adjust the
output. However, closed loop control systems are generally more complicated
and thus more expensive to make.

Basics of PLC



1. Automation Overview « DesignTech

Technology for desigming the future

Types of control

VRN

Controls

~
PN

Linear control On-Off control

N — N—

N

Proportional
Control

N
N

PID control

N

N

Fuzzy logic and
other techniques

N

On-Off control: According to Feedback, Logic will be developed and then with the help of
controllers, 2 state controlling is being performed.

Linear Control: According to Feedback, process is being controlled linearly. It can be
proportionally/ integrally, derivatively controlled. There are some other methods for
controlling too.

Components of automation

Desired

Gu‘l‘pt}t - |Controller - Output

" — — Actuator | Plant
d Compensaten
Measured

Sensor
Output

Sensor: Produce the input value for the controller as feedback. For example, RTD, strain
gauge, float sensor.

Controller:  Controls the process by sending the particular value according to the set value
and feedback coming from the sensor. Difference between them called error. According to the
behavior of error, control strategies is being decided. Controllers can be Digital controllers,
dedicated controllers, PLCs etc.

Actuators: Component which is acting on the response of the controller. And as a result
process value will be effected.

Basics of PLC 9



1. Automation Overview « DesignTech

Technology for designing the future

Plant: The whole process and machines which is producing the product is called plant whose
parameters are measures by sensors.

PLC introduction

A programmable logic controller (PLC) is an industrially hardened computer-based unit that
performs discrete or continuous control functions in a variety of processing plant and factory
environments. Originally intended as relay replacement equipment for the automotive industry,
the PLC is now used in virtually every industry imaginable. Though they were commonly
referred to as PCs before 1980, PLC became the accepted abbreviation for programmable logic
controllers, as the term “PC” became synonymous with personal computers in recent decades.

Difference between PC & PLC

The PC is designed to be flexible and handle thousands of different types of applications, but
PLCs are especially designed for control.ss PCs started showing up on the factory floor in the
mid-80s in programming and HMI applications. However, now the PC is migrating toward
actual control. In response, PLC manufacturers have adapted PC technology, such as Ethernet.
Some systems actually provide a “PC on a card” to plug into the PLC back plane..:PLCs are
often thought of as computers. To a certain extent this is true; however, there are important
differences between PLCs and computers.

Real-Time Operation/Orientation the PLC is designed to operate in a real-time control
environment. The first priority of the CPU is to scan the 1/O for status, make sequential control
decisions (as defined by the program), implement those decisions, and repeat this procedure all
within the allotted scan time. Most PLCs have internal clocks and “watchdog timers” built into
their operations to ensure that a software error like “divide by zero” or an endless loop does
not send the central processor into an undefined state. When the watchdog time is exceeded,
the processor shuts down in a predetermined manner and usually turns off all outputs. In real
time systems, reliability is a big concern. PLC manufacturers’ experience shows mean time
between failures (MTBF) ranging from 20,000 to 400,000 hours. “This is far in excess of
almost any other type of electronic or control equipment.”

Environmental Considerations PLCs are designed to operate near the equipment they
control. This means they function in hot, humid, dirty, noisy, and dusty industrial
environments. Typical PLCs can operate in temperatures as high as 140°F (60°C) and as low
as 32° F (0°C), with tolerable relative humidity ranging from 0 to 95% noncondensing. In
addition, they have electrical noise immunities comparable with those required in military
specifications.

Programming Languages and Techniques PLC languages are designed to emulate the
popular relay ladder diagram format. This format is read and understood worldwide by
maintenance technicians as well as engineers. Unlike computer programming, PLC
programming does not require extensive special training. Applications know-how is much
more important. Although certain special techniques are important for programming efficiency,
they are easily learned. The major goal is the control program performance. Another difference

10

Basics of PLC



1. Automation Overview « DesignTech

Technology for desigming the future

between computers and PLCs is the sequential operation of the PLC. Program operations are
performed by the PLC in the order they were programmed (Figure 5.40). This is an extremely
useful feature that allows easy programming of shift registers, ring counters, drum timers, and
other useful indexing techniques for real-time control applications.

Maintenance and Troubleshooting As a plant floor controller, the plant electrician or the
instrument technician must maintain the PLC. It would be highly impractical to require
computer-type maintenance service. To this end, PLC manufacturers build in self-diagnostics
to allow for easy troubleshooting and repair of problems. Most PLC components are modular
and simple to isolate; remove-and-replace (system modules) diagnostic techniques are usually
implemented.

Advantages & Disadvantages of PLC

Advantages:

e Very High Accuracy

e Low Power Consumption (Energy Saving)
e High Level human Safety

e Less Plan Running cost

e Small in Size (Required Lased space)
e Rugged Construction

e Easily programmable

e Easy Maintenance

e Economical & high Flexible

e Shorter project program

e Easy Documentation

Disadvantages:

e High Skilled Engineering Required for that high skilled person required
e Difficulty with changes or replacements
e Some high Initial Cost.

11

Basics of PLC



1. Automation Overview « DesignTech

Technology for desigming the future

Block diagram

Power supply

CPU j+— Memory

}

l-— 10} Bus

140 System
modules

: T

Ouatpuat Input
devices devices

Solenoids Switches
miotor starters pushbuttons
i oL,

This is the detailed block diagram of PLC.

Scan cycle of PLC

A PLC program is generally executed repeatedly as long as the controlled system is running.
The status of physical input points is copied to an area of memory accessible to the processor,
sometimes called the "1/O Image Table". The program is then run from its first instruction rung
down to the last rung. It takes some time for the processor of the PLC to evaluate all the rungs
and update the 1/0 image table with the status of outputs. This scan time may be a few
milliseconds for a small program or on a fast processor, but older PLCs running very large
programs could take much longer (say, up to 100 ms) to execute the program. If the scan time
were too long, the response of the PLC to process conditions would be too slow to be useful.

Special-purpose I/0 modules may be used where the scan time of the PLC is too long to allow
predictable performance. Precision timing modules, or counter modules for use with shaft
encoders, are used where the scan time would be too long to reliably count pulses or detect the
sense of rotation of an encoder. The relatively slow PLC can still interpret the counted values
to control a machine, but the accumulation of pulses is done by a dedicated module that is
unaffected by the speed of the program execution.

Basics of PLC

12



2.  System Overview « DesignTech

Technology for desigming the future

System overview
SIMATIC S7 overview

SIMATIC is a core part of Totally Integrated Automation and its range includes numerous
standardized products and systems - such as the SIMATIC Controllers presented in this
brochure. Whether you prefer a conventional PLC, an embedded or a PC based automation
solution: The complete range of SIMATIC Controllers covers solutions for all application areas
—and offers the performance capability and flexibility you need.

Positioning of Modular S7 Controllers

The Modular Controllers have been optimized for control tasks and specially designed for
ruggedness and long-term availability. They can be flexibly expanded at any time using plug-
in 1/0 modules, function modules, and communication modules. Depending on the size of the
application, the right controller can be selected from a wide range according to performance,
quantity frameworks, and communication interfaces. The modular controllers can also be used
as fault-tolerant or fail-safe systems.
Your benefits
Flexible in use
Openness in hardware and software configuration
Use of existing PC resources
Participation in the continuous PC innovation process
Multifunctional
Customized PC variants
Embedded bundles:
a. Ready to use
b. Rugged
c. Maintenance-free
Fields of application
Control, operator control and monitoring
Technological tasks
Data acquisition and archiving
Link to PC hardware and software
Integration of C/C++/C# programs
Data exchange via OPC
. Fail-safe control

SIMATIC S7-1200: The Modular Mini-PLC

o Compact controllers for the low to mid-performance ranges

o Large-scale integration, space-saving, powerful

o With exceptional real-time performance and powerful communication options:

= Controller with integrated PROFINET 1O controller interface for

communication between SIMATIC controllers, HMI, programming
device or other automation components

o All CPUs can be used in stand-alone mode, in networks and within distributed

structures
o Extremely simple installation, programming and operation
o Integrated web server with standard and user-specific web pages

NookrwnpE

NoookrwdPE

13

Basics of PLC



2.  System Overview « DesignTech

Technology for desigming the future

o Data logging functionality for archiving of data at runtime from the user
program
o Powerful, integrated technology functions such as counting, measuring, closed-
loop control, and motion control
o Integrated digital and analog inputs/outputs
o Flexible expansion facilities
= Signal boards for direct use in a controller
= Signal modules for expansion of controllers by input/output channels
= Accessories, e.g. power supply, switch module or SIMATIC Memory
Card

Power conmectar

Memory card slot under top
door

Removable user wiring con-
mectors (behind the doors)

Status LEDs for the an-
board 110

PROFIMET connedcior (on
the bottom of the CPU)

SIMATIC S7-1500: Modular Controller for mid to upper range

@ B @ 8B

Performance

e Modular, scalable, and universally usable system in IP20 level of protection
e The system solution for a variety of automation applications in discrete automation
o Highest performance with excellent usability

o Configurable exclusively in the Totally Integrated Automation Portal with STEP 7
Professional V12 or higher

Performance
e Increase in performance through
o Faster command execution
o Language extensions
o New data types
o Faster backplane bus
o Optimized code generation
o Powerful communication:

o PROFINET IO (2-port switch) as standard interface;

14

Basics of PLC



Technology for desigming the future

2.  System Overview « DesignTech

From CPU 1515-2 PN, one or more additional integrated PROFINET interfaces,
e.g. for network separation

o Expandable with communication modules for bus systems and point-to-point
connection

Integrated technology
e Motion Control integrated without additional modules:

o Standardized blocks (PLC open) for connection of analog and PROFI drive-
capable drives

o The Motion Control functionality supports speed-controlled and positioning
axes as well as external encoders

o Position wise precise gearing between axes

e Comprehensive trace functions for all CPU tags for real-time diagnosis and sporadic
error detection;

For effective commissioning and quick optimization of drives and controls
« Comprehensive control functionalities:

E.g. easily configurable blocks for automatic optimization of the control parameters for
optimum control quality

« Additional functions through available technology modules:

E.g. high-speed counting, position detection, or measurement functions for signals up
to 1 MHz

Safety Integrated

Protection of personnel and machinery — within the framework of an integrated complete
system

o Failsafe SIMATIC S7-1500F controllers for processing standard and safety programs
on the same controller.

Generation of the failsafe and standard user program is carried out in the TIA Portal
with the same editors; this enables failsafe data to be evaluated like standard data in the
standard user program, for example. Due to this integration the system benefits and the
comprehensive functionality of SIMATIC are also available for failsafe applications.

Security Integrated

o Password-based know-how protection against unauthorized reading and modification
of program blocks

o Copy protection for greater protection against unauthorized copying of program blocks:

With copy protection, individual blocks on the SIMATIC memory card can be tied to
its serial number so that the block can only be run if the configured memory card is
inserted into the CPU.

15

Basics of PLC



2.  System Overview « DesignTech

Technology for desigming the future

e Rights concept with four different authorization levels:

Different access rights can be assigned to various user groups. The new protection level
4 makes it possible to also restrict communication to HMI devices.

e Improved manipulation protection:
Changed or unauthorized transfers of engineering data are detected by the controller.
e For use of an Ethernet CP (CP 1543-1):
o Additional access protection by means of a firewall
o Setup of secure VPN connections (V12 SP1 or higher)
Design and handling
o CPUs with display for plain text information:

o Information about article numbers, firmware version, and the serial number of
all connected modules can be displayed

o Setting the IP address of the CPU and additional network settings directly on
site, without programming device

o Display of occurring error messages directly as plain text message, meaning
reduction in downtime

« Uniform front connectors for all modules and integrated potential bridges for flexible
potential group formation simplify stock keeping and reduce wiring costs

o Integrated DIN rail in the S7-1500 mounting rail:

Quick and easy installation of additional components such as miniature circuit breakers,
relays, etc.

o Central expansion with signal modules:
For flexible adaptation to any application
o System cabling for digital signal modules:

For fast and clearly arranged connecting to sensors and actuators in the field and simple
wiring inside the control cabinet

o Power supply:
o Load power supply modules (PMs) for supplying the module with 24 V

o Power supply modules to supply power to the internal module electronics via
the backplane bus

e Distributed expansion:

o Use of up to 30 signal modules, communication modules, and technology
modules via the PROFINET interface module 1M 155-5 for the ET 200MP 1/O
system

16

Basics of PLC



2.

System Overview

e Designiech

Technology for desigming the future

o No difference in terms of handling and system functions in central and

distributed operation

Integrated system diagnostics

Data lo

Integrated system diagnostics for CPUs, activated by default:

o Consistent plain text display of system diagnostic information in the display,
TIA Portal, HMI, and web server, even for drive messages. Messages are

updated even if the CPU is in STOP state.

o System diagnostics integrated in the CPU firmware. Configuration by user not
required. The diagnostics is automatically updated on configuration changes.

g (archives) and recipes

SIMATIC memory card:
Plug-in load memory
Permits firmware updates

Storage option for STEP 7 projects (including comments and symbols), additional

documentation, or csv files (for recipes and archives)

Easy access to plant-relevant operating data and configuration data with Office tools

via the SD Card reader (two-way data exchange from and to the controller)

Integrated web server:

Easy access to plant-relevant operating data and configuration data via a Web browser

Approvals

The SIMATIC S7-1500 complies with the following national and international standards:

cULus approval

cULus HazLoc approval

FM approval

ATEX approval (only for 24 V; not for 230 V)
CE

C-TICK

KCC

IECEX (24 V only; not for 230 V)

EN 61000-6-4

EN 60068-2-1/ -2/ -6/ -14/ -27/ -30/ -32
EN 61131-2

SIMATIC S7-1200/1500: Technology Functions

S7-1200 Functions

The S7-

1200 is characterized by:

Easy getting started:

Basics of PLC

17



2.

SySte m Ove rVieW e DesignTech

Technology for desigming the future

Special starter packages including simulators and documentation facilitate
familiarization.

Uncomplicated operation:

Powerful standard commands which are simple to use, together with the user-
friendly programming software, reduce the programming overhead to a minimum.

Real-time properties:

Special interrupt functions, fast counters, and pulse outputs permit use even with
time-critical processes.

The SIMATIC S7-1200 meets national and international standards:

UL 508

CSA C22.2 No. 142

FM Class I, Div. 2, Groups A, B, C, D; T4A Class I, Zone 2, IIC, T4
VDE 0160

EN 61131-2

Requirements of the EMC directive in accordance with EN 50081-1, 50081-2 and
50082-2

S7-1500 functions

A host of features support users in programming, commissioning, and servicing the S7-1500.

Performance

Faster command processing, depending on the CPU type, language extensions and
new data types

Significantly shorter response times through optimized code generation

Integrated technology

Simple, fast programming of motion sequences via standard PLC open Motion blocks
Position wise precise gearing between axes

Convenient diagnostic and commissioning tools provide support in commissioning
drives

Automatic alarm messages to engineering system and HMI: Simplified
troubleshooting saves time and effort in commissioning.

Isochronous mode

Synchronous coupling of distributed signal acquisition, signal transmission and
program execution to the cycle of the PROFIBUS and PROFINET with constant bus
cycle time:

The input signals are acquired and processed and output signals are output at fixed
intervals (constant bus cycle time). A consistent process image partition is created at
the same time.

Precisely reproducible and defined process response times due to synchronous signal
processing with constant bus cycle times by the distributed 1/0

Basics of PLC

18



Technology for designing the future

2.  System Overview « DesignTech

e In distributed automation solutions, the SIMATIC S7-1500 thus also permits high-
speed processing operations and enables the achievement of maximum precision and
reproducibility. This means increased production with optimal and constant quality.

e Comprehensive range of components for complex tasks such as motion control,
measured value acquisition, high-speed control, etc.

e Security Integrated

e Password-based know-how protection against unauthorized readout and modification
of program blocks (in combination with STEP 7)

e Copy protection:

Protection against unauthorized copying of program blocks. With copy
protection, individual blocks on the SIMATIC memory card can be tied to
its serial number so that the block can only be run if the configured memory
card is inserted into the CPU.

e 4-stage authorization concept

Different access rights can be assigned to user groups. The new protection
level 4 makes it possible to also restrict communication to HMI devices.
Improved manipulation protection allows changed or unauthorized transfers
of engineering data to be detected by the controller.

e Design and handling
e CPUs with integrated display

For convenient evaluation of module states for central and distributed
modules or to set or change IP address (es) without programming device.
System diagnostics and user alarms are shown in plain text on the display
and help to respond to occurring error messages quickly and efficiently. The
menu and message texts are available in multiple languages on the display.

e Integrated system diagnostics

e System diagnostics information is displayed consistently and in plain text on the
display, TIA Portal, HMI device and web server, including for messages from the
drives, and are even possible in the CPU's STOP state. This functionality is integrated
is the CPU firmware as a system feature and does not have to be configured separately
by the user. If new hardware components are configured, the diagnostic information
is updated automatically.

e Simple and rapid diagnostics directly in the user program through the quality
information:

e By activating the quality information (QI) of a module, the validity of the supplied
process value can be queried and evaluated directly in the user program. Here, access
IS via the process image using simple binary or load commands. The prerequisite is
that the module can be diagnosed and the quality information can be configured in
the TIA Portal.

e Configuration by means of the SIMATIC STEP 7 Professional engineering software,
V12 and higher

19

Basics of PLC



2.  System Overview « DesignTech

Technology for designing the future

e The SIMATIC S7-1500 controller family is programmed in the Totally Integrated
Automation Portal using STEP 7 Professional V12 or higher. SIMATIC STEP 7
Professional, V12 and higher, is the intuitively operated engineering system for the
SIMATIC S7-1500.

e Compatibility

e Migration:

A migration tool integrated in SIMATIC STEP 7 Professional V12 or higher
provides support in switching from the S7-300/S7-400 to the S7-1500
controller and converts the program code automatically. Program code that
cannot be converted automatically is logged and can be adapted manually.
The migration tool is also made available as a standalone tool in the
download area of Customer Support. STEP 7 V11 projects can continue to
be used with STEP 7 V12 in compatibility mode. S7-1200 programs can
also be transferred to the S7-1500 by means of copy paste.

e SIMATIC memory card (required for operation of the CPU)

e The SIMATIC memory card is used as plug-in load memory or for updating the
firmware. STEP 7 projects including comments and symbols, additional
documentation or csv files (for recipes and archives) can also be stored on the
SIMATIC memory card. Data blocks can be created and data stored or read via SFCs
on the SIMATIC memory card with the user program.

e Safety Integrated (option for S7-1500F controller)

e "STEP 7 Safety Advanced" option package; required for programming the safety-
related program sections of the S7-1500F controller.

e The package contains all the functions and blocks required to create an F program.
STEP 7 Safety Advanced V12 can run under SIMATIC STEP 7 Professional V12
SP1.

SIMATIC S7-1200/1500: Memory Cards

In a free analogy, comparing a S7-1500 and a PC, the Work memory represents the PC’s RAM
and the Load memory represents the PS’s hard disc drive / pen drives.

Code Work memory (inside CPU — volatile - not expansible):
Where stay the programs blocks when the CPU is running
Data Work memory (inside CPU — volatile - not expansible):
Where stays the DBs when the CPU is running
Load Memory (inside the SIMATIC SD card — nonvolatile - different sizes could be used):

Where stays the program blocks, DB, HW configuration, etc. when the CPU stay turned
off.

Highlights:

S7-1500/1200 (like S7-300 modern CPU) need necessarily a memory card (each this respective
type, SD / MMC).

20

Basics of PLC



2. System Overview * Qesigniech

- Just SIMATIC Memory Card should be used (no “Standard” SD-Cards could be used).

- S7-1500 can use the same Memory Card types as S7-1200. But can’t be used of S7-300 or
S7-400.

- If you “format” the SIMATIC Memory Card by Window, the card will be damage, and could
not be “restored” by the user.

- Commentaries are stored in Load memory (each character takes one byte).

Distributed 1/O systems

SIMATIC ET 2005 -
the all-rounder with a comprehensive range of functions

m Bit-modular design with multi-conductor connection

m Multifunctional thanks to a wide range of modules: motor starters, frequency
converters, safety technology, distributed intelligence, 10-link modules.

m Use in hazardous areas (Zone 2)

= Also available as expandable bleck version with integral DIDO:
SIMATIC ET 2005 COMPACT

SIMATIC ET 200M -
the multi-channel 57-300

m Modular design using standard SIMATIC 57-300 modules; redundant design also possible
u Fail-safe VO modules

m For use in hazardous areas up to Zone 2, sensors and actuators up to Zone 1.
= High plant availability thanks to redundancy, hot swapping, and configuration changes
during operation

SIMATIC ET 200L -
digital block 1/O

u Low-cost digital block /O
m Digital electronic blocks of up to 32 channels

SIMATIC ET 200i5F -
the intrinsically-safe version for hazardous areas

m Modular design, also available with redundancy
= Rugged, intrinsically-cafe design

m Use in hazardous areas up to Zone 1/21, sensors and actuators may even be located in Zone
20
= High plant availability thanks to redundancy, hot swapping, and configuration changes

during operation

SIMATIC S7-300: Modular Automation System
S7-300

e The modular mini PLC system for the low and mid-performance ranges

21

Basics of PLC



2.  System Overview « DesignTech

Technology for designing the future

e With comprehensive range of modules for optimum adaptation to the automation task

o Flexible use through simple implementation of distributed structures and versatile
networking

o User-friendly handling and uncomplicated design without a fan
o Can be expanded without problems when the tasks increase
o Powerful thanks to a range of integrated functions

S7-300F

« Failsafe automation system for plants with increased safety requirements for production
technology

e Based on S7-300

o Additional ET 200S and ET 200M distributed 1/O stations complete with safety-related
modules can be connected

o Safety-related communication via PROFIBUS DP with PROFI safe profile

o Standard modules can be used in addition for non-safety-relevant applications

SIMATIC S7-300: Modules

The S7-300 automation system is modular in design. It has a comprehensive range of modules
that can be combined individually.

A system includes the following:
e ACPU:

Different CPUs are available for different performance ranges, including CPUs with
integral inputs/outputs and the corresponding functions, as well as CPUs with integral
PROFIBUS DP, PROFINET and point-to-point interfaces.

« Signal modules (SMs) for digital and analog inputs/outputs.
o Communications processors (CPs) for bus connection and point-to-point connections.

« Function modules (FMs) for high-speed counting, positioning (open-loop/closed-loop)
and PID control.

The following can also be used depending on requirements:

o Load power supply (PS) for connecting the SIMATIC S7-300 to a supply voltage of
120/230 V AC.

« Interface modules (IMs) for connecting the central controller (CC) and expansion units
(EUs) in multi-tier configurations. The SIMATIC S7-300 can be operated with up to
32 modules distributed across the CC and 3 EUs. All modules can be operated in
enclosures and without fans.

e SIPLUS modules for extended environmental conditions:

22

Basics of PLC



2.  System Overview « DesignTech

Technology for desigring the future

Suitable for temperature range -25 to +60 °C, and higher humidity, condensation and
frost loads. Can be used direct on vehicles or outside building in an IP20 cabinet
protected against direct sunlight and rainwater/spray water. Air-conditioned cabinet and
IP65 housing not required.

Basics of PLC 2 3



3. Digital Fundamentals « DesignTech

Technology for desigming the future

Digital Fundamentals
Bit-Byte Word Concepts

What is a bit?

Bit is short for 'binary digit." It's a single digit in a binary number, and it can be either 1 or 0.

Inside a computer, you can think of a bit as being a mechanical switch, which can be either
switched on or off (the earliest computers actually stored information in memory using
mechanical switches, with electromagnets to turn each one on or off).

Now if you only have one of these switches, you can only store two different states, on or off.
This is useful in itself, you can record that something is either true or false.

But if you have, say, eight of them, you can store 256 different combinations of on and off
states between the eight switches.

What is a byte?

A byte is 8 bits. That's the definition. With 8 bits you can store any number between 0 and 255,
since there are 256 different combinations of 1 and 0 to choose from.

Why eight bits? The original intention was that, when storing text, 8 bits would be enough to
assign a unique number every possible language character you might want to use in your
document. The idea was that each character in a file would take up one byte of memory (in
most cases, this is still true).

Let's see: there are 26 uppercase letters (A-Z), 26 lowercase (a-z), 10 numerical digits (0-9),
32 punctuation characters and other symbols on a US keyboard, the space character that’s
already 94 different characters. Then there's a few characters for creating newlines, a tab
character for indentations, there's even a 'bell’ character which programs would output in order
to make the user's terminal beep. You can see how it all adds up

In practice, only characters up to 127 were ever standardized (the standard is called ASCII,
which stands for American Standard Code for Information Interchange, because in the early
days, one of the eight bits was set aside for error testing purposes (back when computers were
far less reliable), and 7 bits only gives you 128 different combinations.

What is a word?

You often hear about 32-bit or 64-bit computer architectures. A word is basically the number
of bits a particular computer's CPU can deal with in one go. It varies depending on the computer
architecture you're using.

Imagine looking at an imaginary computer's circuitry very closely. On a 32-bit machine, you
would see 32 wires running parallel to each other between the computer's memory controller
and the CPU, for the purpose of giving the CPU access to one particular word of memory.

24

Basics of PLC



3. Digital Fundamentals y

Actually, there would be an additional 32 wires (perhaps less) for the CPU to select a particular
memory address to access. If a CPU can access 32 bits of memory in one go, then it turns out
that it makes a lot of sense to address the computer's memory using <32 bits. (This happens to
be why the 32-bit version of Windows can't deal with more than 2GB of RAM, but the 64-bit
version can.)

0 16 24 32 40 48 56 64

-0

Bits

Nyb | Nyb | Nyb | Nyb | Nyb | Nyb | Nyb | Nyb [ Nyb | Nyb | Nyb | Nyb | Nyb | Nyb | Nyb | Nyb
ble | ble | bie | bie | ble | bie | bie | ble | bie | bie | ble | ble | bie | ble | ble | ble

Byte Byte Byte Byte Byte Byte Byte Byte

Word Word Word Word

Long Word Long Word

Very Long Word

Different Logic Gates Circuit Diagrams

In electronics, a logic gate is an idealized or physical device implementing a Boolean function;
that is, it performs a logical operation on one or more logical inputs, and produces a single
logical output. Depending on the context, the term may refer to an ideal logic gate, one that
has for instance zero rise time and unlimited fan-out, or it may refer to a non-ideal physical
devicew (see Ideal and real op-amps for comparison).

Logic gates are primarily implemented using diodes or transistors acting as electronic switches,
but can also be constructed using vacuum tubes, electromagnetic relays (relay logic), fluidic
logic, pneumatic logic, optics, molecules, or even mechanical elements. With amplification,
logic gates can be cascaded in the same way that Boolean functions can be composed, allowing
the construction of a physical model of all of Boolean logic, and therefore, all of the algorithms
and mathematics that can be described with Boolean logic.

Logic circuits include such devices as multiplexers, registers, arithmetic logic units (ALUS),
and computer memory, all the way up through complete microprocessors, which may contain
more than 100 million gates. In modern practice, most gates are made from field-effect
transistors (FETs), particularly MOSFETs (metal-oxide—semiconductor field-effect
transistors).

Compound logic gates AND-OR-Invert (AOI) and OR-AND-Invert (OAI) are often employed
in circuit design because their construction using MOSFETS is simpler and more efficient than
the sum of the individual gates.

In reversible logic, Toffoli gates are used.

Basics of PLC

25


https://en.wikipedia.org/wiki/Logic_gate#cite_note-1

3.

Digital Fundamentals

e Designiech

Technology for desigring the future

UNIVERSAL GATES
OUTPUTS
A | B | Y=ANANDB
— — & L 0 | 0 1
NAND _Do— ] 3 i
1 | 0 1
1| 1 0
INPUTS | OUTPUTS
A _[B_|Y=ANORB
— =1 kb 0 0 |1
I o -
1[0 |0
1 [1 o0
ELEMENTORY LOGIC GATES
INPUTS | OUTPUTS
A [B | Y=A NOR
B
AND 0 [0 |0
0 _[1_ |0
1 [0 o
11 |1
INPUTS | OUTPUTS
A [B | Y=A NOR
B
OR 0 [0 |0
0 [1_ |1
1[0 |1
1 (1|1
INPUTS | OUTPUTS
A Y=A NOT
NOT A :
1 0
EXCLUSIVE GATES
INPUTS | OUTPUTS
A B |Y=A EX-
_— ORB
EX-OR =1 0 |0 o
0 [1_ |1
1[0 |1
1 (1o

Basics of PLC

26



Technology for desigming the future

3. Digital Fundamentals « DesignTech

INPUTS | OUTPUTS
A B |Y=A EX-
. NOR B
EX-NOR =1 b 0 |0 |1
T 0 1 0
1 [0 |0
1 (1 |1

Truth-Tables, Boolean Equations

A truth table shows how a logic circuit's output responds to various combinations of the inputs,
using logic 1 for true and logic 0 for false. All permutations of the inputs are listed on the left,
and the output of the circuit is listed on the right. The desired output can be achieved by a
combination of logic gates. A truth table for two inputs is shown, but it can be extended to any
number of inputs. The input columns are usually constructed in the order of binary counting
with a number of bits equal to the number of inputs.

Truth tables are an important tool for evaluating statements and arguments. We can create our
own truth tables using following steps:

Translate statements of ordinary language.

Break all complex statements into smaller parts.
Determine how many columns are required.
Determine how many rows are required.
Determine the truth values of statement letters.
Determine the truth values of complex statements.

ocoarwnhE

A law of Boolean algebra is an identity such as xv(yvz) = (xvy)vz between two Boolean terms,
where a Boolean term is defined as an expression built up from variables and the constants 0
and 1 using the operations A, Vv, and —. The concept can be extended to terms involving other
Boolean operations such as @, —, and =, but such extensions are unnecessary for the purposes
to which the laws are put. Such purposes include the definition of a Boolean algebra as any
model of the Boolean laws, and as a means for deriving new laws from old as in the derivation
of xV(yAz) = xv(zAy) from yAz = zAy as treated in the section on axiomatization.

Monotone laws

Boolean algebra satisfies many of the same laws as ordinary algebra when one matches up v
with addition and A with multiplication. In particular the following laws are common to both
kinds of algebra.

27

Basics of PLC


http://hyperphysics.phy-astr.gsu.edu/hbase/electronic/gate.html#c1

3. Digital Fundamentals » DesignTech

Technology for desigming the future

Associativity of V rVyvz)=(zVvy)Vz
Associativity of A cA(yNz)=(xzAy)Az
Commutativity of Vv rVy=yvVax
Commutativity of A rAy=yAzx

Distributivity of A over V. xA(yVz)=(xAy)V (zA z)
Distributivity of V over A xV(yAz)=(xVy)A(zVz)

Identity for Vv rVi==x
Identity for A rhNl=u=x
Annihilator for A rA0=10
Annihilator for Vv rV1=1
Idempotence of v rVIr=umx
Idempotence of A AT =x
Absorption 1 rh(zVy)==x
Absorption 2 rVizAy) ==z

A consequence of the first of these laws is 1v1 = 1, which is false in ordinary algebra, where
1+1 = 2. Taking x = 2 in the second law shows that it is not an ordinary algebra law either,
since 2x2 = 4. The remaining four laws can be falsified in ordinary algebra by taking all
variables to be 1, for example in Absorption Law 1 the left hand side is 1(1+1) = 2 while the
right hand side is 1, and so on.

All of the laws treated so far have been for conjunction and disjunction. These operations have
the property that changing either argument either leaves the output unchanged or the output
changes in the same way as the input. Equivalently, changing any variable from 0 to 1 never
results in the output changing from 1 to 0. Operations with this property are said to be
monotone. Thus the axioms so far have all been for monotonic Boolean logic. No monotonicity
enters via complement - as follows.

Non-monotone laws

The complement operation is defined by the following two laws.
Complementationl = A —x =10

Complementation2 =V —-x =1
All properties of negation including the laws below follow from the above two laws alone.

In both ordinary and Boolean algebra, negation works by exchanging pairs of elements, whence
in both algebras it satisfies the double negation law (also called involution law)

Double negation —(—x)==x
But whereas ordinary algebra satisfies the two laws

28

Basics of PLC



Technology for desigming the future

3. Digital Fundamentals « DesignTech

(—x)(—y) = zy
(—z)+ (—y) = —(z+y)

Boolean algebra satisfies De Morgan's laws:
De Morgan 1 —a A -y = —(x V y)

De Morgan 2 —ax VvV -y = —(x A y)
Completeness

The laws listed above define Boolean algebra, in the sense that they entail the rest of the subject.
The laws Complementation 1 and 2, together with the monotone laws, suffice for this purpose
and can therefore be taken as one possible complete set of laws or axiomatization of Boolean
algebra. Every law of Boolean algebra follows logically from these axioms. Furthermore,
Boolean algebras can then be defined as the models of these axioms as treated in the section
thereon.

To clarify, writing down further laws of Boolean algebra cannot give rise to any new
consequences of these axioms, nor can it rule out any model of them. In contrast, in a list of
some but not all of the same laws, there could have been Boolean laws that did not follow from
those on the list, and moreover there would have been models of the listed laws that were not
Boolean algebras.

This axiomatization is by no means the only one, or even necessarily the most natural given
that we did not pay attention to whether some of the axioms followed from others but simply
chose to stop when we noticed we had enough laws, treated further in the section on
axiomatizations. Or the intermediate notion of axiom can be sidestepped altogether by defining
a Boolean law directly as any tautology, understood as an equation that holds for all values of
its variables over 0 and 1. All these definitions of Boolean algebra can be shown to be
equivalent.

Boolean algebra has the interesting property that x =y can be proved from any non-tautology.
This is because the substitution instance of any non-tautology obtained by instantiating its
variables with constants O or 1 so as to witness its non-tautologyhood reduces by equational
reasoning to 0 = 1. For example, the non-tautologyhood of XAy = x is witnessed by x =1 and y
= 0 and so taking this as an axiom would allow us to infer 1A0 = 1 as a substitution instance of
the axiom and hence 0 = 1. We can then show x =y by the reasoning x =xA1=xA0=0=1=
yvl=yv0=y.

Duality principle

Principle: If {X,R} is a poset, then {X,R(inverse)} is also a poset.

There is nothing magical about the choice of symbols for the values of Boolean algebra. We
could rename 0 and 1 to say o and 3, and as long as we did so consistently throughout it would
still be Boolean algebra, albeit with some obvious cosmetic differences.

But suppose we rename 0 and 1 to 1 and 0 respectively. Then it would still be Boolean algebra,
and moreover operating on the same values. However it would not be identical to our original
Boolean algebra because now we find v behaving the way A used to do and vice versa. So there

29

Basics of PLC



Technology for desigming the future

3. Digital Fundamentals « DesignTech

are still some cosmetic differences to show that we've been fiddling with the notation, despite
the fact that we're still using Os and 15s.

But if in addition to interchanging the names of the values we also interchange the names of
the two binary operations, now there is no trace of what we have done. The end product is
completely indistinguishable from what we started with. We might notice that the columns for
XAy and xvy in the truth tables had changed places, but that switch is immaterial.

When values and operations can be paired up in a way that leaves everything important
unchanged when all pairs are switched simultaneously, we call the members of each pair dual
to each other. Thus 0 and 1 are dual, and A and Vv are dual. The Duality Principle, also called
De Morgan duality, asserts that Boolean algebra is unchanged when all dual pairs are
interchanged.

One change we did not need to make as part of this interchange was to complement. We say
that complement is a self-dual operation. The identity or do-nothing operation x (copy the input
to the output) is also self-dual. A more complicated example of a self-dual operation is (xAy)
V (YAZ) V (zAX). There is no self-dual binary operation that depends on both its arguments. A
composition of self-dual operations is a self-dual operation. For example, if f(x,y,z) = (x4y) v
(y/1z) v (z4x), then f(f(x,y,z),x,t) is a self-dual operation of four arguments x,y,z,t.

The principle of duality can be explained from a group theory perspective by fact that there are
exactly four functions that are one-to-one mappings (automorphisms) of the set of Boolean
polynomials back to itself: the identity function, the complement function, the dual function
and the contradual function (complemented dual). These four functions form a group under
function composition, isomorphic to the Klein four-group, acting on the set of Boolean
polynomials. Walter Gottschalk remarked that consequently a more appropriate name for the
phenomenon would be the principle (or square) of quaternality.

Combination Logic Circuits

Unlike Sequential Logic Circuits whose outputs are dependent on both their present inputs and
their previous output state giving them some form of Memory, the outputs of Combinational
Logic Circuits are only determined by the logical function of their current input state, logic “0”
or logic “17”, at any given instant in time.

The result is that combinational logic circuits have no feedback, and any changes to the signals
being applied to their inputs will immediately have an effect at the output. In other words, in a
Combinational Logic Circuit, the output is dependent at all times on the combination of its
inputs. So if one of its inputs condition changes state, from 0-1 or 1-0, so too will the resulting
output as by default combinational logic circuits have “no memory”, “timing” or “feedback
loops” within their design.

Combinational Logic

Combinational Logic Circuits are made up from basic logic NAND, NOR or NOT gates that
are “combined” or connected together to produce more complicated switching circuits. These
logic gates are the building blocks of Combinational Logic Circuits. An example of a
combinational circuit is a decoder, which converts the binary code data present at its input into

30

Basics of PLC



3. Digital Fundamentals * Qesigniech

a number of different output lines, one at a time producing an equivalent decimal code at its
output.

| | -
Combinational One or More

' ircui Cutputs
Logic Circuit - Y p

m =

Multiple
Inputs

—
I
—_—

[

Qutput = f{input)
Combinational logic circuits can be very simple or very complicated and any combinational
circuit can be implemented with only NAND and NOR gates as these are classed as “universal”
gates.

The three main ways of specifying the function of a combinational logic circuit are:

7. Boolean algebra — This forms the algebraic expression showing the operation of the
logic circuit for each input variable either True or False that results in a logic “1”” output.

8. Truth Table — A truth table defines the function of a logic gate by providing a concise
list that shows all the output states in tabular form for each possible combination of
input variable that the gate could encounter.

9. Logic Diagram — This is a graphical representation of a logic circuit that shows the
wiring and connections of each individual logic gate, represented by a specific graphical
symbol that implements the logic circuit.

And all three of these logic circuit representations are shown below.

Logic Gates
A (A.B) Boolean Expression
Digtal B Q = (A.B).(A+B).C
Inputs
Output (Q1)
Dﬁ CBA|Q
A8 0 o0o0|o0
Logic Diagram 0010
0100
0 11]0
100])1
Typical 1010
Truth Table 1 1 0 | O
1110

As combinational logic circuits are made up from individual logic gates only, they can also be
considered as “decision making circuits” and combinational logic is about combining logic
gates together to process two or more signals in order to produce at least one output signal
according to the logical function of each logic gate. Common combinational circuits made up
from individual logic gates that carry out a desired application include Multiplexers, De-
multiplexers, Encoders,Decoders, Full and Half Adders etc.

31

Basics of PLC



4. Engg. Software TIA Portal * DesignTech

Technology for desigring the future

Engineering Software TIA Portal
TIA PORTAL-Central Engineering Framework

With the Totally Integrated Automation Portal (TIA Portal), Siemens follows a vision of
providing an engineering framework for implementing automation solutions in all industries
around the globe. From designing, commissioning, operating and maintaining to upgrading
automation systems, TIA Portal saves engineering time, cost, and effort.

PROFINET

Scope of the Products

swsrosteer (1SRG eE

Programming languages
LAD, FBD, SCL, STL", S7T-GRAPH"!
) only for S7-300/400/1500/WinAC

WinAC (incl. Failsafe) SCADA
87-1500 (incl. Failsafe)
PC Single station
§7-400 (incl. Failsafe) B
o ane
B

=

S

3 4
a 9 G120
§7-300 § § ©  andx772ndMobie A
ET 200 CPU, (incl. Failsafe) & € 2 & (toutMicoPmes :

E

§7-1200 f § 18 ° Basic Panel G120
- g &8 asic Panels CUxxx-2 V4.4

STEP S7 Range of Products

IMATIC STEP 7 is the world's best known and most widely used engineering software in
industrial automation. And: STEP 7 is standard-compliant.

SIMATIC STEP 7 in the TIA Portal — the engineering system in the Totally Integrated
Automation Portal — continues the success story of SIMATIC STEP 7. With SIMATIC STEP
7 in the TIA Portal, users can configure, program, test, and diagnose all modular and PC-based
SIMATIC controllers.

32

Basics of PLC



4. Engg. Software TIA Portal * Designiech

Technology for designing the future

Using the SIMATIC STEP 7 Safety Advanced option, you can exploit all the advantages of the
TIA Portal for your fail-safe automation as well. All configuration and programming tools
required for generating a safety-oriented program are integrated into the STEP 7 user interface
and use a common project structure.

Benefits

e Powerful programming editors for efficient engineering

e Scalability across all series of controllers

Optimum interaction between the controller, HMI and drive in a working
environment

Shared data management and uniform symbols

System diagnostics as an integral component

Variables trace for effective commissioning

Scalable and flexible motion control functionality
Comprehensive library concept

Security Integrated

Migration support for existing hardware and software products

Application

SIMATIC STEP 7 Professional V13 SP1 is the easy-to-use, integrated engineering system for
the current SIMATIC controllers S7-1200, S7-1500, S7-300, S7-400, WinAC, software
controllers, and ET 200 CPU. PLCSIM for simulation of S7-1200/1500 CPU and WinCC Basic
for configuration of Basic Panels are included in the scope of delivery.

SIMATIC STEP 7 Basic V13 SP1, the easy-to-use engineering system for the modular
SIMATIC S7-1200 micro PLC, as well as the associated 1/0. It contains PLCSIM for
simulation purposes and SIMATIC WinCC Basic for configuring the SIMATIC Basic Panels.

STEP 7 V13 SP1 thus provides support in all phases of the automation project:

Configuring and parameterizing the hardware
Specifying the communication

Programming in IEC programming editors
Configuration of the visualization

Test, commissioning and service

WinCC Range of Products

Family of configuration systems with WinCC Basic, Comfort, Advanced and Professional for
SIMATIC operator panels, as well as for the PC-based visualization systems WinCC Runtime
Advanced and WinCC Runtime Professional

10. SIMATIC WinCC Runtime Advanced visualization software

e PC-based HMI solution for single-user systems directly at the machine

33

Basics of PLC



4. Engg. Software TIA Portal * Designiech

Technology for designing the future

e Basic package for visualization, reporting and logging, user administration, can be
expanded flexibly with VB scripts

e Basic package expandable by means of option packages

e Integration of customer-specific ActiveX Controls created with WinCC Control
Development

e Can be integrated into automation solutions based on TCP/IP networks

e Expanded service concepts with remote operation, diagnostics and administration
over the Intranet and Internet in combination with email communication

11. SIMATIC WinCC Runtime Professional visualization software

e PC-based operator control and monitoring system for visualization and operator
control of processes, production flows, machines and plants in all sectors — from the
simple single-user station through to distributed multi-user systems and cross-
location solutions with web clients. WinCC Runtime Professional is the information
hub for corporation-wide vertical integration.

e Industry-standard functions for signaling and acknowledging events, archiving of
messages and measured values, logging of all process and configuration data, user
administration, can be expanded flexibly with VB and C scripts

e Basic package expandable by means of option packages

e Also included are APIs for the Runtime to utilize the open programming interfaces

e Integration of customer-specific ActiveX Controls created with WinCC Control
Development

OVERVIEW

e Integrated family of engineering tools for configuring SIMATIC HMI operator
panels, as well as for the PC-based visualization systems WinCC Runtime Advanced
and WinCC Runtime Professional.

e WinCC (TIA Portal) is based on the new central engineering framework Totally
Integrated Automation Portal (TIA Portal), which offers the user a uniform, efficient
and intuitive solution to all automation tasks.

e WinCC (TIA Portal) also offers uniform engineering from the Basic Panel through to
SCADA applications.

e Together with the STEP 7 (TIA Portal) products, WinCC (TIA Portal) forms the
optimum solution for integrated, efficient engineering.

Current version:

e SIMATIC WinCC Basic V13 SP1

e SIMATIC WinCC Comfort V13 SP1

e SIMATIC WinCC Advanced V13 SP1

e SIMATIC WinCC Professional V13 SP1
Benefits

e The integrated configuration software reduces training, maintenance and service
overhead and protects the customer's investments.

34

Basics of PLC



4. Engg. Software TIA Portal * Designiech

Technology for designing the future

e Minimized engineering overhead and reduction of lifecycle costs thanks to Totally
Integrated Automation (TIA)

e Minimized configuration overhead due to reuse of scalable and dynamizable objects

¢ Intelligent tools for efficient and simple configuration:

o Wizard for defining the basic structure of the HMI project

o Table-based editors simplify the generation and processing of similar types
of object, e.g. for tags, texts, or alarms.

o Complex configuration tasks such as the definition of paths of motion or the
creation of the fundamental operator prompting are simplified by means of
graphical configuration.

e Comprehensive support of multi-language configurations for worldwide use

o Selectable views for entering configuration data in several languages

o System and user-specific text lexicons

o Export/import of language-dependent texts

e Investment protection due to
o Import of the configuration from WinCC flexible 2008 SP2 and 2008 SP3
o Transfer of the configuration from WinCC V7.0 SP3

Application

SIMATIC WinCC in the editions Basic, Comfort, Advanced and Professional are innovative
engineering tools for configuring SIMATIC HMI operator panels, as well as for the PC-based
visualization systems WinCC Runtime Advanced and WinCC Runtime Professional.

Depending on the selected product, various target systems can be configured:
WinCC Basic

e Basic Panels (1st Generation): KP300 Basic, KTP400 Basic, KTP600 Basic,
KTP1000 Basic, TP1500 Basic

e Basic Panels (2nd Generation): KTP400 Basic, KTP700 Basic, KTP900 Basic,
KTP1200 Basic

WinCC Comfort

As WinCC Basic, plus:

Comfort Panels

Mobile Panels: Mobile Panel 177, Mobile Panel 277
Panels of the 70 series: OP 73, OP 77A, OP 77B
Panels of the 170 series: TP 177A, TP 177B, OP 177B
Panels of the 270 series: TP 277, OP 277

Multi Panels: MP 177, MP 277, MP 377

WinCC Advanced
As WIinCC Comfort, plus:

e SIMATIC PCs with WinCC Runtime Advanced:

Basics of PLC 3 5



4. Engg. Software TIA Portal * Designiech

Technology for designing the future

o SIMATIC Rack PC: Rack PC 547B, IPC547C, IPC547D, Rack PC
IPC647C, IPC647D, Rack PC IPC847C, IPC847D
o SIMATIC Box PC: IPC227D, Box PC 427B, IPC427C, IPC427D, Box PC
627B, IPC627C, Box PC 827B, IPC827C
o SIMATIC Panel PC: IPC277D, Panel PC 477B, IPC477C, IPC477D, Panel
PC 577B, IPC577C, Panel PC 677B, IPC677C, IPC677D
o SIMATIC modular Embedded Controller: EC31
o Industrial Flat Panel (Multi-Touch)
e Standard PC with WinCC Runtime Advanced
e SINUMERIK PC: PCU 50.3, PCU 50.5

WinCC Professional
As WinCC Advanced, plus:

e SIMATIC PCs with WinCC Runtime Professional:
o SIMATIC Rack PC: Rack PC 547B, IPC547C, IPC547D, IPC547E, Rack
PC 647B, IPC647C, Rack PC 847B, IPC847C, IPC647D, IPC847D
o SIMATIC Box PC: IPC427C, IPC427D, Box PC 627B, IPC627C,
IPC827C, IPC627D
o SIMATIC Panel PC: IPC477C, IPC477D, Panel PC 577B, IPC577C, Panel
PC 677B, IPC677C, IPC677D
o Industrial Flat Panel (Multi-Touch)
e Standard PC with WinCC Runtime Professional

Design

The functionalities of the engineering tools of the SIMATIC WinCC family are based on each
other. The available editors are largely determined by the respective configurable target
systems and their function. A more comprehensive engineering tool such as WinCC Advanced
can always be used to configure lower-level target devices as well (e.g. Basic Panels)

A Power pack can be used to upgrade from a smaller edition to a larger one. This does not
apply to WinCC Basic.

The functionality of WinCC engineering tools already contains the configuration support of
the available Runtime options for SIMATIC Panels, WinCC Runtime Advanced or WinCC
Runtime Professional, irrespective of the purchased RT licenses. A separate license is required
for the target system when using the configured Runtime options.

Start drive Range of Products

SINAMICS Startdrive is a tool for configuring, commissioning, and diagnosing the
SINAMICS family of drives and is integrated into the TIA Portal.

SINAMICS Startdrive can be used to implement drive applications involving the following
inverters:

e SINAMICS G120
e SINAMICS G120C

36

Basics of PLC



4. Engg. Software TIA Portal * Designiech

Technology for designing the future

e SINAMICS G120D
e SINAMICS G120P
e SINAMICS G110M

The SINAMICS Startdrive commissioning tool has been optimized with regard to user
friendliness and consistent use of the TIA Portal benefits of a common working environment
for PLC, HMI and drives.

All of the available Control Units from SINAMICS Firmware V4.4 are supported for these
devices (including PROFINET, PROFIBUS, Safety Integrated). All combinable Power
Modules up to 400 kKW can be configured.

Benefits
Efficient commissioning with easy configuration and powerful tools:

e High degree of usability thanks to task-based navigation through the engineering
workflow
o Hardware configuration
o Parameterization
o Commissioning
o Diagnostics
Time-saving and guided step-by-step commissioning
User-friendly graphic function view for all drive functions
List of drive parameters structured according to functions
Easy integration of SIMOTICS motors
Integrated control panel for direct operation of the inverter from the TIA Portal
Powerful real-time trace for commissioning and drive diagnostics
Intuitive and efficient inverter diagnostics through automatic display of messages
Context-sensitive online help, e.g. for drive messages
Integrated detailed inverter diagnostic functions
o Control/status words
o Parameter status
o Operating conditions
o Communication states
e Simple configuration for drive-end Safety Integrated and the drive-internal basic
positioning function (EPos)
e Graphic configuration of drive-internal free function blocks (FFB)
e Online work on the inverter
o Without previous creation of an offline project
o With new SINAMICS firmware (e.g. V4.7), without having to perform a
tool update
o Available online functions without project: Commissioning with wizard and
control panel, full parameter access with graphic function view and
structured parameter list with complete inverter diagnostics

37

Basics of PLC



Technology for designing the future

4. Engg. Software TIA Portal * Designiech

SIMATIC licenses at a glance

When using SIMATIC software you have a variety of licensing options tailored to your
individual needs and preferred use.

License type Trial Rental version | Full version Full version
version

Scope of functions | full full full full

Term e.g. 21 days | 365 days unlimited unlimited

Permitted 1PC 1PC 1PC multiple PCs

installation units

License storage local local local local / server

Trial — a license to try us out

With a Trial license you can install the corresponding SIMATIC software product on one
computer. After the first time you launch the program you can use it without restrictions for a
limited time (e.g. 21 days), for testing and evaluation purposes — however it is not meant for
production. We are not subject to liability of any kind for this type of license. Once the Trial
license expires, the software cannot be re-launched till you download and apply a
corresponding Floating or Single License key for the same version. There is no need to reinstall
the software.

When is a Trial version the right one for you?
e You want to try out the software before you decide to buy.
e You want to use the software to evaluate internal processes.

e You don’t want any compromises on functionality or performance during the
testing and evaluation phase.

e Download SIMATIC software Trial versions
Automation License Manager

The Automation License Manager (ALM) makes managing all your licenses especially
efficient, and as easy as pie. It reduces management effort and expense and provides
transparency about the software you’re using, right down to the machine level.

38

Basics of PLC



Technology for desigring the future

4. Engg. Software TIA Portal * Designiech

Manage licenses locally or with server support

o You can use your licenses within the
company network or locally

e License overview

o ALM gives you a very convenient
overview of all the licenses available

e Get licenses online

o You can download licenses easily via
drag & drop from the Siemens Online
Software Delivery (OSD) platform

File Edit LicenseKey View Help
» & @[ % 5 X A R [ucensekes  -]E1 [ ?
- My Desktop
E|--|;| My Computer
B Local Disk (C:)
! Local Disk (D)
in Web License Key Download ! Local Disk (C:)
"B ol Dick (D)
- 1 :
Press F1 for Help i Unknown NUM

The Automation License Manager is an integral part of every SIMATIC software product, and
provides a complete overview of all your available licenses. It makes it faster and easier than
ever before to manage existing licenses and get new ones.

You can download SIMATIC software directly through the Automation License Manager.
Transfer licenses directly by drag & drop from the Online Software Delivery (OSD) platform
to your hard disk.

Download the Automation License Manager from the Service & Support Portal

39

Basics of PLC



Technology for desigring the future

4. Engg. Software TIA Portal * DesignTech

Operating Systems for PG/PCs

Possible Operating Systems for PC/PGs

o ' Startdrive V12
o i [
% . WinCC V12 Comfort, Advanced , Professional
[
= |
= . STEP 7 Professional V12
9 : i
=) STEP 7 V12 Basic |
=8 WinCC V12 Basic %
|
- 32bit + 64bit
[<}]
2 My Ay | Ay
@ g ay/ | /7]
=
"E Windows XP Home SP3 Windows XP Professional SP3 Windows Server 2003 StdE SP2
é. Windows 7 Home Premium SP1 = Windows 7 Windows Server 2008 R2 StdE

Professional/Enterprise/Ultimate SP1

Virtualization (Released Software)

Released Virtualization Software Released TIA Portal Versions

M STEP 7 V12 Basic/Professional
WinCC V12 Basic/Comfort/Advanced

VMware vSphere Hypervisor ESX(i) 4.1, 5

VMware Workstation 8 J WinCC V12 Professional
VMware Player 4 M Startdrive V12

Microsoft Windows Server 2008 . -
R2 SP1 Hyper-V J WinCC Runtime Advanced V12

or newer versions % WinCC Runtime Professional V12

Host operating Systems Guest oOperating Systems
Windows 7 . . €) Windows 7

(Business / Ultimate) 32-bit + 64-bit (Professional / Business / Ultimate)
32-bit + 64-bit

/3% Windows Server 2008 R2 64-bit

Parallel Installation “Side-by-Side”

Compatibility of STEP 7 with other SIMATIC products

40

Basics of PLC



4. Engg. Software TIA Portal * Designiech

Technology for designing the future

STEP 7 Professional / Basic V13 SP1 (incl. WinCC Basic V13 SP1) can be installed on a PC
in parallel with other versions of STEP 7 V12, V5.4 or V5.5, STEP 7 Micro/WIN, WinCC
flexible (from 2008), S7-PCT (from V3.3) and WinCC (from V7.0 SP2).

Compatibility of WinCC with other SIMATIC products
Side-by-side installation with all other SIMATIC products

e WinCC Basic/Comfort/Advanced V13 can be installed on one computer in parallel
with STEP 7 V5.4 or V5.5, STEP 7 Micro/WIN, STEP 7 V10.5/V11/V12, WinCC
V11/V12, WinCC flexible (2008 and higher) and WinCC (V7.0 SP3 and higher)..

e WinCC Professional V13 can be installed on one computer in parallel with STEP 7
V5.4 or V55, STEP 7 V10.5/V11/V12, WIinCC V11/V12 (except WinCC
Professional), WIinCC flexible (2008 and higher). The parallel installation with
WinCC V6/V7 is not permitted.

e The following virus scanners have been tested with WinCC V13:

o Symantec Endpoint Protection 12.1

Trend Micro Office Scan Corporate Edition 10.6

McAfee Virus Scan Enterprise 8.8

Kaspersky Anti-Virus 2014

Windows Defender (Windows 8.1 and higher)

o O O O

Compatibility of StartDrive with other products

e SINAMICS Startdrive can be installed alongside STARTER
e SINAMICS Startdrive V13 operates with STEP 7 Basic/Professional V13 and
WinCC V13 in a framework
e SINAMICS Startdrive V13 can be installed on a computer alongside other versions
of Startdrive V12, STEP 7 V12, V5.4 or V5.5, STEP 7 Micro/WIN, WinCC flexible
(2008 and above) and WinCC (V7.0 SP2 and above)
e Supported virtualization platforms:
o VMware Workstation 10
o VMware Player 6.0
o Microsoft Windows Server 2012 R2 Hyper-V
e SINAMICS Startdrive has been tested with the following virus scanners:
o Symantec Endpoint Protection 12.1
o Trend Micro Office Scan Corporate Edition 10.6
o Kaspersky Anti-Virus 2014
o Windows Defender (Windows version 8.1 and above)

TIA PORTAL: PORTAL VIEW & PROJECT VIEW

STEP 7 Basic provides a user-friendly environment to develop controller logic, configure HMI
visualization, and setup network communication. To help increase your productivity, STEP 7
Basic provides two different views of the project: a task-oriented set of portals that are
organized on the functionality of the tools (Portal view), or a project-oriented view of the
elements within the project (Project view). Choose which view helps you work most efficiently.
With a single click, you can toggle between the Portal view and the Project view.

Basics of PLC 4 1



Technology for desigring the future

4. Engg. Software TIA Portal * Designiech

The Portal view

T4 Siemens —_m X

Totally Integrated Automation

Open existing project

Open existing project Recsmivinzad
Project Fath Last change

ClUsersladminiDocuments\Automationls. 21292016 ...

Create new project
ClusersladminiDocumentslAutomationl . 311412016

)} Migrate project 15032016 ClusersladminiDocumentslAutomationl... 31512016 ..
€t 200 ClUsersladminiDocumentslAutomationl... 212812016 ..

) Welcome Tour :

<] il I[2]
e [ pen ]

) Installed software

) Help

@ User interface language

The Portal view provides a functional view of the project tasks and organizes the tools
according to the tasks to be accomplished. You can easily determine how to proceed and which
task to choose.

Portals for the different tasks

Tasks for the selected portal
Selection panel for the selected action
Changes to the Project view

PoNbE

42

Basics of PLC



4. Engg. Software TIA Portal * Designiech

Technology for designing the future

The Project view

T4 Siemens - C:Wsers\admin\Documents\Automation\s7300\s7300

. . - I . Al
Project Edit  View Insen. Onlllne— Optlo.ns Tools  Window  Help . : : Totally Integrated Automation
3F [ I save project %x EERER G ENCR a0 I & & Goonline Guuﬁlinegﬂ"h?mm _}é’ PORTAL
00 p A PN/DP
Devices |E Topology view ||ﬁﬂ-h Network view "—l]\’ Device viey | Options 2
5O © EE] DiEx BEIEFICT S Sk
o (4] v | Catalog §
- £7300 - b o
L . N & S | | Y
I Add new device & ~ - o
gy Devices & networks q’\ o \Q@o Eiller :
; ’
~ (mpic i [cPuzace & @ &> ’ r—{l Rack @ a
1 Device configurat... = 1 2 s 5 6 7 8 D I_-I_l
ﬁ Online & diagnost... ail_0 H ' I—'\I_l cru
= [l Frogram blacks E 4 r_‘I-l M 2
B ~Add new block E 4 r{lDl 5
4 Wain [0B1] i " br_E.DD :
» [3 Technology objects l:n. u b I_-El DIlDo =
3
» External source file: I E i D I_-i. B
~ Q PLCtags E 3 r_i. AD =
sé showall tags i » LUl AliRO 5
n“. Add newtagt.. » [l Communications modules 2
+ T
=2 Default tag ta... D I_-I_l R4 B
» [l PLC data types 3 r_{. IQ-SENSE
» [52 Watch and force t... » Ll special
» [& Online backups » [l Interface modules E|
» [if Device proxy data ;a,
B Frogram info 3 A | Information 4
hl .
<] i B o el — Device: i
|D o S ) e -
~ etails view =
gproperﬁes |"_i.‘.lrlfo y| [ Diagnostics =
General i) " Cross-references " Compile ‘ ™
- mlshowal\ messages |'| ‘b )
=Rl Compiling completed (errors: 0; wamings: 0}
gt Frogram blacks Fath Description
ﬁ TEChHOI‘m(‘S hd i Compiling completed (errors: 0; warnings: 0) H % Article no.: hd
< | : >

Portal vie =3 overview PLC_1 45 FLC tags & Main

The Project view provides access to all of the components within a project.

1. Menus and toolbar

2. Project navigator

3. Work area

4. Task cards

5. Inspector window

6. Changes to the Portal view
7. Editor bar

With all of these components in one place, you have easy access to every aspect of your project.
For example, the inspector window shows the properties and information for the object that
you have selected in the work area. As you select different objects, the inspector window
displays the properties that you can configure. The inspector window includes tabs that allow
you to see diagnostic information and other messages.

By showing all of the editors that are open, the editor bar helps you work more quickly and
efficiently. To toggle between the open editors, simply click the different editor. You can also
arrange two editors to appear together, arranged either vertically or horizontally. This feature
allows you to drag and drop between editors.

Basics of PLC 43



4. Engg. Software TIA Portal * Designiech

Technology for designing the future

HELP functions

To help you to find more information or to resolve issues quickly and efficiently, STEP 7 Basic
provides intelligent point-of-need assistance. Hovering over an element of the software
interface displays the tool tip. Some of the tool tips in the interface "cascade" to provide
additional information and even include a link to a specific topic in the online information
system. A black triangle alongside the tool tip signifies that more information is available.

Help is always just a click away! From the Portal view, select the Start portal and click the
"Help" command. From the Project view, select the "Show help" command in the "Help" menu.

Project Edit View Insert Online Options Tools vindow Totally Integrated Automation
Zf Y | saveprojece @i ¥ E ¥ i EIMNE R § coonline ¥ cooffline n"u’ mmE e’ PORTAL

||u| b

Devices

[l )

Options

e] it

The information system opens in a window that does not obscure the work areas. To undock
the help window and display the contents, click the "Show/hide contents™ button. You can then
resize the help window.

K Information System S - 4

Contents | Index I Search I Fa\rori_tesl
Ml Information system

M System overview of STEP 7 and WinC Readme

M What's new in STEF 7 Professional ?

! Wihat's new in WinCC Professional ? Getting Started

M Readme

M installation Introduction to the TIA Portal

! Migrating projects and programs

M First steps L iect

M Introduction to the T14 Portal Editing p

M Cditing projects

M Editing devices and networks - .

! Programming a PLC Editing devices and networks t:l

! Visualize processes l:]

M Using technology functions

M Using online and diagnostics functions Programming a PLC e

M Using Team Enginesring %@3

M Support Packages
B Hard d ritati
= é GES;?;E peume ron Using technology functions - .
hﬂ-
Visualizing Processes I )
Using online and diagnostics functions
= 'M

Help on the Information System
Glossary

. [T} ]

44

Basics of PLC



4. Engg. Software TIA Portal = Gesigniech

If STEP 7 Basic is maximized, clicking the "Show/hide contents” button does not undock the
help window.

Click the "Restore down™ button to undock the help window.

You can then move and resize the help window.

Printing from the online help

To print from the information system, click the "Print"
button on the help window.
| |

The "Print" dialog allows you to select the topics to
print. Make certain that the panel displays a topic. You
can then select any other topic to print.

Q:untents| Igdexl §earch| Fa'u'nr'[tes|

Hl _L| Editing projects

Print help topics H

» [ System overview of STEP 7 and ...
w [ | What's new in STEF 7 Frofessi... Position-controlled axis is available.
¥ What's new in STEP 7 Profe... Scalable options for online backup of
¥ [ What's new in WinCC Profession.. devices are available.
» [] Readme
¥ [ installation Using onfine and Preferred interfaces for the online
¥ [ Migrating projects and programs & & on connection can be saved as default in the
» [ Firststeps agnostics settinos
- functions &5
» [ Introduction ta the TIA Fortal
¥ [ Editing projects To establish an online connection to devices
» [[] Editing devices and networks in an external subnet, vou can assign an
» [ Programming a PLC alternative IP address to the device.

G el Developing function extensions for HMI and

» [[] Using technology functions PLC in parallel with Inter Project
» [] Using online and diagnostics ...

Engineering:
» [] Using Tear Engineering Using Team ngmeetng
[[] support Packages . . .
E MPI ried.
» [ ] Hardware documentation neneenng * 15 supporte
_| i + H systems are supported.
The "Openness" option package with API
finctions and XML format for the
import/export of project data is available for
Support packages installation in the "Support” folder on the
DVD.
PLCSIM is also available for the S7-1200
CPU.
(<] il |
| Clear zelection | | selectall | | Print | | Cloze |

e SSSSSSS———|
Click the "Print" button to send the selected topics to your printer.

45

Basics of PLC



Technology for desigring the future

4. Engg. Software TIA Portal * Designiech

ICONs of the help topics

1 Handling instructions Describes the procedure for performing a particular
2 task.
Example Contains a concrete application example to explain a

}} particular task.

b Factual information Contains important background information that is
a necessary for performing a task.
Reference This contains reference information.

46

Basics of PLC



5. Devices & Networks « DesignTech

Technology for designing the future

Devices & Networks:
Online Tools, Configuring and Parameterizing the Hardware

"Devices & Networks" Editor

Almost all devices or components of an automation solution, such as, PLCs or touch panels
can be parameterized. The parameterization of devices and network settings necessary for
commissioning is done with the "Devices and Networks™ Editor.

For example, IP addresses for the communication are assigned to all components of an Ethernet
network. But even within the automation device, the address areas for 1/0 modules have to be
defined and the cycle monitoring time of the CPU has to set, for example.

Online Connection via Industrial Ethernet: IP Address & Subnet Mask

Internet Protocol

The Internet Protocol (IP) forms the basis for all TCP/IP networks. It creates the so-called
datagrams — specially tailored data packets for the Internet protocol and takes care of their
transport in the local sub-network or their "routing” to other subnets.

IP Addresses

IP addresses are not assigned to a specific computer, rather to the network interfaces that a
computer has. A computer with several network connections (such as, routers) must therefore
have an IP address assigned for each connection.

IP addresses consist of 4 bytes. With the dot notation, each byte of the IP address is expressed
as a decimal number between 0 and 255. The four decimal numbers are separated from one
another through periods (see slide).

MAC Address

Each Ethernet interface has been assigned a fixed and worldwide unique address by its
manufacturer. This address is called hardware or MAC address (Media Access Control). It is
stored on the network card and is used as the unique identification in a local network. The
cooperation of the manufacturers guarantees that the address is unique worldwide.

Subnet Mask

By means of the subnet mask, the subdivision of the IP address into network and computer
address is carried out. Furthermore, with the subnet mask a network can be divided into
subnets.

For this, a part of the computer address is used as the sub-network address. As a result, networks
can be flexibly adapted to organizational and physical factors.

47

Basics of PLC



5. Devices & Networks * Designlech

Online Access: Accessible Devices in the Portal View

Accessible devices in the Portal view:

This method offers quick access (e.g. for service purposes) even if there is no offline project
data on the programming device for the target systems.

All accessible, programmable modules (CPUs, FMs and CPs) are listed in the portal view, even
if they are located in other subnets.

e "Assign IP address":

e As soon as the button "Show in project tree" is clicked to access a module that is
located in a different subnet to the PG, a prompt in the dialog box asks whether an
additional IP address should be assigned to the PG. Following confirmation, an
additional IP address is assigned which lies in the same subnet as the address of the
CPU. All online functions can then be used.

CPU Memory Reset (MRES) using Mode Selector Switch

With a Memory Reset, the CPU resets the memory, that is, its work memory, the retentive areas
and the diagnostic buffer is deleted.

In Siemens, some series are there where you can perform the Memory Reset with the help of
hardware only.

A memory reset clears all work memory, clears retentive and non-retentive memory areas, and
copies load memory to work memory. A memory reset does not clear the diagnostics buffer or
the permanently saved values of the IP address.

In S7-1200, with the help of STEP7 software only one can operate memory reset. In s7-300,
we have option through Mode Selector Switch as well as Step7.As previously mention, with
the help of “ONLINE TOOLS” one can click on MRES button.

The procedure for the Mode Selector Switch is described here in the flow chart.

48

Basics of PLC



5. Devices & Networks * Designrech

Bl 1. Set the Mode Selector Switch to
STOP

2.1 The STOP LED will flash slowly

[

(@]

"5 Hl 2. Hold the Mode Selector Switch in

() the MRES position.
O 2.2 After the second flash release the
(¥s) mode selector switch so that it

() returns to the STOP position.
©

®)]

§ 3.1 The STOP LED begins to flash
< quickly.
= 3. Turn(Press) the mode selector

; s SWitch to the MRES position once

more.

(Vs) 3.2 Release the mode selector switch
L so that it returns to the STOP

g position.

Ml 4. Now set the mode selector switch 4.1 Awarm restart is carried out in
to the RUN position. the transition from STOP to RUN.

SIMATIC Card

The SIMATIC Memory Card of an S7-1200 is a memory card pre-formatted by Siemens. It
can be read and written with the Windows Explorer but under no circumstances can it be
formatted with it!

Attention:

The system files "__LOG__" and "crdinfo.bin" stored and hidden on the card are not to be
deleted since the CPU then no longer can interpret the card contents. If a completely deleted
card is inserted in the CPU, the two files named are recreated on the card by the CPU.

Card type of the SIMATIC Card:
The SIMATIC card is used as a Program card or a Transfer card or for Firmware Updates.
Before the data is stored on the SD card, the card type must be selected as shown in the picture.

1. SIMATIC card as Program card:

e The card contains all configuration and parameterization data for the station as well
as the complete user program with documentation. During operation, the card must
remain inserted in the CPU because it is used as a replacement for the internal CPU
load memory which remains unused.

2. SIMATIC card as Transfer card:

e The card contains the same data as a Program card but it doesn’t have to remain
inserted during operation. After inserting the card and subsequent Power ON, all

49

Basics of PLC



5. Devices & Networks « DesignTech

Technology for designing the future

data is copied into the internal load memory of the CPU. Then the card has to be
removed and a restart has to take place.

3. SIMATIC card to Update firmware:

e The SIMATIC card contains the files required for a firmware update. After
execution (instructions are included as a Text file) the SIMATIC card must be
removed.

Components of “Devices & Network” Editor

Device editor

You open the device and network editor from the project tree. The hardware and network editor
consists of the following components:

e Device view or network view
e Inspector window
e Hardware catalog

Device / Network / Topology view

The hardware and network editor consists of a Device view, a Network view and a Topology
view. The Device view is used to configure devices, the Network view is used to network
devices and the Topology view is used to determine the physical layout of networks.

Inspector window

The inspector window has the following tabs:
e Properties
e Info
e Diagnostics

The "Properties” tab is used for parameterization. Here, all properties or parameters of modules
are displayed and can also be changed. In the left part of the Properties tab is the area navigation
in which the parameters are arranged in groups.

Hardware catalog

The "Catalog" pane contains all devices and hardware components arranged in a tree structure.
You can drag the devices or modules you want from the catalog into the graphic work area of
the device view or network view.

Search and filter function

The "Catalog” pane with the search and filter functions allows you to easily search for
particular hardware components. There is a filter function in the hardware catalog. If the filter
function is deactivated, all the objects available in the catalog are displayed for you in the

50

Basics of PLC



5. Devices & Networks « DesignTech

Technology for designing the future

hardware catalog. To only display the objects that you can use in the current context, activate
the "Filter" check box. If you have activated the filter, only the following objects are displayed:

e In the network view, only those objects that can be networked are displayed.

e All modules that are part of the context of the current device are displayed in the
device view. If you switch between network and device view, the view of the filter
objects is adapted to the current context.

Information
The "Information™ pane contains detailed information on the object selected from the catalog:
e Schematic diagram
e Name
e Version number
e Order No.

e Short description

Set-point Configuration: Creating Hardware Station

When you configure a system, a set configuration is created. It contains a hardware station with
the planned modules and the associated parameters. The PLC system is assembled according
to the set configuration. During commissioning, the set configuration is downloaded to the
CPU.

Set configuration: Creating a new hardware station

With the set configuration, you define the arrangement of modules on the rack. When you
create (add) a new device, a suitable rack is automatically added. The selected device is plugged
into the first permitted slot on the rack. Regardless of the chosen way, the added device is
visible in the Device view and in the Network view of the Devices & networks editor.

Downloading Actual Configuration into project: Inserting an Unspecified

CPU

Upload actual configuration to PG

From a real existing station, the existing configuration (without module parameters!) can be
read out.

This becomes necessary, for example, when there is no matching offline project on the
programming device. After reading out the actual configuration, you can check, change, save
and reload the parameterizations of the modules into the CPU. For this, the first step is to add
an "Unspecified CPU" in the offline project.

Detect the online station

51

Basics of PLC



5. Devices & Networks « DesignTech

Technology for designing the future

As soon as the "Unspecified CPU" is added, all accessible devices can be detected via "detect"
in the dialog shown.

Click the word "detect” with the mouse to open a new window in which all accessible devices
are displayed. Search for the device that you want to insert in your configuration and click the
"Load" button. The configuration is detected and inserted in your project.

Actual configuration
The actual configuration for the selected device is read out and placed in the offline project.
Note:

In reading out, only the hardware configuration is uploaded, no hardware parameterization and
also no S7 program blocks.

Compiling the Hardware configuration and downloading it into the CPU

Compile and download hardware configuration
The following components of a hardware station can be compiled or downloaded:

o All

e The complete hardware configuration and hardware parameterization as well as the
complete user program is compiled.

e Hardware configuration

e Only the complete hardware configuration and hardware parameterization is
compiled.

e Software / Software (rebuild all)

e With "Software (rebuild all)", all blocks of the user program are compiled; with
"Software", only the modified blocks

CPU Properties: Ethernet address
CPU PROFINET interface

Regardless of whether the Devices & networks Editor is in the Device or the Network view,
the settings for the CPU-PROFINET interface can be made in the "Properties” tab in the
Inspector window when the CPU is highlighted.

If an online connection between the programming device and the CPU is to be established, the
same subnet mask must be assigned to the two devices. The IP addresses have to be in the same
subnet.

Basics of PLC 5 2



e Designiech

Technology for desigming the future

6. PLC Tags

PLC TAGS
Meaning of Variables and Data Types

Variables:

A variable is a placeholder for a data value that can be changed in the program. The format of
the data value is defined. The use of variables makes your program more flexible. For example,
you can assign different values to variables that you have declared in the block interface for
each block call. As a result, you can reuse a block you have already programmed for various
purposes.

A variable consists of the following elements:
o Name
o Data type
e Absolute address
o PLC tags and DB tags in blocks with standard access have an absolute address.
o DB variables in blocks with optimized access have no absolute address.
o Value (optional)
Declaring Variables:
You can define variables with different scopes for your program:
o PLC tags that apply in all areas of the CPU
o DB variables in global data block that can be used by all blocks throughout the CPU.

o DB tags in instance data blocks that are predominantly used within the block in which
they are declared.

The following table shows the difference between the variable types:

Can be used by all
blocks on the CPU.
The name is unique
within the CPU.

defined.
The name is unique within
the instance DB.

PLC tags Variables in instance DBs | Variables in global DBs
Range of | Are valid throughout | Are predominantly used in | Can be used by all blocks
application | the entire CPU. the block in which they are | on the CPU.

The name is unique within
the global DB.

Permissible
characters

Letters, numbers,
special characters
Quotation marks are
not permitted.
Reserved keywords
are not permitted.

Letters, numbers, special
characters
Reserved keywords are not
permitted.

Letters, numbers, special
characters
Reserved keywords are not
permitted.

Basics of PLC




6. PLC Tags « DesignTech

Technology for desigming the future

Use I/0 signals (I, IB, | Block parameters (input, | Static data
IW, ID, Q, QB, QW, | output and in-out
QD) parameters),
Bit memory (M, MB, | Static data of a block
MW, MD)
Location of | PLC tag table Block interface Declaration table of the
definition global DB
Data types:

PLC data types are data structures that you define and that can be used multiple times within
the program. The structure of a PLC is made up of several components, each of which can
contain different data types. You define the type of components during the declaration of the
PLC data type.

You can create up to 65534 PLC data types for a CPU of the S7-1200 or S7-1500 series. Each
of these PLC data types can include up to 252 components.

PLC data types can be used for the following applications:

o PLC data types can be used as data types for variables in the variable declaration of
logic blocks or in data blocks.

o PLC data types can be used as templates for the creation of global data blocks with
identical data structures.

e PLC data types can be used in S7-1200 and S7-1500 as a template for the creation of
structured PLC tags.

PLC Tags
Introduction

PLC tag tables contain the definitions of the PLC tags and symbolic constants that are valid
throughout the CPU. A PLC tag table is created automatically for each CPU used in the project.
You can create additional tag tables and use these to sort and group tags and constants.

In the project tree there is a "PLC tags" folder for each CPU of the project. The following tables
are included:

"All tags" table
« Standard tag table
e Optional: Other user-defined tag tables
All tags

The "All tags" table gives an overview of all PLC tags, user constants and system constants of
the CPU. This table cannot be deleted or moved.

Standard tag table

54

Basics of PLC



6. PLC Tags « DesignTech

Technology for desigring the future

There is one standard tag table for each CPU of the project. It cannot be deleted, renamed or
moved. The default tag table contains PLC tags, user constants and system constants. You can

declare all PLC tags in the default tag table, or create additional user-defined tag tables as you
want.

User-defined tag tables

You can create multiple user-defined tag tables for each CPU to group tags according to your
requirements. You can rename, gather into groups, or delete user-defined tag tables. User-
defined tag tables can contain PLC tags and user constants.

Details View of PLC Tags

Devices JW‘
HOQ =2 HOQ =2

- Egl‘.'uat-:h and force tables n—ﬁ,lh Devices & networks
B Add new watch table ~ [jjj PLC_1 [CPU 314C-2 PN/DP]
E,D], Force table I]T Device configuration
» I'j‘ Online backups ﬂ Online & diagnostics
» [ Device proxy data » [l Program blocks £
_“’i Program info ] r:*; Technology objects
4 PLC alarms ] External source files
5] Text lists Select the ~ [g PLC tags Select the tag table
= Ix_[. Local modules hardware modu % Show all tags
Il s 307 54 1 i

24 Defaulttag table [7]

PLC 1[CPU 314C.2 PNIDP]
Ml 11600 16x24vDCi05A 1 (Rl ata ppes

4 %W‘atch and force tables
4 I'j‘ COnline backups

4 Eﬂ] Documentation settings
] r:@ Languages & resources L] i Device proxy data

» [ig Online access 2 Program info

[ig foiTalat] i AP Calarme i
« | Details view V « | Details view V

Name Type Address Name Data type Details Co...
I]'f Device configuration i -~ Coml i Bool ®0136.2 E A In
Q Online & diagnostics = 51 Boal %I136.0 SW...

- | B
< Bool %I0.0 : 52 Baol %I136.1 SW...
< Bool %l0.1 : =3 Baol %l136.2 SW...

g | Bool %102 0 cd Bool WRII3IE.3 SW_.
g | Bool %03 0 w2 Bool %Q136.0 Va...
|
- Bool 104 S el = = o
v M RE
3 overview | E T = overview I-J% PLC tags

The details view shows:
e Tags of the selected tag table

e The channels of the selected local modules and their tags (if defined)

Basics of PLC 5 5



e Designiech

Technology for desigring the future

6. PLC Tags

Finding/Replacing/Sorting PLC Tags

44 Siemens - C:\Users\admin\Documents\Automation\17032016117032016

Project Edit Wiew Insert Online Options Tools Window Help Totally Integrated Automation
GF TH [ saveproject 5 M = B X D@ T NG B & Goonline ¥ Go offline ﬁ? mE e PORTAL
6 p p 4 PN/DP PLC ta Defa ag table [18
Devices ‘ﬂl Tags ” & User constants ",E System constants | Options B
=0 = = By Double click for the =] = 3,_1'
Default tag table SOt PRI V|Find and replace g
ﬁﬂ-h Devices & ... lz‘ MName Data type etain visibl. —
~[merc e 1 @ si_sTAT Bool TR0 =] Find: U;'
Y pevice ... 2 |lam  S2_STOP_MAIN Bool %I136.1 =] 50 =] |5
%] online .. 3 |4  S3_FORWARD_ON Boal %1362 [ T S
» [l Progra... _|¢+ @ s4_FORWARD_OFF Bool %1363 = o t
» (@ Techno. | |5 <@ M AGTATOR Bool %Q42 =] Dl s [N |
» [ Externa_. 6 |0  M_AGITATOR(1) Bool %Q43 [ F
~ g PLCtags 7 |40 M. Cconv.on Bool %Q4.4 ™
5 sho & |40 M_CONV_FOR Bool %Q45 =]
B Add... 9 |40 M_CONV_REV Bool %Q4.6 =]
10 4@ M _CONV_OFF Baal [E %as.0 [=] ™
11 |40 MOTOR_OFF_LED Bool %Q8.1 [
v [ Watch . 12 40  MOTOR ON_LED Bool %Q8.2 =]
» [ Online .. 13 @ vzZ_A Bool %Q136.0 =]
v [, Device ... 4 @ vaem Boal %Q1361 = Selectior
B0 Frogrs 15 |lam  vi_An Boal %Q136.2 = @ Down
A PLCala... 16 |4@m wv3_BN Bool %Q136.3 =]
=] Text lists 17 @ vs_M_ouT Baal %Q1I64 = Oue
+ il 18 40 VE_MX_OUT2 Bool %Q1365 =l [ Find |
V|Detai|s view 19 <Add new>
Replace with:
e [<] n ] > @ [+ n
W MAGITATOR é ‘g, Properties ”"A.'. Info ||ﬂ Diagnostics [—Replace [[ Repla®
<@ M_AGITATOR(1)
& M.CONV_FOR J General || Cross-references ” Compile | V|Language5 & resources
<@ LB B @IEI‘ show all messages |'| Editing language: ||%
<@ M_CONV_ON =
——— 3
= M_CONV_REV -1 — Englizh (United States) n
< i SNE ¢| [
Porta <] =3 overview Isjﬁ PLCtags |t.-Eh FLC_1 Ii‘a’ Default tag t... v Loading completed (errors: 0; warnings...

Find / Replace with

In the PLC tag table, tags can be found and replaced via the "Tasks" task card. Dummies can
also be used (? for one character, * for several characters).

Example of "Find and Replace with":

Assign bit address g4.0 with bit address g8.0:

Find: Q 8.0

Replace with: Q 4.0 (Already shown in the image before)
Sorting

By clicking on one of the column names "Name", "Data type" or "Address", the tags are sorted
alphabetically or according to address (ascending or descending) depending on the column.

56

Basics of PLC



6. PLC Tags « DesignTech

Technology for desigming the future

Error Indication in PLC Tag Table

T4 Siemens - C:\WUsers\admin\Documents\Automation\17032016\17032016
Project Edit View Insert Online Options Tools Window Help Totally Integrated Automation
X oy T[N [H B & Goonline ¥ Go offline ﬂnh’ AR . PORTAL
17032016 » PLC_1 [CPU 314C-2 PN/DP] » PLC tag g table [18]
Devices |€n Tags ” = User constants ”@ System constants
50O O ¥ F B 7 i el
Default tag table g
iy Devices & __ Name Data type Address Retain  Visibl... Acces.. Comment —
~ [@ PLC_1[cP_ 1 @ S1_START Char [%1360  [=] =] switch 1 I'"I_"l
Y pevice ... 2 - 52_STOP_MAIN Boaol K The address entered does not switch 2 rl?
%] online . S @ S3_FORWARD_ON Boal match the data fype ofthe tag. switch 3 E
v [ Progra... _|¢ @ s4_rorwsRD_OFF Boal %1363 =] M switch4 a
b [ Techno., |5 @ vz2A Baal %O1360 =l M valve for liquid A ||
v [m Externa 5 4@ V4B Bool %0136.1 =] M valve for liquid B
~ [ PLC tags 7 4@l  M_AGITATOR Bool %Q4.2 =] M  Agitator Motor
& @ M_AGTRTOR() _ |soal %043 = =l M  2nd Agitator Matar
9 - M_CONV_ON Bool w044 E E conveyor on motor
10 - M_CONV_FOR ifthe same’name tag %045 E E conveyor froward direction
11 @ mconygey (salreadyexistthan %Q4.6 =] M  conveyor reverse direction
» [ watch _ 12 @ viAm a'(1) will be appended [E[%q1360  [+] =] M Aliquid inletvalve
3 rj—. Online ... 13 <@ V3_B_IN automatically ! This address is already used by §  Bliquid inletvalve
» [, Device ... 14 @ Vs MIX_ouT Bool anather tag. §  midng liquid outletvalve
ot Progra... 15 <@ WE_MIX_OUT2 Bool %0136.5 E E mixing liquid outlet valve 2
EA PLCala... 16 <@ M_CONV_OFF Bool %QE.0 E E conveyor off motor
] Textlists 17 4@  MOTOR_OFF_LED Bool %081 =l M sl motor offled
< il 18 4@  MOTOR_ON_LED Bool %82 =] M  sllmoteronled
- | Details view 19 <Add news
Name [<] n NE
<@ MAGITATOR b |§ Properties ||"jllnfo ” %] Diagnostics |
< M_AGITATOR(1) =
@ M_CONV_FOR J General " Cross-references ” Compile |
< M_CONV_OFF @\I“ Show all messages |'|
< M_CONV_ON
<@ M_CONV_REV . Message Go to ? Date Time
¢ [T e <] [T
Porta e = Overview I% PLC tags Iﬁg-h PLC_1 I% Default tag t___ ding comple

Syntax check

With every entry, there is a syntax check in which existing errors are displayed in RED or
YELLOW. A still faulty PLC tag table can be saved but as long as it is still faulty, the program
cannot be compiled and downloaded into the CPU.

57

Basics of PLC



6. PLC Tags

e Designiech

Technology for designing the future

Copy and Paste PLC Tags to Excel

Tify Siemens - C:\Usersladmin\Documents\Automation\17032016117032016

Project Edit View Insert

Online

Options

Tools

Help

Totally Integrated Automation
PORTAL

G seveproject @i XM % X O TN E R & Goonline ¥ Go offline ﬁp!m »

17032016 » PLC_1 [CPU 314C-2 PN/DP] » PLC tags

Devices |<E|I Tags ” & User constants ",E System constants B
y =
HOQ =
=
@
¥ []17032016 ~ = Tag table Data type Address Retain | Visibl | Acces_ |Com_ E
g " H L W =
Bool E|| %l136.0
pf ot ree ————= = LR N :
o Bool %I136.1 =] =] &
> [ Path of export file: Bool %1362 ] =] S
]
Boal %1363 = = [
|C:'.U5Er5‘.a dminiDesktopltags sheetxdsx || Bool %Q136.0 =] =]
4 Elements to be exported: Bool ®0Q136.1 ] ]
| & Tags Boal %0 136.2 =] =]
] v v
- D Constants
[ ] »
oK Cancel
‘ | |§ Properties ”"A.'. Info y"ﬁ Diagnostics |
v L PLCEEta types General
= -
» gzl Watch and for... Tag u
» [ online backups Tag =]
» i Device proxy ... oo
_Wi Program info
hd Jll n Name: |s1 |
v | Details view ‘ Data type: |Bool [E]
m Address: [%1136.0 I+]
Marme :
Comment: | |
History
Date created: |3/17/2016 10:45 AM
< I ¥ v
Po =3 Overview %5 PLC tags

Copy & Paste from and to Excel

-

Bl

The Windows Copy & Paste function can be used to easily copy individual or several tags from
a PLC tag table to Excel to further process it/them there and then to copy it/them back from
Excel to the PLC tag table.

A

sl
52
s3
s4
v2
v4
ml

W oo~k WN R

el i s =
QU s WN RO

- Je

| Name _|Path

Default tag table
Default tag table
Default tag table
Default tag table
Default tag table
Default tag table
Default tag table

PLC Tags (O]

MName

Data Type Logical Address

Bool
Bool
Bool
Bool
Bool
Bool
Bool

D

%l1136.0
%1136.1
%1136.2
%1136.3
%Q136.0
%0136.1
%Q136.2

E
Comment
switch 1
switch 2
switch 3
switch 4
valve for liquid A
valve for liquid B
Agitator Motor

True
True
True
True
True
True
True

F

True
True
True
True
True
True
True

G
Hmi Visible Hmi Accessible

Basics of PLC

58



6. PLC Tags « DesignTech

Technology for desigring the future

Using a PLC Tag as an Operand

Tify Siemens - C:\Users\admin\Documents\Automation\17032016\17032016

Project Edit VWiew Insert Online Options Tools Wndow Help o
L Totally Integrated Automation
F T Seveproject 3 M i = X D2 T 0 H R & Goonline | Gooffline n"n? mm e’ PORTAL
..J32016 » PLC_1 [CPU 314C-2 PN/DP] » Program blocks *» Main [OB1] -
Devices Options B
i = Y T — = 4 =2 ' S 3 = |3
HOO 2w & =OE@a:EE eeas g [ W JE G
> |Favorites E_
5y Devices & - - |B g’
+ | Basic instructions 3
b ; 7 4
~ [ PLC_1 [CP__ =i =0 — -k P =%
IY pevice ... w Block title: “Main Program Sweep (Cycle)” » [ General T
ﬂ NS — Comment » [51] Bitlogic operations E i
v [l Frogra '
= i : » [@] Timer operations a
zr\m‘i... *  Network 1: wvalve for liquid A »' [5] Counter aperations ‘E
Mai... Carmment = .
Cormment . = | * <] Comparator operations
v [ Techno... Automatic =l = o =
= Symbol Selection L&] Math functions B
» lg} Externa.. %136.0 %0136.1 %04.2 wizeo| e[ —  wm | =0
- @ Acugs “s1_sTagT oo o< B [ ar | e 7
5 sho... T *M_AGITATOR” Bool Q4.2 Gl L |
f Add... . . i
__________ [} : Drag & Drop <@ *M_AGITATOR(1) Boal %Q43 2nd Agitater M. | ||
___________ : < "“M_CONV_FOR" Bool %®Q45 conveyor frowa . = LI
<@ “M_CONV_OFF” Bool %Q8.0 conveyor offm_.. g
» [ warch > LUED L @ "M _CONV_ON Boal %Q4.4 conveyor on m... z
e ; , . =3
» Ligj Online . Comment < "M_CONV_REV" Bool %BQ46 CONVEYOT rEVET... B
=
» L Device <@ "MOTOR_OFF_LED" Bool %Q8.1 all motor off led
} Progra... | v %1360 <@ "MOTOR_ON_LED" Bool %QB.2 all motor on led v T
¢ it W2_A" —_— — =
7 Z ] | { ] Alarrnin
- | Details view / 1 i/ { rf g.
W » | | Diagnostics
/ » [] Data block control
Name (" Il ‘ ‘100’.{7 |'| fonudnnonnonn » [ ] Table functions
Loe  LALWETRIEI [€ Properties  |filInfo  |[%) Diagnostics » [] Addressing
<@  M_AGITATOR(1) | = - » [7] Additional functions
@ IM_CONV_FOR J General " Cross-references || Compile " Syntax |
< M_CONV_OFF @\I‘l Show all messages |'| : l - |
@ M_CONV_ON > | Technology
< M_COMV_REV 1 Message > |Communil:ation
¢ I > | [} » | Optional packages
Porta e % Overview I% PLC tags Iﬁg-h PLC_1 I%’ Default ta... I:I- Main v Loading completed (errors: 0; warnings...

Use tag as operand

During programming, the name of the tag can be entered either from the automatic symbol
selection or selected from the Details view.

Symbol selection

When operands are selected, after the first letter of an operand has been entered, a selection of
all the operands of the corresponding data type that start with the entered letter is displayed.
All the operands that are valid for this block are displayed. These comprise all global tags (also
those that are declared in data blocks), local tags (temporary and static) and the parameters of
the affected block.

In the first column of the symbol selection, either the symbol or the absolute operand can be
displayed.

59

Basics of PLC



6 P LC Ta g S e Designiech

Absolute & Symbolic Addressing

Tify Siemens - C:\Usersladmin\Documents\Automation\s7300\s7300

Project Edit View Insert Online Options Tools Window Help o
» Totally Integrated Automation
F ([ seveproject & ¥ =2 2 X D 5MIG E R & coonline i Gooffline &? mE e PORTAL
s7300 » PLC_1[CPU 314C-2 PN/DP] * Program blocks » Main [OB1]
Devices Bl
e =T o T -— = = & W — 3
500 ER|daFey b ER@ELEIREE C BB i & T K ERH
p:2] Symbolic and absolute 5-
- [ ] 57300 ~ ‘3 Symbaolic — E'
B Add ne ' - = 4 4 & Absolute @
EE,J Devices .. T —
<G o (el
L PLC 1. ammen ﬂ
If pevi... = 5
w
B Onli... MOVE E‘ c
-l Prog.. EN ENO B
W Teg_ 3 — N oun — SR =
E
=
L g
» laj Exe.. fooe ol —y—— |7
b [ FLC.. - TR AYTETI
» [ig PLC .. |§ Properties ” %) Info "E Diagnostics | E
» [ viet... General g
fhe . - =
r L& Onli... u 3
» [, Devi Tag =] E'
Elox
4 Frog- General
B4 PLC ... I
£ 1 Mame: |Tag_4 |
w | Details view . Data type: |Byte E
Bl Address: |%QBB -
Marme :
Comment: | |
History
Date created: | 2/29i2016 10:24 AM |

4 Portal view : ) opened.

'__: : b _: H || Wg_: ﬂ"i“_: d o [ gy

Symbolic and absolute addressing

All global tags (such as, inputs, outputs, memory bits) have both an absolute and a symbolic
address. You can define which is to be displayed or with which is to be programmed (see slide).

When you use a symbolic address (for example, "M _Jog RIGHT") to which an absolute
address has not yet been assigned, you can save the block but you cannot compile and download
it into the controller.

When you use an absolute address (for example, M16.2), it is automatically assigned a
symbolic standard address (for example, "Tag_1") which you can change.

Properties

If a block or the PLC tag table is open in the working area and a tag is selected (highlighted)
there, then all details are displayed in the "Properties” tab in the Inspector window where they
can also be edited.

60

Basics of PLC



6. PLC Tags « DesignTech

Technology for desigring the future

Renaming/rewiring PLC Tags

Tify Siemens - C:\Users\admin\Documents\Automation\17032016\17032016

Project Edit VWiew Insert Online Options Tools Wndow Help Totally | d A o
. - _ L - . X _ , otally Integrated Automation
3F T Seveproject 3 M i = X = T 0 H R & Goonline | Gooffline n"n? mm = PORTAL
..J32016 » PLC_1 [CPU 314C-2 PN/DP] » Program blocks *» Main [OB1] = [
Devices Options B
e = T = - & 4 [iol|[3 ] . » 3 = [T
500 2 oge s b EAED B @] SR EY NG | m O3
> |Favorites a
5y Devices & - — |B e
~ | Basic instructions 3
~ [ PLC_1 [CP.. =i =0 = 1 4 o @
07 pevice .. ~ Block title: - Ta =
ﬂ online . Comment Mame Section Address Datatype | FLC tag table Comment E ﬂ
- r:;:F Progra... vid_B IG\nha\ Output E %Q13... Bool B Default tag table B valve for liquid B F
L w
B Add.. *  Networld ‘ E-
. Change | | Cancel | =
. & Mai.. Commen B
» L Techno.. g NCToNs F
= =
b g exerma. w360 EY C—— =
7 PLC ti "S1_START > V2_AT B .
- - 29% == o o L4 | Extended instructions ¥
4@ Sho.. { —&
- Define tag... Ctrl+Shift+ Name Descri...
i Add.. : = ||
""""" : Rename tag... CtrliShifteT » | | Date and ime-ofday 1
"""""" F Rewire tag... Crrl+Shift+P » [] string + Char Li'l
- E:
v [ Watch .. *  Network 2: M cut Ctrlex » rf Process image 5
) 4 Distributed 110 =
» [ig online . Comment E_ﬁ Copy CerleC rf SEBULEC o
= % Pacte Cerl » | | PROFlenergy -
» Lijl Device . = » [ Modul i i
== p
8 progra. = w3 : ) ule parameter assig | |
< i E¥B3el; Rewire tag
“ | Details view —— [name Section Address | Datatype | PLC tag table Comment
V4_E Global Qutput E [0136.1| [GEED B Default tag table B valve for liquid B
Mame < " | Change ‘ | Cancel |
(@ MAGITATOR A
o | M_AGITATOR(1) Insert empty box Shift+F5 » [ | Additional functions
@ M CONV FOR J General Cross-references
= = Froperties Alt+Enter
@  wcon_orF I e ———— <] |
@ M_CONV_ON > | Technology
< M_COMV_REV 1 Message > |Communil:ation
¢ I > | [} » | Optional packages
Porta e &= overview I% FLC tags Iﬁg'h FLC_T I%’ Defaultta... I:.' Main v Loading completed (errors: 0; warnings...

Rename and rewire tags

Tags can be renamed or rewired directly in the PLC tag table or as shown in the picture using
the Blocks Editor. The changes are immediately adopted in the PLC tag table and affect the
entire program.

e Rename:
e Change the tag name, while the absolute address remains unchanged.
e Rewire:

e Change the associated absolute address, while the name remains unchanged.

Defining Tags while Programming

While during programming also, programmer can define the tag which will be automatically
updated in “Default Tag Table”. While programming, wire the contact with the physical
address (e.g. 11.0). Name of the tag will be “Tag_1” by default.

61

Basics of PLC



Technology for desigring the future

6. PLC Tags « DesignTech

% Siemens - C:\Users\ladmin\Documents\Automation\15032016\15032016

Project Edit VWiew Insert Online Options Tools Wndow Help Totally Integrated Automation

5F H [ Seveproject & M = 2 X D2 T 0L R & Goonline | Gooffline ﬂnh"[E m ox " PORTAL
15032016 » PLC_1 [CPU 314C-2 PN/DP] » Program blocks *» Main [OB1]

Devices
&0 0 1 =

¥ ] 15032016
ﬁbAdd new device
EE,J Devices & networks
= [ PLC_1 [CPU 314C-2 PN/DP]
IIf Device configuration
4| online & diagnostics
~ gt Program blocks

I d new block m
4 Main [0B1] 1 -

- I
» [ Technology objects ‘ 1T Default tag name Tag_L { } '

suonansu|

ik == 7} = X 4

I

~ £ Network 4: interlock

Comment

Bupsa L [

s)yse|

4 External source files
7 I"-_.d PLCtags
% Showall tags = MNetwork 5:
B Add new tag table
% Default tag table [6]
» [ PLC data ypes |
» E:._;L‘J\mtch and force tables [3 - m1 Default tag table Bool %0Q136.2
— 7 4l Tag_l Defaulttag table B Bool

Comment

Updation in Tag table

saneIq] E”

K
€&

w | Details view

100% il YT TR
QProperties |"1.'. Info 1J| ﬂ Diagnostics

Name Address

| General i) ” Cross-references " Compile ” Syntax y\
@mlshnwallmessa 23 |'|
1 Path Description Go to ? Ef=
< [ 20« i »
Portal vie 22 Overview 4 Main %5 PLC tags

Another option for declaration of tags are updating the tag table. Updation if tag table is also
possible.

Basics of PLC

62



6. PLC Tags

e Designiech

Technology for designing the future

Monitoring PLC Tags

Tify Siemens - C:\Users\admin\Documents\Automation\17032016\17032016

Monitor

Project Edit VWiew Insert Online Options Tools Wndow Help Totally Integrated Automation
55 TH [ Seveproject & M I = X D2 T 0L & 5 coonline i Go offline n"n? mm e’ PORTAL
Devices — |ﬂ| Tags ||EI User constants ",E System constants ‘ B
EL-X 2=z 2|7k 2|7
Default tag &
¥ ] 17032016 ~ MName Address a Retain  Visibl.. |Acces.. Monitorvalue Comment =
B Add new device 1 40 S1_START %I136.0 =) M @ TRUE switch 1 L'l’:l
gy Devices & networks 2 4@ 52_STOP_MAIN %I136.1 =) M @ FaLsE switch 2 g
~ (1§ PLC_1 [CPU 314C-2 PN/DP] 2 @ S3_FORWARD_ON |5 %1362 [=] ™ M [@E FaLsE switch 3 £
IIf Device configuration =|ls @  54_FORWARD_OFF %1363 =] W @ TRUE switch 4 a
4| online & diagnostics 5 | MAGITATOR %042 =] W [3 FaLsE Agitator M... ||
= -5l Program blocks 6 |0  M_AGITATOR(1) %Q43 =] W [ FaLse 2nd Agitat...
I Add new block 7 lam M.CONV_ON %044 =) M & FaLse conveyor o...
& Main [0B1] E 40  M_CONV_FOR %O4S5 =) M & FaLse conveyor fr...
» r\-_* Techneology objects 9 - M_CONV_REV %046 @ E [3 FALSE CONVEeyarr...
] External source files 10 <41 M_CONV_OFF %0Q8.0 E @ 3 FALSE conveyor o...
- [ PLCtags 11 |40 MOTOR_OFF LED %G8.1 = M [ FaLsE all motor o...
% Showall tags 12 @  MOTOR_ON_LED %082 =] M @ FALSE all motor o...
B Add new tag table 13 |am  vza %Q136.0 v W @& TRUE valve for li...
..ﬁ Default tag table [18! 14 Vé_B %Q136.1 =) M [ Fase valve for li..
» (g PLC data ypes 15 @@ VI_AN %Q136.2 =) M [ Fase Aliquid inl...
» rg‘:._;t‘d\mtch and force tables 16 <@ V3_B_IN ®0Q136.3 @ E [ FALSE B liguid inl._..
» [ Online backups 17 4@ VES_M_ouT %O136.4 =] M [@E FaLsE mixing ligu...
» [l Device proxydsta >1i8 @  v6_MIX_OUT2 %Q1365 = M [ FaLsE mixing ligu...
+ | Details view 19 Add news=
‘ ([} ‘ 3
i E |_d,. Properties ||"i.l Info ” %] Diagnostics
@ M_AGITATOR(1) X
@ IM_CONV_FOR r J General || Cross-references " Compile ‘
e M_CONYV_OFF @IEI ‘ Show all messages | e |
@ M_CONV_ON
@ M_CONV_REV T
@  MOTOR_OFF_LED = = | =
4 Portal view Hoveniew  [ZmPlCmgs | PLCa |54 pefauit ta... |48 wzin

You can monitor the current data values of the tags on the CPU directly in the PLC tag table.

Procedure

To monitor the data values, follow these steps:

e Start monitoring by clicking the "Monitor all" button.

e The additional "block title" column is displayed in the table. It shows the current

data values.

e End monitoring by clicking the "Monitor all" button again.
Monitor value

Current data value in the CPU. This column is visible if an online connection is available and
the "Monitor" button has been clicked.

Retentiveness of PLC Tags7

Retentive PLC tags

Basics of PLC



Technology for designing the future

6. PLC Tags « DesignTech

To prevent data loss in the event of a power failure, you can mark specific data as retentive.
These are stored in a retentive memory area. A retentive memory area is an area whose content
remains available on restart (warm restart), i.e. after switching off the supply voltage and
switching it on again, on transition from STOP to RUN.

In the case of a cold restart, the values of the data defined as retentive will be erased.
Available retentive memory in [Bytes]:

Here you have to specify how many bytes of the retentive memory area of the CPU are still
available. Please pay attention to the fact that tags in data blocks which are declared as retentive
also reduce the number of bytes in the "available retentive memory".

Settings
You can define the following data as retentive:

e Memory bit: You can define the width of the retentive memory area for bit
memories precisely in the PLC tag table.

e Tags of a function block (FB): In the interface of an FB, you can define the
individual tags as retentive when the symbolic addressing of tags is active for this
block. If symbolic addressing is not active for an FB, you can only define the tags
as retentive in the associated instance data block.

e Tags of a global data block: In a global data block, depending on the setting for
symbolic addressing, you can either define individual tags or all the tags of a block
as retentive: The attribute "Symbolic access only" of the DB is activated: Retention
can be set for each individual tag. The attribute "Symbolic access only" of the DB
is deactivated: The retention setting applies to all tags of the DB; either all tags are
retentive or no tags are retentive.

HMI Access to PLC Tags

HMI tag access

The S7-1200 has protective mechanisms with which unwanted accesses to PLC tags from HMI
devices can be prevented:

"Visible in HMI™:

During HMI configuration, only PLC tags with the attribute "Visible in HMI" can be selected.
This filter function can, however, be disabled in the selection dialog shown by activating "Show
all".

"Accessible in HMI":

The HMI device can only access the PLC tags online which have the attribute "Accessible in
HMI". This protective function ensures that the HMI device does not overwrite certain tags.
Tags which are not "Accessible in HMI", are correspondingly also not "Visible in HMI".

64

Basics of PLC



Technology for designing the future

7. Program Blocks & Editor * Designiech

Program Blocks & Program Editor
Types of Program Blocks

Blocks

The programmable logic controller provides various types of blocks in which the user program
and the related data can be stored. Depending on the requirements of the process, the program
can be structured in different blocks. You can use the entire operation set in all blocks (FB, FC
and OB).

Operating system

Cycle
Time

Organisations-
Process bausteine

Error

Legend:

OB = Organization Block
FB = Function Block
FC =Function FB with
DB = DataBlock Instance DB

Organization blocks (OBs)

Maximum nesting depth
depends on the CPU

Organization blocks (OBs) form the interface between the operating system and the user
program. The entire program can be stored in OB1 that is cyclically called by the operating
system (linear program) or the program can be divided and stored in several blocks (structured
program).

Function (FCs)

A function (FC) contains a partial functionality of the program. It is possible to program
functions so that they can be assigned parameters. As a result, functions are also suited for
programming recurring, complex partial functionalities such as calculations.

Function Block (FBs)

Basically, function blocks offer the same possibilities as functions. In addition, function blocks
have their own memory area in the form of instance data blocks. As a result, function blocks
are suited for programming frequently recurring, complex functionalities such as closed-loop
control tasks.

65

Basics of PLC



Technology for designing the future

7. Program Blocks & Editor * Designiech

Structured Programming

Linear Program

The entire program is found in one continuous program block. This model resembles a hard-
wired relay control that was replaced by a programmable logic controller. The CPU processes
the individual instructions one after the other.

Linear Program Program Partitioned into Areas Structured Program

__—-|Recipe A L

=
-

———- Recipe B

— — — - Mixer

|~ ——— Outlet

All instructions are The instructions for the individual Reusable functions are loaded into
found in one block functions are found in individual individual blocks. OB 1 (or other
(usually in Organization blocks. OB 1 calls the individual blocks) call these blocks and pass on
Block OB 1) blocks one after the other. the pertinent data.

Partitioned Program

The program is divided into blocks, whereby every block only contains the program for solving
a partial task. Further partitioning through networks is possible within a block. You can
generate network templates for networks of the same type. The OB 1 organization block
contains instructions that call the other blocks in a defined sequence.

Structured Program

A structured program is divided into blocks. The code in OB1 is kept to a minimum with calls
to other blocks containing code. The blocks are parameter assignable. These blocks can be
written to pass parameters so they can be used universally. When a parameter assignable block
is called, the programming editor lists the local variable names of the blocks. Parameter values
are assigned in the calling block and passed to the function or function block.

Example:
e A "pump block" contains instructions for the control of a pump.

e The program blocks, which are responsible for the control of special pumps, call
the "pump block™ and give it information about which pump is to be controlled with
which parameters.

66

Basics of PLC



7. Program Blocks & Editor * DesignTech

Technology for desigring the future

Process Images

Process Images

For the storage of all digital input and output states, the CPU has reserved memory areas: the
process-image input table (PIl) and the process-image output table (PIQ). During program
execution, the CPU accesses these memory areas exclusively. It does not access the digital
input and output modules directly.

S1 K1

12.0 Q4.3

R N
i 2 -

User
Byte 0 Program Byte 0

Byte 1 & Byte 1

:Byte 2 Il__®\\\__/ :Byte 2
B)

N

A 1 20 :
N . 3 /

2 | 64 J
= Q 43

CPU Memory Area \\_/ CPU Memory Area

Pl

The Process-Image Input table is the memory area in which the states of all digital inputs are
stored. The image is read in from the digital input modules at the beginning of the cycle. If
inputs are queried in the user program (for example, A 1 2.0), then the state of this input that is
stored in the PII is queried from the PII. This state cannot change within a cycle since the PII
is only updated or read in at the beginning of a cycle. This guarantees that when there are
multiple queries of the input in one cycle, the same result is always delivered.

PI1Q

The Process-Image Output table is the memory area in which the states of all digital outputs
are stored. The image is output to the digital output modules at the end of the cycle. Outputs
can be assigned as well as queried in the program. If an output is assigned a state in several
locations in the program, then only the state that was assigned last is transferred to the particular
output module (see slide). As arule, these types of double assignments are programming errors.

Cyclic Program Execution

Restart

6/

Basics of PLC



Technology for desigring the future

7. Program Blocks & Editor * Designiech

When you switch on or switch from STOP --> RUN, the CPU carries out a complete restart
(with OB100). During restart, the operating system deletes the non-retentive memory bits,
timers and counters, deletes the Interrupt stack and the Block stack, resets all stored process
interrupts and diagnostic interrupts and starts the cycle monitoring time.

Cyclic program execution

Cyclic program execution occurs in an endless loop. After the execution of a program cycle is
completed, the execution of the next cycle occurs automatically. In every program cycle, the
CPU carries out the following steps.

+ Startup program: Call and execution of OB 100
(once, after Power ON, for example)

= Transfer PIQ to the digital output modules

AL

Start of the cycle monitoring time } digital
input
il module
Reading the input states from the digital input modules
and saving the states in the process image (PII)
(]
U
o Call and execution of OB1
] (possible interruption by call of cther OBs
% for events such as time-of-day interrupt, o
: digital
hardware interrupts etc. )
output
J\L module
Writing the process-image output table
(P1Q} in the digital output modules

The CPU scans the states of the input signals and updates the process image inputs.

The CPU sequentially processes the instructions of the user program and so works directly with
the process images, not with the inputs and outputs of the digital input / output modules.

The CPU transfers the output states from the process image outputs to the digital output
modules.

Cycle and cycle monitoring time

The time that the CPU requires for the execution of a complete program cycle, is the cycle time
which is monitored for time by the CPU operating system. If the cycle time exceeds the cycle
monitoring time defined in the CPU properties by more than double, the CPU goes into the
STORP state.

63

Basics of PLC



Technology for designing the future

7. Program Blocks & Editor * Designiech

Adding a New Block

Add new block %

7y Siemens - C\Users\admin\Documents\Auto

Project Edit View Insert Online Options

MName:
5 (R Bl saveproject S M =) Dz X % [Block_1 aL
Project tree o 4
: T Langusee: _
Devices [-] B
. =
5O = 3 nmber [ [3] sk
Organimtion () Manual =
block - —
~ [ 7117032016 ~ &) Automatic -
B Add new device L’L'l
5 Devices & networks ] g
= [ PLC_1 [CPU 314C-2 PNJDP] L % Description: R
1 ]
uT Device configuration . Functions are code blocks or subroutines without dedicated memory. o
% Online & diagnoestics Function black | |

= r;i:; Program blocks
& Add new block

4 Main [0B1] ’
v [ Technology objects EC

» External source files

- 3 FLCtags Function
% Show all tags
ﬁf\dd new tag table
% Defaulttag table [19] F
» [ PLC data types bB
¥ [zl Watch and force tables Data block
3 '-j;‘ Online backups | More ...

» [ Device proxy data 5
g L ~ |+ | Additional information :

w | Details view

Title: | | ]
Name Comment: A
- | e
. . A~
VErslUn:lDJ | Famllyl | —
Author: | | Userdefined ID: | | =
[« Add new and open r oK | | Cancel | hd

4 Portal view

Inserting a block

A new block is created as shown in the picture. When you create a block, the type of block
(OB, FB, FC or DB), the programming language, the symbolic name and number, among other
things, must be defined. The block numbers can also be assigned automatically or manually.
Under "Further information”, the block can be documented in more detail, among other things,
with a Version number and an Author.

Block Properties: Programming Language

Each block has certain properties that you can display and edit. These properties are used to:

| E
<] i ] [100% [ i Tl
‘Q Properties ”"_i.'.lnfo ||ﬁ Diagnostics | E-
=
General E!
= E
General G | w
Information enera -l
Time stamps
Cornpilation Mame: |E|ock_1 |
PrUt.ebctiUn Type: |FB |
Attt T m
e 4 Language: |LAD e
i Number: _
3
L 5T
() automatic

69

Basics of PLC



7. Program Blocks & Editor

e Designiech

Technology for desigring the future

¢ Identify the block

e Display the memory requirements and the compilation status of the block

e Display the time stamp

e Display the reference information

e Specify the access protection

Block parameters

Organization blocks have block parameters that you can use to parameterize specific responses,

e.g. assignment of an event to an organization block.

Other Block Attributes, Editor Settings, Networks

Attributes

Tify Siemens - C:\Users\admin\Documents\Automation\17032016\17032016

Project Edit View Insert Online

5 [ H saveproject 5

Devices

Options ~ Tools

MNEIENAG ) s

Window Help

Totally Integrated Automation

& [ﬂ rji E FW!, ﬁ Go online “S‘ Go offline n"n? E m x b
17032016 » PLC_1 [CPU 314C-2 PN/DP] » Program blocks » Block_1 [FB1]

PORTAL

OO

* [ ] 17032016
B Add new device

B Devices & networks
~ [[§ PLC_1 [CPU314C2 .
I]T Device configurat..
M Online & diagnos .

= ’—51 Program blocks
ﬁf\dd new block

s p EAERE@E C a8 15 &7

0z

bl

=ik == {7t

— 3 4

¥ Block title: ...

Comment

¥  Network 1:

Comment

Bunsa) E” suopnsu| FH

sqsalh@r”

saneIq] EH

4 Main [OB1]
4 Block_1 [FB1]
v [k Technology objects
4 External source fil...
~ [ PLCtags <[ i ] [100% [+] —5——
ﬁ Show all tags ‘Q Properties "’i'.lnfo || [ Diagnostics |
B Add newtag .
_ﬁ Defaulttagta... General _
e
b _i PLC data types General .
r\J P Attributes
b 3l Watch and force t... Information
‘l_l_’—:'_ﬂnhna_ba_nkun_r_| [v] Time stamps
2 | L Compilation [T 1EC check
~ | Details view :
T B D Optimized block access
Attrit-ut»:—s |
1 Multiple instance capabili
MNarne Add... il . 2 5 g
3
H User-defined attributes
D Enable tag readback
Block properties: |
< [ ¥ A i »
Porta e =1 overview II:l Rootsc... Iz!ﬁ HMI tags Iz!ﬁ PLC tags II- Block_1 II- Main

Block editor settings

Basics of PLC

/0



7. Program Blocks & Editor

e Designiech

Technology for designing the future

Project Edit View Insert
[ save project
Settings

T4 Siemens - C\Users\admin\Documents\Automation\17032016\17032016

Online window Help

& =

9z o

[ﬂ rJ"_| E r,?r & Goonline
tion from drop

Totally Integrated Automation
PORTAL

i)

Go offline n"u?! m x 4

b General

» Hardware configuration

= PLC programming

crer]

GRAPH

(Mg dder i Fun
ETL (Statem ant list)

b simBlation

» Onlirg & diagnostic
FLC algrms

b Visualifation
Keyboald shortcuts

L (structure d Control Language)

syse] kit

General
View
ction block diagram) feoliomaton
Compilation

Additional settings

Mnemonics:

Memory reserve:

Download without reinitialization

Block interface f data blocks

[+ With comments

| Hide

[ Delete actual parameters on interface update

ttings for new blocks

[]1EC check

Set network title automatically

ow autocomplete list

| Internatiag

100 Bytes

[W) set "Accessible from HMI™ for new elerMygts and ARRAY data blacks

sauelq] ||

LADIFBD {(Ladder / Function block diagram)

Diagnostics

sfully configured KTP700...

Font
Fontsiz: |9
View
Layout: O Compact
@ Wide
[+ With absolute information
Operand field

: characters
Maximum height: characters

Maximumn width

With the settings, you merely define how a block is to be represented when it is opened. In the
editor, you can make changes (such as showing and hiding comments) at any time.

Compilation

When "Delete actual parameters on interface update” is activated, the calls of

parameterized blocks are automatically adjusted if, within the block, parameters are
deleted after the fact.

IEC check

Only variables of an absolutely correct data type can be used. If an operation

requires a variable of the data type INT, no variable of the data type WORD can be
used even if the dimension (16 bits) is the same.

Optim

Basics of PLC

ized block access

/71



7. Program Blocks & Editor = Qesigniech

e Data block variables and local variables within blocks can only be addressed
symbolically and not absolutely. Benefit: optimum memory allocation and shorter
access times

e Mnemonics

e Setting the syntax for the programming language: German (e.g. E for Eingang
(Input)) or International (e.g. | for Input)

e Layout

e When "with absolute information™ is activated, the absolute addresses of global
operands are also displayed.

e Operand field

e Setting the maximum width and height of function block diagram and ladder
diagram symbols.

Networks

Just as the entire user program is subdivided into individual blocks, the individual blocks in
turn are made up of individual networks. The subdivision of a block into networks is defined
by the user. Every network can be given a network label and a comment. Within the networks,
the individual instructions can be given instruction comments.

72

Basics of PLC



7. Program Blocks & Editor

e Designiech

Technology for desigring the future

/5]

IE]
=
7]
=3
=
c
2
]
=
@

syse ki ”

sapelqr] E”

Project Edit View Insert Online Options Tools Window Help Totally Integrated Automation
e - = = - -
F % [ seveproject 5 M W ey T [ R & Goonline ¥ Go offline ﬁ? (1.0 FS PORTAL
Devices IDe\ete networkl
HOQ 1o px =F = g = 2% & %7 1 =
Insert network | Open all networks — e
¥ | ] 17032016 - i
ﬁtr\dd T ot e -k = {7 — = 4 HFree comments onioff
EE,J Devices & networks
v [ PLC_1 [CPU 314C2 PN/DP] _|* Network3:
11 Device configuration *  Network 4:
ﬂ Online & diagnostics Comment
= |5l Frogram blacks
I Add new block ADD
38 Main [OB1] Int
48 Block_1 [FB1] EN ENO
- .
» F\-* Technology objects LVWZO UAAWED
» External source files “signal_1" 1M1 ouT — "Signal_3"
=
-l .I?ILCtags LWI0
Z5 showalltags “Signal 2" — 2
B Add new tag table
3¢ Default tag table [19]
» [ PLC data types
» iz watch and force tables
e .
» L& Online backups
hoo - -
+ | Details view 100% | orhwhmonanan
|Q Properties ”"_i.'.lnfo "ﬂ Diagnostics |
Name Address General
General [l
; General
Information L =
Time stamps M
Compilaticn m Name: ‘I\-‘ain
*
Frotection H Type: ‘DB 3
Attribut
< i I[> rbutes < [ |
Portal vie £23 Overview ID Root sc... I% HMI tags Izé PLCtags |4& Block 1 I" Main 1 Wizard: successfully configured KTP700...

Block Programming

Y Device confi._. ~
%] online & dia...

= r:\_u. Program blo...
ﬁbf\dd new .

48 Main [0B1]

4B Block_1 [...

4 r\-_* Technology ...

3 External sour...

Display favorites in the editor

- %136.3
v L@ PLCtags "5 FORWARD_
% showall t.. OFF
1 A
Vi

PLC data types iy
"M_AGITATOR"
gzl Watchand fo... 1|

4 rj;, Online backu...

» [l Device proxy...
< 1l Iz'lz‘

Add Instruction from
Favorites or From Tool

area's Instructions

Project Edit View Insert Online Options Tools Window Help o
. Totally Integrated Automation
F [ saveproject 5 M 32 o X 2 e: M E Y R F coonline ¥ cooffline ﬁ? mE X > PORTAL
o k P 4 PN/DP Progra blo 3 B
Devices Options
EL-Y> P EGamY | m J=

> ‘ Favorites

v ‘ Basic instructions

Bunsa) EI SUOIPNIISY| E%I

N_TRIG

Mame De.

» [7] General -

= [ Bit logic operations
Al - N...
Al - N...
Hi| o7 In...
Hl (- As...

—
o

w

-

7]

-E

- 3

E

Sc.. =
SG... 3

N " » [@&] Timer operations
- .
w | Details view BILERIE r ﬁ Counter operations
< w 1[3] 0% i — & .
¥ | ¢| Comparator operations
_d,Pn)pErties |"_1.l Info | 2 Diagnostics b [£] Math functions
sl : 3 E Move operations
@ General Cross-references Compile Syntax
- < 1l
a0 M_AGITATOR(1) E @‘ml Show all messages ‘ '| J—I
L M CONV FOR > ‘Extended instructions
@ M_CoNv_OFF TR Fr— > | Technology
< M_CONV_ON Q The project 15032016 was saved successfully. > ‘ Communication
0 hll P e [
< T ) <| i » » | Optional packages
Porta e 23 Overview II Main

Basics of PLC

/3



7. Program Blocks & Editor * Designiech

Technology for designing the future

The instructions within a block can be programmed as follows:

e using drag & drop from the Favorites or the Instructions catalog to anywhere in the
program

e Dby first selecting the location in the program and then double-clicking on the desired
instruction in the Favorites or the Instructions catalog

Operands can be entered with an absolute or a symbolic address. If the tag table is highlighted
(not opened!) in the Project tree, tags (variables) can also be pulled from the Details view using
drag & drop to the appropriate location in the program.

Favorites

Frequently used FBD elements are available in the symbol bar which can be expanded
individually using drag & drop from the Instructions catalog.

Closing/Saving/Rejecting a Block

Siemens - C:\Users\admin\Documents\Automation\17032016\17032016

LOSE project and with that g

sert  Online  Options  Tools Window Help the block !
S X=EEx 9 T)ME [ & coonline ¥ Gooffline ﬂuh? ME x* (save or rEIEGt&chan_ge_s._._]rAL

£ » PLC_1[CPU 314C-2 PN/DP] » Program blocks » Main[0OB1] — i & X
SAVE project and —
Devices | with that the block Options e
als Wlx Wlx - e 3 Ocfs ! 4 = E)
Q@ (saveAlLchanges.)X =t = wy =8 m[| Qe Ge ¢9 G CLOSE the block L =]
{no saving, no rejection..) | Favorites ‘ g
IY pevice confi.. [~ - ~ | Basic instrudtisns E
%/ Online & dis... Al —0- A T - | b - H
. I'T ame € -
- Prfgram blo... ock title: "Main Program Sweep (Cycle)” b [] General A
Waddnew.. |S] - —%
& Main [081] ®
W
& Block_1[... Network 1: valve for liquid A =2
=

Do you want to save the changes to the
current project?

v [ Technalogy ..
] External sour...

Comment

r- =
v L@ Flctgs 36,0 %0Q136.1 %042 e
iz Showallt.. "S1_START "V4_B" “M_AGITATOR" ;

n W

B Add new .. | | 1/ {4 &

o H

. = Default ta RS Re... |

» ;ﬂ PLC data types 1l - s |
» [zl watch and fo... A1 - sc E:
& Anf Network 2: ... = N

v [ Onl|.ne backu... P_TRIG sc S

=

Closing a block

By clicking on the symbol in the title bar, the block is merely closed. Changes are neither
rejected nor are they saved on the hard drive!

Save a block

By using "Save project” the entire project, and with that also the block, is saved on the hard
drive. All changes made to the project are saved.

Rejecting a block

It is only possible to reject block changes by closing the entire project without saving. All
changes made in the project are rejected.

74

Basics of PLC



7. Program Blocks & Editor * Designiech

Technology for designing the future

Block Calls

Tify Siemens - C:\Usersladmin\Documents\Automation\17032016117032016

Project Edit View Insert Online Options Tools Window Help o
o Totally Integrated Automation
55 [ seveproject 2 X i T2 X O M EH R & Goonline ¥ Go offline &? mE e PORTAL
..)32016 » PLC_1 [CPU 314C-2 PN/DP] » Program blocks » Main [OB1]
Devices Options B
e —| - e R — = — o o » 3 = s
Ci QO ER|lass o cRAEDB:@E0 ©2@Y :% "5 J8 |1z
> |Favorites 5
I]lr Devi i : T < T et | 9,
ST EEI e b’ | Basic instructio| 3
Y oOnline & diagnostics . =i =0 = e — =
= [ Program blocks —
e * €23 Network 5: » [ General Mol
B Add new block — . )
= ~ = [41] Bit logic operat.|
Main [OE Drag&drop; Comment A1 - G
a2
------------ : Vo R 3 i =
e it e arc g—mon—
i i "Motor" -+ =
B Add new object Drageing =r
= this ICONJto EN END - i ) =R =
» External source file 5 o
.l network -5 =
L FLCtags SR ]
% Showall tags RS ||
B Add new tag t] e A1l - m
3¢ Defaulttag ta Data block Hil - g
» [ PLC data types E e - P_TRIG 3
= - =
» I?\:_glwatth and force B NUmbeT I:@ N_TRIG z
L rJ\-:' Tolivz Fndape _Single () Manual =l Tlmeroperatlon_
» Lifi Device proxy datg instance : b [] Counter operati
_Wi Program info @Automatlc L ] ; Com aratzro
EApi ol The called function block saves its dafp iff its own instance E rf P K P
+ | Details view data block. _m — ¥ [] Math functions
P TR » [~ Move operation
Diagnostics » 2 Conversion ope
Mare... > r':%r*‘ Frogram contr..
4 111 E
> |Extendedinstru
—
r oK 1 || cancel || > |Tet:hnologg,|I
> |Communication
v
¢ [ » » | Optional packas
4 Portal view | Main I:I- Motor I:I- hotor_Run

If a block calls another block, the instructions of the called block are executed. Only when the
execution of the called block is completed, is the execution of the calling block taken up again
and execution continues with the instruction that follows the block call.

The block call can be programmed using drag & drop or copy & paste.

Compiling a Block

Whatever is selected (highlighted) in the Project tree is compiled (in the example

— shown only "FC_ConvMotor" FC16 is compiled). Individual blocks, the

- M complete program ("Program blocks" selected) or the complete station with
software and hardware ("Station™ selected) can be compiled.

In the Inspectors window "Info -> Compile", the status of the compilation is displayed. If errors
occurred during compilation, you can jump directly from the error entry to the error location
by double-clicking.

Downloading Blocks into the CPU

The project data that is downloaded into the devices is divided into hardware
and software project data:

Basics of PLC 75



7. Program Blocks & Editor = Qesigniech

e Hardware project data results from configuring the hardware, networks, and
connections. The first time you download, the entire hardware project data is
loaded. In subsequent downloads, only changes to the configuration will be loaded.

e Software project data involves the blocks of the user program. The first time you
download, the entire software project data is loaded. For subsequent downloads,
you can determine whether the complete software or only the software changes
should be downloaded.

o All: e Hardware and
software
e Hardware e Hardware
configuration: only
e Software: e Changed
blocks only
e Software (all e All blocks
blocks):

“Upload” blocks from device

Using the "Online access"”, program blocks
can be uploaded into the project from any

| Devices PLC. All blocks with complete symbols and

QO =|Z | comments are uploaded into the project from
the CPU.

~ [ 7 20032016_1 B

' ~dd new device
iy Devices & networks
b i' Cormrnon data
» [Z] Documentation settings

r r:@ Languages & resources
b F_m Online access

1 Displayhide interfaces
b Eﬂ COM [RS232iPPI multi-master _ Kl
- zu Intel(F} Ethernet Connection 12.. &l

f? Update accessible devices
~ [ plc_1[192.168.0.1]
% Online & diagnostics

~ [ PFrogram blocks
4 OB1 [0B1]
¥ [ Technology objects
v [ PC Adapter [MFI]
] zu PC internal [Local]
¢ | I |

EI%%

w | Details view

76

Basics of PLC



e Designlech

3. Binary Operations

Binary operations
Binary Logic operations: AND, OR

AND and OR logic operations

With the AND and OR logic operations, basically all binary operands can be checked, even
outputs. Instead of individual operands, the results of other logic operations can also be further
logically linked. Also, the logic operations themselves can be linked.

All inputs of the logic operations can be programmed as check for signal state or Status ‘0" and
'1', regardless of whether a hardware NO contact or NC contact is connected in the process.

AND logic operation

For an AND logic operation, the result of logic operation (RLO) = '1', when all input signals
have Status '1'".

LDR Change.the I -
operation
1362 L 63 WM300
"START Field" 5T " "START Mator 1"
] 1 1 I | L { 1
‘ 11 11 | 1 !
& -
Change the
operation =1
x
FBD
W137.0 U301
.ST}:'.RT_FIE'ldl:-I :'. — "o TART Motor
101)"
1371 (
"START_ =
Operator(1)” — 2 E—— —

OR logic operation

For an OR logic operation, the result of logic operation (RLO) ='1', when at least one input
signal is Status '1'.

77

Basics of PLC



3. Binary Operations

e Designlech

Tochnology for desigming the future

w1362 LDR Y300
" TART Field” "5 TART Mator_1°
| 1 [ 1
1 1 L !
w1363
"START_Cperator”
| 1
11
==1
. H137.0 UWM30.1
FBD START_Field(1)" — "START_Motor_
%1371 10y
"START_ =
Operator(1)’ — z: S— —

Sensors and Symbols

Process Interpretation in the PLC Program
The The sensor Voltage Signal Check Check
sensor is ... present state for signal state “1” for signal state “0”
isa.. at input? at
input Symbol / Result off Symbol / Result of
Instruction | check Instruction | check
NO activated ) )
contact ves |:> 1 LAD: "Weas” LAD: “No”
| ale 1 - 0
\ “NO contact” “NC contact”
not |
activated \ no )| o No’ Yes'
FBD: FBD:
NC activated L i q
- ol
? 0 1
not . ]
activated % yes |:> 1 STL: “Yes” STL: “No”
Alxy 1 AN I x.y 0

Process

Basics of PLC

/8



3. Binary Operations « DesignTech

Tochnology for desigming the future

The use of normally open or normally closed contacts for the sensors in a controlled process
depends on the safety regulations for that process. Normally closed contacts are always used
for limit switches and safety switches, so that dangerous conditions do not arise if a wire break
occurs in the sensor circuit. Normally closed contacts are also used for switching off machinery
for the same reason.

Symbols

In LAD, a symbol with the name "NO contact" is used for checking for signal state "1" and a
symbol with the name "NC contact" to check for signal state "0". It makes no difference
whether the process signal "1" is supplied by an activated NO contact or a non-activated NC
contact.

Example

If an NC contact in the machine is not activated, the signal in the process image table will be
"1". You use the NO contact symbol in LAD to check for a signal state of "1". General: The
"NC contact" symbol delivers the result of check "1" when the checked address state or status
iS IIOII.

Task: In all three examples, the light should be on when S$1 is activated and S2 is not activated!

Hardware
[“:”::> I=\: S1 I=\: S2 I=\: S1 I=% S2 I—% S1 I=|g s2

11.0 1.1 11.0 1.1 11.0 1.1
Programmable controller Programmable controller Programmable controller

Q4.0 Q4.0 Q4.0

(% Light (%) Light %) Light
Software

110 111 Q4.0 110 111 Q4.0 110 111 Q4.0
ﬂﬂ — ——0O) — ——0O R

11.0- | & 11.0- | & 110- | &
[II:I 111 - — Q4.0 111 - — Q4.0 111 - — Q4.0

Signal State & Result of Logic Operation

In Siemens PLCs the Status Word is an internal CPU register used to keep track of the state of
the instructions as they are being processed. In order to use STL more effectively it is important
to understand the Status Word and its functions.

Each bit in the Status Word has a specific function to keep track of bit logic (RLO, STA), math
(OV, OS), comparison operations (CC0, CC1) and whether the logic should continue, be nested
or start new (/FC, OR, BR). Only the first 9 of the 16 bits are used.

Bit Positions

Basics of PLC

79



3. Binary Operations « DesignTech

Tochnology for desigming the future

8 7 6 5 4 3 2 1 0

BR|CCO|[CC1|OV |OS |[OR | STA|RLO |/FC

Each instruction may do the following to each bit in the status word.

- No read or write

* | Read

X | May write "1" or "0"
0 Reset to "0"

1 | Setto"l"

The status word can be seen by displaying the STATUS column while monitoring in STL view.
The RLO (bit 1) and the STA (bit 2) are also displayed in the RLO and STA column.

FLC | 3Ta STANDARD AccU 2 I 3TATUS ...
0 0 0 | 0_0000_o001
0 0 0 | 0_0000 0001
0 0 0 Ol 0_0000 0000

The Most Important Status Word Bits
[FC “First Check” (bit 0)

If the /FC bit is a 0 then the instruction is considered to be the first instruction being processed.
If the /FC is a 1 then the instruction being scanned will use the logic from the previous
instruction. Certain instructions like =, S and R will set the /FC bit to 0 thus starting new logic
after it. Other instructions like A or O will set the /FC bit to 1 signaling to combine the logic
with the next instruction.

RLO “Result of Logic Operation” (bit 1)

The RLO bit stores the running logic state of the currently processing instruction. Certain bit
logic and comparison instruction will turn the RLO to a 1 when the condition is TRUE and
write a 0 when the condition is FALSE.A Other instructions read the RLO (=, S, R) to
determine how they are to execute.

STA “Status” (bit 2)
The STA bit reflects the state of the current Boolean address.
Help with RLO, STA and /FC

If you are used to ladder logic and struggling to understand the purpose of the RLO and STA
it may help to visualize a rung like below. The STA is used to keep track of the state of the
addresses. The RLO is used to keep track of the state of the rung.

Basics of PLC 80



8. Binary Operations * Designiech

STA 1 STA=0

=
. .
¥ i PR
................................
5 B .

Q1.0

The equivalent STL is shown below.

A | RLO | STA
A I 1.0 1 1
A I 1.1 1 1
A M 0.0 0 0
= Q 1.0 0 0

It steps through the logic as follows:

1. At the start the First Check bit (/FC) is zero so an AND instruction will logically
mirror the Status bit (STA) over to the Result of Logic Operation (RLO). In this
case the address 10.0 is 1 so the STA is one and the result of the logic (RLO) will
be 1. The ‘A’ instruction writes a 1 to /FC.

A | RLO | STA
A I 1.0 A 1
A I ; (0 1 1
A M 0.0 0 0
= Q 1.0 0 0
2. On the second line, the /FC bit is now 1 indicating that this line needs to use the
RLO from the previous line. The address 1.1 is on so the STA = 1. The RLO from
the last line is 1 and this is with the current STA with a result of 1 in the current
RLO.
A | RLO | STA |
A I 1.0 A 1
A I S 06 1 1
A M 0.0 0 0
= Q 1.0 0 0

3. The same thing happens on the second line but this time 1 and 0 makes the current

RLO =0.
A | rRLO| sTA
A I 1.0 1 1
A I 1.1 1 1
A M 0.0 0 0
= Q 1.0 0 0

4.
5. The fourth is the Assign instruction which takes the RLO and writes it out to the
corresponding address. In this case the final RLO = 0 so the output will be off. If

31

Basics of PLC



3. Binary Operations

e Designlech

Tochnology for desigming the future

MO.0 was 1 then the operation will evaluate to true making the RLO = 1 which will
then turn on the output Q1.0.

Il Jes Jo o
0D 2 HH

= O

N o8

o0~ O
QOI—‘HE
(=R |

The Other Status Bits

OR (bit 3)

The OR bit is used for combining AND functions before OR functions.

OS “Overflow Stored” (bit 4)

In the event of an overflow (OV bit 5) the OS bit will store the value even after the OV bit has
been reset. The following commands reset the OS bit: JOS (Jump if OS=1), block call
instructions, block end instructions.

OV “Overflow” (bit 5)

The OV bit is set by a math instruction with floating point numbers after a fault has occurred
(overflow, illegal operation, comparison unordered). The OV bit is reset when the fault is

eliminated.

CCO0, CC1 “Condition Code” (bits 6 and 7)

The Condition Code bits provide results for comparison and math instructions.

Comparison Instructions

CC1|CCO0 | Meaning

0

0 ACCU2=ACCU1

1 ACCU2<ACCU1

0 ACCU2>ACCU1

0
1
1

1 Unordered (floating point comparison only)

Math Instructions, without Overflow

CC1|CCO0 | Meaning

0 0 Result=0

0 1 Result <0

1 0 Result > 0

Integer Math Instructions, with Overflow

CC1

CCO

Meaning

Basics of PLC

32



3. Binary Operations « DesignTech

Tochnology for desigming the future

0 0 Negative range overflow in ADD_I and ADD_DI

0 1 Negative range overflow in MUL_I and MUL_DI

1 0 Negative range overflow in ADD_I, ADD_DI, SUB _I, and SUB_DI
1 1 Division by 0 in DIV_I, DIV_DI, and MOD_DI

Floating Point Math Instructions, with Overflow

CC1|CCO0 | Meaning

0 0 Gradual underflow

0 1 Negative range overflow

1 0 Positive range overflow

1 1 Not a valid floating-point number

Shift and Rotate Instructions

CC1|CCO0 | Meaning

0 0 Bit shifted out =0

1 0 Bit shifted out = 1

Word Logic Instructions

CC1|CCO0 | Meaning

0 0 Result =0

1 0 Result <> 0

BR “Binary Result” (bit 8)

The Binary Result transfers the result of the operations onto the next instruction for reference.
When the BR bit is 1 it enables the output of the block (ENO) to be TRUE and thus allow other
blocks after it to be processed. The SAVE, JCB and JNB instructions set the BR bit.

Binary Logic Operations-Exclusive-OR (XOR)

XOR logic operation

With the XOR logic operation, basically all binary operands can be checked, even outputs.
Instead of individual operands, the results of other logic operations can also be further logically
linked. Also, the logic operations themselves can be linked.

All inputs of the logic operations can be programmed as check for signal state or Status '0" and
'1', regardless of whether a hardware NO contact or NC contact is connected in the process.

e Foran XOR logic operation with 2 inputs, the result of logic operation (RLO) ='1',
when one and only one of the two inputs signals is Status '1'.

33

Basics of PLC



3. Binary Operations « DesignTech

Tochnology for desigming the future

e For an XOR logic operation with more than 2 operands, the RLO:
e ="1', when an uneven number of checked operands has Status '1'

e ='0", when an even number of checked operands has Status '1".

LDR XOR
EN EMO
YME30
"Tag_6" — IM1 ouT
YMBAD
"Tag 8" — IN2 CHANGE OF
DATA TYPE -
Ward | -
FOR OUTPUT
77
Word
..— EM
FBD UMBA
"Tag_11" 1M1 UMDED
UMB A2 ouT "Tag_13"
Tag_12" — |NZ EMND —
XOR

XOR in the programming languages FBD and LAD

In the LAD programming language, there is no explicit XOR logic operation. It must be
generated by programming the discrete instructions shown in the picture above.

Assighment, set, Reset, Not

Assignment

With an assignment, the specified operand is always assigned the current RLO as status. The
assigned RLO remains available after the assignment and can be assigned to a further operand
or it can be further logically linked.

Set

If RLO = "1", the specified operand is assigned Status '1"; if RLO = "0", the status of the
operand remains unchanged.

Reset

If RLO = "1", the specified operand is assigned Status ' 0'; if RLO = "0", the status of the
operand remains unchanged.

NOT

Basics of PLC

34



3. Binary Operations « DesignTech

Tochnology for desigming the future

The NOT instruction inverts the result of logic operation (RLO). If, in the example shown, the
RLO of the AND logic operation = '1', the NOT instruction inverts it to RLO '0" and the Set
instruction is not executed (the status of "Tag_3" (Q20.0) then remains unchanged).

If the RLO of the AND logic operation ='0', the NOT instruction inverts it to RLO '1" and the
Set instruction is executed ("Tag_3" (Q20.0) is assigned Status '1").\

EXAMPLE:

One switch is inside the field and another switch is on the operator panel to start motorl. One
common stop is already there which is used for the stopping purpose of the motor.

Different ways to explain it is given below.

LAD FBD
&
W136.2 W136.3 W136.4 %M30.0 W136.2
"START_Field" "START Operator” "STOP_motor” *Motor_1" "START_Field” ==
| { | /1 { } %1363 %W130.0
"START_Operator” =— “Motor_1°
1364 =

"STOF_motor” —o 3z —_— —_

&
W136.2 W136.3 %M30.0
"START Field®  "START Operator’ “Motor_1° L 1362 Jaso.0
START Field" — Motor_1
X |} (s)
W136.3 5
"START_Operator” — 3¢ —_—
Wi136.4 %M30.0
"STOP_motor” *Motor_1" w1300
1 1 ! -
M 1 NOT} {R} “Motor_1"
R
w1364
"STOP_motor” —
Flip Flop

A flip flop has a Set input and a Reset input. The memory bit is set or reset, depending on
which input has an RLO=L1.

Priority

If there is an RLO=1 at both inputs at the same time, the priority must be determined. In LAD
and FBD there are different symbols for Dominant Set and Dominant Reset memory functions.
In STL, the instruction that was programmed last has priority.

Note

With a warm restart of the CPU, all outputs are reset. That is, they are overwritten with the
state ‘0.

Basics of PLC 85



3. Binary Operations « DesignTech

Tochnology for desigming the future

Signal-Edge Detection

Signal edge detection (P, N)

With a signal edge detection it is possible to detect the status change of an individual operand
(in the example "T_ON") from '0' to '1' (rising or positive edge) or from "1' to '0" (falling or
negative edge). If this is the case, the instruction supplies RLO '1' as the result, which can be
further logically linked (in the example as set condition) or assigned to another operand (for
example, a memory bit) as status. In the following cycle, the instruction then once again
supplies '0' as the result even if "T_ON" still is status '1".

The instruction compares the current status of the operand "T_ON" with its status in the
previous program cycle. This status is stored in a so-called edge memory bit for this (in the
example "M_FI_ON"). It must be ensured that the status of this edge memory bit is not
overwritten at another location in the program. For each edge detection, a separate edge
memory bit must be used accordingly, even then when the same operand (in the example,
"T_ON") is detected once again, for example, in another block!

The following example shows how the instruction works:
%DE
“R_TRIG_DE”
R_TRIG
EN EMNGC i

Tagln_1" Tagln_2°
| } | | CLK Qf— Tagout_a”

Tagln_3"

The previous state of the tag at the CLK input is stored in the "R_TRIG_DB" tag. If a change
in the signal state from "0" to "1" is detected in the "Tagln_1" and "Tagln_2" operands or in
the "Tagln_3" operand, the "TagOut_Q" output has signal state "1" for one cycle.

RLO-Edge Detection
RLO edge detection (P=, P_TRIG)

An RLO edge detection detects whether the status of an individual operand or the RLO of a
logic operation has changed from '0" to '1' (rising or positive edge) or from '1' to '0" (falling or
negative edge). If this is the case, both edge detections supply RLO '1" as a result to their output
for the duration of one cycle. In the following cycle, the instructions then once again supply
RLO '0" as a result, even if the status or the RLO of the operand or the logic operation has
notchanged. The instructions compare the current status of the operand or the RLO of the logic
operation with its status in the previous program cycle which is stored in a so-called edge
memory bit for this (in the example, "M_FI_Count_pos" or "M_FIl_Count_neg). It must be

36

Basics of PLC



8. Binary Operations ® Designlech

ensured that the status of this edge memory bit is not overwritten at another location in the
program. For every edge detection, a separate edge memory bit must be used accordingly, even
then when the same operand is detected once again, for example, in another block!

The following example shows how the instruction works:

“Tagln 1"
| |
1T

“Tagln_2"
| |

‘Tagln_3"
| |
11

FTRIG

A5

CLK o amp —

“Tag_M"

The RLO of the previous query is saved in the edge memory bit "Tag_M". Ifa"0" to "1" change
is detected in the signal state of the RLO, the program jumps to jump label CASL1.

Jump Instructions JMP, JMPN, RET

Jump Instructions JMP and JMPN

With the jump instructions JMP and JMPN, the linear execution of the program can be
interrupted within a block and continued in another network. With the jump instruction, a Label
is specified which also identifies the target network. The specified label must be located in the
same block and be unique. Each label can be jumped to from several locations. The jump can
take place in networks with higher (forwards) or lower numbers (backwards).

1. JMP:

e For RLO ='1", the jump into the target network is executed; for RLO ='0", the jump
is not executed and the linear program execution continues.

e Example

e The following example shows how the instruction works:

Mat

work 1
“Tagin_1* CAS
| ] { JMP 3
woirk 2
“Taglin_2" “TagOut_2*
{ | C R —
work 3

“Tagln_3" “TagOut_3"

iR

Basics of PLC

37



8. Binary Operations * Designiech

e If operand "Tagln_1" has the signal state "1", the "Jump if RLO = 1" instruction is
executed. The linear execution of the program is interrupted and continues in
Network 3, which is identified by the jump label CAS1. If the "Tagln_3" input has
the signal state "1", the "TagOut_3" output is set.

2. JMPN:

e For RLO ='0', the jump into the target network is executed; for RLO ='1", the jump
is not executed and the linear program execution continues.

End block execution RET

With the instruction RET, the program execution of the entire block is ended. The program
execution is then continued in the calling block with the instruction that follows the call of this
block.

38

Basics of PLC



Tachinology for designing the future

9. Digital Operations > DesignTech

Digital Operation
Acquiring, Processing and Outputting Data

Binary/Digital Processing

True logic control systems are recognizable in the fact that they exclusively process binary
data. The performance of today‘s control computer, as well as tasks in the data processing,
quality control areas, among others, has increased the importance of digital data processing
using PLCs. Digital process variables can be found in all areas of open-loop control such as in
connected devices for process operating and monitoring or in the control of field devices.

Operator Panel: Thumbwheel e : Ig:F i jnn'
Operating buttons, oz |l o)
+ monitoring Potentiometer, 103] Y [T_Let
processes 7-segment ® .
dlsplay : L_Operatior : Q41
® »
‘o -
‘o *
110 ® |1 Ackn *
‘» LFaut| ® [as0
Y ]
Al/AO  DI/DO ® L

Control unit:
(e.g. S7-1200)
Processing
the values

e.g. PROFIBUS

!
| % = —} e
Field devices P Wi-aa P _-—
&) l“.e

Operating and Monitoring

The goal of process monitoring is to provide the operator with up to the-minute information
about the working machine or system quickly, concisely and clearly as well as the opportunity
to intervene and control and influence the process. While in the past mostly simple, that is,
"dumb™ input and output devices, such as 7-segment displays and thumbwheel buttons were
used to display and enter digital values, today "intelligent” operating and monitoring devices
are frequently connected to a PLC. Depending on the type of device connected, different
number formats for the coding of data are used to transmit data between device and PLC, as
well as for storing and processing data in the PLC.

Field Devices

Today as well, field devices that acquire process data or that control the process are supplied
directly with digital variables through field bus systems. The connection of field devices, such
as drives or weighing systems, using analog input and output modules is becoming more and
more a thing of the past.

39

Basics of PLC



9. Digital Operations > DesignTech

Tochnology for desigming the future

Integer (INT, 16 bit integer) Data Type

Integer Data Type

An Integer data type value is a whole number value, that is, a value without a decimal point
(16- bit Integer). SIMATIC S7 stores Integer data type values with sign in 16 bit code. This
results in the value range shown in the picture above. As well, SIMATIC S7 provides arithmetic
operations for processing Integer values. When selecting one of the Integer data types, the value
range of the counter is defined.

Elementary data types Counter from the data type INT
Value range:

This chapter containg the following information:
d gl -32768 ... +32767

. rii f the element It
« BOOL (hit)

o BYTE (byte)

F

E

[ ]
Example

o SINT {B-hit inteners) The following figure shows the integer +44 as a binary number;
o USINT (8-hitintager Bit 15 121 87 43 0
o INT (16-bit integers) | olo o olo o o olo o 1 o1

o UINT {16-bitintegers)

o DINT (32-bitintegers) ‘

. INT (32-bil integer:

« REAL (floating-point numbers)
o TIME (IEC tim

e« CHAR (character)

-
P ‘

Sign Decimal values: 32 + B8+

Decimal

STEP7 uses the Decimal (not BCD!) display format to specify the constants of the Integer data
type with sign and without explicit format description. The use of constant Integer values in
the Binary and Hexadecimal display formats is possible in principle, but because of the poor
legibility, they are more or less not suitable. For this reason, the syntax of STEP7 provides the
specification of Integer values only in the decimal display format.

Double Integer (DINT, 32 bit integer) Data Type

An operand of data type DINT (Double INT) has a length of 32 bits and consists of two
components: a sign and a numerical value in the two's complement. The signal states of bits 0
to 30 represent the number value. The signal state of bit 31 represents the sign. The sign may
assume "0" for the positive, or "1" for the negative signal state.

An operand of data type DINT occupies four BYTE in the memory.
The following table shows the properties of data type DINT:

90

Basics of PLC



9. Digital Operations ® Designlech

Length | Format Range of values Examples of value input
(bits)
32 Signed -2147483648 to +2147483647 125790, DINT#125790, L#275
integers
Example

The following figure shows the integer +125790 as a binary number:

Bt a1 o8 27 24 23 20 19 16 15 12 11 87 43 0
|D|DI}1}|1}1}UD|1}UUU||}1}01|111U|1D11|ﬂ1ﬂ1|1111}|

16384 2048 512 G4 16 & 4 2

I
j2 768 8182 256 =1257490

| |
Sign
Decimal valuas: 65 536

Real (Floating Point Number, 32 bit integer) Data Type

Description

Operands of the data type REAL have a length of 32 bits and are used to display floating-point
numbers. An operand of the REAL data type consists of the following three components:

e Sign: The sign is determined by the signal state of bit 31. The bit 31 assume the value
"0" (positive) or "1" (negative).

e 8-bit exponents to basis 2: The exponent is increased by a constant (base, +127), so
that it has a value range of 0 to 255.

e 23-bit mantissa: Only the fraction part of the mantissa is shown. The integer part of
the mantissa is always 1 with normalized floating-point numbers and is not stored.

The REAL data type is processed with a precision of 7 digits after the decimal point.
The following figure shows the structure of the REAL data type:

Bit
3 28|2? 24|23 21}|IB 16|15 12|11 B|? 413 0
Ls | e | m
L. M A
ki W
Sign Exponent: @ Mantizsa: m
{1 bit) {8 bits) (23 bils)
Note

With floating-point numbers, only the precision defined by the IEEE754 standard is stored.
Additionally specified decimals are rounded off according to IEEE754.

The number of decimal places may decrease for frequently nested arithmetic calculations.

If more decimal places are specified than can be stored by the data type, the number is rounded
to the corresponding value of the precision allowed by this value range.

91

Basics of PLC



9. Digital Operations

e Designlech

Tochnology for desigming the future

The following table shows the properties of data type REAL.:

Length Format Range of values Examples of value
(bits) input
32 Floating-point  numbers | -3.402823e+38 to -1.175 495e-38 1.0e-5, REAL#1.0e-5
according to IEEE754
Floating-point numbers | 0 1.0, REAL#1.0
+1.175 495e-38 to +3.402823e+38
Data types
Data types

Variables are used to store data. The data type of a variable specifies its memory requirements,
its value range and the representation of the variable value in the Editor. As well, the possible
operations with which a variable can be processed can be obtained from the data type.

----------------------

+ Patameter types

* ! System data types
= ! Hardwate data types

# M Data type corversion

= E Elementar I:Iatatk' Bs Fressmsamnns
b o
o

Elementary data types

Owerview ofthe elementary data types

This chapter contains the following information;

BOOL (hith

B TE {hyte)

WORD

DWORD

SINT {8-hit inteners)

it int s

[MT {16-bit integers

Complex data types

UINT {16-bit integers)

o Owernview of the complex data types
= DTL

e STRING

e ARRAY

« STRUCT

This chapier containg the fallowing information:

DINT {32-bit integers)

UDINT (32-hit integers)

BEAL (floating-point numbers)
TIME {IEC time

CHAR (character)

.
.
.
.
-
.
. INT (8-
.
.
-
.
.
.
.

Elementary Data Types

Elementary data types are predefined in accordance with IEC 61131-3. They are never more
than 32 bits long and can be loaded completely into the accumulators of the S7 processor. They
are processed with elementary STEP 7 instructions.

1. Bit: Bit is a binary digit — the basic unit of information storage. A single bit is a
one or a zero. While a single bit can define a Boolean value of True (1) or False (0)
2. Byte: The byte data type is an 8-bit storage. It has a minimum value of -128 and a

maximum value of 127.

3. Word: The 16-bit data type can hold integer values in the range of —32,768 to

32,767.

Basics of PLC

92



9. Digital Operations > DesignTech

Tochnology for desigming the future

4. Double Word: The 32-bit data type can used to store the real number (Floating point
value).

5. Integer: An integer is a number that can be written without a fractional component.
For example, 21, 4, 0, and —2048 are integers.

6. The set of integers consists of zero (0), the natural numbers (1, 2, 3 ...), and their
additive inverses (-1, -2, -3 ...).

7. Double Integer: The 32-bit data type can hold integer values in the range of —
2,14,74,83,648 to 2,14,74,83,647.

8. Floating Point: floating point is the representation of real number. It contains 32

bits

Data Type Length (In Bits) Representation
Bool 1 MO0.0

Byte 8 MB1

Word 16 MW3

Double Word 32 MD10

Integer 16 MW?25
Double Integer 32 MD37

Real 32 MD45

Complex Data Types

Complex data types contain data structures that can be made up of elementary and/or complex
data types. Complex data types can be used for the declaration of variables only in global data
blocks and within blocks for the declaration of local variables (TEMP, STAT) as well as
parameters (IN, OUT and INOUT). Variables of complex data types cannot be completely
processed with elementary instructions (such as, A, O, L, T, +I) but only the individual
components of the elementary data type.

Counters

1. CTU - Counter Up

You can use the "Count up™ instruction to increment the value at output CV. When the signal
state at the CU input changes from "0" to "1" (positive signal edge), the instruction executes
and the current counter value at the CV output is incremented by one. When the instruction
executes for the first time, the current counter value at the CV output is set to zero. The counter
value is incremented each time a positive signal edge is detected, until it reaches the high limit
for the data type specified at the CV output. When the high limit is reached, the signal state at
the CU input no longer has an effect on the instruction.

You can scan the counter status at the Q output. The signal state at the Q output is determined
by the parameter PV. If the current counter value is greater than or equal to the value of the PV
parameter, the Q output is set to signal state "1". In all other cases, the Q output has signal state
"0".

Basics of PLC

93



9. Digital Operations

e Designlech

Tochnology for desigming the future

The value at the CV output is reset to zero when the signal state at input R changes to "1". As
long as the R input has signal state "1", the signal state at the CU input has no effect on the

instruction.

When the signal state of the *10.0" operand changes from "0" to 1", the "Count up" instruction
executes and the current counter value of the operand "CV" is incremented by one. With each
additional positive signal edge, the counter value is incremented until the high limit value of
the data type (INT = 32767) is reached.

%DB1
"IEC_Counter_
0_DB"
%0 .0 (8310) %Q0 .0
*Tag_1" Int *Tag_3"
{ | cu Q { )
%60 1 WIW27
*Tag_2" —R Cv == "Tag_4"
10 =

The value of the PV parameter is adopted as the limit for determining the "Q0.0" output. The
"Q0.0" output has signal state "1" as long as the current counter value is greater than or equal
to the value of the "PV" operand. In all other cases, the "QO0.0" output has signal state "0".

Parameters
Parameter | Declaration | Datatype | Description
CuU Input BOOL Count up input
R Input BOOL Reset input
PV Input Integers | Value at which the output QU is set.
Q Output BOOL Status of the counter up
CcVv Output Integers | Current counter value

2. CTD - Counter Down

You can use the "Count down" instruction to decrement the value at output CV. When the
signal state at the CD input changes from "0" to "1" (positive signal edge), the instruction
executes and the current counter value at the CV output is decremented by one. When the

%DB1
"IEC_Counter_
0_DB"
%0 .0 CiD %Q0 .0
Tag_1" Int *Tag_3"
1 1
{ | D Q { }
%0 1 PIW27
Tag_2" = |D cv “Tag_4"
o PV

Basics of PLC

94



9. Digital Operations ® Designlech

instruction executes the first time, the counter value of the CV parameter is set to the value of
the PV parameter. Each time a positive signal edge is detected, the counter value is
decremented until it reaches the low limit value of the specified data type. When the low limit
is reached, the signal state at the CD input no longer has an effect on the instruction.

You can scan the counter status at the Q output. If the current counter value is less than or equal
to zero, the Q output is set to signal state "1". In all other cases, the Q output has signal state
"0".

The value at the CV output is set to the value of the PV parameter when the signal state at the

LD input changes to "1". As long as the LD input has signal state "1", the signal state at the
CD input has no effect on the instruction.

When the signal state of the "10.0" operand changes from "0" to "1", the "Count down"
instruction is executed and the value at the "CV" output is decremented by one. With each
additional positive signal edge, the counter value is decremented until the low limit of the
specified data type (INT =-32768) is reached.

The "Q0.0" output has signal state 1" as long as the current counter value is less than or equal
to zero. In all other cases, the "Q0.0" output has signal state "0".

Parameters
Parameter | Declaration | Datatype | Description
CD Input BOOL Count down input
LD Input BOOL Load input
PV Input Integers Value at which the output QU is set.
Q Output BOOL Status of the down-counter
Cv Output Integers Current counter value

3. CTUD - Counter Up and Down

You can use the "Count up and down" instruction to increment and decrement the counter value
at the CV output. If the signal state at the CU input changes from "0" to "1" (positive signal
edge), the current counter value is incremented by one and stored at the CV output. If the signal
state at the CD input changes from "0" to "1" (positive signal edge), the counter value at the
CV output is decremented by one. If there is a positive signal edge at the CU and CD inputs in
one program cycle, the current counter value at the CV output remains unchanged.

The counter value can be incremented until it reaches the high limit of the data type specified
at the CV output. When the high limit value is reached, the counter value is no longer
incremented on a positive signal edge. When the low limit of the specified data type is reached,
the counter value is not decremented any further.

When the signal state at the LD input changes to "1", the counter value at the CV output is set
to the value of the PV parameter. As long as the LD input has the signal state "1", the signal
state at the CU and CD inputs has no effect on the instruction.

Basics of PLC

95



Tochnology for desigming the future

9. Digital Operations > DesignTech

The counter value is set to zero when the signal state at the R input changes to "1". As long as
the R input has signal state "1", a change in the signal state of the CU, CD and LD inputs has
no effect on the "Count up and down" instruction.

You can scan the current status of the up counter at the QU output. If the current counter value
is greater than or equal to the value of the PV parameter, the QU output is set to signal state
"1". In all other cases, the QU output has signal state "0".

You can scan the current status of the down counter at the QD output. If the current counter
value is less than or equal to zero, the QD output is set to signal state "1". In all other cases, the

Y%DB1
"IEC_Counter_
0_DB"

%0 _0 CTuD %Q0 0
“Tag_1- Int "Tag_3"
{ | cu Qu { )
%410 %Q1.0
"Tag_5" — CD QD —"Tag_7"

1.2 IaW27
“Tag_6" — R cv “Tag_4"
%o 1
"Tag_2" — LD
0 PV

QD output has signal state "0".If the signal state at the "10.0" or "11.0" input changes from "0"
to "1" (positive signal edge), the "Count up and down" instruction is executed.

When there is a positive signal edge at the "10.0" input, the current counter value is incremented
by one and stored at the "CV" output.

When there is a positive signal edge at the "11.0" input, the counter value is decremented by
one and stored at the "CV" output.

When there is a positive signal edge at the CU input, the counter value is incremented until it
reaches the high limit of 32767. If input CD has a positive signal edge, the counter value is
decremented until it reaches the low limit value of INT = -32768.

The "Q0.0" output has signal state "1" as long as the current counter value is greater than or
equal to the value at the "PV" input. In all other cases, the "QO0.0" output has signal state "0".

The "Q1.0" output has signal state "1" as long as the current counter value is less than or equal
to zero. In all other cases, the "Q1.0" output has signal state "0".

Parameters
Parameter Declaration | Datatype | Description
CuU Input BOOL Count up input
CD Input BOOL Count down input
R Input BOOL Reset input
LD Input BOOL Load input
PV Input Integers Value at which the output QU is set.
QU Output BOOL Status of the counter up
QD Output BOOL Status of the down-counter

96

Basics of PLC



9. Digital Operations > DesignTech

Tachinology for designing the future

cv | Output | Integers | Current counter value

Counters/Timers instance data blocks

Instance DB for FBx
or Counter / Timer

E

Data blocks are used for storing user data. Like logic blocks, data blocks take up space in the
user memory. Data blocks contain variable data (such as numeric values) that is used in the
user program. The user program can access the data in a data block with bit/byte/word or double
word operations

Global data block

Overview

Uses

You can use data blocks in different ways, depending on their contents. You differentiate
between:

e Shared data blocks: These contain information that all the logic blocks (that would
include OB1) in the user program can access.

¢ Instance data blocks: These are always assigned to a particular FB or functions such
as Counter / Timer. The data of these instance DBs should only be processed by the
FB or Counter / Timer function to which it is assigned.

Creating DBs

You can create global DBs with either the Program Editor or with a "user data type" (UDT)
that you have already created. Instance data blocks are created when the FB / Counter / Timer
is called.

97

Basics of PLC



9. Digital Operations * Designiech

Timer Function

1. TP: Generate pulse

You can use the "Generate pulse” instruction to set the output Q for a programmed duration.
The instruction is started when the result of logic operation (RLO) at input IN changes from
"0" to "1" (positive signal edge). The programmed time PT begins when the instruction starts.

Output Q is set for the duration PT, regardless of the subsequent course of the input signal.
Even if a new positive signal edge is detected, the signal state at the output Q is not affected as
long as the PT time duration is running.

You can scan the current time value at the ET output. The time value starts at T#0s and ends
when the value of duration PT is reached. When the duration PT is reached and the signal state
at input IN is "0", the ET output is reset.

%DB2
"IEC_Timer_0_DB"
%0 .0 ilg %Q0.0
"Tag_1" Time *Tag_3"
] L

i | IN Q { }

T#10s PT YMD34

ET *Tag_8"

Parameters

Parameter | Declaration | Datatype | Description

IN Input BOOL Start input

PT Input TIME Duration of the pulse...The value of the PT
parameter must be positive.

Q Output BOOL Pulse output

ET Output TIME Current time value

Basics of PLC

98



Tochnology for desigming the future

9. Digital Operations > DesignTech

Pulse timing diagram

The following figure shows the pulse timing diagram of the "Generate pulse” instruction:

Rl B

PT PT PT

ET |
PT—-

2. TON: Generate on-delay

You can use the "Generate on-delay” instruction to delay setting of the Q output by the
programmed duration PT. The instruction is started when the result of logic operation (RLO)

Y%DB2
"IEC_Timer_0_DB"
%0.0 TON -
“Tag_1" Time “Tag_3"
] L
1 I IN Q { }
T#10s —PT %MD34
ET "Tag_8"

at input IN changes from "0" to "1" (positive signal edge). The programmed time PT begins
when the instruction starts. When the duration PT expires, the output Q has the signal state "1".
Output Q remains set as long as the start input is still "1". When the signal state at the start
input changes from "1" to "0", the Q output is reset. The timer function is started again when a
new positive signal edge is detected at the start input.

99

Basics of PLC



9. Digital Operations ® Designlech

The current time value can be queried at the ET output. The time value starts at T#0s and ends
when the value of duration PT is reached. The ET output is reset as soon as the signal state at
the IN input changes to "0".

Pulse timing diagram
The following figure shows the pulse timing diagram of the "Generate on-delay”™ instruction:
VI

FT FT

ET &

W/

Parameters

Parameter | Declaration | Datatype | Description

IN Input BOOL Start input

PT Input TIME Duration of the on dfel_ay. The value of the PT
parameter must be positive.

Q Output BOOL Output that is set when the time PT expires

ET Output TIME Current time value

100

Basics of PLC



9. Digital Operations * Designiech

3. TOF: Generate off-delay

You can use the "Generate off-delay" instruction to delay resetting of the Q output by the
programmed duration PT. The Q output is set when the result of logic operation (RLO) at input

%DB2
"IEC_Timer_0_DB"

%0 .0 TOF %Q0.0
*Tag_1" Time "Tag_3"
{ | IN Q { }
T#10s —IFT %MD34

ET *Tag_8"

IN changes from "0" to "1" (positive signal edge). When the signal state at input IN changes
back to "0", the programmed time PT starts. Output Q remains set as long as the duration PT
is running. When duration PT expires, the Q output is reset. If the signal state at input IN
changes to "1" before the PT time duration expires, the timer is reset. The signal state at the
output Q continues to be "1".

The current time value can be queried at the ET output. The time value starts at T#0s and ends
when the value of duration PT is reached. When the time duration PT expires, the ET output
remains set to the current value until the IN input changes back to "1". If input IN switches to
"1" before the duration PT has expired, the ET output is reset to the value T#0s.

Parameters

Parameter | Declaration | Data type | Description

IN Input BOOL Start input

Pulse timing diagram
The following figure shows the pulse timing diagram of the "Generate off-delay” instruction:
IN 4

PT PT

ET
PT™]

101

Basics of PLC



9. Digital Operations

e Designlech

Tochnology for desigming the future

PT Input TIME Duration of the off de!a_y. The value of the PT
parameter must be positive.

Q Output BOOL Output that is reset when the timer PT expires.

ET Output TIME Current time value

4. TONR: Time accumulator

The "Time accumulator” instruction is used to accumulate time values within a period set by
the PT parameter. When the signal state at input IN changes from "0" to "1" (positive signal
edge), the instruction executes and the duration PT starts. While the duration PT is running, the

%DB2
"IEC_Timer_0_DB"

%40 0 TONR 9%Q0.0
"Tag_1" Time "Tag_3
{ | IN Q { )

91.0 “ID34

*Tag_5"—R ET *Tag_8"

T#10s PT

time values are accumulated that are recorded when the IN input has signal state "1". The
accumulated time is written to output ET and can be queried there. When the duration PT
expires, the output Q has the signal state "1". The Q parameter remains set to "1", even when
the signal state at the IN parameter changes from "1" to "0" (negative signal edge). The R input
resets the outputs ET and Q regardless of the signal state at the start input.

Parameters
Parameter | Declaration | Datatype | Description
IN Input BOOL Start input
R Input BOOL Reset input
Maximum duration of time recording. The value
PT Input TIME of the PT parameter must be positive.
Q Output BOOL Output that is set when the time PT expires.
ET Output TIME Accumulated time

Basics of PLC

102



9. Digital Operations * Designiech

Basic Mathematical Functions: Comparison Operations

1. CMP (==): Equal

You can use the "Equal” instruction to determine if a first comparison value (<Operand1>) is
equal to a second comparison value (<Operand2>).

%10.0 Cnppal %QO0.0
“Tag_3" ng “Tag_4"
1 1 % { }
11 |int | \
%MW 2
"Tag_2"

Pulse timing diagram
The following figure shows the pulse timing diagram of the "Time accumulator” instruction:

I
[ I I I |

) 1

PT

ET

If the condition of the comparison is fulfilled, the instruction returns the result of logic
operation (RLO) "1". If the comparison condition is not fulfilled, the instruction returns RLO
IIOII.

Parameters
Parameter | Declaration | Data type Description
integers, floating-point numbers, | _. .
Operand 1 | Input TIME, DATE First comparison value
integers, floating-point numbers,
Operand 2 | Input TIME. DATE Second value to compare

103

Basics of PLC



9. Digital Operations

e Designlech

Tochnology for desigming the future

2. CMP (<>): Not equal

You can use the "Not equal™ instruction to determine if a first comparison value (<Operand1>)
is not equal to a second comparison value (<Operand2>).

If the condition of the comparison is fulfilled, the instruction returns the result of logic
operation (RLO) "1". If the comparison condition is not fulfilled, the instruction returns RLO

"0".
%10.0 I %Q0.0
"Tag_3" Tag_1 “Tag_4"
11 [ <> | [
LI | |Int| \ 1/
%MW2
“Tag_2"
Parameters
Parameter | Declaration | Data type Description
integers, floating-
Operand 1 | Input point numbers, TIME, | First comparison value
DATE
integers, floating-
Operand 2 | Input point numbers, TIME, | Second value to compare
DATE

3. CMP (>=): Greater or equal

You can use the "Greater or equal" instruction to determine if a first comparison value
(<Operand1>) is greater than or equal to a second comparison value (<Operand2>). Both
values to be compared must be of the same data type. If the condition of the comparison is
fulfilled, the instruction returns the result of logic operation (RLO) "1". If the comparison
condition is not fulfilled, the instruction returns RLO "0".

%10.0 e ool %Q0.0
"Tag_3" Tag_1 "Tag_4"
1 1 | >= [\
LI | lint | \ 7
WHBMW 2
“Tag_2
Parameters

Basics of PLC

104



9. Digital Operations * Designiech

Parameter | Declaration | Data type Description
integers, floating-point numbers, | _. .

Operand 1 | Input TIME, DATE First comparison value
integers, floating-point numbers,

Operand 2 | Input TIME, DATE Second value to compare

4. CMP (<=): Less or equal

You can use the "Less or equal” instruction to determine if a first comparison value
(<Operand1>) is less than or equal to a second comparison value (<Operand2>). Both values
to be compared must be of the same data type.

If the condition of the comparison is fulfilled, the instruction returns the result of logic
operation (RLO) =1. If the comparison condition is not fulfilled, the instruction returns RLO=0.

%0.0 - %Q0.0
"Tag_3" fag "Tag_4"
|1 |<= | [\
11 [int | \ ]
BMW2
"Tag_2"
Parameters
Parameter | Declaration | Data type Description
integers, floating-point numbers, | _. .
Operand 1 | Input TIME. DATE First comparison value
integers, floating-point numbers,
Operand 2 | Input TIME. DATE Second value to compare

5. CMP (>): Greater than

You can use the "Greater than" instruction to determine if a first comparison value
(<Operand1>) is greater than a second comparison value (<Operand2>). Both values to be
compared must be of the same data type.

105

Basics of PLC



9. Digital Operations * Designiech

If the condition of the comparison is fulfilled, the instruction returns the result of logic
operation (RLO) "1". If the comparison condition is not fulfilled, the instruction returns RLO
IIOII.

%0.0 ‘ayy %QO0.0
"Tag_3" Tag 1 "Tag_4"
11 2 { ) ;
11 I'ntl \
%MW 2
"Tag_2
Parameters
Parameter | Declaration | Data type Description

integers, floating-point numbers,
TIME, DATE
integers, floating-point numbers,
TIME, DATE

6. CMP <: Less than

Operand 1 | Input First comparison value

Operand 2 | Input Second value to compare

You can use the "Less than" instruction to determine if a first comparison value (<Operand1>)
is less than a second comparison value (<Operand2>). Both values to be compared must be of
the same data type.

If the condition of the comparison is fulfilled, the instruction returns the result of logic
operation (RLO) "1". If the comparison condition is not fulfilled, the instruction returns RLO
IIOIII

%10.0 -y %Q0.0
"Tag_3" 1ag 1 “Tag_4"
11 | < | IR
11 [int | L)

%MW 2

"Tag_2"

Parameters
Parameter | Declaration | Data type Description

integers, floating-point numbers,
TIME, DATE
integers, floating-point numbers,
TIME, DATE

Operand 1 | Input First comparison value

Second value to compare

Operand 2 | Input

106

Basics of PLC



9. Digital Operations * Designiech

7. IN_RANGE: Value within range

You can use the "Value within range™ instruction to determine if the value at the VAL input is
within a specific value range.

You specify the limits of the value range with the MIN and MAX inputs. The "Value within
range" instruction compares the value at the VAL input with the values of the MIN and MAX
inputs and sends the result to the box output. If the value at the VAL input fulfills the
comparison MIN <= VAL or VAL <= MAX, the box output has the signal state "1". If the
comparison is not fulfilled, the box output has the signal state "0".

%0.0 IN_RANGE %Q0.0
"Tag_3" Int “Tag_

] | {
LI | A}

10 — MIN
%MWAS
"Tag_5" — VAL

20

20 MAX

If the box input has the signal state "0", the "Value within range" instruction is not executed.
The comparison function can only execute if the values to be compared are of the same data
type and the box input is interconnected.

Parameters

Parameter | Declaration | Data type Description

Input Input BOOL Result_ of the previous logic
operation

MIN Input Integers, floating-point numbers | Low limit of the value range

VAL Input Integers, floating-point numbers | Comparison value

MAX Input Integers, floating-point numbers | High limit of the value range

Output Output BOOL Result of the comparison

8. OUT_RANGE: Value outside range

You can use the "Value outside range" instruction to determine if the value at the VAL input
is outside a specific value range.

107

Basics of PLC



9. Digital Operations > DesignTech

Tochnology for desigming the future

You specify the limits of the value range with the MIN and MAX inputs. The "Value outside
range" instruction compares the value at the VAL input with the values of the MIN and MAX
inputs and sends the result to the box output. If the value at the VAL input fulfills the
comparison MIN > VAL or VAL > MAX, the box output has the signal state "1". The box
output also has the signal state "1" if a specified operand with the REAL data type shows an
invalid value.

%{0.0 OUT_RANGE %Q0.0
"Tag_3" Int "Tag_4"
] L { 1
| B | A 7

10 — MIN
%MWA4 5
"Tag_5" — VAL

20 — MAX

The box output returns the signal state "0", if the value at input VAL does not satisfy the MIN
> VAL or VAL > MAX condition.

If the box input has the signal state 0", the "Value outside range" instruction is not executed.
The comparison function can only execute if the values to be compared are of the same data
type and the box input is interconnected.

Parameters
Parameter | Declaration | Data type Description
Input Input BOOL Result_ of the previous logic

operation

MIN Input Integers, floating-point numbers | Low limit of the value range
VAL Input Integers, floating-point numbers | Comparison value
MAX Input Integers, floating-point numbers | High limit of the value range
Output Output BOOL Result of the comparison

Basic Mathematical Functions:

1. CALCULATE: Calculate

The "Calculate" instruction is used to define and execute an expression for the calculation of
mathematical operations or complex logic operations depending on the selected data type.

Basics of PLC 108



9. Digital Operations

e Designlech

Tochnology for desigming the future

You can select the data type of the instruction from the "<???>" drop-down list of the
instruction box. Depending on the data type selected, you can combine the functions of certain
instructions to perform a complex calculation. The information for the expression to be
calculated is entered in a dialog, which you can open with the icon at the upper right edge of
the instruction box. The expression can contain names of input parameters and the syntax of
the instructions. Operand names and operand addresses cannot be specified.

%I0.0

“Tag_3"

1 1
%MW35
"Tag_6" — N1
%MWA45
"Tag_5" = IN2
%MWS55
"Tag_7" IN3 3%

CALCULATE ‘E] %Q0.0
Int o "Tag_4"
ENO { }

OUT := (in1+in2)*in3

%MW65
ouT “Tag_8"

Parameters
Parameter | Declaration | Data type Description
EN Input BOOL Enable input
ENO Output BOOL Enable Output
IN1 Input integers, floating-point numbers | First available input
IN2 Input Integers, floating-point numbers | Second available input
. . Output to which the end
ouT Output Integers, floating-point numbers result is to be transferred
2. ADD: Addition

You can use the "Add" instruction to add the value at input IN1 and the value at input IN2 and
query the sum at output OUT (OUT := IN1+IN2).

In its initial state, the instruction box contains at least 2 inputs (IN1 and IN2). The number of
inputs can be extended. The inserted inputs are numbered in ascending order in the box. When
the instruction is executed, the values of all available input parameters are added. The sum is
stored at the OUT output.

The ENO enable output has the signal state "0" if one of the following conditions is fulfilled:

The enable input EN has the signal state "0".

Basics of PLC

109



e Designlech

Tochnology for desigming the future

9. Digital Operations

The result of the instruction is outside the range permitted for the data type specified at the
OUT output.

%10.0 ADD %Q0.0
*Tag_3" Int “Tag_4"
| | EN ENO { )}
%MW 28 %MW36
"Tag_9" IN1 OUT ="Tag_11"
%MW33
*Tag_10" IN2 3%

A floating-point number has an invalid value.

Parameters
Parameter | Declaration | Data type Description
EN Input BOOL Enable input
ENO Output BOOL Enable Output
IN1 Input integers, floating numbers | First number to be added
IN2 Input Integers, floating numbers | Second number to be added
ouT Output Integers, floating numbers | Sum

3. SUB: Subtract

You can use the "Subtract™ instruction to subtract the value at input IN2 from the value at input
IN1 and query the difference at output OUT (OUT := IN1-IN2).

The ENO enable output has the signal state "0" if one of the following conditions is fulfilled:

%0.0 SUB %Q0.0
"Tag_3" Int "Tag_4"
| |} EN ENO { )}

%MW 28 BMW36
"Tag_9" —{IN1 OuT |—"Tag_11"
%MW33
"Tag_10" IN2

The EN enable input has the signal state "0".

The result of the instruction is outside the range permitted for the data type specified at the
OUT output.

A floating-point number has an invalid value.

Parameter:

110

Basics of PLC



©.

Digital Operations

e Designlech

Tochnology for desigming the future

Parameter | Declaration Data type Description
EN Input BOOL Enable input
ENO Output BOOL Enable Output
IN1 Input integers, floating-point numbers Minuend
IN2 Input Integers, floating-point numbers Subtracting
ouT Output Integers, floating-point numbers Difference

4. MUL: Multiply

You can use the "Multiply™ instruction to multiply the value at input IN1 with the value at input
IN2 and query the product at output OUT (OUT := IN1*IN2).

The number of inputs can be expanded in the instruction box. The added inputs are numbered
in ascending order in the box. When the instruction is executed, the values of all available input

parameters are multiplied. The product is stored at the OUT output.

%i0.0
“Tag_3"
1 1

1 T
%MW28
"Tag_¢9"
%MW33

"Tag_10"

MUL %Q0.0
Int "Tag_4"
EN ENO { }
%MW3 6
INT ouT — "Tag_11"
IN2 3*

The ENO enable output has the signal state "0" if one of the following conditions is fulfilled:

The EN input has the signal state "0". The result is outside the range permitted for the data type
specified at output OUT. A floating-point number has an invalid value.

Parameters:
Parameter | Declaration | Data type Description
EN Input BOOL Enable input
ENO Output BOOL Enable Output
IN1 Input integers, floating-point numbers Multiplier
IN2 Input Integers, floating-point numbers | Number being multiplied
ouT Output Integers, floating-point numbers | Product

5. DIV: Divide

You can use the "Divide" instruction to divide the value at input IN1 by the value at input IN2
and query the quotient at output OUT (OUT := IN1/IN2).

Basics of PLC

111



Tochnology for desigming the future

9. Digital Operations > DesignTech

The ENO enable output has the signal state "0" if one of the following conditions is fulfilled:
The EN enable input has the signal state "0".

The result of the instruction is outside the range permitted for the data type specified at the
OUT output.

%10.0 DIV %Q0.0
"Tag_3" Int "Tag_4"
| | EN ENO { }——
%MW28 %MW36
"Tag_9" IN1 ouT "Tag_11"
%MW33
“Tag_10" IN2

A floating-point number has an invalid value.

Parameters:
Parameter | Declaration | Data type Description
EN Input BOOL Enable input
ENO Output BOOL Enable Output
IN1 Input integers, floating-point numbers Dividend
IN2 Input Integers, floating-point numbers Divisor
ouT Output Integers, floating-point numbers Quotient value

6. MOD: Return remainder of division

You can use the "Return remainder of division” instruction to divide the value at input IN1 by
the value at input IN2 and query the remainder of division at output OUT.

%10.0 MOD %Q0.0
"Tag_3" Int "Tag_4"
| |} EN ENO { }
%MW28 HMW3 6
"Tag_9" — IN1 ouUT — "Tag_11"
%MW33
"Tag_10" IN2

Parameters:
Parameter Declaration Data type Description
EN Input BOOL Enable input
ENO Output BOOL Enable Output
IN1 Input Integers Dividend

112

Basics of PLC



9. Digital Operations > DesignTech

Tochnology for desigming the future

IN2 Input Integers Divisor
ouT Output Integers Remainder of division

Date and Time of day: RD SYS T

w Extended instructions
w | | Clock + Calendar

RD_SYS.T | | T_CONy
EN - ENO | & 7_400
! T _5UB
RET_VALL #taul W T_DIFF
| lack function

:"'#H"f“ DBX300 ‘ ».",—,‘-‘.,}-T

["DB_Destinaton’] 4 PD_5V5_T

ouT | iToday = RD_LOC_T

» | 5tnng + Char
» | Program control
» ] Communications

» Interrupts
DB_Destination - f

» " JFD
Hame Data type Offset  Initial value Monitor value =
- » | Motion Control
| w Static » | Pulse
» Value Array[1 150 ofint 00 —
3 | »Toda i DTL v 3000 DTLA1970-1-1-0.0.0.0 2009-8-27-14 4349 382988000
RD SYS T

You can use RD_SYS T to read the current date and current time of the CPU clock. The data
is provided in DTL format at the OUT output of the instruction. The provided value does not
include information about the local time zone or daylight saving time. Atthe RET_VAL output,
you can query whether errors have occurred during execution of the instruction.

DTL:

Byte Component Data type Value range

0 Year UINT 1970 to 2664

1

2 Month USINT 0to 12

3 Day USINT 1to 31

4 Day of week USINT 1(Sunday) to 7
(Saturday)
The weekday is not
considered in the
value entry.

5 Hour USINT 0to 23

6 Minute USINT 0to 59

7 Second USINT 0to 59

8 Nanoseconds UDINT 0 to 999 999 999

9

10

11

113

Basics of PLC



9. Digital Operations ® Designlech

114

Basics of PLC



10.Data Blocks e DesignTech

Tachinology for designing the future

Data Blocks
Data Blocks

In contrast to logic blocks, data blocks contain no instructions. Rather, they serve as memory
for user data.

Data blocks thus contain variable data that is used by the user program. You can define the
structure of global data blocks as required.

Function_10 Pl

Global DB

Access for all blocks
(DB_Global)

Function_11

Function__ Instance DB Access only for
block_12 (DB_Instance) Function data block 12

Global data blocks store data that can be used by all other blocks (see Figure 1). Only the
associated function block should access instance data blocks. The maximum size of data blocks
varies depending on the utilized CPU.

Application examples for global data blocks are:
e Saving of information about a storage system. "Which product is located where?"
e Saving of recipes for particular products.

The data in data blocks is stored retentively in most cases. This data is then retained in the
event of a power failure or after a STOP/START of the CPU.

Overview of Data Types in STEP 7

Variables are used to store data. The data type of a variable specifies its memory requirements,
its value range and the representation of the variable value in the Editor. As well, the possible
operations with which a variable can be processed can be obtained from the data type.

Step 7 has differentiated data types according to the use and area of field as listed below:
1. Elementary data type
2. Complex data type
3. Parameter types
4. System data types
5

Hardware data types

115

Basics of PLC



10.Data Blocks

Elementary Data Types in STEP 7

The SIMATIC S7-1200 has many different data types for representing different numerical formats. A list

of some of the elementary data types is given below.

e Designlech

Tochnology for desigming the future

Data type Size (bits) | Range Example of constant entry
Bool 1 Oto1l TRUE, FALSE, O, 1
Byte 8 16#00 to 16#FF 16#12, 16#AB
Word 16 16#0000 to 16#FFFF 16#ABCD, 16#0001
DWord 32 16#00000000 to 16#FFFFFFFF 16#02468ACE
Char 8 16#00 to 16#FF AT, '@
Sint 8 -128 to 127 123,-123
Int 16 -32,768 to 32,767 123, -123
Dint 32 -2,147,483,648 to 2,147,483,647 123, -123
Usint 8 0 to 255 123
Ulnt 16 0 to 65,535 123
UDInt 32 0 to 4,294,967,295 123
Real 32 +/-1.18 x 10 -38to +/-3.40 x 10 38 5243E4§6 34, 1.2B+12
12345.123456789
LReal 64 +/-2.23 x 10 -308t0 +/-1.79 x 10 308 1 2E+40
T#-24d_20h_31 m_23s 648ms to
. T#24d_20h 31 m_23s_647ms T#5m_30s
Time 32 - = o 5#-2d
Saved as: -2,147,483,648 ms to T#1d 2h 15m 30X 45ms
+2,147,483,647 ms -~ -~
String Variable | 0to 254 characters in byte size 'ABC'
With arrays, data of a uniform data type is arranged one after the other
Array and addressed consecutively in the address area. The properties of each
array element are identical and are configured in the array tag.
The STRUCT data type represents a data structure that consists of a
Struct fixed number of components of different data types. Components of

STRUCT or ARRAY data type can also be nested in a structure.

For other data types, refer to the online help.

Data Types for Timers, Date and Time-of-day

Timers

In S7-1200, only one data type for timer is available. Details is given below.

TIME (IEC time)

The contents of an operand of the data type TIME is interpreted as milliseconds. The
representation contains information for days (d), hours (h), minutes (m), seconds (s) and

milliseconds (ms).

The following table shows the properties of data type TIME:

Length | Format Value range Examples of value input

(bits)

32 Signed T#-24d20h31m23s648ms to | T#10d20h30m20s630ms,
duration T#+24d20h31m23s647ms TIME#10d20h30m20s630ms

Basics of PLC

116



10.Data Blocks * Designiech

Hexadecimal | 16#00000000 to | 16#0001EB5E
numbers 16#7FFFFFFF

It is not necessary to specify all time units. T#5h10s is a valid entry, for example. If only one
unit is specified, the absolute value of days, hours, and minutes must not exceed the high or
low limits. When more than one time unit is specified, the value must not exceed 24 days, 23
hours, 59 minutes, 59 seconds or 999 milliseconds.

Date

The DATE data type saves the date as an unsigned integer. The representation contains the
year, the month, and the day.

The contents of an operand of DATE data type correspond in hexadecimal format to the number
of days since 01-01-1990 (16#0000).

The following table shows the properties of data type DATE:

Length Format Range of values Examples of value input
(bytes)
2 IEC date D#1990-01-01 to | D#2009-12-31,
(Year-Month-Day) D#2168-12-31 DATE#2009-12-31
Hexadecimal 16#0000 to 16#FF62 16#00F2
numbers
Time of Day

Data type TOD (TIME_OF_DAY) occupies a double word and stores the number of
milliseconds since the beginning of the day (0:00 h) as unsigned integer.

The following table shows the properties of data type TOD:

Length | Format Value range Examples of value input
(bytes)
4 Time-of-day (hours : | TOD#00:00:00.000 to | TOD#10:20:30.400,
minutes : seconds .| TOD#23:59:59.999 TIME_OF_DAY#10:20:30.400
milliseconds)

You always need to specify the hours, minutes and seconds. The specification of milliseconds
is optional.

Complex Data Types

Complex data types define data groups that are larger than 32 bits or data groups consisting of
other data types. STEP 7 permits the following complex data types:

. DATE_AND TIME

117

Basics of PLC



10.Data Blocks * Designiech

e STRING
e ARRAY
e STRUCT

e UDT (user-defined data types)
e FBsand SFBs

The following table describes the complex data types. You define structures and arrays either
in the variable declaration of the logic block or in a data block.

Data Type Description

DATE_AND_TIME | Defines an area with 64 bits (8 bytes). This data type saves in binary

coded decimal format:
DT

STRING Defines a group with a maximum of 254 characters (data type
CHAR). The standard area reserved for a character string is 256
bytes long. This is the space required to save 254 characters and a
header of 2 bytes. You can reduce the memory required for a string
by defining the number of characters that will be stored in the
character string (for example: string[9] 'Siemens’).

ARRAY Defines a multidimensional grouping of one data type (either
elementary or complex). For example: "ARRAY [1..2,1..3] OF
INT" defines an array in the format 2 x 3 consisting of integers.
You access the data stored in an array using the Index ("[2,2]™).
You can define up to a maximum of 6 dimensions in one array. The
index can be any integer (-32768 to 32767).

STRUCT Defines a grouping of any combination of data types. You can, for
example, define an array of structures or a structure of structures
and arrays.

uDT Simplifies the structuring of large quantities of data and entering
data types when creating data blocks or declaring variables in the
variable declaration. In STEP 7, you can combine complex and
elementary data types to create your own "user defined" data type.
UDTs have their own name and can therefore be used more than
once.

FB, SFB You determine the structure of the assigned instance data block and
allow the transfer of instance data for several FB calls in one
instance DB.

Structured data types are saved in accordance with word limits (WORD aligned).

118

Basics of PLC



10.Data Blocks * Designiech

Creating a Global Data Block

T& Siemens - C:Wsers\admin\Documents\Automation\21032016121032016

Project  Edit  View Insert Online Options Tools Window Help A
. _ Totally Integrated Automation
G (Y Bl ssveproject 3 M = B X D T MG E R § coonline i ¥ cooffline nvu? mm PORTAL
Proje ee (i Add new blo
Devices Name: Er
j O 0 =| A |Data_b|ock_1 | g
5
~ ] 21032016 Type: @ Global DB [~ =
I -
I Add new device E e E
By Devices & networks S B =
v [ PLC 1 [CPU 314C2 PN/DP] Crgariztion Number: L T3 =
~ [ PLC_2 [CPU 1214C AC/DCIRIY] Oliental ]
oy De\.r.lce con.ﬁgurau.on | (@) Automatic
Y% Online & diagnostics
g Program blocks FB Description:
- i Add new block Data blocks (DBs) save program data.
4 Main [0B1] Function block
» E\-ﬂ Technology objects @ —
4 External source files
b @ Picnge o ®
» Tﬂ PLC data types FC
=
4 I?;QLWat.ch and force tables Function
» L& Online backups

» Ts Traces
4 i Device proxy data

508 Program info EI F
DB

+ | Details view

Data block
Mame More...
> |Additi0na| information 3
[+ Add new and open I oK i | Cancel ‘
+ it ¥

DB Attributes: "Optimized Block Access" and "Only Store in Load
Memory”

Data blocks with optimized access

Data blocks with optimized access have no fixed defined structure. In the declaration, the data
elements are assigned only a symbolic name and no fixed address within the block. The
elements are saved automatically in the available memory area of the block so that there are no
gaps in the memory. This makes for optimal use of the memory capacity.

Tags are identified by their symbolic names in these data blocks. To address the tag, enter its
symbolic name. For example, you access the "Fill Level” tag in the "Data" DB as follows:

"Data".Fill Level
Blocks with optimized access offers the following advantages:

e You can create data blocks with any structure without paying attention to the physical
arrangement of the individual data elements.

e Quick access to the optimized data is always available because the data storage is
optimized and managed by the system.

Basics of PLC

119



10.Data Blocks .

e Access errors, as with indirect addressing or from the HMI, for example, are not
possible.

e You can define specific individual tags as retentive.

o Optimized blocks are equipped with a memory reserve by default which lets you expand
the interfaces of function blocks or data blocks during operation. You can download
the modified blocks without setting the CPU to STOP and without affecting the values
of already loaded tags.

Note

The "Optimized block access” attribute is always enabled for the following blocks and cannot
be deselected.

e GRAPH blocks
e ARRAY data blocks

Only Store in Load Memory

Data blocks with the "Only store in load memory" attribute (unlinked DBs) are data blocks that
do not occupy any space in the main memory of the controller and only use space in the load
memory of the CPU. They are therefore suitable for storing large volumes of data that are not
needed often in the controller's program. You need the following to be able to use these DBs
for the S7-1200/S7-1500:

e Firmware 2.0 (or higher) and STEP 7 (TIA Portal) V11+SP2 (or higher) for the S7-
1200.

e STEP 7 (TIA Portal) V12 (or higher) for the S7-1500.

Example:

Since the main memory has only a limited size, for recipe management, for example, multiple
data blocks with different recipe values can only be stored in the load memory. Then, in the
main memory there is only a working DB that contains the current recipe. If the DBs mentioned
above are configured and loaded into the CPU, then those data blocks are only available in the
CPU's load memory and hence do not take up any space in the main memory.

Central Processor Unit

Load memary ‘Wiork memory

System data blocks Part of logic and data hlock
relewant to program execution

(W)= % DBE20
DE22 | 4————| DB20

WRIT_DBL

Entire logic hlocks

Ertire data blocks

System mematy

Basics of PLC

120



10.Data Blocks e DesignTech

Tochnology for desigming the future

Figure shows an example of data transfer between the unlinked DBs in the load memory and
the sequence-relevant DB in the main memory. Use the two instructions below to program data
transfer:

« READ_DBL: read from the data block in the load memory
o« WRIT_DBL.: write to the data block in the load memory

Attached is a sample program for an S7-1500 with the WRITE-READ function. The DB in the
load memory was create with the CREATE_DB function.

Below we explain how to proceed to generate an unlinked DB.
1. Open the project navigation and create a global data block.

2. Right-click the newly created global data block and select the "Properties..." item in the
pop-up menu.

3. Select the "Attributes” tab and enable the "Only store in load memory" attribute.

Datablock [DB2] %

General

General .
Attributes

Infarrmatian

Time stamps

Compilation E Onlystore in load memory

Protection

D Data block write-protected in the device

Attributes

. R E Optimized block access
Download without reinitializmtion

= T =l

[<[w]

DK 1 | Cancel |

4. Confirm with OK.
Note:

For further applications it is useful to store the unlinked DB created in the global library. In
this way you can use the element for other projects too. Avoid periodic writing to the load
memory, because the number of write cycles and thus the service life of the load memory is
limited.

Further information is available in the STEP 7 (TIA Portal) Online Help under
« READ_DBL: Read from the data block in the load memory

Basics of PLC 1 2 1



10.Data Blocks

e Designlech

Tachinology for designing the future

« WRIT_DBL: Write to the data block in the load memory

Editing, Saving, Monitoring a Data Block

The desired block must be open for monitoring the tags of a downloaded data block. The
monitoring can then be activated/deactivated by clicking the icon.

TIA_Portal\031-600_ Global_Data_Blocks

7-1200M03 1-600_ Global_Data_Blocks _57-1200

Project  Edit

iew Insert Online Options Tools

Cf (W[ seveproject 2 X 18 Ta) X )2 (%2

Devices

Window Help

g

G BB # coonline F G

..)_Global Data Blocks $7-1200 » CPU_1214C [CPU 1214C DU/DUDC] * Program blocks » SPEED MOTOR [DB2] — X

ffline

fr MR ¥

Totally Integrated Automation
PORTAL

QO

ﬁ Add new device
iy Devices & networks

Y Device configuration
2| Online & diagnostics
~ig Program blocks
ﬁ Add new block
& Main [0B1]

» _4 Technology objects
External source files
la PLC tags

g) PLC data types
43l Watch and force tables
&3 Online backups
3 Traces
[ Device proxy data
e Program info
E) Textlists

» [ Local modules

» [§§ Commen data
» E]] Documentation settings
b [# 1 annuanes & meniires

~ ] 031-600_Global_Data_Blocks _57-1200

~ (3 CPU_1214C [CPU 1214C DC/DT/DC]

4 MOTOR_SPEEDCONTROL [FC10]
4 MOTOR_SPEEDMONITORING [FC*
& MOTOR_AUTO [FB1]

@ MOTOR_AUTO_DB [DB1]

@ SPEED_MOTOR [DB2]

d#F Ly Fecon=EHB™

bl
syse | kit

[¢

SPEED_MOTOR P Monitor all
Data type Start value Accessible f__ | Visiblein . Setpoint Comment

1 4@~ Static ';l_J
2 4a Speed_Setpoint Real 140 =) [+ =) =] Speed setpoint in revolution.| §°
3@ Speed_Actual_Value  Real =] =] =] =] Speed actual value in revolu) 5
4 4@ ~ Positive_Speed Struct E E @ Parameters for error | wami... H
5 @ = Threshold Emor  Real 15.0 V) =2 =] ™ Speed limit ! if exceeded an .
6 @ - Threshold_Waming Real 100 E’ @ E| g Speed limit | if exceeded an.
7 @ = Eror Bool f ™) = o] [ Enror limit exceeded
8 @ = Waming Bool v) 2 [l B Waming limit exceeded
S5 @ ~ Negative_Speed Struct B @ @ Parameters for error | wami...
104@ = Threshold Emor  Real -16.0 ) =2 =] =] Speed limit ! if exceeded an .
1 | - Threshold_Waming Real -14.0 E’ El E| g Speed limit ! if exceeded an.
2@ =  Enmor Bool f [v] = v [m] Error limit exceeded
3@ = Warning Bool v) =2l =] (=] Waming limit exceeded
14 Add nev

» | Details view
=2 Overview | @ speeo_moTor

|3Propem‘es ||1.Info ||ﬂDiagnas1jcs ‘

Default, Start and Monitoring Values

Monitor/modify values in data blocks

The desired block must be open for monitoring the tags of a downloaded data block. The
monitoring can then be activated/deactivated by clicking the icon.

e Reeod=NBT =
SPEED_MOTOR
Name Data type Startvalue  Monitor value Retain Accessibl... Visible .. Comment
1 4@ > Static
2 @-= Speed_Setpoint Real 140 140 = =) =] =) Speed setpoint in revolution per minute (range:+/-50rpm)
3 @a-e Speed_Actual_Value Real 13.56337 =] =] =] (] Speed actual value in revolution per minute (range:+-50rpm)
4 4@ = ~ Positive_Speed Struct (=] ] =] Parameters for error | waming positive speed
5 <@ Threshold_Error Real 15.0 15.0 El @ @ E‘ Speed limit | if exceeded an error is displayed
6 @ Threshold_Waming Real 10.0 10.0 v =] =] ™ Speed limit/ if exceeded an wamning is displayed
7 <@ Error Bool false FALSE ] =] =] = Error limit exceeded
8 @ Waming Bool alse TRUE El g @ D Waming limit exceeded
9 @n Negative_Speed Struct = = =] Parameters for error / waming negative speed
10 @ Threshold_Error Real -16.0 ] [v! v v Speed limit/ if exceeded an error is displayed
11 <@ Threshold_Warning Real -140 (w] =] =] ™) Speed limit/ if exceeded an warning is displayed
12@ Error Bool FALSE v] ™ =] [ Error limit exceeded
13 <@ Waming Bool FALSE El @ @ D ‘Waming limit exceeded
14 = <Add new:
<] W 1>

In the 'Monitor value' column, the values currently available in the CPU can be monitored.

Basics of PLC




10.Data Blocks « DesignTech

Tachinology for designing the future

If your right-click on one of the values, the 'Modify' dialog for modifying this value opens

031-600_ Global_Data_Blocks _S7-1200 » CPU_1214C [CPU 1214C DU/DC/DC] » Program blocks » SPEED MOTOR [DB2]
= g Rezed= B =}
SPEED_MOTOR
| [ Neme Datatype  Stertvalue  Monitor value ‘Rﬂﬂiﬂ |Accessibl... Visible .. ‘Setpo?nt ‘Comment
1 4 ~ static ] m [ ]
2 @n Speed_Setpoint Real |=l|14.0 14.0 =] =] = =] Speed setpoint in revolution per minute (range:+-50rpm)
3 ans Speed_Actual_Value  Real & odity — — — = 7g minute (range:+/-50rpm)
4 40 = v Positive_Speed Struct re speed
5 @ »= Threshold_Emor Real 15| Operand:  [*SPEED_MOTOR" Speed_Setpoint | Data type: |Real | fisplayed
-
g g R I:::ho'd‘wammg :z:': 33 Modify value:| 10.0 [ Floating-point number Is displayed
8 @ = Warning Bool fal
9 4= v Negative_Speed Struct 0 m ive speed
04 = Threshold_Error Real -1 Hisplayed
Mn<a = Threshold_Waming Real -14.0 v [~} |w! In] Speed limit ! if exceeded an waming is displayed
124 = Emor Bool false FALSE =] =) [ Emorlimit exceeded
13 @ = Waming Bool false FALSE =] = B Waming limit exceeded
14 L] <Add new> [
[<] [ >

Initialize set points/reset start values

The set points can be initialized by clicking the @ icon. For the tags whose 'Set-point’ check
box is selected, the start value will then be applied as the current value.

031-600_ Global_Data_Blocks _S7-1200 *» CPU_1214C [CPU 1214C DC/DC/DC] *» Program blocks » SPEED_MOTOR [DB2]
3 ke PFezed=NE[FE =}
SPEED_MOTOR
'Name » |"iﬁ3|i_2P setpoints . ‘Mcnilnr value |Ruoin Accessibl.. Visible . Setpoint  Comment
1 @ ¥ Static [
2 @a-= Speed_Setpoint Real E‘ 140 10.0 i g Q Q E Speed setpoint in revolution per minute (range:+-50rpm)
3 @=  Speed_Actual Value Real 0.0 13.56337 I~ =2l = =] speed actual value in revolution per minute (ranges+-50rpm)
4 4= > Positive_Speed Struct ™~ - =) ] Parameters for error [ warning positive speed
5 @ +=» Threshold_Eror Real 15.0 15.0 Q g a Speed limit / if exceeded an error is displayed
6 @ =  Threshold_Waming Real 10.0 10.0 ] =) B Speed limit/if exceeded an warning is displayed
7 a L] Error Bool false FALSE = =] [ Error limit exceeded
8 @ = Waming Bool false TRUE 2l =) 0 Warning limit exceeded
9 4 = ~ Negative_Speed Struct v ™ v [ Parameters for error | wamning negative speed
104 =  Threshold_Emor Real -16.0 -16.0 ] =) M Speed limit/if exceeded an error is displayed
1 a L] Threshold_Warning Real -140 -140 - =] (=] Speed limit / if exceeded an warning is displayed
i24@ = Emor Bool false FALSE ™ ! [ Emorlimit exceeded
124@ =  Waming Bool false FALSE =2 ™~ | Warning limit exceeded
14 . <Add new> [
<] n >
All start values can be reset by clicking the 2 icon.

123

Basics of PLC



10.Data Blocks « DesignTech

Tachinology for designing the future

P LR PecedE BT 4
SPEED_MOTOR
Nam P RESELS%M values Dasstype  Stamvalue  Monnorvelue Ressin  Accessibl Vaible . Setp P
1 Qv stk
2 @+  Speed_Setpont feal [4 140 [To5 | & ~ ~ 88 Speed setpoint in revolution per minute (range:+/-50rpm)
3 @ Speed Al Value  Real 04 1356337 ~ v 1 7] Speedactual vaiue in revolution per minute (range:+/-S0rpm)
4 €@ v Poitve_Speed Stnuct - ~ v Parameters for emoe | waming posisve speed
£ @ » Theeshoid_Emor  Real 150 150 &) “ ~ M Speedlimit!if exceeded an ermor is dsplayed
& @ & Treeshold_Waming Real 100 100 2 ~ ~ 8 Speedlimit!if excoeded an waming is daplayed
7@ = Emr 800l fase FALSE &) “ ~ ] Emorlimit exceeded
8§ @ +* Waming 8ool tare TRUE [ ~ ~ ) waming mit exceeded
9 @ ¥ Negatve_Speed Struct = ~ 2 Parameters for error | waming negative speed
W@ = Theshold Emor  Real 160 160 ¥ ~ ~ 8 Speedlimit!if exceeded an ermoe is displayed
1N€@ »  Thoshold_Waming Real 140 140 ™~ =~ I~ 8 Speedlimit! if exceeded an waming & displayed
na -« Emor Bool fatie FALSE (v ~ ~ () Error limit exceeded
124a - Waming Bool fake FALSE & ~ ~ o Waming imet exceeded
" L AdS new
{<] “ LB
3 a ) Y C © (10 Cl D D10 )
PP LE ReodE B [T =
SPEED_MOTOR
Neme Dotatype Suevalue  Monitor value Retain 2 Vigkie . Setp G
1 Q- sutk T
2 @ Speed_Setpoint Real [W) 0.0 (100 19 “ v M Speed setpointin revolution per minute (ranges+- SOrmpm)
3 @ Speed Achal Vaie  Real 0 1356337 v =) = [ Speedactalvalue in revolusion per mirnse (ranges+-50rpm)
4 Qe v Poitve_Speed Stuct I~ - ~ Paramaeters for emor | waming positive speed
5 Q » Threshold_Emee Real 00 150 v = “ v Speed imt [ f exceeded an emor & displayed
4 €@ +  Threshold_Waming Real 0.0 100 2 v ~ M Speed imit!# exceeded an waming is displayed
7@ »* Emor Boct false FALSE vl ~ “ [ Emcelimit exceeded
g§@ = Wming oot TRUE v = v [ Waming it exceeded
§ 4" v Negative_Speed Struct ~ ~ v Parameters for eot | waming negative speed
104@ * Threshod Emoe  Real 0.0 160 “ ! v M Speedimit! # exceeded an error is duplayed
na - Threshold_Waming  Real . ~1450 v v “ ~ Speed ket [ f exteeded an wamng is dplayed
1249 » Efror Bool tahe FALSE v ~ ~! O Erroe imit exceeded
Q@ = wamrg Bool fase FALSE v ~ ~ ] warming it exceeded
14 N ASd new
{<] " B

Retentiveness, Download DB into the CPU / Upload from the CPU

To enable 'Download without re-initialization' for the "SPEED _MOTOR" [DBZ2] data block,
you must go offline " and then open the properties of the data block.

Select the “Optimized block access” check box in the properties under 'General’, 'Attributes'.
(General -> Attributes -> Optimized block access)

Assign a 'Retentive memory reserve' to the data block for ‘Download without re-initialization'.
(Download without re-initialization -> Retentive memory reserve -> 10 bytes -> OK)

Downloading Changed Data Blocks into the CPU

After successful compilation, the complete controller with the created program including the

hardware configuration can, as described in the previous modules, be downloaded. ()

124

Basics of PLC



11.Function & Function Blocks

Function And Function Blocks

Local and Global Variables

e Designlech

Tochnology for desigming the future

Local Variables

Global Variables

Valid only in ONE block

It is temporary and static variables
It is overwritten after the associated
block is executed

Usable in OBs / FCs / FBs

It is accessible as Absolute and
Symbolic

Static variables are retained even
after the block is executed

It is valid in the entire program
Pl /PIQ

1/0 Peripherals

Bit memories

Variables in DBs

Constants

It is accessible as Absolute and
Symbolic

Local data stack

When you create organization blocks, you can declare temporary tags (TEMP) that are only
available when the block is executed and are then overwritten again. Each organization block
also requires 20 bytes of local data for its start information.

The CPU has a limited amount of memory for the temporary tags of the local data of blocks
currently being executed. The size of this local memory, called the local data stack or L stack,
depends on the particular CPU. By default, the local data stack is divided equally among the
priority classes. This means that each priority class has its own area in the local data stack. This
ensures that high-priority classes and their OBs have space available for their local data.

Before the local data stack is accessed for the first time, the local data must be initialized.

The local data stack stores the following data:

Temporary tags of the local data of blocks

Start information of the organization blocks
Information regarding the transfer of parameters
Intermediate results of the logic in ladder logic programs

Basics of PLC

125



11.Function & Function Blocks

e Designlech

Tachinology for designing the future

Declaration of Temporary variables

Interface
Mame

1 <@ F Input
2 €1 b Ousput
1 < F InOut

Dita iype Comment

1. Declaration

|
a7 - _
| 2. Assignment |
MUL
Int

- Netwark 1:
A[}D
EN
SMW100
Tag 8" — N1
HMW102
"Tag_ 9" M2 s

ENQ ———

IN? our — "Tag_10°

3. Query

Declaration of Formal Parameters

Formal Parameters

| Type of Parameter ” Declaration

Graphfic Display

Input parameter
Output parameter
In/Out parameter

Use I |
[ Readonly | To the left of the block box
Write onl
To the right of the block box
In out Read / Write

To the left of the block box

:
 Comm—

Inputs [_

InOuts [_

Interface FC20
Name Data type

1 € ~ Input
EA o Fault_input Bool
2 &l e Acknowlsdge Bool
4 @-» Flash_Freg Bool
5 4 v Cutput S—
5 €= Display Eool —— | Outputs
7 49 v InDut
B 4= Stored_Fault Bool
9 &-» Edge_Memory Beol
10 €@ » Temp
11 <@ » Rewum
12 @ = FC_FaultEvaluation void —_— Return

Declaring Parameter-assignable Block

Basics of PLC

126



11.Function & Function

Blocks

e Designlech

Tachinology for designing the future

Interface
Name Data yype

1 € v Input
2 4@ Fault_input Boel
3 |@v Acknovdedge Bocl
P Flash_Freq Bool
5 & v Output
6 @n. Display Bocl
/7 4@ v InQut
Iy ] Stored_Fault
o @ Edge_IMemory
106 » Temp

Offget

Comment

e ey

#stored_Fault
SR fiFlash_Freq

#Stored Fault FFault_Input

#Faull_lnput P_TRIG
—— b——ax  «q
JECQe_Memory #ACknovded

#D
{

isplay

1

3 Q { |
ge —R1

4 i |

\

); 4

Calling a Parameter-assignable Block

FC_FaultEvaluation”

B Add new device
’h Devices & networks
[ 57_1500 [CPU 15131 PN]
Y Device configuraton
2 Cnline & diagnostics
» lo Program blocks
B #dd news block
3 OF_Cycle [081)
& OB_Startup [O2100]
& FC_Conviator [FC18]
& FC_Counting [FC18|
3 FC_Fault [FC17)

“S_Acknowledge”

*M_sux_Fauft1®

Devices | v  Network2: rFaultt
"0 0 >
B = EN
v 103
o = "S_Fault?™  %10.4 — Fault Input

%10 7w Acknowmdedge
"dock_2HZ %MI10.3 = Flash_Freq

"N_P_Fault?® %M17.2 — stored_Fault

%M17.1 — Edge_ Memory

Network 3:  Fault2

FC_FaultEvaluation™

& FC_Mode [FC15]
& FC_Swgnel [FC12] =
& FC_vights [FC35]
@ D8_weights [DE35]
» . System blocks
» [ Technolooy objects

(<]

\

"S_Acknowledge”

“WM_aux Faultz*

EN
%10.5 — Fault_input
%10.7 — Acknondedge
%M10.3 — Fash_Freq
BM17.4 = Stored_Fault
BT T 3 — Edge_Memory

*S_Fault2"

“Clock_2HZ
*M_P_FoultZ*

m ] [>] [100%

..PU 1513.1 PN] » Program blocks » FC_Fault [FC17]

ENO _.
Dizplay — %Q0.2|

Display =—>Q0 3

<]

Generating Instance Data Blocks

Basics of PLC

127



11.Function & Function Blocks * Designlech

LR _FB_FarX | B GOtO e e P >
e Cross—eference information ShiftaFi1
8 FauitEvaluation”
w05 %Qe.3

*S_FauY emdryult Ipit Disoly P FotZ [y Culak

60,7 |
S | Shift-F5
Acnowedae” edu i cukedge 223 2 5

,“.[,_ + “tr _',l‘i_4
o
*Clock 2HE —=dflash Freg

Qld interfs ce:
/ "OR_FE_Faki we?
e "DR_FE_faud"
W0 Se
18 Fausahiator” w'm ]
¢ o ———— ==
o3 btaar s W
T L8 L g D oy ' P_Fat 7 *s_fmh2? —ak mput Deplry—<P_Fauk?"
%07 wo.7 ‘
5 s
ACronk d8e” edicionladge Adkrowedge’ — o rondedge
W03 e gt _chuich
L e wnoa
“COd_IH wmailazh_Freq
Cancel
Updating a Block Call
Automatically generating an
instance DB during the FB call Manually creating an instance DB
& FC_Convhater [FC16] |~ S3Network4:  Evsluam Fault3
. K Countieg IFC18) et Kd@ riew BIa Y %

3 FC_Feult [FC17]

& FC_FoultEvalsanon [FC20) Py Yaine

2 FCMode [FCI5] WB20 Oata_biock_1 ]

& FC_signal [FC13] FE_FaultEvalustion”™

B FC_Weights [ N ENG —— Tywe: | Gossioe

2 FB_FeultEvalos Faule. inpit t =

@ De_visight: [DB35)  — Acknowledge Disploy— - it i b\
black 2 FB_FauiEvaluavon [F820]

P ! Syatern blocks =
» & wchaclogy objects

Call options *

¥ UDT_Staustic

I Receive_Condmons
& FILE_DB_HEADER
E IEC_COUNTER

Furction btk i IEC_DCOUNTER
e E [ECLCOUNTER
I EC_USCOUNTER
‘ B 1EC_UCOUNTER ‘
E EC_LTAER ‘
Dot bleck W EC_TAER b,_
-

128

Basics of PLC



12.0Organization Blocks « DesignTech

Tochnology for desigming the future

Organization Blocks
Program Blocks

You can find a "Program blocks" folder in the project tree, in which you can create and manage
the following blocks (Description is already given in previous chapter):

e Organization blocks (OB)
e Function blocks (FB)

e Functions (FCs)

e Data blocks (DB)

B’ Add new device
iy Devices & networks
~ [ PLC_1 [CPU 314C-2 PN/DP]
[l Device configuration
% Online & diagnostics
v r:i:. Prograrm blocks
' Add new block
& Main [OB1]
¥ ¢ System blocks

* |7 Program resources
X5 IEC_Timer_0_DE [DB1]
5§ IEC_Timer_0_DB_2 [DB3]
3 Block_1 [FB1]
3 Block_2 [FC1]
@ Data_block_1 [DB2]
¥ [ Technology objects

b External source files

A "System blocks" subfolder containing another subfolder, "Program resources”, is also
created in the "Program blocks" folder the first time you drag an instruction to your program
which is an internal system function block. The instance data block of the internal system
function block is also pasted to the "Program resources™ folder. You can move or copy such
instance data blocks from the "Program resources” folder to any other folder and rename or
delete them. You can also move your blocks into the "Program resources™ folder. Blocks in the
"Program resources” folder that are not required to run the user program are removed during
the next compilation. If the "Program resources™ folder contains no more blocks then it is also
deleted with the "System blocks" folder.

A program cycle OB is automatically generated for each device and inserted in the "Program
blocks" folder.

Organization Blocks available in SIEMENS

Organizational Blocks and their details which is available in Siemens PLC is described below.
Whether it is available in S7-1200 or not that is also mentioned.

Basics of PLC 129



12.0rganization Blocks

e Designlech

Tochnology for desigming the future

S7-1200 , S7-1500 PLC
Sr . Application S7- | S7- | S7- | ST-
No; | ©OBs No Function 1200 | 1500 | 300 | 400
1 |oB1 For  Program | OBL s the default block for cyclic | |, v v |y
Execution execution of the user program.
For the time-of- The OBs can be started
2 OB10 - OB17 dav i periodically or once at a specific | N Y Y |Y
ay interrupt time
Startup OBs are processed once
3 0B100,101,102 | For startup when the operating mode of the | Y Y Y |Y
CPU changes from STOP to RUN.
The operating system of the CPU
For the calls the OB if a programmin
4 0OB121 programming & progran 9N Y Y |Y
error occurs while processing an
error . ;
instruction of the user program
The operating system of the CPU
For the 10 access calls the OB if an error during
5 0OB122 error direct access to 10 data occurs | N Y Y |Y
while processing an instruction of
the user program.
For time dela After expiry of a defined time, the
6 0OB20 : Y| time delay interrupt OBs interrupt | Y Y N [N
interrupt. X .
the cyclic program processing
7 0B20-0OB23 Tlme delay Event class: Time delay N N Y |Y
interrupt OBs
For evelic The cyclic interrupt OBs interrupt
8 | 0OB30 : y the cyclic program processing at | Y Y N |N
interrupts. T
defined intervals
o |oB30-0B38 | YO MU Eyent class: Cyclic N N Y |V
The hardware interrupt OBs
interrupt the cyclic program
processing at the occurrence of a
For HSC hardware event. The hardware
10 | OB40 hardware . Y Y N [N
interrunts interrupts are not only for
Pis. "Hardware interrupt HSCs", but
also for hardware interrupts of
digital channels.
11 | OB40-OB47 grlggess alarm Event class: Hardware interrupts | N N Y |Y
The operating system of the CPU
12 | OB55 For the  status calls the OB if a status interrupt | N Y Y |Y
interrupt
occurs.
For the update | The operating system of the CPU
13 | OB56 interrupt or | calls the OB if an update interrupt | N Y Y |Y
alarm OB OCCUrs.

Basics of PLC

130



12.0rganization Blocks

e Designlech

Tochnology for desigming the future

anc;rnufacturer-ﬂ;? The operating system of the CPU
14 | OB57 . e calls the OB if a manufacturer- or Y |Y
profile-specific . e
) profile-specific interrupt occurs.
interrupt
Program parts can be started
15 | OB61 ::n(;(;r:lrjet clocked synchronized with the DP cycle N [N
P clock or PN send cycle clock.
16 | OB61-OB64 .CIOCKEd Event class: Alarm Y |Y
interrupt OB
If the maximum cycle time is
17 | oBso For _the time excgeded, the time error interrupt v |y
error interrupt OB interrupts the cyclic program
processing
18 | OB81 Po_wer supply Event class: Fault interrupts Y |Y
failure OB
If the diagnostics-compatible
module, for which you have
For  diaanostic enabled the diagnostic error
19 | OB82 dlag interrupt, detects an error, the Y |Y
error interrupt : X .
diagnostic error interrupt OB
interrupts the cyclic program
processing
The operating system of the CPU
For oulling and calls the OB when a configured
20 | OB83 U pin g and non-disabled module or sub- Y |Y
plugging module of the distributed 10 is
pulled or plugged.
21 | OB84 CPU _hardware Event class: Fault interrupts Y |Y
error OB
22 | 0B85 Program runtime Event class: Fault interrupts Y |Y
error OB
For the rack | When a DP master system, slave
error  of  a | or part of the sub-modules fails,
23 | OB86 PROFINET 10 | the operating system of the CPU Yoy
system calls the OB
24 | OB87 Communications Event class: Fault interrupts Y |Y
error OB
Processing ) .
25 | OB88 abortion OB Event class: Fault interrupts Y |Y
26 | OB90 Background OB | Event class: Fault interrupts Y |Y
When creating a technology
object (Motion) the OB "MC
27 | 0OB91 For the MC Servo" is called automatically for N | N
Servo . 4
processing the technology objects
(Motion).
When creating a technology
28 | OB92 For the ~MC object (Motion) the OB "MC N [N
Interpolator " .
Interpolator is called

Basics of PLC

131



Tachinology for designing the future

12.0Organization Blocks « DesignTech

automatically for processing the
technology objects (Motion)

Creating a New OB

emens - C:\Users\admin\Documents\Automation\21032016\21032016

Prf:uecl Edit View Insert Onlllne -~ Options  Tools :\Mndow Help ; Totally Integrated Automation
¥ (3 B save project e x 9o 5 1EH 3 ¥ Goonline ¥ Go offlin PORTAL
Project tree M 4 | Add new block 15
Devices Name: 1|l'.|.“.|
i x
OO [ ntain_i S
&
=
F]
~ [] 21032016 & Program cycle Langusge: o H R
a
e 5 —— N i m— |
ﬁg'h Devices & networks B & Time delay interrupt %
= [ PLC_1 [CPU 1214C AC/DC/RR Organizmtian & Cyclic interrupt () manual =
— block E
Y Device configuration & Hardware interrupt (®) Automatic |
4| online & diagnostics & Time errerinterrupt W
& Diagnostic error interrupt o
3
% ¥ Pull or plug of modules Description: =
. . E
. R ST Tl A"Program cycle” OB is executed cyclically -
» [ Technology objects Function black & Time of day and is the main block of the program. This is e
» External source files 4 Status where wly pla_ace the instructions that control =
Update your application, and call additional user | |
» % PLCtags &Up blocks. = |
» [l PLC data types & Profile B
[ = & MCAnterpolator ;‘
¥ |55l Watch and force tables FC P g
R i & MCServo =
3 r{, Online backups Function
b |35 Traces -
v [, Device proxy data LI
Frogram info E
: e @
e | Details view B g
Data block
Online & d i
g nline & diagnostics -
¥ g Program blocks |
K¢ Add new block b4 ‘Additional information
& Main [OB1] - :
Bnce
4 Main_1 [OB123]
» L3 Technology objects
v [ External source files

132

Basics of PLC



12.0Organization Blocks « DesignTech

Tachinology for designing the future

OB Start Information using OB100 as an Example

Address
0/1 Start event Start-up request
2/3 Priority OB No.
4/5 Reserved
6/7 Number of the event that caused the CPU to go into STOP
8/9 L !
Additional information on the current startup???
10/ 11
12/13 Year Month
14 /15 Day Hours
16/17 Minutes Seconds
18/19 1/10 seconds, 1/100 seconds 1 /1000 seconds, weekday
D@(s-{@]| & &%/ of| ¢lal[o %] K| OfE £ ®E]EEE] el )
Inhalt von: 'UmgebunglSchnitcstelle\TEMP'
=4 Schnittstelle [Wame Datentyp |Adresse | ar a
=& TENP @ 0B100_EV_CLASS Byte 0.0 16§13, Event class 1, Entering event state, Event logg... = |
'@ 0B100 EV CLASS |m .0 16481/82/83/84 Method of startup
@ 0B100_STRTUP = 0B100_PRIORITY Byte 2.0 Priority of OB Execution
'@ 0B100_PRIORITY  |wm 0B100_OB_NUMBR Byte 3.0 100 (Organization block 100, 0B100)
© 0B100_OB_NUMBR  |m 0B100 RESERVED 1  |Byte 4.0 Reserved for system
& 0B100_RESERVED 1 |m 0B100 RESERVED 2  |Byte 5.0 Reserved for system
& 0B100_RESERVED 2 |g op100_sTop Vord 6.0 Event that caused CPU to stop (16H4xxx)
@ 0B100_STOP @ OB100_STRT_INFO DWord 8.0 Information on how system started —_
= 0B100_STRT_INFO '@ OB100 DATE TIME Date... 1z.0 Date and time 0B100 started
'© 0B100_DATE_TINME - - LI

S$7-1200 Startup

The startup mode "Warm restart - operating mode before POWER OFF" is set by default in the
device configuration. This prevents the CPU from changing unintentionally to the RUN mode
during the commissioning phase when the power returns. An unintentional change to the RUN
mode will set the outputs and start any machines to which the outputs are connected. However,
with this default setting you need a PG with STEP 7 VV10.5, STEP 7 V11 or the S7-1200 Tool
to be able to change the CPU from STOP mode to RUN mode. The CPU can change to STOP
mode for one of the following reasons:

e Inserting an SD card

« Failure of an expansion module

e Other reasons
If STOP mode occurs, you need software for changing to RUN mode.
Remedy:

We recommend setting the startup mode "Warm restart - RUN". Then, the CPU changes
automatically back into RUN mode when power returns. In this way, neither you nor your
customers need customer support’s assistance to set the CPU back into RUN mode.

The table below shows the startup modes of the S7-1200 CPU.

Startup mode CPU behavior

Basics of PLC

133



12.0Organization Blocks « DesignTech

Tochnology for desigming the future

No startup CPU remains in STOP mode.

\Warm restart — RUN CPU goes into RUN mode when power returns.

Warm restart - operating mode beforeCPU goes into the same mode as before loss of
POWER OFF power.

Interrupting the Cyclic Program

The CPU processing is controlled by events. An event triggers an interrupt OB to be executed.
You can specify the interrupt OB for an event during the creation of the block, during the device
configuration, or with an ATTACH or DETACH instruction. Some events happen on a regular
basis like the program cycle or cyclic events. Other events happen only a single time, like the
startup event and time delay events. Some events happen when the hardware triggers an event,
such as an edge event on an input point or a high speed counter event. Events like the diagnostic
error and time error event only happen when an error occurs. The event priorities and queues
are used to determine the processing order for the event interrupt OBs.

The CPU processes events in order of priority where 1 is the lowest priority and 26 is the
highest priority. Prior to V4.0 of the S7-1200 CPU, each type of OB belonged to a fixed priority
class (1 to 26). From V4.0 forward, you can assign a priority class to each OB that you
configure. You configure the priority number in the attributes of the OB properties.

Interruptible and non-interruptible execution modes

OBs (Page 57) execute in priority order of the events that trigger them. From V4.0 forward,
you can configure OB execution to be interruptible or non-interruptible. Note that program
cycle OBs are always interruptible, but you can configure all other OBs to be either
interruptible or non-interruptible.

If you set interruptible mode, then if an OB is executing and a higher priority event occurs
before the OB completes its execution, the running OB is interrupted to allow the higher
priority event OB to run. The higher-priority event runs, and at its completion, the OB that was
interrupted continues. When multiple events occur while an interruptible OB is executing, the
CPU processes those events in priority order.

If you do not set interruptible mode, then an OB runs to completion when triggered regardless
of any other events that trigger during the time that it is running.

Consider the following two cases where interrupt events trigger a cyclic OB and a time delay
OB. In both cases, the time delay OB (OB201) has no process image partition assignment and
executes at priority 4. The cyclic OB (OB200) has a process image partition assignment of
PIP1 and executes at priority 2. The following illustrations show the difference in execution
between non-interruptible and interruptible execution modes:

134

Basics of PLC



12.0rganization Blocks

DesignTech

Tochnology for desigming the future

write PIPO read PIP0 execute OB1

execute OB201

read PIP1 execute OB200 write PIP1

execute OB1 (continued)

Time |:> cyclic interval delay timer
elapsed expired

Case 1: Non-interruptible OB execution

execute 0B201

read PIP1 execute OB200 execute OB200 (continued) write PIP1
write PIPO read PIPO execute OB1 execute OB1 (continued)
Time E:> cyclic interval delay timer
elapsed expired

Case 2: Interruptible OB execution

Note

If you configure the OB execution mode to be non-interruptible, then a time error OB cannot
interrupt OBs other than program cycle OBs. Prior to V4.0 of the S7-1200 CPU, a time error
OB could interrupt any executing OB. From V4.0 forward, you must configure OB execution
to be interruptible if you want a time error OB (or any other higher priority OB) to be able to
interrupt executing OBs that are not program cycle OBs.

Understanding event execution priorities and queuing

The CPU limits the number of pending (queued) events from a single source, using a different
queue for each event type. Upon reaching the limit of pending events for a given event type,
the next event is lost. You can use a time error interrupt OB to respond to queue overflows.

Each CPU event has an associated priority. In general, the CPU services events in order of
priority (highest priority first). The CPU services events of the same priority on a "first-come,

first-served" basis.

Event Quantity allowed Default OB
priority
Program cycle 1 program cycle event Multiple OBs 14
allowed
Start up 1 startup event! 14
Multiple OBs allowed
Time Delay Up to 4 time events 1 OB per event 3
Cyclic Interrupt Up to 4 events 1 OB per event 8
Hardware interrupt Up to 50 hardware interrupt events? 18
1 OB per event, but you can use the same 18
OB for multiple events
Time error 1 event (only if configured) 3 22 or 26*

Basics of PLC

135



12.0rganization Blocks * DesignTech

Tochnology for desiging the future

Diagnostic error 1 event (only if configured) 5
Pull or plug of modules 1 event 6
Rack or station failure 1 event 6
Time of day Up to 2 events 2
Status 1 event 4

Update 1 event 4

Profile 1 event 4

1 The startup event and the program cycle event never occur at the same time because the
startup event runs to completion before the program cycle event starts.

2 You can have more than 50 hardware interrupt event OBs if you use the DETACH and
ATTACH instructions.

3 You can configure the CPU to stay in RUN if the scan cycle exceeds the maximum scan
cycle time or you can use the RE_TRIGR instruction to reset the cycle time. However, the CPU
goes to STOP mode the second time that one scan cycle exceeds the maximum scan cycle time.

4 The priority for a new V4.0 or V4.1 CPU is 22. If you exchange a V3.0 CPU for a V4.0 or
V4.1 CPU, the priority is 26: the priority that was in effect for VV3.0. In either case, the priority
field is editable and you can set the priority to any value in the range 22 to 26.

Refer to the topic "Exchanging a V3.0 CPU for a V4.1 CPU (Page 433)" for more details.

In addition, the CPU recognizes other events that do not have associated OBs. The following
table describes these events and the corresponding CPU actions:

Event Description CPU action

1/O access error | Direct 1/O read/write error The CPU logs the first occurrence in the
diagnostic buffer and stays in RUN mode.
Max cycle time | CPU exceeds the configured | The CPU logs the error in the diagnostic

error cycle time twice buffer and transitions to STOP mode.
Peripheral I/0O error during process image | The CPU logs the first occurrence in the
access error update diagnostic buffer and stays in RUN mode.
Programming program execution error If the block with the error provides error
error handling, it updates the error structure; if not,

the CPU logs the error in the diagnostic
buffer and stays in RUN mode.

Interrupt latency

The interrupt event latency (the time from notification of the CPU that an event has occurred
until the CPU begins execution of the first instruction in the OB that services the event) is
approximately 175 u sec, provided that a program cycle OB is the only event service routine
active at the time of the interrupt event.

Time-of-Day Interrupt (OB 10)

Description

136

Basics of PLC



Tochnology for desigming the future

12.0Organization Blocks « DesignTech

A time-delay interrupt OB is started after a configurable time delay of the operating system.
The delay time starts after the SRT_DINT instruction is called.

You can use up to four time-delay interrupt OBs or cyclic OBs (OB numbers >= 123) in your
program. If, for example, you are already using two cyclic interrupt OBs, you can insert a
maximum of two further time-delay interrupt OBs in your program.

You can use the CAN_DINT instruction to prevent the execution of a time-delay interrupt that
has not yet started.

Properties - CPU 315-2 DP - {R0,/52) x|
General I Startup I Cycle/Clock Memory | Fetertive Memory I Interrupts
Time-of-Day Interrupts | Cyclic Intermpt | Diaghostics/Clock | Protection | Communication

Process image

Friority Active Execution Start date Time of day  partition
opte: [z v [Evewdsy ¥ [270404  [1300 [oB1Fa <]
op1i: 2 - [none ~| [orores  [oomo [oe1Pa <]
oBiz [2 ™ Nore ~] [oronss Joooo [oB1Pa ~]
o1z [2 I [T ~] [protsz  [oooo [0eTFa <]
oe1e 2 ™ [None ~| [ororss  [oooo [oBTPa <]
opts 2 ™ Jnone ~| [ororss [oooo [oerPe =]
opig: [2 ™ [None =] [oiss oo [0eTFa <]
o7 2 ™ [hone ~] [morsd  [oooo [0ETFa <]

Cancel Help

Function of time-delay interrupt OBs

The operating system starts the corresponding OB after the delay time, which you have
transferred with an OB number and an identifier to the SRT_DINT instruction.

To use a time-delay interrupt OB, you must execute the following tasks:
e You must call the instruction SRT_DINT.
e You must download the time-delay interrupt OB to the CPU as part of your program.

The delay time is measured with a precision of 1 ms. A delay time can immediately start again
after it expires.

Time delay interrupt OBs are executed only when the CPU is in the "RUN" mode. A warm
restart clears all start events of time-delay interrupt OBs.

The operating system calls the time-delay interrupt OB if one of the following events occurs:

« If the operating system attempts to start an OB that is not loaded and you specified its
number when calling the SRT_DINT instruction.

137

Basics of PLC



12.0rganization Blocks * DesignTech

Tochnology for desiging the future

o If the next start event for a time-delay interrupt occurs before the time delay OB has
completely executed.

You can disable and re-enable time-delay interrupts using the DIS_AIRT and EN_AIRT
instructions.

Note

If you disable an interrupt with DIS_AIRT after executing SRT_DINT, this interrupt
executes only after it has been enabled with EN_AIRT. The delay time is extended
accordingly.

Start information

« None

e Optimized start information:

Name | Data Meaning
type
sign | WORD | User ID: Input parameter SIGN from the call of the "SRT_DINT"
instruction

Cyclic Interrupt (OB35)

S7 provides up to nine cyclic interrupt OBs (OB 30 to OB 38). You can use it to start programs
after equidistant time phases. The following table shows the default values for the time frame
and priority classes for the cyclic interrupt OBs.

Cyclic interrupt Default value for time Default value for the priority
OB frame class
OB 30 5s 7
OB 31 25S 8
OB 32 1s 9
OB 33 500 ms 10
OB 34 200 ms 11
OB 35 100 ms 12
OB 36 50 ms 13
OB 37 20 ms 14
OB 38 10 ms 15

Function of the cyclic interrupt OBs

The equidistant start times of the cyclic interrupt OBs are determined by the cycle clock and
the phase offset.

Note
You must make sure that the run time of each cyclic interrupt OB is significantly shorter
than its interval. If a cyclic interrupt OB has not been completely executed before it is due

138

Basics of PLC



Tochnology for desigming the future

12.0Organization Blocks « DesignTech

for execution again because the interval has expired, the time error OB (OB 80) is started.
The cyclic interrupt that caused the error is executed later.
You can use the "DIS_IRT" instruction to disable the call of the cyclic interrupt OBs, the
"EN_IRT" instruction to re-enable it, and the "DIS_AIRT" and "EN_AIRT" instructions to
delay it.

Refer to the specifications of your specific CPU for the range of the parameters cycle clock,
priority class, and phase offset. You can change parameter settings through configuration.

Local data for cyclic interrupt OBs

Hardware Interrupt (OB 40)

Description

S7 provides up to eight independent hardware interrupts each with its own OB.
Per configuration you specify which channels will trip a hardware interrupt,
e Under which supplementary condition for each signal module.

e Which hardware interrupt OB is assigned to the individual groups of channels (as
default, all hardware interrupts are processed by OB 40).

With CPs and FMs, you must use the appropriate software for the module for this.
You select the priority classes for the individual hardware interrupt OBs per configuration.
Function of the hardware interrupt OBs

After the module triggers a hardware interrupt the operating system identifies the slot and
determines the associated hardware interrupt OB. If this has a higher priority than the priority
class active at the moment then it will be started. The channel-specific acknowledgment is sent
after this hardware interrupt OB has been executed.

If another event that triggers a hardware interrupt occurs on the same module during the time
between identification and acknowledgment of a hardware interrupt, the following applies:

e If the event occurs on the channel that previously triggered the hardware interrupt,
then the associated interrupt is lost. The following figure illustrates the connection
between a process signal and the execution of the associated hardware interrupt OB
based on the example of a channel of a digital input module. The triggering event
is the rising edge. The associated hardware interrupt OB is OB 40.

Mon-detected hardware interrugpts

process signal

OB 40 Execution of the ©OF 40

139

Basics of PLC



12.0rganization Blocks ® Designlech

e If the event occurs on a different channel of the same module, then no hardware
interrupt can be triggered at that moment. However, it is not lost, it is then triggered
after the currently active hardware interrupt has been acknowledged.

If a hardware interrupt is triggered the OB of which is currently active on account of a hardware
interrupt of another module, then the new request is registered and the OB is worked off at the
specified time.

You can use the "DIS_IRT" instruction to disable the call of the hardware interrupt OBs, the
"EN_IRT" instruction to re-enable it, and the "DIS_AIRT" and "EN_AIRT" instructions to
delay it.

You can use the "WR_PARM", "WR_DPARM", and "PARM_MOD" instructions to assign
the hardware interrupt parameters for a module.

140

Basics of PLC



