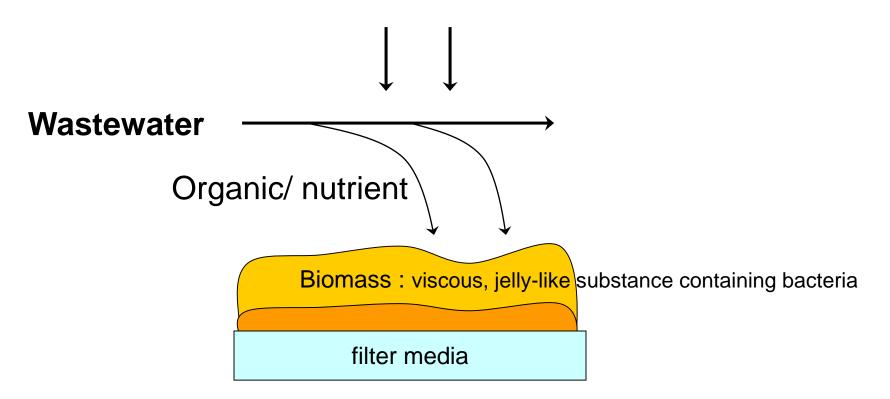

General overview of plant components

Biological wastewater (WW) treatment

- To remove the suspended solids & the dissolved organic load from the WW by using microbial populations.
- The microorganisms are responsible for
 - degradation of the organic matter
 - they can be classified into
 - aerobic (require oxygen for their metabolism)
 - anaerobic (grow in absence of oxygen)
 - facultative (can proliferate either in absence or presence of oxygen).

Biological wastewater (WW) treatment

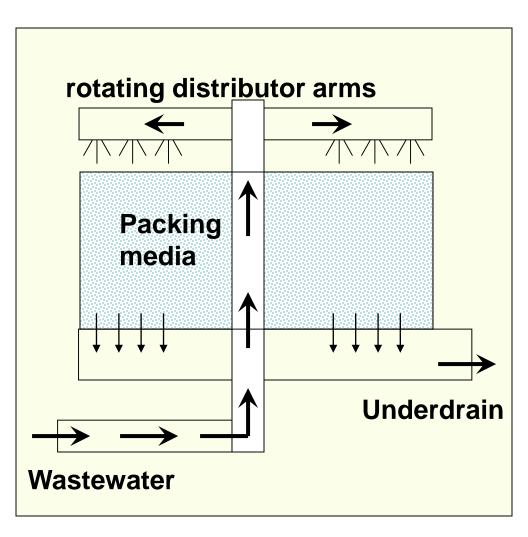
- If the micro-organisms are suspended in the WW during biological operation
 - suspended growth processes
 - Recycling of settled biomass is required.
- While the micro-organisms that are attached to a surface over which they grow
 - attached growth processes
 - The biomass attached to media (ex. rock, plastic, wood)
 - Recycling of settled biomass is not required.

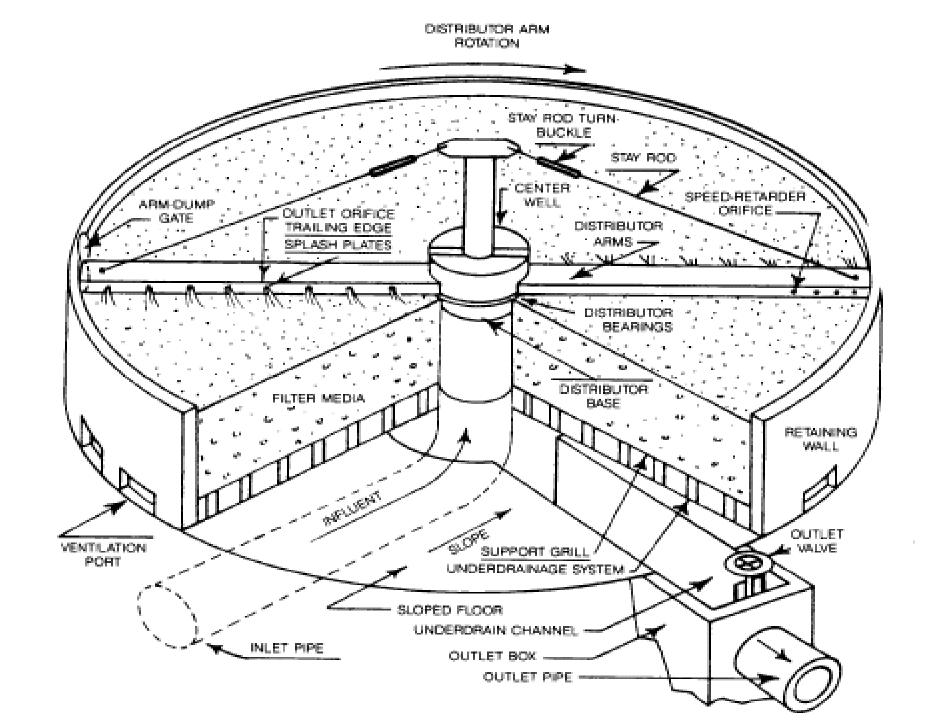

Attached Growth Process

What can this process do?

- 1. Remove Nutrient
- 2. Remove dissolved organic solids
- 3. Remove suspended organic solids
- 4. Remove suspended solids

Cross-section of an attached growth biomass film

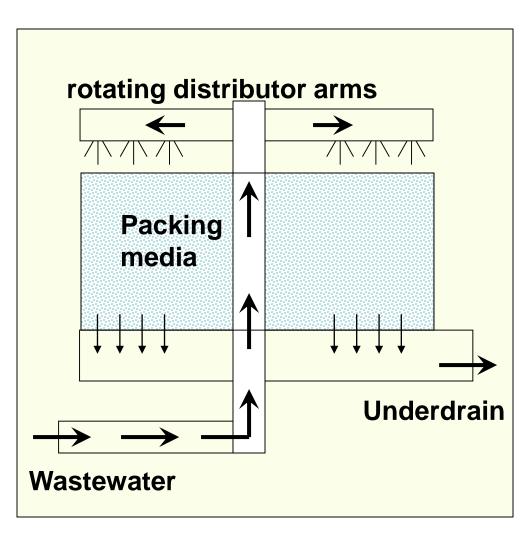

Oxygen (the natural or forced draft)


Attached Growth Process

- Trickling filter (TF)
- Rotating biological contactor (RBC)

Trickling Filter (TF)- side view

- TF consists of:
 - A rotating arm that sprays wastewater over a filter medium.
 - Filter medium: rocks, plastic, or other material.
- The water is collected at the bottom of the filter for further treatment.



Design consideration

- Influent wastewater characteristics
- Degree of treatment anticipated (BOD & TSS removal).
- Temperature range of applied wastewater
- Pretreatment processes
- Type of filter media
- Recirculation rate
- Hydraulic and organic loadings applied to the filter
- Underdrainage and ventilation systems

Trickling Filter (TF)- side view

- TF consists of:
 - A rotating arm that sprays wastewater over a filter medium.
 - Filter medium: rocks, plastic, or other material.
- The water is collected at the bottom of the filter for further treatment.

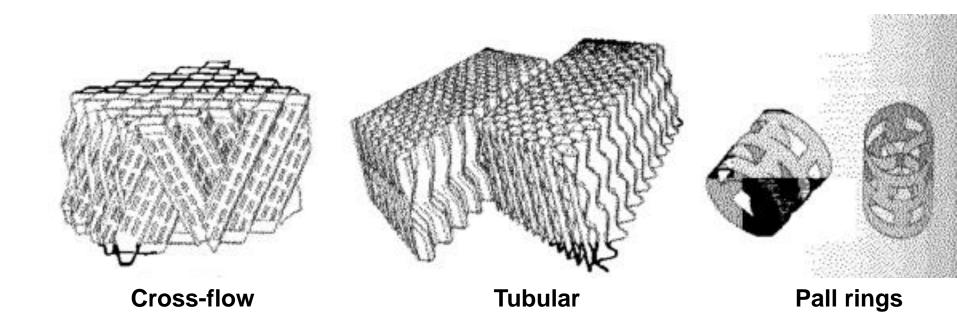
Design consideration - Pretreatment

- Trickling filters shall be preceded by primary clarifiers equipped with scum and grease collecting devices, or other suitable pretreatment facilities.
- If fine screening is provided the screen size shall have from 0.03 to 0.06 inch openings.
- Bar screens are not suitable as the sole means of primary treatment.

Design consideration

- Influent wastewater characteristics
- Degree of treatment anticipated (BOD & TSS removal).
- Temperature range of applied wastewater
- Pretreatment processes
- Type of filter media
- Recirculation rate
- Hydraulic and organic loadings applied to the filter
- Underdrainage and ventilation systems

Filter media


Crushed rock

- Durable & insoluble
- Locally available
- But, reduce the void spaces for passage of air
- Less surface area per volume for biological growth

Plastic media

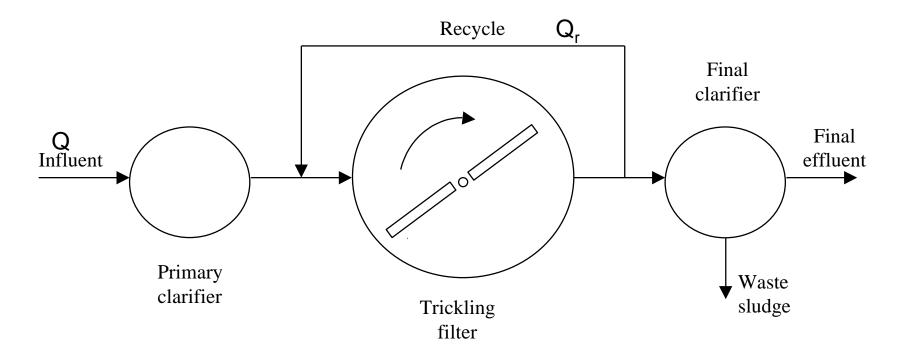
- Random packing media
- Modular packing media

Filter media

Schematic diagrams of modular and random packed media used in fixed-film treatment systems (Source: Bordacs and Young, 1998)

Design consideration - Filter media

The ideal filter packing is material that

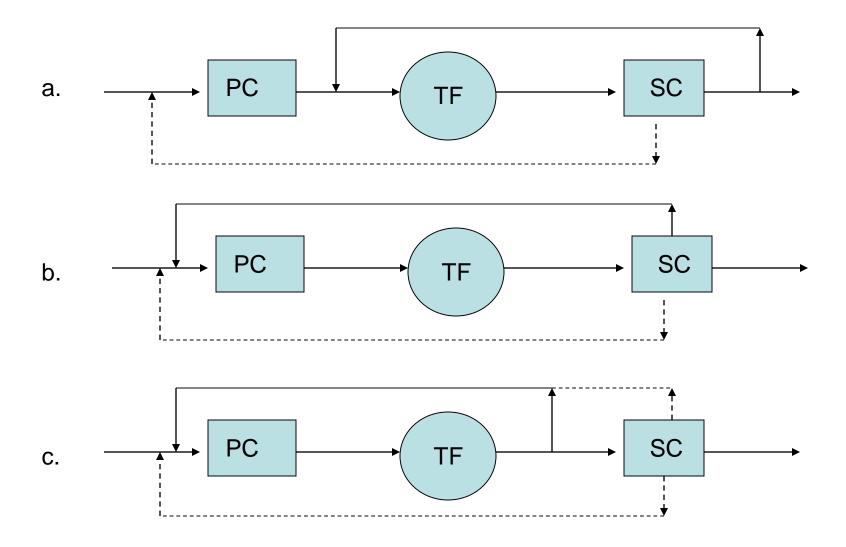

- has a high surface area per unit of volume
- is low in cost
- has a high durability
- has a high enough porosity so that clogging is minimized
- provides good air circulation

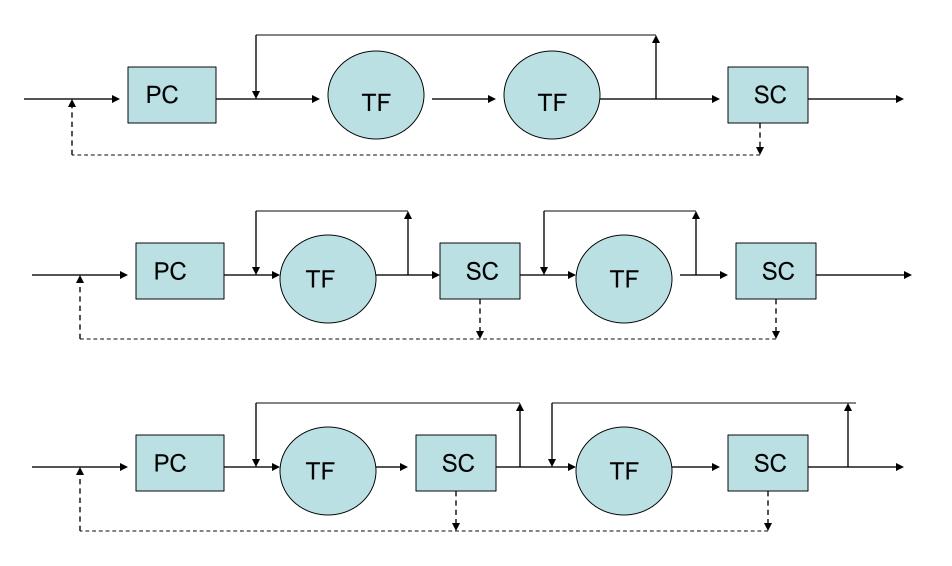
Design consideration

- Influent wastewater characteristics
- Degree of treatment anticipated (BOD & TSS removal).
- Temperature range of applied wastewater
- Pretreatment processes
- Type of filter media
- Recirculation rate
- Hydraulic and organic loadings applied to the filter
- Underdrainage and ventilation systems

Flow Diagram for Trickling Filters

Recirculation= A portion of the TF effluent recycled through the filter **Recirculation ratio (R)** = returned flow (Qr)/ influent flow (Q)


Trickling Filter Process


Design consideration - Recirculation

- Why is recirculation required?
 - maintain constant wetting rate
 - dilute toxic wastes
 - increase air flow
 - recirculation flow dilutes the strength of raw wastewater & allows untreated wastewater to be passes through the filter more than once.
- A common range for recirculation ratio
 - $-0.5 \sim 3.0$

Single stage

Two stage

Design consideration

- Influent wastewater characteristics
- Degree of treatment anticipated (BOD & TSS removal).
- Temperature range of applied wastewater
- Pretreatment processes
- Type of filter media
- Recirculation rate
- Hydraulic and organic loadings applied to the filter
- Underdrainage and ventilation systems

Underdrain System

Two purposes:

- (a) to carry the filtered wastewater and the biomass lump (sloughed solids) from the filter to the final clarification process
- (b) to provide for ventilation of the filter to maintain aerobic conditions.
 - The underdrain system is generally designed to flow onethird to one-half full to permit ventilation of the system.

Ventilation systems

In TF system,

- Air is supplied by natural draft or forced draft fan.
- The forced draft fans have been applied in order to provide the adequate oxygen.

Stone media filter

- Organic (BOD) loading rate:
 - Expressed as kg/m³/d
 - Typically, 0.320-0.640 kg/m³/d for single-stage filters
 - Typically, 0.640-0.960 kg/m³/d for two-stage filters
 - Ex) Influent BOD =200mg/L, influent flow = 1.8 ML/d, diameter of the filter is 16 m & the depth of the filter is 2m. Calculate the organic loading rate.

- Hydraulic loading rate:
 - m³ wastewater/m² filter*d
 - the rate of total influent flow is applied to the surface of the filter media
 - Total influent flow = the raw WW + recirculated flow
 - Typically, 9.4 m³/m²/d
 - Maximum, 28 m³/m²/d
 - Ex) Influent flow = 8.5ML/d, the recirculation ratio is 2:1. Diameter of the filter is 16 m & the depth of the filter is 2m. Calculate the hydraulic loading rate.

NRC (national research council) formula

$$E_1 = \frac{100}{1 + 0.4432\sqrt{\frac{w_1}{VF}}}$$

First stage or single stage

where:

E₁ = BOD removal efficiency for first-stage filter at 20°C, %

 $w_1 = BOD load applied, kg/day$

 $V = volume of filter media, m^3$

F = recirculation factor

NRC formula

$$E_2 = \frac{100}{1 + \frac{0.4432}{1 - E_1} \sqrt{\frac{w_2}{VF}}} \qquad \qquad \underline{\text{Second stage}}$$

Where:

E₂ = BOD removal efficiency for second-stage filter at 20°C, %

 E_1 = fraction of BOD removal in the first-stage filter

 $w_2 = BOD load applied, kg/day$

 $V = volume of filter media, m^3$

F = recirculation factor

NRC formula

$$F = \frac{1 + R}{(1 + R/10)^2}$$

where:

F = recirculation factor

R = recycle ratio

The effect of temperature on the BOD removal efficiency

$$E_T = E_{20} (1.035)^{T-20}$$

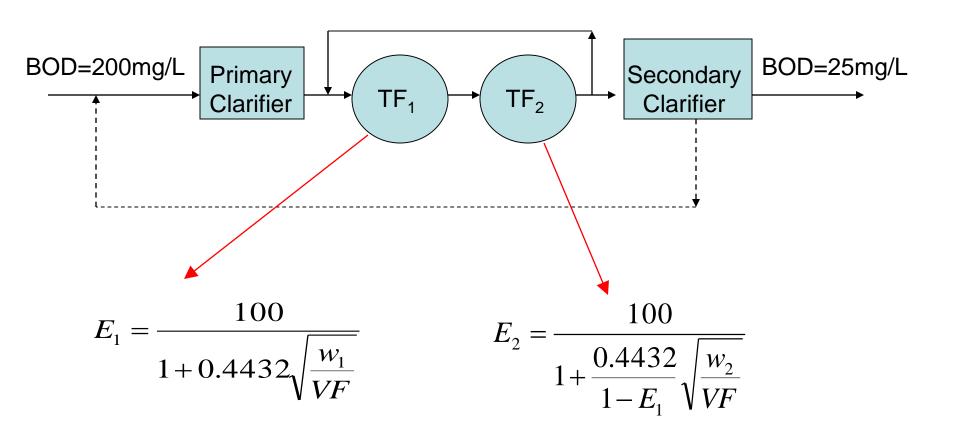
where:

 E_T = BOD removal efficiency at T°C, %

 E_{20} = BOD removal efficiency at 20°C, %

Example 1

- Calculate the BOD loading, hydraulic loading, BOD removal efficiency, and effluent BOD concentration of a single-stage trickling filter based on the following data:
- Design assumptions:
 - Influent flow =1530 m³/d
 - Recirculation ratio = 0.5
 - Primary effluent BOD = 130 mg/L
 - Diameter of filter = 18 m
 - Depth of media = 2.1 m
 - Water temperature =18°C


Example 2

– A municipal wastewater having a BOD of 200 mg/L is to be treated by a <u>two-stage trickling filter</u>. The desired effluent quality is 25 mg/L of BOD. If both of the filter depths are to be 1.83 m and the recirculation ratio is 2:1, <u>find the required filter diameters</u>. Assume the following design assumptions apply.

– Design assumptions:

- Influent flow =7570 m³/d
- Recirculation ratio = 2
- Depth of media = 1.83 m
- Water temperature =20°C
- BOD removal in primary sedimentation = 35%
- $E_1 = E_2$

• Example 2

Plastic media

Plastic media

Schulze formula

The liquid contact time (t) of applied wastewater

$$t = \frac{CD}{q^n}$$

Where:

t = liquid contact time, min

D= depth of media (m)

q = hydraulic loading, (m³/m²/h)

C, n = constants related to specific surface & configuration of media

Plastic media

hydraulic loading (q)

$$q = \frac{Q}{A}$$

Where:

Q= influent flow rate L/min

A=filter cross section area m²

Plastic media TF design

Schulze formula

$$\frac{S_e}{S_o} = e^{(-kD/q^n)}$$

Where:

S_e= BOD concentration of settled filter effluent, mg/L

S_o= influent BOD concentration to the filter, mg/L

k=wastewater treatability and packing coefficient, (L/s)^{0.5}/m²

D=packing depth, m

q= hydraulic application rate of primary effluent, excluding recirculation, L/m²*s n=constant characteristic of packing used (assumed to be 0.5).

Plastic media TF design

Example 3

– Given the following design flow rates and primary effluent wastewater characteristics, determine the following design parameters for a trickling filter design assuming 2 reactors at 6.1 m depth, cross-flow plastic packing with a specific surface area of 90 m²/m³, a packing coefficient n value of 0.5, & a 2-arm distributor system. The required minimum wetting rate=0.5L/m²*s. Assume a secondary clarifier depth of 4.2m and k value is 0.187.

Design conditions

Item	unit	Primary effluent	Target effluent
Flow	m³/d	15,140	
BOD	mg/L	125	20
TSS	mg/L	65	20
Temp	°C	14	

Plastic media TF design

- Example 3
 - –Using the information presented in the previous slide, determine:
 - Diameter of TF
 - Volume of packing required.
 - Recirculation rate required