Welding Procedure Specification's (WPS)

Prepared by: DSc Dževad Hadžihafizović (DEng)

Sarajevo 2023

What Is Welding?

AWS defines welding as:

"The art and science of joining metals by using the intrinsic adhesive and cohesive forces of attraction that exist within metals".

Welding, Brazing, Soldering

Does not include mechanical fastening such as bolts, rivets, screws, etc.

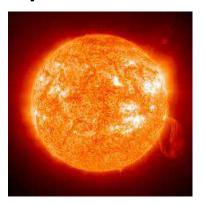
When Did Welding Begin?

Pressure Welding of Noble Metals

Over 2,000 years ago

Forge Welding

Blacksmiths
Over 1,000 years ago


Modern Welding

1880's

Interesting Fact

Temperature Of The Sun?

9,941°F

Temperature Of The Arc?

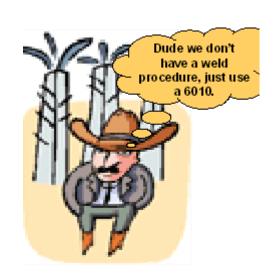
12,632°F

WELDING PROCEDURES

- What Is a Welding Procedure?
- Why Have Welding Procedures?
- Who Should Have Welding Procedures?
- What Information Should Procedures Contain?
- How do we know If Our Procedures Are Good?

What Is A Welding Procedure?

 A document that contains important variables on how to make the weld in question.


Client:	Mobil				Project:	221010Goa	itee	REF	No.	WPS	S R1	
Procedure	dure Description: 12" Heavy Wall Offsho					<u> </u>			0290/1/WPS5		120	
Material: AS3679.1 Grade 250API 5L X65						Diameter: 168.3			Thickness: 18.3		18.3	
Position: 6G						Clamp Type: Internal			170			
Preheat °C (Min): 100						Interpass °C (Max): 300						
ROOT						HOT PASS			FILL & CAP			
Welding Process SMAW					V	SMAW			SMAW			
Welding l	Direction	100	Vertica	ıl Down		Vertical Down			Ve	rtical Do	wn	
Filler		Lincoln SA70+			Lincoln SA70+			Bohler BVD90M				
Polarity			DC +ve			DC +ve			DC +ve			
Shielding Gas			N/A			N/A			N/A			
Purge Gas			N/A			N/A			N/A			
Pass No	Filler Size	Amj	ps	Volts	Speed (mm/sec)	Heat Input (kJ/mm)	Weld	Preparat	tion			
1	3.2mm	70-1	30	18-33	3.3-6.6	0.4-0.8	60° - 70°					
2	4.0mm	110-2	10	18-35	29-6.8	0.6-1.3		1	300	1937		
FILL	4.0mm 4.0mm	145-2 130-2	16100	16-27 16-26	1.6-7.0 1.8-5.3	0.6-2.2 0.6-1.7	15			5+-0.8mm		
				-				1.64/0.5/10	7	4	Smm Max	
in Antonio			NOT	-			Pass I	ocation				
2. Clambe us comp 3. Time 4. Time 5. Minin 6. Minin 7. Minin 8. Meth	std 1104BP309 up removal stag ed in the even pletion of the re lapse between lapse between num number o num number o num Number o od of cleaning od of Preheat; fication referer	t of a broot.) root and second f passes f passes f welder Grindo	d secon pass ar before before rs- Roo er / Wi	pletion of r wn – removed pass: 16: nd 1st fill: 12 pipe moved break in we ot & second	Minutes 2 Minutes nent : 2 pass elding : 3 pas	% minimum ses sses	_	F	8 6	5 4 3 2	11 9	

Company Welding Engineer Approved

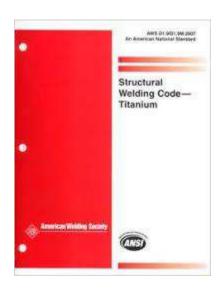
...... Approved for Client

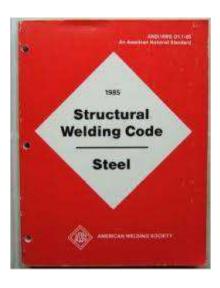
Why Have Welding Procedures?

- Required By Code
- Proves To Engineers & Regulators You Know What You Are Doing
- Helps To Produce Quality Welds

Who Should Have Welding Procedures?

- Manufacturing
 - Automotive
 - Heavy Equipment
- Pipeline Industry
- Construction



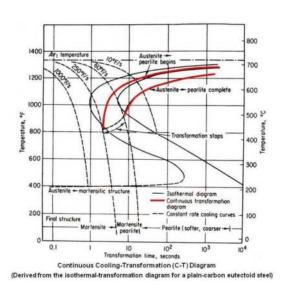


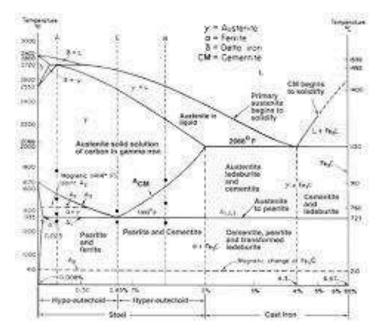
What Information Should I Include?

- Governing Code
 - API, AWS, ASME, ISO
 - Foreign Codes

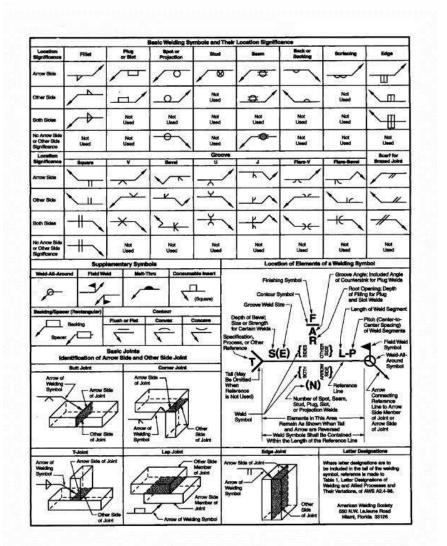
- Material Parameters
 - Spec & Grade
 - Wall Thickness
 - Size (Diameter)
 - Yield/Tensile Strength
 - Metallurgical Concerns

- Welding Process
 - GMAW (MIG), GTAW (TIG), SMAW (STICK)
 - Automated Or Not?


- Process Parameters
 - Volts, Amps, Travel Speed
 - Travel Direction
 - Polarity
 - Wire Welding Transfer Mode
 - Globular, Spray, Short Circuit, Plasma
 - Flux Core or Shielding Gas
 - Number of Passes
 - Number of Welders
 - Electrodes


Size

Group Number = 1, 2, 3, etc.


AWS Specification = A5.1, A5.5, etc.

- Pre/Post Weld Heat Treatment
 - Temps
 - Time
 - Cooling Rates
 - Heat Input
 - Time Interval Between Passes

- Joint Design
 - Material Thickness
 - Joint Type
 - Bevel Angles
 - Root Opening Dimension
 - Backer Rods
 - Etc.

Filler Metals

E 6010

E = Electrode

60 = Tensile Strength (60,000psi)

1 = All Position

0 = Type Of Coating & Polarity

Cellulose, Low Hydrogen, Potassium, etc.

- Cleanliness
 - Joint Cleaning
 - Coating Removal
 - How to Remove Coatings

- Joint Fit Up
 - Line Up Clamps
 - Internal or External

Procedure Qualification Record

Lab Report

- Parameters/Materials
- Info Made for Each Pass
- Ambient Conditions


				AWS B2.1/E	20 114-0
				AWO DZ. 1/E)Z. 11VI.ZI
	SAMPLE PR	OCEDURE QUA	LIFICATION RE	CORD (PQR)	
	fc	or SAW, SMAW, G	MAW, GTAW, FCA	W	
Company			Approved by		
PQR No.			Date	(Signature Required)	
	s)				
			(Manual, S	emiautomatic, Automatic, Robotic, M	echanize
		Joints (s	ee 4.14.1)		
Joint Type				Joint Details	
Backing				oom Botallo	
	ype)				
Groove Angle					
Root Opening Radio Root Face					
Backgouging: Yes					
Backgouging Metho					
			Sketches, produ	action drawings, welding symbols, or should show the general arrangemen	written
			the parts to	be welded. Where applicable, the ro	ot
			details o	if the weld groove may be specified.	
		Base Metals	(see 4.14.2)		
M-No.	Group No.	Base Metals	(see 4.14.2) or to M-No.	Group No.	
M-No Specification Type a	Group No		or to M-No.	Group No pe and Grade	
Specification Type a Thickness Range of	Group No and Grade f Base Metal: Groov	/e	or to M-No to Specification Ty	pe and Grade Fillet	
Specification Type a Thickness Range of Pipe Diameter Rang	Group No and Grade f Base Metal: Groov ge: Groov	/e	or to M-No to Specification Ty	pe and Grade	
Specification Type a Thickness Range of	Group No and Grade f Base Metal: Groov ge: Groov	/e	or to M-No to Specification Ty	pe and Grade Fillet	
Specification Type a Thickness Range of Pipe Diameter Rang	Group No and Grade f Base Metal: Groov ge: Groov	/e	or to M-No to Specification Ty	pe and Grade Fillet	
Specification Type a Thickness Range of Pipe Diameter Rang Other	Group No and Grade	ve ve	or to M-No	pe and Grade Fillet	
Specification Type a Thickness Range of Pipe Diameter Rang Other Filler Metal F-No.	Group No and Grade_ I Base Metal: Groov ge: Groov	reFiller Metals	or to M-No. to Specification Ty (see 4.14.3)	pe and Grade Fillet Fillet	
Specification Type a Thickness Range of Pipe Diameter Rang Other Filler Metal F-No. AWS Classification	Group No and Grade_ f Base Metal: Groov ge: Groov	reFiller Metals	or to M-No	pe and Grade Fillet	
Specification Type a Thickness Range of Pipe Diameter Rang Other Filler Metal F-No. AWS Classification Weld Metal Analysis	Group No and Grade f Base Metal: Groov ge: Groov	reFiller Metals	or to M-No	pe and Grade Fillet Fillet	
Specification Type a Princkness Range of Pipe Diameter Rang Other Filler Metal F-No. AWS Classification Weld Metal Analysis Filler Metal Size	Group No and Grade I Base Metal: Groov ge: Groov	re re Filler Metals	or to M-No	pe and Grade Fillet Fillet	
Specification Type of Pipe Diameter Rang Other	Group No and Grade f Base Metal: Groov groov Groov	Filler Metals	or to M-No	pe and Grade Fillet Fillet	
Specification Type of Thickness Range of Pipe Diameter Rang Other	Group No and Grade If Base Metal: Groov ge: Groov	Filler Metals	or to M-No	pe and Grade Fillet Fillet asss)	
Specification Type of Thickness Range of Pipe Diameter Rang Other	Group No and Grade f Base Metal: Groov groov Groov	reFiller Metals	or to M-No. to Specification Ty (see 4.14.3) Other AWS Specification Other Electrode Flux (Cl Flux Trade Name_ Other	pe and Grade Fillet Fillet asss) Preheat (see 4.14.5)	
Specification Type a Experimental Finickness Range of Pipe Diameter Rang Other Filler Metal F-No. AWS Classification Weld Metal Analysis Filler Metal Size Weld Metal Analysis Filler Metal Size Weld Metal Thickne Consumable Insert Po Position(s) of Groov	Group No and Grade If Base Metal: Groov ge: Groov s A-No sss boiltions (see 4.14.4)	reFiller Metals	or to M-No. to Specification Ty (see 4.14.3) Other AWS Specificatior Other Electrode Flux (CI Flux Trade Name Other Preheat Temperat	pe and Grade Fillet Fillet asss) Preheat (see 4.14.5) ure (Min.)	
Specification Type a Experiment of Specification Figure 1 Character 1 Character 1 Character 2 Characte	Group No and Grade Flase Metal: Groov ge: Groov s A-No ss	reFiller Metals	or to M-No. to Specification Ty (see 4.14.3) Other AWS Specification Other Electrode Flux (Cl Flux Trade Name_ Other	pe and Grade Fillet Fillet asss) Preheat (see 4.14.5) ure (Min.)	
Specification Type a Experimental Finickness Range of Pipe Diameter Rang Other Filler Metal F-No. AWS Classification Weld Metal Analysis Filler Metal Size Weld Metal Analysis Filler Metal Size Weld Metal Thickne Consumable Insert Po Position(s) of Groov	Group No and Grade Flase Metal: Groov ge: Groov s A-No ss	reFiller Metals	or to M-No. to Specification Ty (see 4.14.3) Other AWS Specificatior Other Electrode Flux (CI Flux Trade Name Other Preheat Temperat	pe and Grade Fillet Fillet asss) Preheat (see 4.14.5) ure (Min.)	
Specification Type a Experiment of Specification Figure 1 Character 1 Character 1 Character 2 Characte	Group No and Grade Flase Metal: Groov ge: Groov s A-No ss	reFiller Metals	or to M-No. to Specification Ty (see 4.14.3) Other AWS Specificatior Other Electrode Flux (CI Flux Trade Name Other Preheat Temperat	pe and Grade Fillet Fillet asss) Preheat (see 4.14.5) ure (Min.)	
Specification Type a Specification Type a Princikness Range of Pipe Diameter Rang Other Filler Metal F-No. AWS Classification Weld Metal Analysis Filler Metal Size Weld Metal Thickne Consumable Insert Po Position(s) of Groov Position(s) of Fillet Weld Progression	Group No and Grade I Base Metal: Groov ge: Groov s A-No ssss sitions (see 4.14.4)	Filler Metals	or to M-No. to Specification Ty (see 4.14.3) Other AWS Specificatior Other Electrode Flux (CI Flux Trade Name Other Preheat Temperat Temperature (Max ace 4.14.6)	pe and Grade Fillet Fillet asss) Preheat (see 4.14.5) ure (Min.)	
Specification Type a Specification Type a Princikness Range of Pipe Diameter Rang Other Filler Metal F-No. AWS Classification Weld Metal Analysis Filler Metal Size Weld Metal Thickne Consumable Insert Po Position(s) of Groov Position(s) of Fillet Weld Progression	Group No and Grade Flase Metal: Groov ge: Groov s A-No ss	Filler Metals	or to M-No. to Specification Ty (see 4.14.3) Other AWS Specificatior Other Electrode Flux (CI Flux Trade Name Other Preheat Temperat Temperature (Max ace 4.14.6)	pe and Grade Fillet Fillet asss) Preheat (see 4.14.5) ure (Min.)	
Specification Type a Specification Type a Princikness Range of Pipe Diameter Rang Other Filler Metal F-No. AWS Classification Weld Metal Analysis Filler Metal Size Weld Metal Thickne Consumable Insert Po Position(s) of Groov Position(s) of Fillet Weld Progression	Group No and Grade I Base Metal: Groov ge: Groov s A-No ssss sitions (see 4.14.4)	Filler Metals Filler Metals	or to M-No. to Specification Ty (see 4.14.3) Other AWS Specificatior Other Electrode Flux (CI Flux Trade Name Other Preheat Temperat Temperature (Max ace 4.14.6)	pe and Grade Fillet Fillet asss) Preheat (see 4.14.5) ure (Min.)	
Specification Type a Specification Type a Princikness Range of Pipe Diameter Rang Other Filler Metal F-No. AWS Classification Weld Metal Analysis Filler Metal Size Weld Metal Thickne Consumable Insert Po Position(s) of Groov Position(s) of Fillet Weld Progression	Group No and Grade If Base Metal: Groov ge: Groov s A-No sstance stitions (see 4.14.4)	Filler Metals PWHT (s	or to M-No. to Specification Ty (see 4.14.3) Other AWS Specification Other Electrode Flux (CI Flux Trade Name Other Preheat Temperat Temperature (Max see 4.14.6) Time see 4.14.7)	pe and Grade Fillet Fillet ass) Preheat (see 4.14.5) ure (Min.)	
Specification Type a Experimental Specification Type and Pipe Diameter Rang Other Filler Metal F-No	Group No and Grade I Base Metal: Groov ge: Groov s A-No ssss sitions (see 4.14.4)	Filler Metals Filler Metals	or to M-No. to Specification Ty (see 4.14.3) Other AWS Specification Other Electrode Flux (CI Flux Trade Name Other Preheat Temperat Temperature (Max see 4.14.6) Time see 4.14.7)	pe and Grade Fillet Fillet ass) Preheat (see 4.14.5) ure (Min.)	
Specification Type a Specification Type a Princikness Range of Pipe Diameter Rang Other Filler Metal F-No. AWS Classification Weld Metal Analysis Filler Metal Size Weld Metal Thickne Consumable Insert Po Position(s) of Groov Position(s) of Fillet Weld Progression	Group No and Grade If Base Metal: Groov ge: Groov s A-No sstance stitions (see 4.14.4)	Filler Metals PWHT (s	or to M-No. to Specification Ty (see 4.14.3) Other AWS Specification Other Electrode Flux (CI Flux Trade Name Other Preheat Temperat Temperature (Max see 4.14.6) Time see 4.14.7)	pe and Grade Fillet Fillet ass) Preheat (see 4.14.5) ure (Min.)	

Figure F.3—Example of a Procedure Qualification Record

Procedure Qualification Record

Testing Reports

	Onarack	(see 4.13.8)	relaing i	Parameters	Other Variables (see 4.14.9)						
Current Type				e plustice	Cup or Nozzle Size						
Pulsing: Ye	s No) <u> </u>			Collet Boo	Collet Body Or Glass Lens					
Current (Rar	nge)				Cleaning Method						
		inge)									
)					Side				
		ize/Type			Other						
/isual Test F	Results _				est Results	<u> </u>					
				Ten	sile Results						
					Res	ults					
Specimen				Yield	Yield	Tensile	Tensile	Failure Type			
No.	Width	Thickness	Area	Load	Strength	Load	Strength	and Location			
State Parks and I											
								all communities seek lander (1966). To all communities and the first of			
		uided Bend			Quali			nness Application			
	Тур	e and Figure	Number			Туре	and Figure Nu	ımber			
		Results		igetiesz cszer i		Results					
	Jan Jan	7.5	Tive to			v55,					
						4.6.60.22.4	ven 1886 1886 1886				
		Fillet Weld To					Other Terri				
		e and Figure				Other Tests Type and Figure Number					
20 1 2 1	iypi	c and rigure	- AUTIDEI			туре	and Figure Nu	iiiiboi			
		an energy e									
		Results				Results					
				andre de la companya							
		1 2 1 1 1 1 1					- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	13.7	24100-0-									
We, the und and tested in and Perform.	n accorda ance Qua	ance with the alification.	the staten requireme	nents in this ents of AWS	s record are co BB2.1/B2.1M, ((year)	ne test welds v .), Specification	vere prepared, welded, of for Welding Procedure			
			By								
			_ by		ease Print			ture Required			

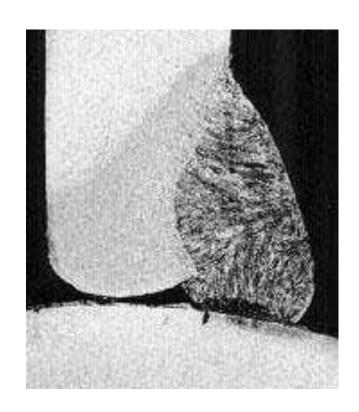
Welder Qualification

Three Welder Testing Procedures

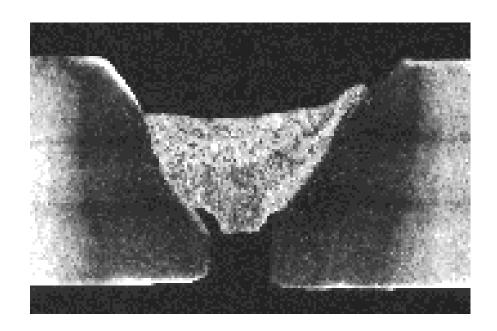
API 1104

Field Welding

ASME Section 9


Fab Shop Welding

Part 192-Appendix C
Low Stress
12 Inch And Less Pipe


Welder Qualification

- Initial Test
 - Initial Test = Destructive
- 6 Month Retest
 - Non Destructive
 - Compressor Station & Components
 - » Part 192.229
 - » Destructive Only
- If a Welder Performs a Procedure
 Qualification, Is The Welder Also Qualified?

Lack of Fusion

Lack of Penetration

Porosity

• Under Cut

American Welding Society Nashville Section

Welding Procedure Development

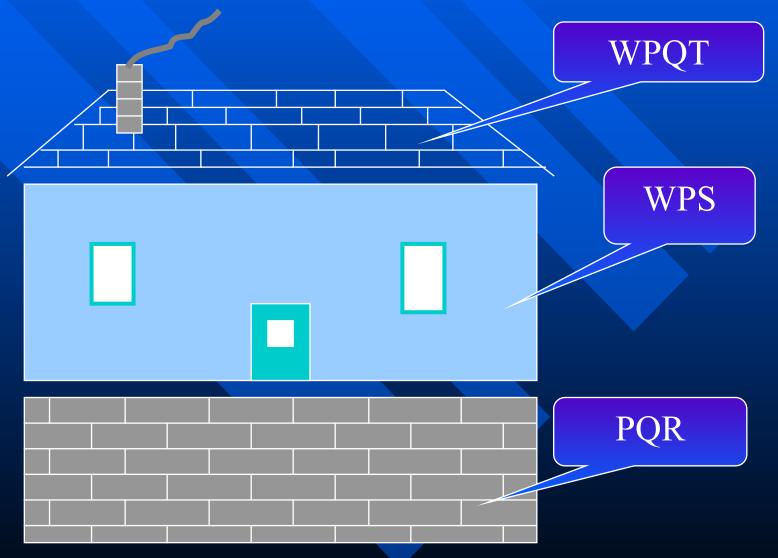
AWS & ASME Welding Procedures

Welding Procedure Specification (WPS)

- Written document that provides direction to the welder for making production welds in accordance with Code requirements
- Rules for qualification of procedures vary by referencing Code
 - Qualified by testing (ASME, AWS)
 - Pre-qualified (AWS)
 - Standard Welding Procedure Specification (AWS)

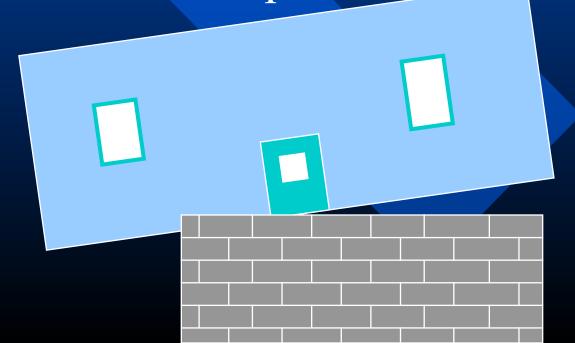
AWS Standard Welding Procedure Specification (SWPS)

- Procedures that have been qualified by the Welding Research Council accepted and published by AWS for use as a qualified welding procedure
- ASME and NBIC accepted procedures are listed in the appendix of the applicable Code

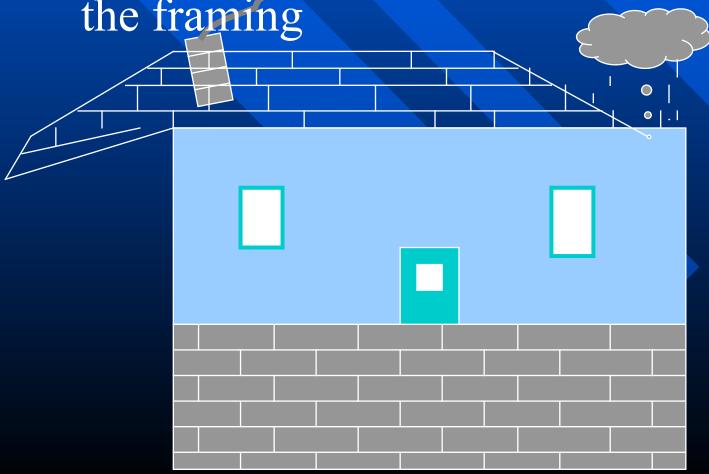

Welding Procedure Qualification (PQR)

- A test that is performed to demonstrate that the contractor can make satisfactory welds as specified in the Welding Procedure Specification
- Mechanical testing is required and NDE may be required, depending on the Code being qualified to
- Impact testing may be required by the referencing Code (i.e., ASME Sect VIII)

Welder Performance Qualification Test (WPQT)


- Performance test which determines the welders ability to make acceptable production welds under a given set of conditions (essential variables)
 - Process
 - Joint type
 - Base metal
 - Filler metal
 - Position
 - Gas
 - Electrical characteristics

Which Comes First


Which Comes First

- To frame a house you need to know the size of the foundation
- To build a foundation you need to know the size and shape of the house

Which Comes First

The roof does not have to cover the house but should be fully supported by the framing

The Welding House

- The WPS and the PQR are developed concurrently
 - Rough draft the WPS to determine how to do the PQR(s)
 - More than one PQR may be required to fully support the WPS (e.g., thickness range)
 - Welder qualification tests should be designed to not exceed the limits of the WPS but do not need to meet all of the limits of the WPS

AWS B2.1

- Specification for Welding Procedure and Performance Qualification
 - Base metals categorized in M number format
 Similar to ASME P numbers
 - Similar to ASME Section IX

ASME B&PV Code

- ASME B&PV Code Section IX contains the guidelines for welding procedure and welder qualification
 - Requires procedure qualification for all welding procedures except when the contractor has adopted one of the AWS Standard Welding Procedure Specifications

AWS Codes

- Many AWS Codes allow the use of Pre-qualified Welding Procedures
 - Pre-qualified procedures are written documents that define welding parameters for the welder and are within defined limits set by the referencing Code (e.g., AWS D1.1)
 - Welding procedures that exceed the limits for pre-qualification must be qualified by testing

Develop the WPS

- Process(es)
- Material(s)
- Material thickness
- Joint design
- Filler metal
- Weld deposit thickness

- Positions
- Pre-heat
- Post heat
- Shielding gas
- Electricalcharacteristics
- Technique

Qualify or Not to Qualify

- Does the Code allow use of a pre-qualified procedure?
- Does the planned WPS stay within the limits of a pre-qualified procedure?
 - Process, joint type, material, filler metal, position, deposit thickness

What is in the WPS

The WPS should describe all essential, non-essential and when required by the referencing Code supplementary essential variables for each welding process

Essential Variables

- Essential variables are those variables in which a change, as described in the specific variables, is considered to affect the mechanical properties of the weldment
- If there is a change in the essential variable the procedure must be re-qualified

Supplementary Essential Variables

- Supplementary essential variables are required for metals for which other Sections or Codes specify notch-toughness testing and are in addition to essential variables for each process
 - This means that when ASME Section VIII (which requires qualification to Section IX) also requires notch toughness testing on a material, the supplementary essential variables become essential variables for that WPS
 - A change in either essential or supplementary essential variables requires re-qualification of the procedure

Nonessential Variables

Nonessential variables are those in which a change, as described in the specific variables, may be made in the WPS without re-qualification

Qualifying a procedure

- Determine what the required essential and if applicable supplementary essential variables are for:
 - Process
 - Joints
 - Base metals
 - Filler metals
 - Positions
 - Pre & post weld heat treatment
 - Gas
 - Electrical Characteristics
 - Technique

SMAW Variables (ASME Sect IX)

PROCEDURE QUALIFICATIONS

QW-253 WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS) Shielded Metal-Arc (SMAW)

Paragraph			Brief of Variables	Essential	Supplementary Essential	Nonessential
- Y 1/6/7/4	.1	φ	Groove design		desce Man 12	×
QW-402	.4	-	Backing	26120-0		×
Joints	.10	φ	Root spacing			×
	.11	±	Retainers		West Sall Sales	×
	.5	φ	Group Number		×	
	.6		7 Limits impact		. ×	
QW-403	.7		T/t Limits > 8 in.	×		111 m
Base	.8	φ	T Qualified	×		
Metals	.9		$t \text{ Pass} > \frac{1}{2} \text{ in.}$	×		
	.11	φ	P-No. qualified	×		
	.13	φ	P-No. 5/9/10	×		
= 114	.4	φ	F-Number	×		
	.5	φ	A-Number	×		TEMPE !
QW-404	.6	φ	Diameter			×
Filler	.7	φ	Diam. $> \frac{1}{4}$ in.		×	The Principle
Metals	.12	φ	AWS class.		×	BLAND THE B
	.30	ф	t	×		
	.33	ф	AWS class.		55 Y	×
	.1	+	Position			×
QW-405 Positions	.2	φ	Position		×	
POSITIONS	.3	φ	↑↓ Vertical welding		PERSON REPORT	×
	.1		Decrease > 100°F	×		
QW-406 Preheat	.2	φ	Preheat maint.	The second		×
Freneat	.3		Increase > 100°F (IP)		×	
	.1	ф	PWHT	×		
QW-407 PWHT	.2	φ	PWHT (T & T range)		×	
FWHI	.4	1000	7 Limits	×		
QW-409	.1	>	Heat input		×	
Electrical	.4	ф	Current or polarity		×	×
Characteristics	.8	φ	I & E range	la la constant		×
	.1	φ	String/weave			×
	.5	φ	Method cleaning			×
QW-410 Technique	.6	φ	Method back gouge			×
recrimque	.25	φ	Manual or automatic			×
	.26	±	Peening	1165		×

Legend:

+ Addition - Deletion > Increase/greater than < Decrease/less than ↑ Uphill ↓ Downhill ← Forehand → Backhand φ Change

Welding Data (ASME Sect IX)

- The welding variables table refers to the paragraph in the welding data section of the Code
 - These paragraphs give rules for specific applications (specific variables)

Welding Data (ASME Sect IX)

QW-403.7 For the multipass processes of shielded metal-arc, submerged-arc, gas tungsten-arc, and gas metal-arc, the maximum thickness qualified for $1\frac{1}{2}$ in. (38 mm) and over thickness T of the test coupon of QW-451.1 shall be 8 in. (203 mm) for the conditions shown in QW-451.1. For thicknesses greater than 8 in. (203 mm), the maximum thicknesses of base metal and deposited weld metal qualified is 1.33T or 1.33t, as applicable.

QW-403.8 A change in base metal thickness beyond the range qualified in QW-451, except as otherwise permitted by QW-202.4(b).

QW-403.9 For single-pass or multipass welding in which any pass is greater than $\frac{1}{2}$ in. (13 mm) thick, an increase in base metal thickness beyond 1.1 times that of the qualification test coupon.

Planning the PQR

- Plan your PQR to give you the greatest possibility of success!
 - Base metal and filler metal grouping
 - Thickness limitations
 - Multiple processes require addressing essential variables for both processes
 - Note that position is not an essential variable unless notch toughness testing has been required, take advantage of that

Base Metal

- Assigned P numbers (M or S) so that similar base metals may be qualified by testing one base metal in the same P number (essential variable)
- Group numbers may be assigned within a P number to further differentiate (supplementary essential variable)
 - SA-106 Grade B > P-No.1, Group-No.1
 » 60 KSI min specified tensile
 - SA-106 Grade C > P-No.1, Group-No.2
 - » 70 KSI min specified tensile

Filler Metals

F number

- Electrodes and weld rods are grouped to reduce the number of welding procedure and performance qualifications where it can be logically done
- A number
 - Classification of ferrous weld metal analysis
- Product Form
 - Flux cored
 - Bare (solid) or metal cored
 - powder

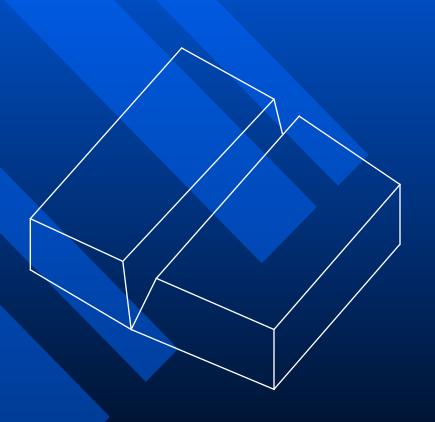
Preheat

- Decrease > 100°F
 - Essential variable
- Increase > 100 °F
 - Supplementary essential variable

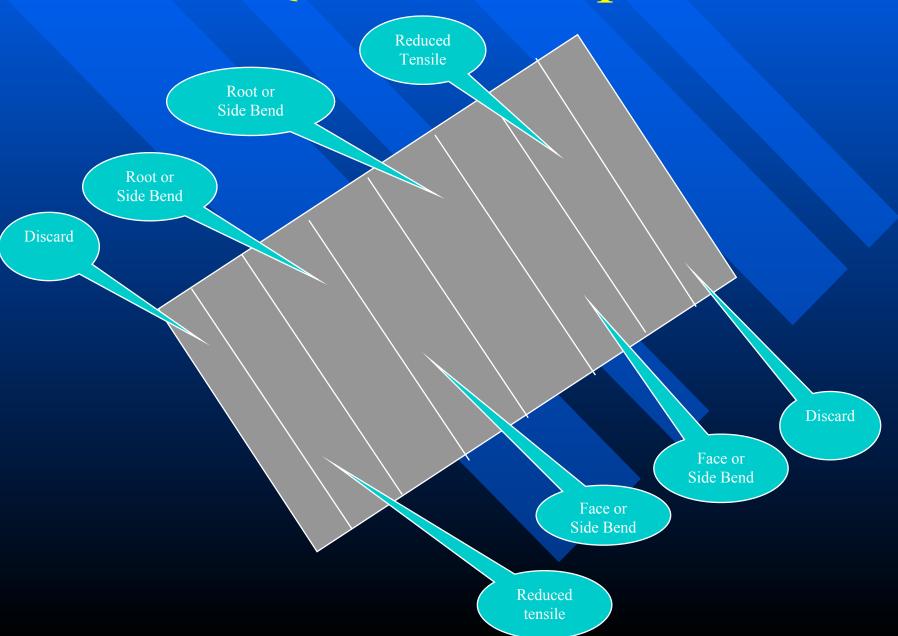
Post Weld Heat Treatment

- PWHT
 - Essential variable
- PWHT (Time & Temp range)
 - Supplementary essential variable
- Base metal thickness (T) limits
 - Essential variable

QW-407.1 A separate PQR is required for each of the following conditions.


- For P-Nos. 1,3,4,5,6,9,10 & 11
 - No PWHT
 - PWHT below the lower transformation temp
 - PWHT above the upper transformation temp
 - » normalizing
 - PWHT above the upper transformation temp followed by
 HT below the lower transformation temp
 - » Normalizing or quenching followed by tempering
 - PWHT between the upper and lower transformation temp

QW-407.1 cont'd


- For all other materials
 - No PWHT
 - PWHT within a specified temperature range

Test Plate or Pipe Joint

- 1G position when possible (Flat)
- Plan sequence of weld passes if multi pass
- Back grind and PT if two sided weld
- Grind stops and starts

PQR Test Coupons

Two Birds With 1 Stone

- The Procedure Qualification and Welder Qualification can be done at the same time
 - Plate 1G
 - Pipe 6G
- Tests required for Procedure Qualification
 - Bend
 - Tensile
 - Notch Toughness if required by referencing Code

Read The Notes!

Required Testing for PQR (ASME Sect IX)

OW-450 SPECIMENS

QW-451 Procedure Qualification Thickness Limits and Test Specimens

QW-451.1 GROOVE-WELD TENSION TESTS AND TRANSVERSE-BEND TESTS

	of Base Meta	Thickness T al Qualified, in. 1) and (4)]	Thickness t of Deposited Weld Metal Qualified, in. [Notes (1) and (4)]			er of Tests Required -Bend Tests) [Note (4)]
Thickness T of Test Coupon Welded, in.	Min.	Max.	Max.	Tension QW-150	Side Bend QW-160	Face Bend QW-160	Roo QV
Less than 1/16	T	2 <i>T</i>	. 2 <i>t</i>	2		2	
$^{1}/_{16}$ to $^{3}/_{8}$, incl.	1/16	27	21	2	Note (3)	2	
Over 3/8, but less than 3/4	3/16	2.7	21	2	Note (3)	2	
$^{3}/_{4}$ to less than $1^{1}/_{2}$ $^{3}/_{4}$ to less than $1^{1}/_{2}$	3/ ₁₆ 3/ ₁₆	2 <i>T</i> 2 <i>T</i>	2t when $t < \frac{3}{4}$ 2T when $t \ge \frac{3}{4}$	2 (5) 2 (5)	4 4		
$1^{1}/_{2}$ and over $1^{1}/_{2}$ and over	³ / ₁₆ ³ / ₁₆	8 (2) 8 (2)	2t when $t < \frac{3}{4}$ 8 (2) when $t \ge \frac{3}{4}$	2 (5) 2 (5)	4	•••	

NOTES:

- (1) See QW-403 (.2, .3, .6, .9, .10), QW-404.32, and QW-407.4 for further limits on range of thickness qualified. Also, see QW-202 (.2, .3, .4) for allowable exceptions.
- (2) For the welding processes of QW-403.7 only; otherwise per Note (1) or 2T, or 2t, whichever is applicable.
- (3) Four side-bend tests may be substituted for the required face- and root-bend tests, when thickness T is $\frac{3}{8}$ in. and over.
- (4) For combination of welding procedures, see QW-200.4.
- (5) See QW-151 (.1, .2, .3) for details on multiple specimens when coupon thicknesses are over 1 in.

Pre-qualified WPS

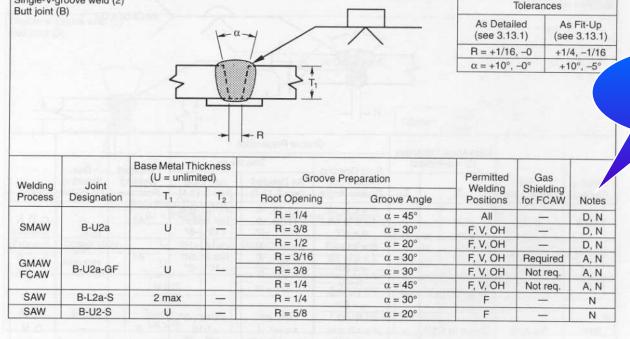
- May be written to perform a specific weld within a limited range of variables
 - One joint design (i.e., V-Groove with backing)
 - Material thickness limited or un-limited
 - Process (i.e., SMAW)
 - Position may be limited or all position
 - Current and voltage range limited
- May be written to perform multiple welds, taking advantage of a broad range of materials, joint types, positions, etc.

AWS D1.1 Pre-qualified WPS

			PREQUAL	IFIED [EDURE SPECIF QUALIFICATION	IED BY TE	STING	Yes 🖂	
Company Nan Welding Proce Supporting PC	ess(es)	(Guy's Welding SMAW Prequalifie	ad			SM-CS-1-1 0 Da	Date	//-/-02 Semi-Automatic
JOINT DESIGNATION Type: Single Sacking:	GN USED	listed in ANSI/A			10.000000000000000000000000000000000000		Up	All Fillet:	
Backing Root Opening Groove Angle: Back Gouging		d or Any Group No	Root Face D Radius (J-U	and the second s	Transfer	Mode (GMAW	n	Short-Circuiting Globular	Spray Pulsed
BASE METAL Material Spec. Type or Grade Thickness: Diameter (Pipe	Any Group			ble 3.1 Fillet Unlim	ited	n Electrode (G Size: Type:	N/A N/A		
FILLER META AWS Specific AWS Classific SHIELDING	ation A5.1 ar	nd A5.5 0, EXX18, EXX	(18W		Multi-pa Number	or Weave Bea ss or Single Pa of Electrodes e Spacing	The state of the s	(3X for F4 & 4X for F3 el Multi and Single Longitudinal Lateral Angle N/A	N/A
Flux N/A Electrode-Flux	x (Class) N/A	Cor	as N/A mposition N/A flow Rate N/A as Cup Size	Vi	Peening	Tube to Work I Not perm s Cleaning:	itted	N/A and wire brush	
PREHEAT Preheat Temp Interpass Tem				Max 750 F	Temp.	Not permitte			
				WE	LDING PROCEDURE	.			
Pass or Weld Layer(s)	Process SMAW	Class EXX18	Diam.	Type & Polarity	Amps or Wire Feed Speed 70 - 110	Volts	Travel Speed	Joint Det	
All Al All All All	SMAW SMAW SMAW SMAW SMAW	EXX18 EXX18 EXX18 EXX10 EXX10	3/32" 1/8" 5/32" 3/32" 1/8" 5/32"	DCEP DCEP DCEP DCEP DCEP	70 - 110 90 - 150 120 - 190 40 - 80 75 - 120 110 - 170	17 - 30 17 - 30 17 - 30 17 - 30 17 - 30 17 - 30	3-6 ipm 3-6 ipm 3-6 ipm 3-6ipm 3-6 ipm 3-6 ipm	All prequiaified j in ANSI/AWS D1.1 F within limits of Typical joints show drawing	igures 3.3 & 3.4 this WPS on in standard

3-6 ipm

drawing #1


AWS D1.1 Pre-qualified WPS

WELDING PROCEDURE SPECIFICATION (WPS) Yes \bowtie PREQUALIFIED \bowtie QUALIFIED BY TESTING or PROCEDURE QUALIFICATION RECORDS (PQR) Yes Identification # SM-CS-1-1 Revision 0 Date By Company Name Guy's Welding Authorized by Date Welding Process(es) **SMAW** Type----Manual Semi-Automatic Supporting PQR No.(s) Prequalified Machine Automatic JOINT DESIGN USED POSITION Type: Butt Position of Groove: All Fillet: All Single M Double Weld Vertical Progression: Up M Down No Backing: Yes \bowtie Backing Material: A-36 **ELECTRICAL CHARACTERISTICS** Root Opening 1/4" Root Face Dimension 0 Groove Angle: 45° Radius (J-U) Transfer Mode (GMAW) Short-Circuiting Back Gouging: Yes Method Globular Spray Current: AC DCEP M DCEN [Pulsed BASE METALS Other Material Spec. A-36 Tungsten Electrode (GTAW) Type or Grade Size: N/A Thickness: Groove 1/8" to 3/4" Fillet N/A N/A Type: Diameter (Pipe) Over 24" O.D. TECHNIQUE FILLER METALS Stringer or Weave Bead: Stringer only **AWS Specification** A5.1 Multi-pass or Single Pass (per side) Multi and Single **AWS Classification** E7018 Number of Electrodes Single **Electrode Spacing** N/A Longitudinal Lateral N/A SHIELDING Angle N/A Flux N/A Gas N/A Composition N/A Contact Tube to Work Distance N/A Electrode-Flux (Class) N/A Flow Rate N/A Peening Not permitted Gas Cup Size N/A Interpass Cleaning: Chip, grind and wire brush PREHEAT POSTWELD HEAT TREATMENT 70°F if ambient temperature is below 32°F Preheat Temp., Min Temp. Not permitted Interpass Temp., Min 70°F if ambient temp is below Max 750 F N/A Time

WELDING PROCEDURE

		Filler N	Vietals		Current			
Pass or Weld Layer(s)	Process	Class	Diam.	Type & Polarity	Amps or Wire Feed Speed	Volts	Travel Speed	Joint Details for B-U2a
All	SMAW	E7018	3/32"	DCEP	70 - 110	17 - 30	3-6 ipm	
All	SMAW	E7018	1/8"	DCEP	90 - 150	17 - 30	3-6 ipm	1-0-0
Al	SMAW	E7018	5/32"	DCEP	120 - 190	17 - 30	3-6 ipm	5 3 t

AWS D1.1 Pre-qualified joint design

Notes

Single-V-groove weld (2)

Figure 3.4 (Continued)—Prequalified Complete Joint Penetration (CJP)
Groove Welded Joint Details (see 3.13)

Notes

88/Prequalification of WPSs

Notes for Figures 3.3 and 3.4

Notes:

- A: Not prequalified for gas metal arc welding using short circuiting transfer nor GTAW. Refer to Annex A.
- B: Joint is welded from one side only.
- Br: Cyclic load application limits these joints to the horizontal welding position (see 2.27.5).
- C: Backgouge root to sound metal before welding second side.
- D: SMAW detailed joints may be used for prequalified GMAW (except GMAW-S) and FCAW.
- E: Minimum weld size (E) as shown in Table 3.4. S as specified on drawings.
- J: If fillet welds are used in statically loaded structures to reinforce groove welds in corner and T-joints, these shall be equal to 1/4 T₁, but need not exceed 3/8 in. Groove welds in corner and T-joints of cyclically loaded structures shall be reinforced with fillet welds equal to 1/4 T₁, but not more than 3/8 in.
- M: Double-groove welds may have grooves of unequal depth, but the depth of the shallower groove shall be no less than one-fourth of the thickness of the thinner part joined.
- Mp: Double-groove welds may have grooves of unequal depth, provided these conform to the limitations of Note E. Also the weld size (E) applies individually to each groove.
- N: The orientation of the two members in the joints may vary from 135° to 180° for butt joints, or 45° to 135° for corner joints, or 45° to 90° for T-joints.
- V: For corner joints, the outside groove preparation may be in either or both members, provided the basic groove configuration is not changed and adequate edge distance is maintained to support the welding operations without excessive edge melting.
- Z: Weld size (E) is based on joints welded flush.

Pre-qualified Base Metals

Table 3.1

Prequalified Base Metal—Filler Metal Combinations for Matching Strength⁸ (see 3.3)

	Steel Specification R	equirement	S	Filler Metal Requirements						
		Minimus Point/St			nsile nge			ım Yield Strength		Strength
Ste	el Specification ^{1, 2}	ksi	MPa	ksi	MPa	Electrode Specification ^{3, 6}	ksi	MPa	ksi	MPa
ASTM A364	LETUIS TO	36	250	58-80	400-550					
ASTM A53	Grade B	35	240	60 min	415 min	SMAW				
ASTM A106	Grade B	35	240	60 min	415 min	AWS A5.1				
ASTM A131	Grades A, B, CS, D, DS, E	34	235	58-71	400-490	E60XX	48	331	60 min	414 min
ASTM A139	Grade B	35	241	60 min	414 min	E70XX	53-72	365-496	70 min	482 min
ASTM A381	Grade Y35	35	240	60 min	415 min	AWS A5.57				
ASTM A500	Grade A	33	228	45 min	310 min	E70XX-X	57-60	390-415	70-75 min	480-520 mi
	Grade B	42	290	58 min	400 min	SAW				
ASTM A501		36	250	58 min	400 min	AWS A5.17				
ASTM A516	Grade 55	30	205	55-75	380-515	F6XX-EXXX	48	330	60-80	415-550
	Grade 60	32	220	60-80	415-550	F7XX-EXXX	58	400	70-95	480-650
ASTM A524	Grade I	35	240	60-85	415-586	AWS A5.237				
	Grade II	30	205	55-80	380-550	F7XX-EXX-XX	58	400	70–95	480-660
ASTM A529		42	290	60-85	415-585					
ASTM A570	Grade 30	30	205	49 min	340 min	GMAW				
	Grade 33	33	230	52 min	360 min	AWS A5.18				
	Grade 36	36	250	53 min	365 min	ER70S-X	58	400	70 min	480 min
	Grade 40	40	275	55 min	380 min					
	Grade 45	45	310	60 min	415 min					
	Grade 50	50	345	65 min	450 min					
ASTM A573	Grade 65	35	240	65-77	450-530	FCAW				
	Grade 58	32	220	58-71	400-490	AWS A5.20				
ASTM A709	Grade 36 ⁴	36	250	58-80	400-550	E6XT-X	48	330	60 min	415 min
API 5L	Grade B	35	240	60	415	E7XT-X	58	400	70 min	480 min
	Grade X42	42	290	60	415	(Except -2, -3, -10, -13, -14, -GS)				
ABS	Grades A, B, D, CS, DS			58-71	400-490	AWS A5.297				
	Grade E ⁵			58-71	400-490	E7XTX-XX	58	400	70-90	490-620

Pre-qualified pre-heat table

Table 3.2	
Prequalified Minimum Preheat and Interpass Temperature ³ (see 3.5	5)

C a t							of Thickest Part of Welding	Minimum Prehe Interpass Tempe		
9										
y		Stee	l Specification		Welding Process	in.	mm	°F		
	ASTM A36		ASTM A516			1/8 to 3/4 incl.	3 to 19 incl.	None ¹		
	ASTM A53	Grade B	ASTM A524	Grades I & II						
	ASTM A106	Grade B	ASTM A529			Over 3/4	Over 19			
	ASTM A131	Grades A, B,	ASTM A570	All grades	Shielded metal arc	thru 1-1/2 incl.	thru 38.1 incl.	150		
A		CS, D, DS, E	ASTM A573	Grade 65	welding with other					
	ASTM A139	Grade B	ASTM A709	Grade 36	than low-hydrogen	Over 1-1/2	Over 38.1			
	ASTM A381	Grade Y35	API 5L	Grade B	electrodes	thru 2-1/2 incl.	thru 63.5 incl.	225		
	ASTM A500	Grade A		Grade X42						
		Grade B	ABS	Grades A, B, D, CS, DS		37 72				
	ASTM A501	C Les St. Di -		Grade E		Over 2-1/2	Over 63.5	300		
	ASTM A36	W- DA	ASTM A570	All grades						
	ASTM A53	Grade B	ASTM A572	Grades 42, 50						
	ASTM A106	Grade B	ASTM A573	Grade 65						
	ASTM A131	Grades A, B,	ASTM A588							
		CS, D, DS, E	ASTM A595	Grades A, B, C		1/8 to 3/4 incl.	3 to 19 incl.	None ¹		
		AH 32 & 36	ASTM A606			The state of the s				
		DH 32 & 36	ASTM A607	Grades 45, 50, 55				18 8 2 8 8		
		EH 32 & 36	ASTM A618	Grades Ib, II, III		Annualisti Au		3 8 6 5 5		
	ASTM A139	Grade B	ASTM A633	Grades A, B		3 6 B				
				Grades C, D	Shielded metal arc	Over 3/4	Over 19 thru			
	ASTM A381	Grade Y35	ASTM A709	Grades 36, 50, 50W	welding with low-	thru 1-1/2 incl.	38.1 incl.	50		
			ASTM A710	Grade A, Class 2 (> 2 in.)	hydrogen electrodes,					
В			ASTM A808		submerged arc	E Dig				
			ASTM A913	Grade 50	welding,2 gas metal	6 - 2 - 1				
	ASTM A441		API 5L	Grade B	arc welding, flux			PALL		
	ASTM A500	Grade A		Grade X42	cored arc welding			3 27 3 1		
		Grade B	API Spec. 2H	Grades 42, 50		Over 1-1/2	Over 38.1 thru			
			API 2W	Grades 42, 50, 50T			o ist corr and			
			API 2Y	Grades 42, 50, 50T						
	ASTM A501		ABS	Grades AH 32 & 36		thru 2-1/2 incl.	63.5 incl.	150		
	ASTM A516	Grades 55 & 60		DH 32 & 36		and 2 in 2 in cir.	oolo mer.	150		
		65 & 70		EH 32 & 36		R R L I S		125378		
	ASTM A524	Grades I & II	ABS	Grades A, B, D,				9 9 7 7		
	ASTM A529			CS, DS		Over 2-1/2	Over 63.5	225		
	ASTM A537	Classes 1 & 2		Grade E		0701 2-172	Over 05.5	443		

Notes for base metals and pre-heating

lotes:

In joints involving base metals of different groups, either of the following filler metals may be used: (1) that which matches the higher strength base metal, or (2) that which matches the lower base metal and produces a low-hydrogen deposit. Preheating shall be in conformance with the requirements applicable to the higher strength group.

Match API standard 2B (fabricated tubes) according to steel used.

When welds are to be stress-relieved, the deposited weld metal shall not exceed 0.05 percent vanadium.

Only low-hydrogen electrodes shall be used when welding A36 or A709 Grade 36 steel more than 1 in. (25.4 mm) thick for cyclically loaded structures.

Special welding materials and WPS (e.g., E80XX-X low-alloy electrodes) may be required to match the notch toughness of base metal (for applications involving impact loading or low tempera for atmospheric corrosion and weathering characteristics (see 3.7.3).

The designation of ER70S-1B has been reclassified as ER80S-D2 in A5.28-79. Prequalified WPSs prepared prior to 1981 and specifying AWS A5.18, ER70S-1B, may now use AWS A5.28-79 ER when welding steels in Groups I and II.

Filler metals of alloy group B3, B3L, B4, B4L, B5, B5L, B6, B6L, B7, B7L, B8, B8L, or B9 in ANSI/AWS A5.5, A5.23, A5.28, or A5.29 are not prequalified for use in the as-welded condition. See Tables 2.3 and 2.5 for allowable stress requirements for matching filler metal.

The heat input limitations of 5.7 shall not apply to ASTM A913 Grade 60 or 65.

Not pre-qualified

when tested according to Arron Arro Arro

Notes:

- 1. When the base metal temperature is below 32°F (0°C), the base metal shall be preheated to at least 70°F (21°C) and this minimum temperature maintained during welding.
- 2. For modification of preheat requirements for submerged arc welding with parallel or multiple electrodes, see 3.5.3.
- 3. See 5.12.2 and 5.6 for ambient and base-metal temperature requirements.
- The heat input limitations of 5.7 shall not apply to ASTM A913 Grade 60 or 65.

Welder Qualification Essential Variables

- Joints
 - With or without backing
- Base metal
 - Pipe diameter
 - P number

Welder Qualification Essential Variables

- Filler metal
 - With or without
 - F number
 - Inserts
 - Solid or metal cored
 - "t" of deposit
 - "t" limits of short circuiting transfer

Welder Qualification Essential Variables

- Position
 - Flat
 - Horizontal
 - Vertical
 - Overhead
- Progression vertical welding
 - -Up
 - Down

Welder Qualification Essential Variables

- Gas
 - Deletion of inert backing gas
- Electrical characteristics
 - GMAW transfer mode
 - GTAW current or polarity

Welder Qualification

- Main controlling factors
 - Process
 - Filler metal
 - P number qualified
 - » It is your responsibility to ensure that the filler metal and base metal are suitable for the application

Welder Qualification Base Metal

- Test on pipe or plate?
- Any P-No. 1 through 11, P-No. 34, or P-No. 41 through 47 qualifies for any P-No. 1 through 11, P-No. 34, or P-No. 41 through 47 base metal
- P-No. 21 through P-No. 25 (same)
- P-No. 51 through P-No. 53 or P-No. 61 through P-No. 62 (same)

Welder Qualification F-Numbers

- Some cross qualification exists with F numbers for example
 - Any F6 qualifies for F6
 - Any F21 F25 qualifies for F21 F25
 - Any F34 or F41 F47 qualifies for F34 &
 F41 F47

Welder Qualification F-Numbers

- SMAW electrode F numbers 1 4 are inter-related (ASME) and with or without backing applies
 - F4 without backing qualifies for F1, F2, F3
 & F4 with backing and F4 without
 - F4 with backing qualifies for F1, F2, F3 &
 F4 with backing only

Welder Qualification Weld Deposit "t"

- ASME

- Up to and including 3/8" thick qualifies 2t
- Over 3/8" qualifies 2t
- 1/2" & over with minimum of 3 layers of weld metal qualifies for the maximum to be welded

- AWS D1.1

- -1/8" $\leq t \geq 3/8$ " qualifies for 2t
- -3/8" < t < 1" qualifies for 2t
- 1" and over qualifies for unlimited

Welder Qualification Position (ASME)

- 1G plate qualifies
 - F plate & pipe 2 7/8" OD & over groove welds and F fillets
- 2G plate qualifies
 - F & H plate & pipe 2 7/8" OD & over groove welds and F & H fillets

Welder Qualification Position (ASME)

- 3G plate qualifies
 - F & V plate & pipe groove welds 24" OD & over and F, H, V fillets
 - F pipe 2 7/8" OD & over groove welds
- 4G plate qualifies
 - − F & O plate & pipe groove welds 24" OD & over and F, H, O fillets
 - F pipe 2 7/8" OD & over groove welds

Welder Qualification Position (ASME)

- 1G pipe
 - F groove & fillet
- 2G pipe
 - F & H groove & fillet
- 5G pipe
 - F, V & O groove & fillet
- 2G & 5G pipe or 6G pipe
 - All groove & fillet

Welder Qualification (ASME)

- Diameter limits based on OD of test coupon for groove welds
 - < 1" OD = size welded to unlimited
 - -1 < 27/8" OD = 1" OD to unlimited
 - 27/8" OD & over = 27/8" OD to unlimited
- Groove weld test qualifies fillets for all base material thickness, sizes and diameters

Welder Qualification

- Most testing can be done on carbon steel test coupons to save money
 - e.g., welder qualifications can be completed for most nickel alloys by using a filler from the F-41 through F-47 group welding a carbon steel test coupon
- 6G pipe position is the most economical test position

Weld it Right Co.

Welder's name	iohn Doe	INS/SS number	101	Stamp	no. 1
Welding process(es) used	GMAW		Type	Semi-Automatic	
dentification of WPS followed	by during welding of	test coupon A-2-1			
Base material(s) welded	SA-36			Thickness	3/8"
Other WPS's qualified to welco	d under				
Welding \	/ariables for Each P	rocess (QW-350) sides, flux, etc.) (QW-402)		al Values	Range Qualified With
ASME P-No.	ai, weided ifoffi botti	to ASME P-No. (QW-403)		to P-No. 1	P- No. 1-11, 34, 41-47
(図)Plate (☐)Pipe (enter dia		_1-140. 1	10 1 110. 1	Groove 2 7/8" O.D. & over F only Groove 24" O.D. & over Fillet all dia.
Filler metal specification (SFA): A5.18	Classification (QW-404) ER	70S-6	ER70S-X
Filler metal F-no.				6	6
Consumable insert for GT	성기 및 구시기 (-) 구인기 () 시기 : 기 : 기 : 기 : 기 : 기 : 기 : 기 : 기 : 기			lone	Not Permitted
Weld deposit thickness for	- 1	ess		3/8"	0.412"
Welding position (1G, 5G				3G	F&V
Progression (uphill/downh				phill	Uphill
Backing gas for GTAW, P GMAW Transfer mode (Q		gas for OFW (QW-408)		lone	None
GTAW welding current typ				Circuiting	Short Circuiting N/A
CIAW Welding current ty	be/polarity			V/A	N/A
Direct/remote visual contra Automatic voltage control Automatic joint tracking Welding position (1G, 5G, Consumable insert Backing (metal, weld metal	(GTAW)	sides, flux, etc.)			
lotes:					
Guided Bend Tests Type	QW-462.2 (Side) Re	Guided Bend Test Results Sults QW-462.3(a) Trans		□ OW-462 3	(h) (long B & F) Results
G Root	Acceptable	3G Face	, . , . , . ,	Accepta	
risual examination results (Q\ Radiographic test results (QW For alternative qualification of	-304 and QW-305)	eptable			
illet Weld - Fracture test	groove welds by rad	lograpny) Length and pe	arcent of defo	cte	in
lacro fusion test	Fillet leg size	in. x		ncavity/convexity	in.
/elding test conducted by	Guy Mulee	Date of Test	1/10/2003		
echanical tests conducted by	Guy Mulee	Test Specin	nens Evaluate	ed by Guy N	lulee
Ve certify that the statements ne requirements of Section IX	in this record are cor	rect and that the test coupons Organization	were prepare Weld it Righ	d, welded, and te	ested in accordance with
		O gamzation	- Troid it riigi	,	
			(1		0 0

1/11/2003

By _Joe Welder

Qualification by Workmanship Test

- Only permitted when allowed by the referencing document
- Requires completion of a workmanship test addressing typical production joints and conditions
- Primarily accepted on the basis of visual inspection
- Other tests or examinations may be required by the referencing document (e.g., macro examination)

Continued Qualification

- ASME, AWS (except D9.1) requires that the welder must satisfactorily weld using the process at least once each six months to remain qualified
 - D9.1 is 12 months
- Re-qualification may be done on pipe or plate in any position, material thickness or diameter to regain qualification for all positions, thickness, materials and diameters previously qualified for with that process

SIGNATURE

WELDING INSPECTOR EXAM APPLICATION

PAID / OWE

LA	ST	NA	ME													I	TI	RST]	NAM	Œ														ΜI
DA	TE	OF I	BIRTE	MM/D	D/YY		Ţ	J.S.	Soc	CIAL	SEC	CURI	TY I	NUM	IBER				Int	ER	RNAT	IOI	NAL	Can	DID	ATE	PAS	SSPO	ORT I	NU	MBE	R		
1	PΤ	EA9	SR II	NDIC	АТІ	7. 4 N		ťΧ	AM	LO	\mathbf{C}^{A}	MI	ON	OF	V	HIR	C	НΟ	CB															
				(DIC																				,	*Sub	miss	sion :	Dea	dline	:				
3 rd	Sit	e Co	de:				Exar	n D	ate: _					c	city/S	tate: _									*Sub	miss	sion l	Dea	dline	:				
NC sele	TE ecte	C: A' d. *T	WS str	ongly i	ecom	ımen ı bmi	ds the	ap de	plica adli n	nt sel	ects	a sec week	cond s pi	l and rior	third to th	l site l e sch	loca r ed i	ation uled	alterr exan	ati	ve.	If th	e fir	st cho	oice	is no	t ava	ailab	ole, th	ne n	ext l	ocati	on v	vill b
AR If y HA	CACV CV CV SC EY ves,	VVI (a VVI (a VVI ar VVI (OU (plea YOU	(only) only) only) od CV (only) OR HA use pr OBTA	VE YO ovide A AINED	nbo U EVI AWS	ER B S Me	EEN . :mbe: CER	AN .r # _.	AW	S ME	емв	BER?		No	o [(on 1. 2. 3. 4. 5.	VS ly j LA D A *(<u>C</u> ec W V Ce GO A	S SE for C ATI 11.1 (PI-1 1.2 Code dittion Veldin isual extiffica- pLD	NUCodd 104 bo h* I Incatil	IIN A II. CP M F M F Coook N Inspector Cook N K (a Coo Cook Cook Cook Cook Cook Cook Cook	AR (VI and CAK) PAK	OF de Color (two (Sun inic sup (Sat (Sat code inic	WE of coording, 1pp (Moording) (M	our (Form – nic)	can clinic 5pm ppm pplic See (Gri, §	ics) n & M - 5p. cants Tues 8am -	Mon m) mu - 7 - 5]	E: n, 8a ust fu Γhurs ppm)	m – urnis s, 8a	h a :	5pm)
org If y	gan /es,	izati the	on? Facili	yed by Ity nan	No ne: _	Q Y	YES										_]] 	3.	ec W V	litior 'eldi isual	n* ng l In:	Inspe	ection	n Te Worl	ch C ksho	Cours	se (' ri, 8	Tues 8am - m)	- 7 - 5 ₁	Γhurs pm)	s, 8a	m –	5pm)
	A A	WS:	CO D1.1 - 104 -	DE A - Struct Pipelin	PPI ural S es 20	Steel:	2002 tion	ON 2, 20	TR	CST	SU	BJI	ECT	Γ:					2. 3.	W V C	eldi isual ertifi	ng l In icat	Inspection I	ection tion \ Exam	n Te Worl	ech C ksho it, 8a	Cour op (F am –	se (ri, 8	8am - m) 	- 5 _]	pm)			5pm)
	A	.WS	D1.5 -	– Railı - Bridge on IX,	es: 20 B31.	002 e	dition	.3												D1 AP	.1 co I-110	ode 04	clini Code	c wo	rksh	op (orks	code shop	e bo	WO] ook no ode bo	ot s	uppl	ied)		<i>)</i>
	Α	WS	B2.1 a	nd B4.						I AP		CAN	TS	ONL	Y*] [[<u></u>	Vis	sual	ins	pecti EX	on v	vork	sho	p	N C) NL	Y				
				OF P				e oj	^c appi	licatio	on)															AW	/S U	USI	E O I	NL	Y			
	Ch	eck o	r mon	ey orde	r#						_	er									Ι	Date	»:					A	.cct #	:				

CWI Application-7/02/07

Amt\$:

QCA/CWE/QCH/QC-COMBO

6. PE	RSO	NAL	INF	OI	RM	ATI	\mathbf{O}	N: (PO	BO	∂X	NC	OT_{Δ}	4 <i>C</i>	CE	PT	ΕD). S	TR	EE	$\mathbf{Z}T_{\Delta}$	4D	DR	ES	S I	RE()UI	RE	ED)								
Addr	ESS																																				
Addr	ESS (co	nt'd)																														A	PT	No.			
CITY	AND ST	TATE	/ Pro	OVI	NCE	/ Co	DUN	TRY	7																							7	IP (Con	E		_
Номн	TELE	PHON	JE NU	МВ	ER		1				w	ORI	k Tı	ELE	ерно	ONE			1			1				F.	AX T	rel.	ЕРН	ION	E N	UMB	ER		1		
												-				1							1										BIC				٦
E MA	IL ADI	DEC					1									l	<u> </u>				<u> </u>	1					1	1			<u> </u>						
E-WIA	L ADI	KES	, 																																		
-	ccoc	317 / 6		10											<u> </u>			,				1					1										
7. A	SSOC	L'Al	ION	NS.																						V	OIII	οТ	'EC	IINI	ICA.	r Ix	TTE	RES	TC		
	PE OF			S									JOB						ON												OF				515		
Сн	еск С)NE	Box									(Сні	ECK	(0)	NE	Во	X								ı	,2,3										
A.			t Con													esid				-						A	١.	_		Fe	rrou	s me	tals	3			
В.	☐ Ch	emic	als, A	llie	d Pro	duc	ts						02		l Ma	anag	ger,	dire	ecto	r, sı	ıper	inte	ende	nt		<u> </u>	3.	_			umii						
C.	☐ Pe	troleu	ım &	Coa	ıl Ind	lustr	ies						03		l Sa	les										(Э.	_			nfei min		me	etals	exc	ept	
D.	□ Pri	imary	Meta	ıl In	dusti	ries							04	. \Box	l Pu	ırcha	asin	g								I	Э.	-			lvan erm			erial	s,		
E.	☐ Fa	bricat	ted M	etal	Proc	lucts	s						05		E n	ngin	eer -	- w	eldi	ng						I	Ξ.			. Ce	ram	ics					
F.	☐ Ma	achin	ery ex	сер	t ele	ctric	al						06	. \sqsubset	l En	ngin	eer -	– ot	her							I	7.			Hi	gh e	nerg	y b	eam	pro	cess	es
G.	□ Ele	ectric	al equ	iipn	nent,	supp	plie	s, el	ectr	odes	S		07	. \sqsubset	Ins	spec	tor,	tes	ter							(J.	_		Ar	e W	eldir	ng				
H.	☐ Tr	anspo	rt equ	ıipn	nent,	air,	aer	ospa	.ce				08	. \Box	l Su	per	viso	r, fo	oren	nan						I	ł.	_		Br	azin	g an	d so	older	ing		
I.	☐ Tra	anspo	rt equ	iipn	nent,	auto	omo	tive					09		W	elde	r, w	eld	ing	or c	utti	ng o	opei	ato	•	I		_		Re	sista	nce	we	lding	3		
J.	☐ Tra								;				10	. \Box	Ar	chit	ect,	des	sign	er						J		_		Th	erm	al sp	ray	ing			
K.	☐ Tr			ıipn	nent,	railı	roac	1								nsu										ŀ	ζ.	_		Cu	tting	3					
L.	☐ Ut	ilities														etall										I	٠.	_		NI	DΕ						
M.	□ W									e			13		Re	esea	rch :	and	dev	elo	pme	ent				N	Л.	_			fety						
N.	☐ Mi															echn		n								1	٧.			Ве	ndir	ıg ar	ıd s	hear	ing		
О.	□ Ed									ries						luca).	_			ll fo		_				
P.	□ En		<u> </u>									-				uder) .						ınd	pun	chin	g	
Q.			usines							ries						brar											Q.				rosp						
R.	□ Go		menta	ıl (fe	edera	ıl, st	ate,	loca	ıl)							ıstoı	mer	ser	V1CE	;							₹.	_			itom						
S.	Ot				4.5			10					19		Ot	her										1	S	_			achii						
YO	UR C	OMP.	ANY'	S#	I PF	ROD	UC	T/S	ER	VIC	Е																ſ	_			arine						
																											J.				oing				•		
																										_	<i>V</i> .	_						ls ar	id ta	nks	
																											N.	_			eet l		ıl				
																										1	ζ.	_			uctu	ires					
																											ζ.	_		Ot		_,-					
																											Z.	_			tom		1				
																											AA.				boti	cs	4:		£	.1.1:	

CWI Application-7/02/07

LAST NAME:		FIRST NAME:	
8. EDUCATION LEVEL: (only CW.	I, CAWI and CWE applicants are to co	nplete the following section)	
PLEASE CHECK THE APPROPRIAT	TE BOX BELOW:		
☐ High school graduate or achieve CWI and CWE applicants must			ears of work experience in the
Did not graduate high school, bu CWI and CWE applicants must		applicants must document four y	ears of work experience in the
Did not complete the 8 th grade. and CWE applicants must document	ment twelve years and CAWI appection below. (Please refer to the	olicants must document six years	CWI of work experience in the
application or submit a written v	E examination must be a high school You shall also complete the CWE Werification letter signed by your tea program, please refer to the QC5-9	Velding Instructor Credentials Form sching supervisor / personnel mana	n that is attached to this
A maximum of two (2) years of post- work experience relevant to any of the			
☐ VoTech credits - <u>MUST</u> attach transcripts of welding related courses or diploma	Circle no. of years attended	Maximum one (1) year work subst completed and within a curriculum	itution credit <i>only</i> if courses
College credits - MUST attach transcripts of engineering-level courses or diploma		Maximum two (2) years work subs	
SCWI APPLICANTS ONLY PLEASE BE SURE TO MEET THE FOLL	LOWING REQUIREMENTS:		
☐ High school graduate or hold a	state or military approved high sc	hool equivalency diploma. (Plea	se refer to the AWS B5.1)
☐ Minimum of fifteen (15) years of fabricated to national or internation			p to welded assemblies
☐ Shall have been certified as a C	WI for a minimum of six (6) year	·s.	
9. QUALIFYING WORK EXPER	RIENCE – RESUMES NOT A	CCEPTED	
	IIS SECTION FOR EACH ADDITION MENTS FOR CWI/CAWI/CWE		MEET THE QUALIFYING WORK
I understand that all work ex	xperience documented on this app	olication may be verified with bo	th past and present employers.
Company Name:		Phone: ()	
Mailing Address:			
City:			Country:
Supervisor / Personnel Manager:		Dept/Div.:	· · · · · · · · · · · · · · · · · · ·
Supervisor / Personnel Manager's E	-mail:		
JOB TITLE: (only for th	ne employer listed above)	FROM MONTH/YEAR	TO MONTH/YEAR

CWI Application-7/02/07

10. EMPLOYMENT VERIFICATION: (this	section to be completed by a su	pervisor or personnel i	nanager from the most recent employer)
** Note: self-employed or contract applicants from separate clients attesting to the nature in business, please include a copy of the W2 for	OF WORK ASSIGNMENTS DURI		
Employee's Last Name:	Fir	st Name:	MI:
Employer Name:		Pho	ne: ()
Employer Address:			
City:	ST/Prov.:	Zip:	Country:
Supervisor / Personnel Manager:		1	Dept/Div:
Supervisor / Personnel Manager's Email: _			
You verify that	oplication? No Y	Title:	
11. TESTIMONIAL: (this section must be notar	rized)		
I hereby certify I have read the requirements of Further, I agree to comply with the existing recertify the information I have included in this a further understand that if any information is in (except the Visual Acuity Record) is complete. I agree to comply with the provisions set forth Upon obtaining my certification, I give AWS to date only. Also, if applying for or when achieve three years and is not eligible for renewal.	quirements and any subsect application is true. I under complete or missing, my at Therefore, the examination AWS QC1 concerning the right to reveal my cert	quent requirements stand any false stand application will no on will not be schothe administration fication status as i	s that may be instituted by AWS. I tements will nullify this application. I t be processed until all documentation eduled until all obligations are fulfilled. In of my examination and certification. It relates to my validity and expiration
Applicant's Signature		Date:	
THE FOLLOWING IS TO BE COMPLETED BY TH	E NOTARY PUBLIC		
Sworn to and subscribed before me this	_ day of	200	

FIRST NAME:

LAST NAME:

My commission expires

CWI Application-7/02/07 4

(seal and/or stamp is REQUIRED)

Notary Public Signature

BODY OF KNOWLEDGE

AWS Certified Welding Inspector

The following is an **approximate** breakdown of the examination categories and the number of questions drawn from each subject area.

PART A: FUNDAMENTALS	
Subject	Percentage
Welding Processes	10%
Heat Control & Metallurgy (carbon and low-alloy steel)	6%
Weld Examination	9%
Welding Performance	9%
Definitions and Terminology	12%
Symbols – Welding and NDE	10%
Test Methods – NDE	8%
Reports and Records	6%
Duties and Responsibilities	4%
Safety	5%
Destructive Tests	4%
Cutting	3%
Brazing	2%
Soldering	1%

PART B: PRACTICAL	
Subject	Percentage
Procedure and Welder Qualifications	30%
Mechanical Test and Properties	10%
Welding Inspection and Flaws	36%
NDE	10%
Utilization of Specification and Drawings	10%

PART C: CODE APPLIC	CATIONS
Subject	Percentage
Materials and Design	10%
Fabrication	30%
Inspection	25%
Qualification	30%

CODE SUBJECTS AVAILABLE
AWS D1.1/D1.1M:2002, 2004 or 2006 Edition
API-1104:2005 (20 th Edition)
AWS D15.1/D15.1M:1993 Edition
AWS D1.5/D1.5M:2001 Edition

<u>AWS – RECOMMENDED SELF-STUDY</u> Examination Preparatory Material

Note: D1.1:2002, 2004 or 2006 editions may be used as study material.

AWS PUBLICATIONS	ORDER NUMBER
Certification Manual for Welding Inspectors	CM:2000
Welding Inspection Handbook	WI: 2000
* D1.1/D1.1M Structural Welding Code-Steel	D1.1M
* D1.1 Code Clinic Reference Manual	CC-RM
* Welding Inspection Technology	WIT-T:2000
* Welding Inspection Technology (Workbook)	WIT-W-99
* Standard Welding Terms and Definitions	A3.0:2001
* Standard Welding Symbols	A2.4-98
* Visual Inspection Workshop Reference Manual	VIW-M
* API 1104 Code Clinic Reference Manual	API-M
* Guide for the Nondestructive Examination of Welds	B1.10:1999

* = Books are provided to participants at the AWS Seminars

OTHER RECOMMENDATIONS	ORDER NUMBER
AWS Welding Handbook Series	WHB-ALL
Guide for the Visual Examination of Welds	B1.11: 2000
Safety in Welding, Cutting and Allied Processes	Z49.1: 1999

TO PURCHASE ANY OF THE PUBLICATIONS NOTED ABOVE:

- □ Contact WEX at 888-WELDING or 305-824-1177
- ☐ Or visit the website at <u>www.awspubs.com</u>

WELDING INSPECTION TECHNOLOGY Sample CWI Fundamentals Examination

FIFTH EDITION

Published By American Welding Society Education Services

F1	Which of the following metals cannot be efficiently cut with OFC? a high-carbon steel b low-carbon steel	
	c stainless steel	
	d. cast iron	
	e. tempered steel	
F2	Electrical conductivity of a part is the primary requirement for which NDE method?	?
	a. ET	
	b UT	
	c. PT	
	d. RT	
	e. VT	
F3	The melting point of carbon steel is approximately:	
	a 2250°F	
	b. 2375°F	
	c. 2780°F	
	d. 3005°F	
	e. 3333°F	
F4	Decibel is a term associated with which NDE method?	
	a. UT	
	b. RT	
	c. MT	
	d. PT	
	e. ET	
F5	Which GMAW metal transfer mode results in the least amount of penetration?	
	a. globular	
	b. short circuiting	
	c. spray	
	d. pulsed spray	
	e. globular spray	
F6	Which of the following gas(es) is commonly used as a shielding gas for GTAW?	
	a. argon	
	b. carbon dioxide	
	c oxygen	
	d argon/carbon dioxide	

Tri-mix

e..

- After a rejected weld has been repaired, reinspected and found to be acceptable, the welding inspector should:
 - a. change the original inspection report to indicate the part's acceptance
 - b mark directly on the part
 - c. fill out a second inspection report
 - d tell the foreman to have the part moved to its next operation
 - e. no further action is required
- **F8** When a metal is alloyed, how are the atoms of the alloy incorporated into the original metal lattice structure?
 - a by inclusion or exclusion
 - b. substitutionally or interstitially
 - c. by diffusion
 - d. by becoming martensitic
 - e. by casting
- **F9** A wire IQI is used in which NDE method?
 - a. UT
 - b. ET
 - c. RT
 - d. MT
 - e PT
- **F10** In general, which of the following is not commonly used as a semiautomatic process?
 - a... GMAW
 - b. FCAW
 - c. SMAW
 - d.. SAW
 - e. MIG
- **F11** The performance of which of the following test methods is least affected by high part temperatures?
 - a. ET
 - b RT
 - c PT
 - d. UT
 - e. VT
- **F12** Crater cracks are most often the result of:
 - a improper technique
 - b improper filler metal
 - c improper base metal
 - d. trapped slag
 - e trapped hydrogen

- **F13** The tail of a welding symbol should not be used for:
 - a denoting welding process requirements
 - b denoting welding procedure requirements
 - c denoting welding electrode requirements
 - d denoting welding specification requirements
 - e. denoting groove angle
- F14 During tempering, as the temperature increases, which of the following are correct?
 - a hardness increases
 - b. hardness decreases
 - c. elongation decreases
 - d strength increases
 - e. ductility decreases
- **F15** In GMAW, the distance from the end of the contact tube to the arc is:
 - a. arc length
 - b. electrode extension
 - c stickout
 - d stand off
 - e work angle
- F16 Of the following, which is not a type of metal transfer in GMAW?
 - a. spray
 - b short circuiting
 - c globular
 - d pulsed arc
 - e open circuiting
- F17 Ultraviolet light may be used with which NDE methods?
 - a. VT and UT
 - b PT and UT
 - c. MT and PT
 - d. RT and UT
 - e ET and MT
- F18 The technique which does not aid in reducing residual stress is:
 - a peening
 - b. vibratory stress relief
 - c thermal stress relief
 - d. external restraint
 - e preheating

c. groove weld edged. root face

groove angle

d. e.

F19	Which of the following may not be detected with VT?						
	a large surface crack						
	b. undercut						
	c. overlap						
	d. underfill						
	e. Lamellar tear						
F20	Heat treatment conditions can be determined using which of the following?						
	a. MT						
	b. PT						
	c. ET						
	d. RT						
	e. LT						
F21	Of the following tests, which can be used for the actual determination of a material's toughness?						
	a. Charpy test						
	b., MT						
	c chemical analysis						
	d. tensile test						
	e. bend test						
F22	Which of the following elements are commonly used as alloying elements with tungsten produce GTAW electrodes?	ı to					
	a. cesium						
	b. thorium						
	c. columbium						
	d. vanadium						
	e chromium						
F23	For single bevel-groove weld symbols, the line of the AWS weld symbol running perpendicular						
	to the reference line is always drawn on which side of the weld symbol?						
	a. on the right						
	b. on the left						
	on either side, depending on company policy						
	d. on the side in which the straight side actually appears in the joint						
	e. does not matter						
F24	The portion of the groove face within the joint root is called:						
	a. weld interface						
	b. faying surface						

Which of the following are common cases of undercut when using SMAW? F25 weld current too high a.. improper electrode manipulation b. welding electrode too large C. improper electrode angle $d_{\cdot \cdot}$ all of the above e. NDE technicians are usually qualified in accordance with the requirements of: F26 AWS D1.1 **b**.. API 1104 ASNT SNT-TC-lA C., ASME Section VIII d... ASME Section IX е.. Which of the factors listed below has the least amount of effect on the residual stress and F27 distortion that results from welding? heat input **a**.. phase changes Ъ. welding position С., tensile strength d. coefficient of thermal expansion €.. Capillary action plays a role in which NDE method? F28 ET a., UT b: RT С. d. PT MT If a welder is continually turning out rejectable work, the welding inspector should: F29 inspect his work more critically ask that the welder be fired b. require that the welder be retested for qualification С. instruct the welder in the proper techniques d ask that the welder use another process Which of the following tests would be least effective for judging the soundness of a weld in the F30 as-welded condition? nick break a.. side bend Ъ.. face bend C., radiography

d.

straight beam UT

F31 Arc blow can not be caused by:

- a. magnetic field distortion
- b. improper worklead (ground) location
- c. welding at the end of a joint
- d. welding in corners
- e welding on AC

F32 Which of the following shielding gases is used for GMAW spray transfer on steel?

- a. carbon dioxide—100%
- b. argon—100%
- c. helium—100%
- d. oxygen—2%, argon—98%
- e argon 75%, carbon dioxide—25%

F33 Developing is one of the steps in which NDE method?

- a. UT and ET
- b. RT and PT
- c. PT and MT
- d. MT and ET
- e. VT and PT

F34 Which discontinuity below will provide the sharpest MT indication?

- a surface porosity
- b. surface crack
- c subsurface porosity
- d. subsurface crack
- e. indications will be identical for all of the above

F35 In SMAW, an increase in arc length results in:

- a. increased current; increased voltage
- b. decreased current; increased voltage
- c increased heat input; decreased voltage
- d. decreased current; decreased voltage
- e. decreased current; increased heat input

F36 Weld inspection reports should always:

- a be completed in ink, or typewritten and signed
- b. be done in pencil so mistakes can be easily corrected
- c. be filled out only if the weld is rejected
- d. retyped by a clerk so that everything is readable
- e include the welder's identification

	1.1. Cd fallowing properties							
F37	The ability to be cyclically loaded without failing is related to which of the following properties							
	of a metal?							
	a hardness							
	b toughness							
	c tensile strength							
	d fatigue strength							
	e ductility							
F38	In GMAW, the type of metal transfer requiring a special power source is:							
	a spray							
	b. globular							
	c pulsed arc							
	d. short circuiting							
	e. open arc							
	C. Open me							
F39	Which of the following is truly a volumetric test method?							
100	a. RT							
	b. UT							
	c. VT							
	d. MT							
	e. PT							
F40	Use of preheat will result in:							
1 40	a. a faster cooling rate and wider heat-affected zone							
	b. a faster cooling rate and narrower heat-affected zone							
	c. a slower cooling rate and wider heat-affected zone							
	d a slower cooling rate and narrower heat-affected zone							
	e. none of the above							
F41	Which of the following methods is most likely to use a transducer to scan for flaws?							
1 - 7 .	a RT							
	b MT							
	c. UT							
	d. PT							
	e. VT							
F42	For plain carbon steels, how are hardness and tensile strength related?							
	a increase hardness; decrease tensile strength							
	b increase hardness; increase tensile strength							
	c decrease hardness; increase tensile strength							
	d hardness and tensile strength can both be increased by tempering							
	a a la diamentale del la							
	e hardness and strength are not related							

- **F43** In GMAW, the welding variable controlled by the wire feed speed is:
 - a. arc length
 - b. voltage
 - c. current
 - d stickout
 - e. travel speed
- **F44** The welding variables used to calculate heat input are:
 - a. voltage and current
 - b. current and travel speed
 - c voltage, current and travel speed
 - d. travel speed, preheat temperature and voltage
 - e voltage, current and preheat temperature
- **F45** As the temperature of the base metal is increased:
 - a impact strength decreases
 - b. tensile strength decreases
 - c. ductility decreases
 - d. hardness increases
 - e. tensile strength increases
- **F46** During RT, which of the following provides the best protection from radiation for a given thickness?
 - a lead shielding
 - b. steel shielding
 - c concrete shielding
 - d copper shielding
 - e wood shielding
- **F47** A weld inspection plan should be developed:
 - a. before welding begins
 - b. during welding
 - c after welding is completed
 - d. before shipping the work
 - e. only when there is a problem
- **F48** If the weld symbol straddles the reference line, it means:
 - a weld both sides
 - b. weld arrow side first
 - c weld other side first
 - d weld has no side significance
 - e. the symbol was drawn incorrectly

- **F49** Which of the following represents the proper eye protection for SAW?
 - a a welding helmet with filter lens of the appropriate shade
 - b. clear safety glasses
 - no eye protection is required because there is no visible arc
 - d tinted safety glasses
 - e a full face shield with a shade #5 minimum
- F50 An E7018 SMAW electrode exhibits which of the following characteristics?
 - a low hydrogen; use on AC only; iron powder
 - b. low hydrogen; use on AC and DCEN
 - c low hydrogen; AC and DCEP; iron powder
 - d rutile; DCEP
 - e. rutile; DCEP; iron powder
- **F51** Piezoelectricity is a material property used by which NDE method?
 - a.. UT
 - b ET
 - c. RT
 - d. MT
 - e. PT
- **F52** A thermal treatment that follows quenching and restores some of the metal's ductility is referred to as:
 - a. stress relief
 - b. tempering
 - c. hardening
 - d normalizing
 - e. postheat
- **F53** Which of these methods is most often used to eliminate the high residual stress created by welding?
 - a prebending
 - b. shot blasting
 - c quenching rapidly after welding
 - d. postweld heat treating
 - e. preheating
- F54 The physical principle that permits the migration of liquid penetrant into very fine surface discontinuities is:
 - a magnetic permeability
 - b. optical fluorescence
 - c. capillary action
 - d emulsification
 - e. solubility

F55	The process when	reby a large gap	is filled with	braze material	without the help of	f capillary action
	is:					

- a torch brazing
- b. are brazing
- c. braze welding
- d. dip brazing
- e. flow brazing

F56 Which of the following contains ferrous base metal specifications?

- a... AWS D1..2
- b. ASME Section II, Part C
- c. AWS A5.1
- d. ASME Section V
- e. ASME Section II, Part A

F57 Which of the following is considered to be the most portable method of magnetization when conducting a magnetic particle test?

- a. AC coil
- b. AC yoke
- c. DC coil
- d. DC prod
- e. Head Shot

F58 Advantages of MT include:

- a the detection of surface flaws
- b. both AC and DC methods
- c. the detection of surface flaws tightly closed by carbon, slag or contaminants
- d the fact that it is faster than PT
- e. all of the above

F59 In general, an increase in the carbon equivalent of a carbon steel will result in an increase in its:

- a ductility
- b. hardness
- c. defects
- d. toughness
- all of the above

F60 A welding process commonly used to join light gage stainless steel tubing for critical applications is:

- a. SMAW
- b. GMAW
- c. GTAW
- d. OFW
- e FCAW

F61	Hydrogen	in the	molten	weld	metal	can	cause:
-----	----------	--------	--------	------	-------	-----	--------

- a undercut and overlap
- b. cracking and porosity
- c. incomplete penetration and incomplete fusion
- d. porosity and slag inclusions
- e hydrogen will diffuse during welding and will not cause problems

Which of the following results from improper termination of the SMAW electrode and shrinking of the molten weld pool during welding?

- a porosity
- b. slag inclusions
- c delayed cracking
- d. crater cracking
- e incomplete fusion

F63 Entrapped slag can result when using all of the following except:

- a. SMAW
- b. SAW
- c. FCAW
- d. ESW
- e GMAW

F64 The material property that best describes its ability to withstand a static load is:

- a. hardness
- b toughness
- c. tensile strength
- d fatigue strength
- e. torsional strength

The presence of paint on the surface of a part will most greatly affect the results of which NDE method?

- a. PT and MT
- b. RT and UT
- c MT and ET
- d. UT and ET
- e. ET and VT

F66 If no information appears to the left of a groove weld symbol, this means:

- a no weld is required on that side
- b. the weld is to be complete joint penetration
- c the weld is to be continuous for the entire length of the joint
- d. bevelling is not required
- e weld size is to be determined by the welder

F67	Which of the following is not easily detected using RT that is perpendicular to the weld center
	line?

- a. throat crack
- b. porosity
- c. side wall incomplete fusion at a bevel angle of 35°
- d. a crack with its depth parallel to radiation beam
- e. incomplete joint penetration

F68 Dwell time is a term associated with which NDE method?

- a. MT
- b. PT
- c. RT
- d. ET
- e. UT

F69 The material property expressed in terms of an endurance limit is:

- a. fatigue strength
- b. toughness
- c. tensile strength
- d. ductility
- e hardness

F70 Fracture toughness results will often be expressed in terms of:

- a. breaking energy
- b. tensile strength
- c. percent elongation
- d. endurance limit
- e reduction of area

F71 Shielding of the molten pool in OFW is accomplished by:

- a. a granular flux
- b. a chemical reaction
- c an inert gas
- d. a vacuum chamber
- e. a flux paste

F72 The welding inspector is usually not responsible for which of the following?

- a checking for proper electrode storage
- b verification of a welder's qualification
- c. witnessing all repairs
- d reinspecting repairs
- e. checking fit up

- F73 The last digit of an SMAW electrode designation is an indication of:
 - a tensile strength of the weld deposit
 - b. position the welder is qualified to weld in
 - Operating characteristics
 - d. impact strength of the weld deposit
 - e. position suitable for electrode use
- **F74** ET can be used to detect which of the following?
 - a a material's conductivity
 - b a material's hardness
 - c a thin material's thickness
 - d. a material's heat treatment
 - e. all of the above
- F75 For an SMAW electrode designation E60X3 the "X" refers to:
 - a. the tensile strength of the weld deposit
 - b the position in which the electrode can be used
 - c the type of coating
 - d. the recommended type of current
 - e flux chemistry
- F76 The property of a material that best relates to its resistance to impact loading is:
 - a endurance limit
 - b fatigue strength
 - c. fracture toughness
 - d. tensile strength
 - e ductility
- F77 Of the following discontinuities, which is most likely to be a flaw caused during the manufacture of steel?
 - a. porosity
 - b. lamination
 - c. undercut
 - d. crack
 - e inclusion slag
- F78 Which of the following is considered to be an advantage of VT?
 - a. discontinuities can be located and noted when they occur
 - b. it is capable of detecting subsurface discontinuities
 - c. welders can accept their own work
 - d. equipment can be expensive
 - e it can determine material strength

- **F79** Which of the following is considered to be part of the welding inspector's responsibility to the public?
 - a undertaking only those assignments for which the inspector is qualified
 - b. making public statements as to the quality of a weldment
 - c. signing for all inspections on the job
 - d. reporting all discontinuities
 - e verify conformance based on past experience
- **F80** Which of the following processes is performed primarily in the flat and horizontal positions?
 - a. SAW
 - b. OAW
 - c. GTAW
 - d... GMAW-S
 - e. SW
- **F81** A groove weld symbol with no information appearing to the right means:
 - a the weld is to be complete joint penetration
 - b. no weld is required on that side
 - c the weld is to be continuous for the entire joint length
 - d. no weld joint preparation is required
 - e weld length can be determined by the welder
- **F82** The welding process that requires a tubular electrode is:
 - a. SMAW
 - b. GMAW
 - c FCAW
 - d. SAW
 - e ESW
- **F83** The property relating to a metal's resistance to indentation is:
 - a tensile strength
 - b ductility
 - c. hardness
 - d toughness
 - e. fatigue strength
- **F84** LT is the abbreviation for:
 - a. leak testing
 - b. liquid penetrant testing
 - c. liquid test inspection
 - d. lithium testing
 - e. lender test method

F85	Filler metal specifications are found in which of the following documents? a. AWS A5.1 through A5.30 b. ASME Section II, Part A c. AWS A3.0 d. AWS A2.4 e. AWS D1.1 Section 2
F86	The flux covering on an SMAW electrode provides which of the following? a. gas shielding for the molten pool b. arc stabilization c. alloying d. deoxidation e. all of the above
F87	When a weld joint preparation is found to be defective, the inspector should: a allow welding to proceed if he feels that the welder can produce a satisfactory weld instruct the welder in how to overcome the problem report the deficiency to the proper supervisory personnel require that the parts be disassembled and properly assembled none of the above
F88	The orientation of the probing energy source with respect to that of a flaw is considered to be a significant variable for which NDE method? a. RT b. UT c. ET d. MT e. all of the above
F89	Information that appears to the left of the weld symbol refers to: a. the weld length b. the weld size c. the electrode size d. the number of passes required e. none of the above
F90	Which process uses a granular flux that can be manually added to the weld pool? a. SMAW b. GTAW c. ESW d. SW

FCAW

F91 Of those microstructural constituents listed below, the hardest is:

- a. martensite
- b. ferrite
- c. bainite
- d. austenite
- e. pearlite

F92 In radiography, the image on the film of a completely through-cracked weld will:

- a. appear as a well-defined, low density, lightly shaded, sharp line
- b. appear as a well-defined, high density, darkly shaded, sharp line
- c appear as a row of low density light spots or dots
- d appear as a row of high density dark spots or dots
- e appear as a white line

F93 A material's ductility is commonly expressed in terms of:

- a percent elongation and reduction of area
- b. width and thickness
- c. tensile strength and yield strength
- d. toughness
- e fatigue

F94 Who is responsible for verifying welding procedures have been properly qualified?

- a. independent test lab
- b. contractor
- c welding inspector
- d. architect
- e engineer

F95 What MT technique could be used for the discovery of longitudinal flaws?

- a coil shot
- b. circular magnetization
- c. longitudinal magnetization
- d parallel magnetism
- e. using a central conductor

F96 Which code gives prequalified status to certain weld joint configurations?

- a. API 1104
- b. AWS D1.1
- c. AWS D17.1
- d. ANSI B31.1
- e. AWS B2.1

- **F97** Information that appears to the right of the weld symbol refers to the:
 - a. process to be used
 - b. type of electrode to be used
 - c. length of weld required
 - d. size of weld required
 - e. required joint configuration
- F98 When a clerical mistake is made while completing an inspection report, the inspector should:
 - a. erase the error and fill in the correct information
 - b cross out the error and supply the proper information
 - c. line out the error with a single line, supply the proper information, and initial and date the occurrence in ink
 - d attach a note to the report explaining the reason for the change
 - e erase the error or use white out, initial, and date the occurrence in black ink
- F99 The rapid quenching of a high carbon steel from the austenitizing range will result in the formation of:
 - a. pearlite
 - b. martensite
 - c. cementite
 - d. ferrite
 - e. austenite
- **F100** When an austenitized carbon steel is cooled to room temperature, an increase in the cooling rate will result in:
 - a. an increase in hardness and a decrease in ductility
 - b. an increase in tensile strength and a decrease in hardness
 - c a decrease in tensile strength and an increase in hardness
 - d an increase in ductility and a decrease in hardness
 - e. a decrease in hardness and an increase in ductility
- **F101** Which of the following is least affected by the surface finish of the specimen?
 - a. tensile strength
 - b. fatigue strength
 - c. impact strength
 - d. nick break test
 - e. macroetch
- F102 The heat treatment in which a carbon steel's temperature is raised to the austenitizing range, held for a prescribed time and then allowed to cool to room temperature while remaining in the furnace is referred to as:
 - a. stress relief
 - b. annealing
 - c. normalizing
 - d. tempering
 - e. austenitizing

F103 In which direction does a rolled plate of carbon steel usually exhibit its least amount of ductility?

- a. parallel to the rolling direction
- b. transverse to the rolling direction
- c in the through thickness direction
- d. in the direction of welding
- e. rolling direction has no significance regarding ductility

F104 When a weld has been rejected by a qualified NDE technician, the welding inspector should:

- a. review the test results and maintain the test record
- b reinspect to verify the defect
- c accept the weld if its visual appearance is in compliance with the applicable code or specification
- d require another inspection by a third party
- e. accept the weld since it is in a low stress region

F105 If equal thicknesses of steel, cast iron, aluminum, lead, and copper are radiographed using the same exposure conditions, which material will result in the darkest radiograph?

- a lead
- b steel
- c. aluminum
- d. copper
- e. cast iron

F106 The welding process that uses a nonconsumable electrode is:

- a. GMAW
- b. SAW
- c. GTAW
- d. FCAW
- e. SMAW

F107 The heat treatment in which the metal's temperature is raised to the austenitizing range, held for a prescribed time and then allowed to cool to room temperature in still air is referred to as:

- a. austenitizing
- b. normalizing
- c. annealing
- d quenching
- e. tempering

F108 In a guided bend test, the bend radius is:

- a. always 5 in.
- b. as specified in the appropriate code or specification
- c. 0.5 in.
- d. 0.65 in.
- e as stated on the MTR

F109	An E71T-1 electrode designation is for which welding process? a PAW b. FCAW c. SMAW d. GMAW e. SAW
F110	The AWS Certified Welding Inspector is responsible for: a. welding b. performing PT c. positively identifying base materials d. supervising welding e. determining the disposition of a radiographed part
F111	A break in the arrow line of a welding symbol has what significance? a. Welding must first be done on the arrow side b. Welding must first be done on the other side c. Welding must be done alternately on both the arrow and the other sides d. The broken arrow line segment points to that member which receives preparation e. an intermittent weld is required
F112	It is discovered that a GMAW mild steel weld was produced with a shielding gas containing excess moisture. To determine the extent of the surface and subsurface porosity that resulted, which NDE method would be most effective? a. MT b. RT c. VT d. PT e. ET
F113	Which welding process utilizes a vertical joint orientation with welding occurring in the flat position? a. ESW b. SAW c. SMAW d. FCAW e. OFW
F114	The heat treatment for carbon steels in which the metal's temperature is raised to just below the lower transformation temperature and held for a prescribed time before allowing it to cool at a controlled rate is referred to as: a tempering b austenitizing c stress relieving d normalizing e preheating

- **F115** The position on a metal's stress-strain curve referring to its change in behavior from elastic to plastic is the:
 - a. yield point
 - b. modulus of elasticity
 - c. endurance limit
 - d. transformation temperature
 - e. Young's Modulus
- **F116** Low-hydrogen electrodes can be properly identified by which digit of a classification number?
 - a first digit
 - b second digit
 - c first and second together
 - d. second to last digit
 - e. last digit
- **F117** All welding symbol information referring to the arrow side of the joint is found:
 - a. in the tail
 - b above the reference line
 - c. below the reference line
 - d. in a note
 - e to the left of the weld symbol
- **F118** The marking of a rejectable weld should:
 - a. be clear and understandable to all involved
 - b be made with a steel impression stamp
 - c. note the proper repair procedure
 - d always be in red
 - e always include the welder's identification
- **F119** MT can be used effectively to inspect which of the following metals?
 - a. welds on A36 steel
 - b. steel welds on stainless steel plate
 - c. welds on aluminum
 - d. Welds on all alloy materials
 - e materials properly qualified for use with E308 electrodes
- **F120** Of the welding processes listed below, the one most commonly having the highest deposition rate is:
 - a. OAW
 - b. FCAW
 - c. SAW
 - d. SMAW
 - e. GMAW

- **F121** The use of preheat on a medium carbon steel weld test plate will perform all of the following except:
 - a. reduce distortion
 - b. reduce the possibility of hydrogen cracking
 - c. result in the formation of martensite
 - d. produce a wide heat-affected zone
 - e diffuse hydrogen
- F122 The tensile test can be used to provide values for which of the following?
 - a. yield point
 - b. ultimate tensile strength
 - c. modulus of elasticity
 - d. elastic limit
 - e all of the above
- F123 Which of the following is not an acceptable method for control of raw materials?
 - a. color coding
 - b. alpha-numeric coding
 - c first in, first out
 - d. location segregation
 - e. bar coding
- **F124** In what document are the duties and responsibilities of a CWI described?:
 - a. AWS D1.1
 - b. AWS A3.0
 - c ANSI Z49.1
 - d. AWS QC-1
 - e. AWS QC-7
- F125 All welding symbols require which of the following basic elements in their construction?
 - a reference line, arrow, and tail
 - b reference line and arrow
 - c reference line, arrow, and weld symbol
 - d reference line, arrow, weld symbol, dimensions, and supplementary data
 - e reference line only
- **F126** The size of the weld represented in Figure 1:
 - a is not important
 - b. cannot be determined directly from the symbol
 - c. can be determined from the symbol
 - d is not specified therefore may be determined by the welder
 - e. must be found in the WPS

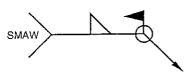


Figure 1

- **F127** Welding symbol information provided in Figure 1 requires:
 - a field welding
 - b. weld-all-around
 - c. a fillet weld
 - d the use of shielded metal arc welding
 - e. all of the above
- **F128** A SMAW weld was produced in which the welder failed to properly clean between passes in a multipass weld. Which nondestructive test would best reveal the flaws that may be present in the completed weld?
 - a RT
 - b. VT
 - c. MT
 - d. PT
 - e. ET
- **F129** SMAW is typically used in which type of application?
 - a. semiautomatic
 - b machine
 - c manual
 - d automatic
 - e. mechanical
- **F130** What position is depicted in Figure 2?
 - a. 6G
 - b. 5G
 - c. 6F
 - d 6GR
 - e. 5GR

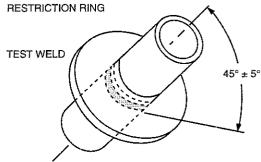
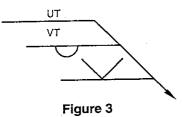
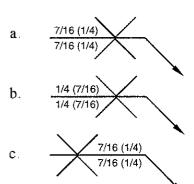



Figure 2

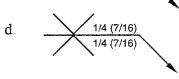
- **F131** Using the appropriate conversion factor provided in the chart on page 41, determine the approximate diameter in inches for an electrode that measures 1.2 mm.
 - a. 0.047 in.
 - b 4.7 in.
 - c 0.0047 in
 - d. 0.47 in
 - e. 47.2 in.
- **F132** Underbead cracking is primarily caused by:
 - a a source of hydrogen
 - b restraint
 - c excessive preheat
 - d. fatigue
 - e. excessive loading


- F133 Which of the following is a correct statement about brazing?
 - a the base metal is not melted
 - b. the filler metal melts at a temperature below 800°F
 - c. it must be done in an inert gas atmosphere
 - d in order to achieve capillary action large root opening is required
 - e inert gases may be substituted for oxygen
- **F134** Which of the following welding processes commonly use a constant current power source?
 - a. GMAW and FCAW
 - b. SMAW and GTAW
 - c. GTAW and GMAW
 - d. FCAW and SMAW
 - e. SAW and SMAW
- **F135** The first operation required by the symbol in Figure 3 is:
 - a. ultrasonic inspection of the base metal
 - b visual inspection of joint preparation
 - c welding a V-groove from the other-side of the joint
 - d welding a backing weld from the arrow-side of the joint
 - e backgouging and back welding from the arrow-side of the joint


- **F136** For Figure 3, ultrasonic inspection is to be performed:
 - a on the back weld only
 - b on the entire length of the other side weld
 - c. on 10% of the weld length
 - d from the arrow side
 - e on the single V groove, from the arrow side
- F137 Which of the following discontinuities are associated with shrinkage stresses in the through thickness direction of thick plate?
 - a crater cracks
 - b. lamellar tears
 - c. toe cracks
 - d root cracks
 - e. none of the above
- **F138** Which of the welding techniques below describes a welding process in which the filler metal feeding is machine operated while the joint travel speed and guidance are the responsibility of the welder?
 - a semiautomatic
 - b. manual
 - c machine
 - d automatic
 - e mechanized

F139 The welding symbol shown in Figure 4 depicts:

- a backing weld other-side followed by a V-groove weld arrow-side
- b. a V-groove weld arrow-side followed by a back weld other-side
- c. a V-groove weld arrow-side with melt-through
- d. a bevel groove weld made one-half the way around the diameter of a pipe
- e. a V-groove weld arrow-side with the root finished to a convex contour



F140 Which of the following symbols correctly describes the joint configuration shown in Figure 5?

7/16 1/4

Figure 5

e none of the above

F141 The width of the cut produced during a cutting process is referred to as:

- a root opening
- b. kerf
- c. bevel
- d bevel angle
- e chamfer

F142 For the 2G position in pipe welding:

- a. the axis of the pipe is vertical and the plane of the weld is horizontal
- b. the axis of the pipe is horizontal and the plane of the weld is vertical
- c. the pipe is not fixed
- d. the axis of the pipe and the plane of the weld are at 45° angles with the vertical plane
- e. the axis of the pipe is horizontal and the pipe is rotated

- **F143** During operation, the heat for electroslag welding is provided by:
 - a the arc
 - b the electrical resistance heating of the molten slag
 - c the consumable guide tube melting
 - d. current passing through the base metal
 - e current passing through the filler wire
- F144 Using the appropriate conversion factor provided in the chart on page 41, determine the approximate cubic feet per hour (cfh) for a flow rate of 22 liters per minute.
 - a. 466 cfh
 - b. 46.6 cfh
 - c. 10.38 cfh
 - d. 103.8 cfh
 - e. 4.66 cfh
- F145 It is suspected that a GMAW weld was produced in an area where there was an excessive draft. Which nondestructive test would best reveal the internal discontinuities which may have resulted?
 - a. PT
 - b. MT
 - c. RT
 - d. UT
 - e none of the above
- F146 The size of the arrow side weld in Figure 6 is:
 - a. 1/4 in.
 - b. 5/16 in.
 - c. 1 in.
 - d. 2 in.
 - e. 1 in. deposited every 6 in.

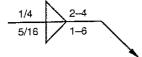


Figure 6

- **F147** The length of the other side weld in Figure 6 is:
 - a. 1 in.
 - b. 6 in.s
 - c. 2 in.
 - d. 4 in.
 - e continuous down the length of the joint
- **F148** The pitch of the other side weld in Figure 6 is:
 - a. 1/4 in.
 - b. 4 in.
 - c. 5/16 in.
 - d. 1 in.
 - e. 6 in.

- **F149** If a contour symbol is used but the finishing method is not specified on the welding symbol:
 - a. it is the inspector's choice
 - b. it is the fabricator's choice
 - c. the desired contour must be as-welded
 - d it should be found in the code specified
 - e. it is the welder's choice
- **F150** In order to learn the exact location of a subsurface flaw in three directions, the best NDE method would be:
 - a. RT
 - b. MT
 - c PT
 - d. UT
 - e.. VT
- **F151** The surface of a member included in the groove of a weldment best describes:
 - a root opening
 - b. groove angle
 - c. weld interface
 - d. groove face
 - e none of the above
- **F152** Crater cracks can be the result of:
 - a. poor welding technique
 - b abrupt termination of welding
 - c. shrinkage of the molten pool
 - d underfill of the crater
 - e all of the above
- **F153** Figure 7 depicts which welding process?
 - a. SAW
 - b. SMAW
 - c. PAW
 - d. GMAW
 - e. FCAW

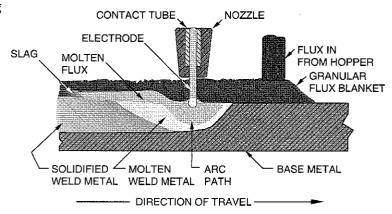


Figure 7

- **F154** The boundaries indicated by "A" in Figure 8 are:
 - a. fusion line
 - b depth of fusion
 - c. weld interface
 - d. fusion face
 - e. none of the above
- **F155** The dimension "D" in Figure 8 is referred to as:
 - a. fusion face
 - b. fusion zone
 - c. depth of fusion
 - d. weld interface
 - e fusion line
- **F156** The weld interface in Figure 8 is indicated by:
 - a. "A"
 - b. "B"
 - c.. "C"
 - d. "D"
 - e none of the above

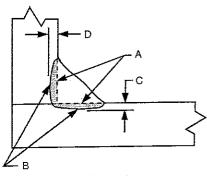


Figure 8

- F157 Using the appropriate conversion factor provided in the chart on page 41, determine the approximate degrees Celsius for a preheat temperature of 225°F.
 - a. 225°C
 - b. 107°C
 - c. 437°C
 - d. 10.7°C
 - e.. 1.07°C
- F158 Which of the following welds is not considered applicable for a butt joint?
 - a. V-groove
 - b. plug
 - c edge-flange
 - d. U-groove
 - e J-groove
- F159 The dimension "A" in Figure 9 refers to:
 - a root penetration
 - b weld penetration
 - c. depth of fusion
 - d joint penetration
 - e side wall penetration



Figure 9

F1	€0	The dimension	"C"	in Figure	9 identifies:

- a joint penetration and weld size
- b. weld size and root penetration
- c depth of fusion
- d. complete joint penetration
- e incomplete joint penetration

F161 If the groove weld in Figure 9 has been properly welded, the dimension "D" is referred to as:

- a underfill because the weld is left unfilled
- b. lack of penetration because weld size is inadequate
- c partial joint penetration because weld size is indicated
- d. complete joint penetration because the joint is filled
- e. incomplete joint penetration because the joint should have been filled

F162 Which of the following is not a type of weld joint?

- a lap
- b.. T-
- c. fillet
- d. butt
- e. edge

F163 When using SMAW, wet electrodes will most likely cause:

- a undercut
- b. overlap
- c. underfill
- d porosity
- e. all of the above

F164 Which of the following is considered to be an acceptable way to provide backing for a V- groove weld in a carbon steel butt joint?

- a copper backing bar
- b ceramic backing
- c flux backing
- d backing weld
- e all of the above

F165 A welder deposits an average of 12 pounds of weld metal per hour. Using the appropriate conversion factor provided in the chart on page 41, determine the approximate kilograms of weld metal that will be deposited in 6 hours of continuous welding.

- a 5 kg
- b. 33 kg
- c 6 kg
- d. 26 kg
- e 37 kg

F166 A single-wire, submerged arc welding machine is operating at 32 volts, 600 amps, and is traveling at 8 inches per minute. Using the formula provided on pages 40 and 41, what is the heat input for this situation?

Heat input = J/in.
$$J/in = \frac{V \times A \times 60}{Travel Speed - (ipm)}$$

- a. 2,400 J/in.
- b. 1,152,000 J/in.
- c. 1.44×10^5 J/in.
- d. 110,000 J/in.
- e. 14,400 J/in.
- F167 If an MT indication is noted at the toe of a fillet weld that exhibits an excessively convex profile, what is the appropriate action?
 - a ignore it, since it is a nonrelevant indication
 - b. reject the weld
 - c correct the excess convexity and retest
 - d. accept the weld
 - e none of the above
- F168 The pipe welding test position in which the axis of the pipe is horizontal and the pipe is rotated so that welding takes place at or near the top is designated as:
 - a. 2G
 - b 2F
 - c. 1G
 - d. 3G
 - e 6GR
- F169 The most efficient NDE method for discovery of undercut on the face of a weld is:
 - a.. VT
 - b. RT
 - c. UT
 - d. MT
 - e. PT
- **F170** The design strength of a fillet weld is always based on the throat dimension because:
 - a it has a columnar microstructure, which is more prone to cracking
 - b. it is the shortest failure path through the weld
 - c. it is the location of most defects
 - d. the design calculations cannot be checked
 - e it is a theory of failure that cannot be supported by actual laboratory testing

- **F171** Arc strikes are discontinuities most commonly associated with:
 - a. ESW
 - b. SAW
 - c. SMAW
 - d. OAW
 - e. GMAW
- **F172** Double-groove welds in butt joints always require:
 - a. backgouging
 - b. special welding processes
 - c. high deposition rate processes
 - d weld to be deposited from both sides of the joint
 - e a spacer to hold critical root openings
- **F173** What welding process is depicted in Figure 10?
 - a... FCAW
 - b. GMAW
 - c. SMAW
 - d. SAW
 - e. ESW
- **F174** Light-colored areas within the weld zone in a radiograph could represent:
 - a. porosity and trapped slag
 - b. tungsten inclusions and meltthrough
 - c melt-through and trapped slag
 - d. porosity and tungsten inclusions
 - e underfill and excessive reinforcement
- **F175** A single V-groove weld always requires:
 - a special welding processes
 - b. backgouging
 - c. a backing bar
 - d. no root opening
 - e CPJ unless otherwise specified
- F176 The substance used in UT to aid in the transmission of sound from the search unit to the workpiece and back is called:
 - a solvent
 - b. attenuation
 - c couplant
 - d. cable
 - e transducer

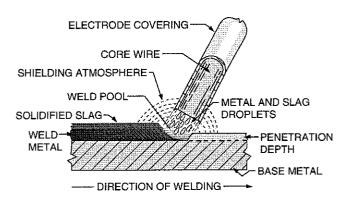


Figure 10

F177	Using the appropriate conversion factor from the chart on page 41, determine the approximate kilogram weight of a 30 pound roll of welding wire								
	a '	1.36 kg							
	b.,	66 kg							
	C.,	136 kg							
	\mathbf{d}_{-}	66.15 kg							
	e	13.6 kg							

- **F178** The junction of the weld face with the exterior surface of the base metal is referred to as the:
 - a. faceb. root
 - c. leg
 - d. toe e. edge
 - e. edge
- **F179** Internal plate laminations are best revealed using:
 - a UT
 - b. RT
 - c. MT
 - d. PT
 - e. ET
- F180 Porosity in GMAW can be caused by:
 - a drafts
 - b. contamination
 - c too little shielding gas flow
 - d too much shielding gas flow
 - e. all of the above
- **F181** The overhead fillet position is designated as:
 - a. 5F
 - b. 4F
 - c. 3F
 - d. 2F
 - e. 1F
- **F182** The radiograph in Figure 11 shows:
 - a crack
 - b. incomplete fusion
 - c incomplete joint penetration
 - d slag inclusions
 - e. none of the above

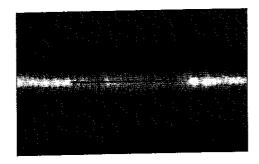


Figure 11

F183 The welding process depicted in Figure 12 is:

- a. GMAW
- b. SAW
- c. SMAW
- d. GTAW
- e. PAW

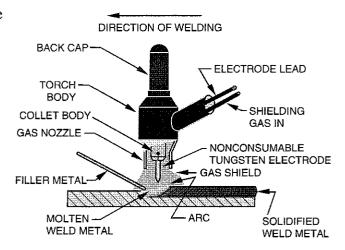


Figure 12

F184 The radiograph in Figure 13 shows:

- a. slag inclusions due to improper fitup
- b tungsten inclusions due to poor tungsten grinding
- c. porosity due to inadequate shielding
- d. longitudinal crack due to stress
- e lack of penetration due to poor starts and stops

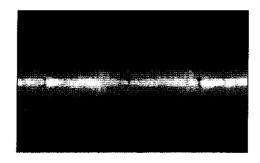


Figure 13

F185 Which of the following is an example of an electrode classification number for GTAW?

- a EWTH-2
- b. A5.1
- c A5.9
- d E7018
- e ER70S-2

F186 In a groove-weld cross section, the 'line' separating weld metal from base metal is called:

- a. the fusion face
- b the depth of fusion
- c the depth of penetration
- d. the weld interface
- e none of the above

- **F187** In the radiograph in Figure 14, the arrows point to:
 - a. transverse cracks
 - b crater cracks
 - c. longitudinal cracks
 - d underbead cracks
 - e. toe cracks

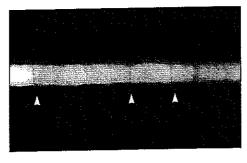


Figure 14

- **F188** Incomplete fusion can be caused by:
 - a not preheating
 - b not filling the joint completely
 - c improper gas shielding
 - d poor fitup
 - e excessive amperage
- F189 In pipe groove welding, the 45° fixed position is designated as:
 - a. 1G
 - b. 2G
 - c. 2F
 - d. 5G
 - e. 6G
- F190 Using the appropriate conversion factor provided in the chart on page 41 determine the approximate feed speed in inches per minute for a wire fed at a speed of 120 mm/s.
 - a. 28.3 ipm
 - b. 283 ipm
 - c. 2,834 ipm
 - d. 5.076 ipm
 - e 50.76 ipm
- **F191** The defect noted in the radiograph in Figure 15 is:
 - a. incomplete penetration
 - b a crack
 - c. incomplete fusion
 - d. porosity
 - e. slag inclusions

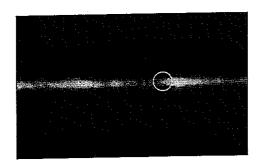
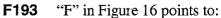



Figure 15

F192 The "A" dimension in Figure 16 is referred to

as:

- a. actual weld throat
- b weld size
- c. weld leg
- d. theoretical weld throat
- e. effective weld throat

- a. the root penetration
- b. the weld penetration
- c. the weld root
- d. the joint root
- e. none of the above

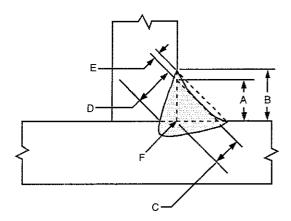


Figure 16

F194 The dimension "C" in Figure 16 shows:

- a the theoretical throat
- b. the actual throat
- c the effective throat
- d. weld leg
- e convexity

F195 The dimension "D" in Figure 16 is called:

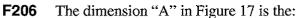
- a. the theoretical throat and the effective throat
- b. the effective throat and the actual throat
- c. the actual throat and the theoretical throat
- d. weld size
- e. convexity

F196 The dimension "E" in Figure 16 refers to:

- a. the actual throat
- b. the effective throat
- c. convexity
- d. leg and weld size
- e. concavity

F197 One common cause of centerline weld cracks is:

- a. the use of preheat
- b. a highly restrained weld joint
- c. using the wrong polarity
- d. stress relief heat treatment
- e. the presence of incomplete sidewall fusion


- F198 Using the appropriate conversion factor from the chart on page 41, determine the approximate pounds per square in. (psi) for a yield strength of 198 MPa.
 - a. $2.871 \times 10^3 \text{ psi}$
 - b. $2.871 \times 10^4 \text{ psi}$
 - c. 4,136 psi
 - d. 41.36 psi
 - e. 2,871 psi
- F199 Which NDE method will best reveal subsurface porosity?
 - a. RT
 - b. PT
 - c. MT
 - d. UT
 - e. none of the above
- **F200** Liquid penetrant testing is not recommended when inspecting which of the following materials?
 - a. Aluminum plate that has been chemically cleaned
 - b. Steel weld test plates brushed clean
 - c. Stainless steel pipe as welded by GTAW
 - d a casting that has been sand blasted
 - e a weld test plate with defects removed by machining
- **F201** Using the conversion factors provided in the chart on page 41, determine the approximate MPa for a tensile strength of 65,000 psi.
 - a. 448,000
 - b. 4.48×10^8
 - c. 448
 - d. 9,425,000
 - e. 9.425×10^6
- F202 An MT indication of a subsurface discontinuity 1 in below the surface will appear how as compared to a surface discontinuity?
 - a intermittent
 - b. sharper
 - c. less distinct
 - d MT cannot detect a subsurface flaw 1 in below the surface
 - e only the central conductor method can be used to detect flaws in 1 in material
- **F203** Which of the following conditions can cause slag inclusions in a weld?
 - a insufficient groove angle in an SMAW single V-groove weld
 - b. careful interpass cleaning of subsequent layer and beads of FCAW
 - c insufficient preheat of test plate
 - d insufficient shielding gas flow in GTAW
 - e. improper fitup of GMAW test plates

F204 What is meant by the term essential variable?

- a. Data on a WPS that if changed during production will render a WPS disqualified.
- b. Data on an inspection report that if changed render the report disqualified.
- c. Data on an MTR that is essential to the chemistry of the material.
- d. the recommended amperage and voltage for welding as published by the manufacturer.
- e. describes what should be included in a WPS.

F205 The dimension "B" in Figure 17 is:

- a. the weld throat
- b. the weld size
- c. point of tangency
- d. groove weld size
- e. fillet weld profile

- a convexity
- b. concavity
- c face reinforcement
- d weld size
- e overlap

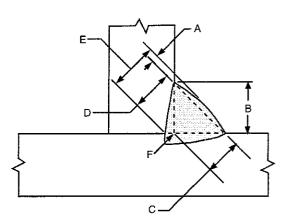


Figure 17

F207 The dimension "E" in Figure 17 is:

- a the actual throat
- b. the effective throat
- c the theoretical throat
- d weld size
- e convexity

F208 The dimension "D" in Figure 17 is:

- a the actual throat
- b the effective throat
- c. the theoretical throat
- d weld size
- e. weld leg

F209 Where should the preheat temperature be measured?

- a. in the weld groove
- b. 12 in from the weld groove
- c. where the arc will be initiated
- d. 2–3 in from the weld groove
- e. preheat temperature need not be measured

F210 A discontinuity is:

- a always rejectable
- b never rejectable, but its condition should be noted in the inspection report
- c. always a defect
- d an indication that renders a part unusable
- e an interruption in the uniformity of a weldment

F211 What weld discontinuity is shown in the radiograph in Figure 18?

- a crack
- b. incomplete joint penetration
- c porosity
- d burn through
- e tungsten inclusions

Figure 18

- **F212** An oxygen regulator is set for 40 psi. Using the appropriate conversion factor from the chart on page 41, determine the pressure in kPa.
 - a.. 2,758
 - b. 27,580
 - c. 2.758
 - d. 27.58
 - e.. 275.8
- F213 Which of the following discontinuities can be caused by poor welding technique?
 - a incomplete fusion
 - b. porosity
 - c undercut
 - d. overlap
 - e all of the above
- **F214** If a welder is continually turning out rejectable work, the welding inspector should:
 - a inspect his work more critically
 - b. ask that the welder be terminated
 - c require requalification
 - d instruct the welder in proper techniques
 - e ask that the welder use another process

F215 How does a welder become certified?

- a certification can only be obtained by taking a weld test given by a CWI
- b. by graduating from a welding school
- by having documented proof of 5 years in welding industry
- d by documenting successful completion of a weld test according to the requirements of an applicable standard
- e certification can only be obtained by taking a weld test at an approved test center

- **F216** Which discontinuity occurs in the heat-affected zone and can result from excess moisture in the weld zone?
 - a. throat crack
 - b crater crack
 - c. underbead crack
 - d. porosity
 - e centerline crack
- **F217** Which of the following measurements are taken from a tensile specimen to determine area?
 - a. mass and volume
 - b. length and thickness
 - c width and length
 - d width and thickness
 - e. load and pressure
- **F218** When establishing a PQR?
 - a. the type and number of tests required is determined by the applicable standard
 - b. a face and root bend will qualify all plates
 - c testing requirements are determined by the contractor and approved by the inspector
 - d. destructive testing is required only if a problem is suspected
 - a weld test plate does not have to be mechanically tested to establish a POR
- **F219** Which of the following discontinuities is not associated with GTAW?
 - a lack of fusion
 - b. slag inclusions
 - c. tungsten inclusions
 - d porosity
 - e undercut
- **F220** Using the appropriate conversion factor from the chart on page 41, convert a travel speed of 21 ipm to mm/s.
 - a 88.9
 - b. 8.9
 - c. 0.88
 - d. 0.088
 - e. 49.61
- **F221** Using the appropriate conversion factor from the chart on page 41, calculate the ultimate tensile strength in MPa of a tensile specimen having a cross-sectional area of 0.300 sq. in. and broke at a tensile load of 24,600 lbs.

$$\frac{\text{Load (lbs.)}}{\text{Area of specimen (sq. in.)}} = \text{Tensile strength (psi)}$$

- a. 565 Pa
- b. 565 MPa
- c. 5.65 Pa
- d. 565 kPa
- e. 5,650 kPa

F222 Which of the following discontinuities are not found with GMAW?

- a incomplete fusion
- b porosity
- c. tungsten inclusions
- d incomplete penetration
- e. cracks

F223 The CAWI:

- a. is solely responsible for determination of a weldment's conformance to acceptable standards
- b. inspects weldments only under the direction of a CWI or SCWI
- c cannot inspect critical weldments
- d performs all inspections the same as a CWI
- e all of the above

F224 NDE technicians are certified in accordance with:

- a AWS D1 1
- b. API 1104
- c. ASNT SNT-TC-1A
- d. ASME Section VI
- e. ASME Section IX

WIT-Useful Formulae

Area of Square or Rectangle

Area = length
$$\times$$
 width

Area = width
$$\times$$
 thickness

Area or Circle

Area =
$$\pi \times \text{radius}^2$$

Area =
$$\pi \times \text{radius}^2$$
 or: Area = $\pi \times \frac{\text{diameter}^2}{4}$ or: Area = 0.7854 × diameter²

Percent Elongation

Percent Reduction of Area

% Reduction of Area =
$$\frac{\text{Original Area} - \text{Final Area}}{\text{Original Area}} \times 100$$

Tensile Strength

General

$$UTS = \frac{P \max}{Area}$$

Pipe

UTS for full section pipe =
$$\frac{P \text{ max}}{0.7854 \text{ (OD}^2 - \text{ID}^2)}$$

Yield Strength

Welding Heat Input

$$J/in = \frac{V \times A \times 60}{\text{Travel Speed (ipm)}}$$

 $J/in = \frac{V \times A \times 60}{\text{Travel Speed (ipm)}} \quad \text{where: } J = \text{Joules (energy)}$ V = welding voltage A = welding amperageipm = inches per minute

Carbon Equivalent

CE =
$$%C + \frac{%Mn}{6} + \frac{%Ni}{15} + \frac{%Cu}{13} + \frac{%Mo}{14}$$

Welding Usage Conversion Chart—U.S. Customary and SI

Property*	To Convert From:	То:	Multiply By:
area dimensions	in.² mm²	mm² in.²	6.452×10^{2} 1.550×10^{-3}
current density	A/in. ² A/mm ²	A/mm² A/in ²	$1.550 \times 10^{-3} \\ 6.452 \times 10^{2}$
deposition rate	lb/hr	kg/hr	0 454
	kg/hr	lb/hr	2 205
flow rate	ft³/h	l/min	4.719 × 10 ⁻¹
	l/min	ft³/h	2.119
heat input	J/in.	J/m	39.37
	J/m	J/in	2.54 × 10 ⁻²
linear measure	in mm ft mm	mm in mm ft	$25.43.937 \times 10^{-2}3.048 \times 10^{2}3.281 \times 10^{-3}$
mass	lb	kg	0.454
	kg	lb	2.205
pressure	psi psi kPa MPa bar psi	kPa MPa psi psi psi bar	6.895 6.895×10^{-3} 0.145 1.450×10^{2} 14.50 6.9×10^{-2}
temperature	°F	°C	(°F – 32)/1.8
	°C	°F	(°C × 1.8) + 32
tensile strength	psi MPa	MPa psi	$6.895 \times 10^{-3} \\ 1.450 \times 10^{2}$
travel speed	in /min	mm/s	4.233 × 10 ⁻¹
	mm/s	in/min	2.362
vacuum	Pa	torr	7.501×10^{-3}
wire feed speed	in /min	mm/s	0.423
	mm/s	in /min	2.362

ANSWER KEY

F1	c	F47	a	F93	a	F139	c	F185	a
F2	a	F48	d	F94	c	F140	b	F186	d
F3	c	F49	d	F95	b	F141	b	F187	a
F4	a	F50	c	F96	b	F142	a	F188	d
F5	b	F51	a	F97	c	F143	b	F189	e
F6	a	F52	b	F98	c	F144	b	F190	b
F7	С	F53	d	F99	b	F145	c	F191	đ
F8	b	F54	С	F100	a	F146	b	F192	b
F9	c	F55	С	F101	d	F147	c	F193	đ
F10	С	F56	e	F102	b	F148	b	F194	a
F11	a	F57	b	F103	c	F149	c	F195	b
F12	a	F58	e	F104	a	F150	d	F196	e
F13	e	F59	b	F105	c	F151	d	F197	b
F14	b	F60	С	F106	c	F152	e	F198	b
F15	b	F61	b	F107	b	F153	a	F199	a
F16	e	F62	d	F108	b	F154	d	F200	d
F17	c	F63	e	F109	b	F155	c	F201	c
F18	d	F64	С	F110	C	F156	b	F202	d
F19	e	F65	a	F111	d	F157	b	F203	a
F20	c	F66	b	F112	b	F158	b	F204	a
F21	a	F67	c	F113	a	F159	c	F205	b
F22	b h	F68	b	F114	С	F160	a	F206	a
F23 F24	b	F69	a	F115	a	F161	c	F207	a
F25	d	F70	a	F116	e	F162	C	F208	b
F25	e	F71 F72	b		c	F163	d	F209	d
F27	c c	F73	c	F118	a	F164	e L	F210	e
F28	d	F74	c	F119 F120	a	F165	b	F211	e
F29	c	F75	e b	F120 F121	C	F166	C	F212	e
F30	e	F76	c		c e	F167 F168	c	F213 F214	e
F31	e	F77	b		c	F169	C	F214 F215	c d
F32	d	F78	a		d	F170	a b	F213 F216	
F33	b	F79	a		b	F170	c	F210 F217	c d
F34	b	F80	a		b	F172	d	F217	a
F35	b	F81	c	T10=	e		c		b
F36	a	F82	c		a		b		b
F37	d	F83	c		c		e		b
F38	c	F84	a		d		c	7000	c
F39	b	F85	a		a		e		b
F40	c	F86	e		a		d	****	c
F41	c	F87	С	T100	a		a	- ·	_
F42	b	F88	e		b		e		
F43	c	F89	b	F135	c		b		
F44	c	F90	c	F136 1	b	F182	c		
F45	b	F91	a	F137 I	b	F183	d		
F46	a	F92	b	F138 a	a	F184	е		

IMPORTANT NOTICE:

Note to Exam Candidates regarding Part B Practical Exam:

Effective 01 June 2006, candidates testing on the CWI Part B will be required to use the new *Part B Practical: Book of Specifications*. You must have the correct version of the *Book of Specifications* in order to pass the Part B Practical examination.

Those registering for the seminar and exam will be provided with the *Book of Specifications* at the seminar. For those candidates registering for examination only, a *Book of Specifications* will be sent in an examination confirmation package. On the exam date, all candidates will be provided & required to use an original copy of the *Book of Specifications*.

To view the 2006 version:

http://www.aws.org/certification/docs/partb2006.pdf

To view the 1998 version:

http://www.aws.org/certification/docs/partb1998.pdf

AMERICAN WELDING SOCIETY WELDING INSPECTOR EXAMINATION

Part B

EXAMINATION BOOK OF SPECIFICATIONS

TABLE OF CONTENTS

	Appendices	Page No.
I.	Welding Procedure Qualification Record (PQR)	1
II-A.	Performance Qualification Test Record	2
II-B.	Welder Performance Qualification Record (Example)	3
III.	Prequalified Complete Joint Penetration Groove Welded Joints	4
IV.	Pipe Schedules	5
V.	Acceptable and Unacceptable Weld Profiles	6
VI.	Weld Profile Acceptance Description	7
VII.	Visual Weld Inspection Acceptance Criteria	8
VIII.	Test Results Required, Guided Bends	9
IX.	Weld Metal Analysis	10
Χ.	Electrode Groups	11
XI.	Welder Qualification Test Requirements	13
XII.	Fillet Procedure Qualification Requirements	15
XIII.	Groove Procedure Qualification Requirements	16
XIV.	Prequalified Base Metal—Filler Metal Combinations for Matching Strength	17
XV.	Minimum Preheat and Interpass Temperature	20
XVI.	Radiograph Testing	22
XVII.	Face and Root Bend Specimens	27
Revisi	ion D: January 2006	

Conversions and Calculations

The International System of Units (SI) makes use of conversion factors and metric prefixes. Use the following tables:

Table of SI Conversions

PROPERTY	U.S. CUSTOMARY UNITS	SI UNITS	
	To convert from	То	Multiply by
force	pound-force (lbf)	newton (N)	4.5
	kip (1000 lbf)	newton	4450
linear dimension	inch (in.)	millimeter (mm)	25.4
tensile strength	pounds per square inch (psi)	pascal (Pa)	6895
	(psi)	kilopascal (kPa)	6.89
	(psi)	megapascal (MPa)	0.00689
mass	pound mass (avdp)	kilogram	0.454
angle, plane	degree (angular) (°)	radian (rad)	0.0175
flow rate	cubic feet per hour (ft ³ /hr)	liters per minute (L/min)	0.472
heat input	joules per inch (J/in)	joules per meter (J/m)	39.4
travel speed, wire	inches per minute (in/min)	millimeter per second (mm/s)	0.423
temperature	degree Fahrenheit (°F)	degree Celsius (°C)	°C = (°F – 32)/1.8

Table of SI Prefixes

EXPONENTIAL EXPRESSION	MULTIPLICATION FACTOR	PREFIX	SYMBOL
10 ⁹	1 000 000 000	giga	G
10 ⁶	1 000 000	mega	М
10 ³	1 000	kilo	k
10 ⁻³	0.001	milli	m
10 ⁻⁶	0.000 001	micro	μ
10 ⁻⁹	0.000 000 001	nano	n

Formulas

PROPERTY	FORMULA						
ultimate tensile strength (uts)	uts = maximum load/original cross-sectional area						
cross-sectional area (csa)	$csa = \pi D^2/4$ (for circle) $csa = width \times thickness$ (for	$csa = \pi D^2/4$ (for circle) $csa = width \times thickness$ (for square or rectangle)					
temperature	degree Fahrenheit (°F)	degree Celsius (°C)	°C = (°F – 32)/1.8				
	degree Celsius (°C)	degree Celsius (°C) degree Fahrenheit (°F) °F = 9/5°C + 32					

This book is for examination purposes <u>only</u>. It is not a working set of specifications nor a code.

The information contained herein may not match the current editions of the referenced documents.

Do not write in this book.

APPENDIX I

WELDING PROCEDURE QUALIFICATION RECORD (PQR)

GROOVE WELD TEST RESULTS

PROCEDURE SPECIFICATION

Material								
a.onan	specification		[1]	Tensile Strength,	, psi			
	-			•	•			
Manual, s	semiautomatic	, automatic:		1	[24]			
Position of	of welding		[4]	2	[25]			
Filler met	al specification	າ	[5]	Guided-Bend Tes	sts (2 root-, 2 face	e-, or 4 side-bends)		
	•	n	[6]		, , , , , , , , , , , , , , , , , , , ,	,		
			[7]	Root	Face	Side		
	-		[8]	1[26]	1. [28]	1. [30]		
_	-		[9]	2. [27]	2. [29]	2. [31]		
			[10]			3. [32]		
			[11]			4. [33]		
Welding current [12]								
_			[13]	Radiographic-Ult	trasonic Examina	tion		
	-		[14]					
			[15]	RT Report No:	[3	34]		
			[16]	UT Report No:		35]		
				F	FILLET WELD TES	ST RESULTS		
	VISUAL II	NSPECTION RESUL	.TS	Minimum size multiple pass Maximum size single pa				
A		[17]		Macroetch Macroetch 1[36] 1[39]				
	nce							
				[00]				
riping po	rosity	[10]		3[38]		[]		
AL	L-WELD-MET	AL TENSION TEST	RESULTS					
Tensile st	rength, psi	[20]						
		50.43						
	n in 2 in., %		Tield peint eti eti gati, pei			01		
∟longatio				iesi Dale	L'	2]		
	ry Test No:			Test Date Witnessed by				
		[23]	WELDING	Witnessed by				
Laborato	ry Test No:	[23] Welding C	WELDING	Witnessed by	[4	3]		
Laborato	ry Test No:	[23]	WELDING	Witnessed by				
Pass No. [44]	Electrode Size [45]	Welding C Amperes [46]	WELDING Current Volts [47]	Witnessed by PROCEDURE Speed of Travel [48]	[4			
Pass No. [44] We, the u	Electrode Size [45]	Welding C Amperes [46] ertify that the statement	WELDING Current Volts [47]	Witnessed by PROCEDURE Speed of Travel [48]	Jo	int Detail		
Pass No. [44] We, the u	Electrode Size [45] ndersigned, ce	Welding C Amperes [46] ertify that the statement [50]	WELDING Current Volts [47]	Speed of Travel [48] wre correct. Manufacturer or C	Jo	3] int Detail [49]		
Pass No. [44] We, the u	Electrode Size [45]	Welding C Amperes [46] ertify that the statement [50]	WELDING Current Volts [47]	Witnessed by PROCEDURE Speed of Travel [48]	Jo	int Detail		

APPENDIX II-A

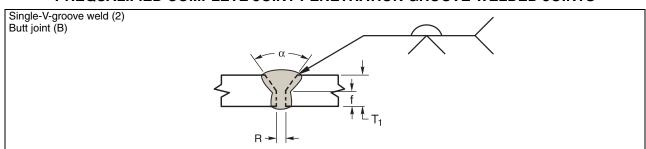
PERFORMANCE QUALIFICATION TEST RECORD

(SMAW, GMAW, GTAW, FCAW, SAW, OFW, PAW)

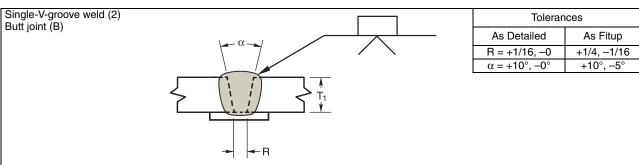
Name			14/5	_Welder [We	lding Op			Test	Joint Sketch
I.D. No				S Used _	(0) (4)		[3] [5]	-		
Process(es) _			1rai [6]	nsfer Mod	-	-	[7]	-		
	tal Specification		[8]		to		[9]	-		
	ber		[10]		to		[9]	-		
Fuel Gas (OF	•		[11]				[12]	-		
	etal Classification	. ,			F No		[12]	-		
Backing Yes		Double S		•	Side					
Current Polar			DCEN		., _		1			
Consumable	Insert Yes	No	вас	king Gas	Yes	No]			
Test Weldme				Position				Width (•	Thickness (T)
Groove	Pipe	1G	2G	5G	6G			Thickne		Diameter
	Plate	1G	2G	3G	4G			Thickne		
Fillet	Pipe	1F	2F	2FR	4F	5F		Thickne		Diameter
.	Plate	1F	2F	3F	4F			Thickne		
Cladding		1C	2C	3C	4C	5C	6C	Thickne		
Hardfacing		1C	2C	3C	4C	5C	6C	Thickne	SS	
Progression	Vertical Up	Vertical	Down							
TEST RESUL									REMARKS	
Visual Test	Pass _	Fail	N/A		_				[13]	
Macro Test	Pass _	Fail	N/A		_				[14]	
Break Test	Pass	Fail	N/A		_				[15]	
Visual Test	Pass	Fail	N/A		_				[16]	
Radiographic	Test Pass	Fail	N/A		_				[17]	
QUALIFICAT Process(es)	ION LIMITS									
Weldment				Position			Depos	ited Thic	kness	
Groove	Pipe	F	Н	V	0	All	t min.		t max.	Dia. min.
	Plate		Н	V	0	All	t min.		t max.	
Cladding		F	Н	V	0	All	t min.		t max.	
Hardfacing		F	Н		0	All	t min.		t max.	
Weldment				Position			Base I	Metal Thic	ckness	
Fillet	Pipe	F	Н	V	0	All	Т	min.	T max.	Dia. min.
	Plate	F		V	0	All	Т	min.	T max.	
Base Metal M	Vertical Up I No(s).		Down [18] [20]				-	OFW)		[19]
	Filler Metal F No(s)									
	ily AC ∐ DC		[21]					ode (GMA		[22]
We, the unde	rsigned, certify	that the s	tateme	ents in this	s record	are cor	ect.			
Date tested _			[23]			Qu	alifier sig	gnature _		[24]

Permission to reproduce granted by the American Welding Society.

APPENDIX II-B


Spectec, Inc.905 Ridge Way, Eastern, Somewhere 84328, xxx-yyy-zzzz, FAX xxx-yyy-zzzz

WELDER PERFORMANCE QUALIFICATION RECORD


WPS No. D1.1-3G-U-CJP-B-307 Welding Process FCAW Type Manual Specification or Code AWS D1.1:2000, Structural Welding Code-Steel Base Metal												
Specification or CodeAWS D1.1:2000, Structural Welding Code—Steel												
Base Metal												
Base Metal												
Material Spec/Type/Grade A 36 To: Material Spec/Type/Grade A	36											
Thickness Thickness Range Qualified Thickness Range Qualified Thickness	nlimited											
Base Metal Preparation Base metal shall be clean and free of moisture, oil, dirt, paint, coatings, rust, scale. etc. Cleaning shall leave no residue.												
Joint Welded Single V-Groove with steel backing												
Type of Weld Joint (See Figure 4.21, Test Plate for Unlimited Thickness)	// !											
	/4 in.											
Backing Type 1/4 x 1 in. Steel	ı strap											
Electrode 75 10 00 77 17 17 17 17 17 17 17 17 17 17 17 17	1 /1 CLL											
F No. 4 Specification A5.18 Classification E71T-1 Size Range	1/16th											
Filler Metal												
F No 4 Specification A5.18 Classification E71T-1 Size Range_	1/16th											
Preheat												
Preheat Interpass Temperature Max 400)°F											
Position												
Position Progression Up												
TEST RESULTS												
50	Radiographic Metallographic											
Visual Bends Radiographic Metallogra	aphic											
Visual Bends Hadiographic Metallogra Pass X Fail N/A Pass X Fail N/A X Pass Fail N/A X Pass Fail	aphic Fail											
Pass X Fail N/A Pass X Fail N/A X Pass Fail N/A X Pass	Fail _											
	Fail _											
Pass X Fail N/A Pass X Fail N/A X Pass Fail N/A X Pass Test conducted by Laboratory test no. per Test date	Fail _											
Pass X Fail N/A Pass X Fail N/A X Pass Fail N/A X Pass Test conducted by Laboratory test no. per Test date QUALIFIED FOR	Fail _											
Pass X Fail N/A Pass Fail N/A Pass Fail N/A Pass Test conducted by Laboratory test no. per Squalified FOR Base Metal Group No. Type Weld Current Backing Penetration	Fail Vertical											
Pass X Fail N/A Pass Fail N/A Pass Fail N/A Pass Test conducted by Laboratory test no. Test date QUALIFIED FOR Base Metal Group No. Type Weld Current Backing Penetration I(a) (Carbon and Low-Alloy Single Side X AC With X Complete X	Fail Vertical											
Pass X Fail N/A Pass Fail N/A Pass Fail N/A Pass Test conducted by Laboratory test no. Test date QUALIFIED FOR Base Metal Group No. Type Weld Current Backing Penetration I(a) (Carbon and Low-Alloy Single Side X AC With X Complete X Steel) DOLEN DOLEN Partial Partial	Fail Vertical											
Pass X Fail N/A Pass Fail N/A Pass Fail N/A Pass Test conducted by Laboratory test no. Test date QUALIFIED FOR Base Metal Group No. Type Weld Current Backing Penetration I(a) (Carbon and Low-Alloy Single Side X AC With X Complete X	Fail Vertical											
Pass X Fail N/A Pass Fail N/A Pass Fail N/A Pass Fail N/A Pass Test conducted by Laboratory test no. per Test date QUALIFIED FOR Base Metal Group No. Type Weld Current Backing Penetration I(a) (Carbon and Low-Alloy Single Side AC With A Complete A Steel) DCEN DOUBLE Side DOCEN Partial Partial DCEP DOCEN Open Root DOCEN Partial DCEP DOCEN DO	Vertical Down Up X											
Pass X Fail N/A Pass Fail N/A Pass Fail N/A Pass Fail N/A Pass Test conducted by Laboratory test no. Test date QUALIFIED FOR Base Metal Group No. Type Weld Current Backing Penetration I(a) (Carbon and Low-Alloy Single Side X AC With X Complete X Partial DCEN DOEP X Open Root Type Steel T, in. OD,	Vertical Down Up X , in.											
Pass X Fail N/A Pass Fail N/A Pass Fail N/A Pass Fail N/A Pass Test conducted by Laboratory test no. Per Test date QUALIFIED FOR	Vertical Down Up X											
Pass X Fail N/A Pass Fail N/A Pass Fail N/A Pass Fail N/A Pass Test conducted by Laboratory test no. per Test date QUALIFIED FOR Base Metal Group No. Type Weld Current Backing Penetration I(a) (Carbon and Low-Alloy Single Side X AC With X Complete X Type Steel DCEN Type Steel Partial DCEP X Open Root Position Min. Max. Min. Plate—Groove 1G X 2G X 3G X 4G 1/8 Unlimited	Vertical Down Up X in. Max.											
Pass x Fail	Fail Vertical Down Up X , in.											
Pass X Fail N/A Pass Fail N/A Pass Fail N/A Pass Fail N/A Pass Test conducted by Laboratory test no. Test date QUALIFIED FOR	Vertical Down Up X in. Max.											
Pass x Fail	Vertical Down Up X in. Max.											
Pass x Fail N/A x N/A x <t< td=""><td>Fail Vertical Down Up X in. Max. Unlimited</td></t<>	Fail Vertical Down Up X in. Max. Unlimited											

APPENDIX III

PREQUALIFIED COMPLETE JOINT PENETRATION GROOVE WELDED JOINTS

		Base Metal Thick	ness	Gi	roove Preparatio					
	Joint Designation	(U = unlimite		Root Opening	Tolera	ances	Allowed	Gas		
Welding Process		T ₁	T ₂	Root Face Groove Angle	As Detailed	As Fitup	Welding Positions	Shielding for FCAW	Notes	
SMAW	B-U2	U —		R = 0 to 1/8 f = 0 to 1/8 α = 60°	+1/16, -0 +1/16, -0 +10°, -0° +10°, -5° +1/16, -1/8 Not limited +10°, -5°		All	_	2, 3, 4	
GMAW FCAW	B-U2-GF	U		R = 0 to 1/8 f = 0 to 1/8 α = 60°	+1/16, -0 +1/16, -0 +10°, -0°	+1/16, -1/8 Not limited +10°, -5°	All	Not required	1, 2, 4	
		Over 1/2 to 1	1	$R = 0$ $f = 1/4 \text{ max}$ $\alpha = 60^{\circ}$						
SAW	B-L2c-S	Over 1 to 1-1/2		$R = 0$ $f = 1/2 \text{ max}$ $\alpha = 60^{\circ}$	R = ±0 f = +0, -f α = +10°, -0°	+1/16, -0 ±1/16 +10°, -5°	F	_	2, 4	
		Over 1-1/2 to 2		$R = 0$ $f = 5/8 \text{ max}$ $\alpha = 60^{\circ}$						

Welding	Joint	Base Metal Thickness (U = unlimited)		Groove P	reparation	Allowed Welding	Gas Shielding	
Process	Designation	T ₁	T ₂	Root Opening	Groove Angle	Positions	for FCAW	Notes
				R = 1/4	$\alpha = 45^{\circ}$	All	_	3, 4
SMAW	B-U2a	U	_	R = 3/8	$\alpha = 30^{\circ}$	F, V, OH	_	3, 4
				R = 1/2	$\alpha = 20^{\circ}$	F, V, OH	_	3, 4
GMAW				R = 3/16	$\alpha = 30^{\circ}$	F, V, OH	Required	1, 4
FCAW	B-U2a-GF	U	_	R = 3/8	$\alpha = 30^{\circ}$	F, V, OH	Not req.	1, 4
I OAW				R = 1/4	$\alpha = 45^{\circ}$	F, V, OH	Not req.	1, 4
SAW	B-L2a-S	2 max	_	R = 1/4	$\alpha = 30^{\circ}$	F	_	4
SAW	B-U2-S	U	_	R = 5/8	$\alpha = 20^{\circ}$	F	_	4

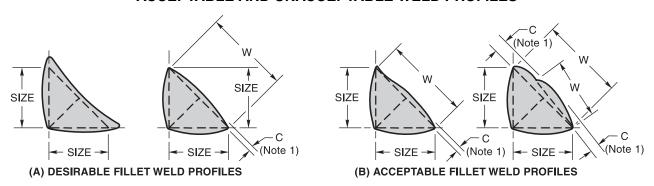
Notes:

- Not prequalified for GMAW-S nor GTAW.
 Backgouge root to sound metal before welding second side.
 SMAW detailed joints may be used for prequalified GMAW (except GMAW-S) and FCAW.
 The orientation of the two members in the joints may vary from 135° to 180° for butt joints, or 45° to 135° for corner joints, or 45° to 90° for an interpretable or the points of the two members in the joints may vary from 135° to 180° for butt joints, or 45° to 135° for corner joints, or 45° to 90° for an interpretable or the points of the two members in the joints may vary from 135° to 180° for butt joints, or 45° to 135° for corner joints, or 45° to 90° for an interpretable or the points or th T-joints.

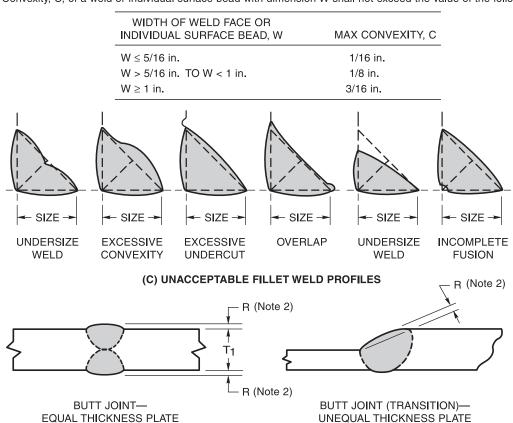
APPENDIX IV

PIPE SCHEDULES

Pipe Size	O.D. (in.)	5s	5	10s	10	20	30	40s Std.	40	60	80s & E.H.	80	100	120	140	160	Dble. E.H.
1/8	0.405		0.035 0.1383	0.049 0.1863	0.049 0.1863			0.068 0.2447	0.068 0.2447		0.095 0.3145	0.095 0.3145					
1/4	0.540		0.049 0.2570	0.065 0.3297	0.065 0.3297			0.088 0.4248	0.088 0.4248		0.119 0.5351	0.119 0.5351					
3/8	0.675		0.049 0.3276	0.065 0.4235	0.065 0.4235			0.091 0.5676	0.091 0.5676		0.126 0.7388	0.126 0.7388					
1/2	0.840	0.065 0.5383	0.065 0.5383	0.083 0.6710	0.083 0.6710			0.109 0.8510	0.109 0.8510		0.147 1.088	0.147 1.088				0.188 1.304	0.294 1.714
3/4	1.050	0.065 0.6838	0.065 0.6838	0.083 0.8572	0.083 0.8572			0.113 1.131	0.113 1.131		0.154 1.474	0.154 1.474				0.219 1.937	0.308 2.441
1	1.315	0.065 0.8678	0.065 0.8678	0.109 1.404	0.109 1.404			0.133 1.679	0.133 1.679		0.179 2.172	0.179 2.172				0.250 2.844	0.358 3.659
1-1/4	1.660	0.065 1.107	0.065 1.107	0.109 1.806	0.109 1.806			0.140 2.273	0.140 2.273		0.191 2.997	0.191 2.997				0.250 3.765	0.382 5.214
1-1/2	1.900	0.065 1.274	0.065 1.274	0.109 2.085	0.109 2.085			0.145 2.718	0.145 2.718		0.200 3.631	0.200 3.631				0.281 4.859	0.400 6.408
2	2.375	0.065 1.604	0.065 1.604	0.109 2.638	0.109 2.638			0.154 3.653	0.154 3.653		0.218 5.022	0.218 5.022				0.344 7.444	0.436 9.029
2-1/2	2.875	0.083 2.475	0.083 2.475	0.120 3.531	0.120 3.531			0.203 5.793	0.203 5.793		0.276 7.661	0.276 7.661				0.375 10.01	0.552 13.70
3	3.500	0.083 3.029	0.083 3.029	0.120 4.332	0.120 4.332			0.216 7.576	0.216 7.576		0.300 10.25	0.300 10.25				0.438 14.32	0.600 18.58
3-1/2	4.000	0.083 3.472	0.083 3.472	0.120 4.973	0.120 4.973			0.226 9.109	0.226 9.109		0.318 12.51	0.318 12.51					0.636 22.85
4	4.500	0.083 3.915	0.083 3.915	0.120 5.613	0.120 5.613			0.237 10.79	0.237 10.79	0.281 12.66	0.337 14.98	0.337 14.98		0.438 19.01		0.531 22.51	0.674 27.54
4-1/2	5.000							0.247 12.53			0.355 17.61						0.710 32.53
5	5.563	0.109 6.349	0.109 6.349	0.134 7.770	0.134 7.770			0.238 14.62	0.258 14.62		0.375 20.78	0.375 20.78		0.500 27.04		0.625 32.96	0.750 38.55
6	6.625	0.109 7.585	0.109 7.585	0.134 9.290	0.134 9.289			0.280 18.97	0.280 18.97		0.432 28.57	0.432 28.57		0.562 36.39		0.719 45.30	0.864 43.16
7	7.625							0.301 23.57			0.500 38.05						0.875 63.08
8	8.625	0.109 9.914	0.109 9.914	0.148 13.40	0.148 13.40	0.250 22.36	0.277 24.70	0.322 28.55	0.322 28.55	0.406 35.64	0.500 43.39	0.500 43.39	0.594 50.87	0.719 60.93	0.812 67.76	0.906 74.69	0.875 72.42
9	9.625							0.342 33.90			0.500 48.72						
10	10.750	0.134 15.19	0.134 15.19	0.165 18.65	0.165 18.70	0.250 28.04	0.307 34.24	0.365 40.48	0.365 40.48	0.500 54.74	0.500 54.74	0.594 64.33	0.719 76.93	0.844 89.20	1.000 104.1	1.125 115.7	
11	11.750							0.375 45.55			0.500 60.07						
12	12.750	0.156 21.07	0.165 22.18	0.180 24.16	0.180 24.20	0.250 33.38	0.330 43.77	0.375 49.56	0.406 53.33	0.562 73.16	0.500 65.42	0.688 88.51	0.844 107.2	1.000 125.5	1.125 139.7	1.312 160.3	
14	14.000	0.156 23.07		0.188 27.73	0.250 36.71	0.312 45.68	0.375 54.57	0.375 54.57	0.438 63.37	0.594 84.91	0.500 72.09	0.750 106.1	0.938 130.7	1.094 150.7	1.250 170.2	1.406 189.1	
16	16.000	0.165 27.90		0.188 31.75	0.250 42.05	0.312 52.36	0.375 62.58	0.375 62.58	0.500 82.77	0.656 107.5	0.500 82.77	0.844 136.5	1.031 164.8	0.129 192.3	1.438 223.5	1.594 245.1	
18	18.000	0.165 31.43		0.188 35.76	0.250 47.39	0.312 59.03	0.438 82.06	0.375 70.59	0.562 104.8	0.750 138.2	0.500 93.45	0.938 170.8	1.156 208.0	1.375 244.1	1.562 274.2	1.781 308.5	
20	20.000	0.188 39.78		0.218 46.05	0.250 52.73	0.375 78.60	0.500 104.1	0.375 78.60	0.594 122.9	0.812 166.4	0.500 104.1	1.031 208.9	1.281 256.1	1.500 296.4	1.750 341.1	1.969 379.0	
24	24.000	0.218 55.37		0.250 63.41	0.250 63.41	0.375 94.62	0.562 140.8	0.375 94.62	0.688 171.2	0.969 238.1	0.500 125.5	1.219 296.4	1.531 367.4	1.812 429.4	2.062 483.1	2.343 541.9	

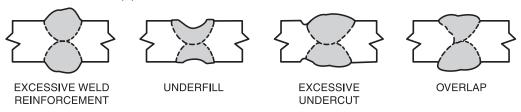

UPPER FIGURES Wall Thickness in inches

DIMENSIONS AND WEIGHTS OF SEAMLESS AND WELDED STEEL PIPE


LOWER FIGURES Weight per foot in pounds

APPENDIX V

ACCEPTABLE AND UNACCEPTABLE WELD PROFILES



Note 1. Convexity, C, of a weld or individual surface bead with dimension W shall not exceed the value of the following table:

Note 2. Reinforcement R shall not exceed 1/8 in.

(D) ACCEPTABLE GROOVE WELD PROFILE IN BUTT JOINT

(E) UNACCEPTABLE GROOVE WELD PROFILES IN BUTT JOINTS

APPENDIX VI

WELD PROFILE ACCEPTANCE DESCRIPTION

- (1) The faces of fillet welds may be slightly convex, flat, or slightly concave as shown in Appendix V (A) and (B), with none of the unacceptable profiles shown in (C). Except at outside corner joints, the convexity, C, of a weld or individual surface bead with dimension W, shall not exceed the values noted in the table in Appendix V.
- (2) Groove welds shall preferably be made with slight or minimum reinforcement except as may be otherwise provided. In the case of butt and corner joints, the reinforcement shall not exceed 1/8 in. (3.2 mm) in height and shall have gradual transition to the plane of the base metal surface. See Appendix V. They shall be free of the discontinuities shown for butt joints in (E).
- (3) Surfaces of groove welds required to be flush shall be finished so as not to reduce the thickness of the thinner base metal or weld metal by more than 1/32 in. (0.8 mm) or 5% of the thickness, whichever is smaller, nor leave reinforcement that exceeds 1/32 in. However, all reinforcement must be removed where the weld forms part of a faying or contact surface. Any reinforcement must blend smoothly into the plate surfaces with transition areas free from weld undercut. Chipping may be used provided it is followed by grinding. Where surface finishing is required, its roughness value shall not exceed 250 μin. (6.3 μm). Surfaces finished to values of over 125 μin. (3.2 μm) through 250 μin. shall be finished so that the grinding marks are parallel to the direction of primary stress. Surfaces finished to values of 125 μin. or less may be finished in any direction.
- (4) Ends of groove welds required to be flush shall be finished so as not to reduce the width beyond the detailed width or the actual width furnished, whichever is greater, by more than 1/8 in. (3.2 mm) or so as not to leave reinforcement at each end that exceeds 1/8 in. (3.2 mm). Ends of welds in butt joints shall be faired to adjacent plate or shape edges at a slope not to exceed 1 in 10.
- (5) Welds shall be free from overlap.

APPENDIX VII

VISUAL WELD INSPECTION ACCEPTANCE CRITERIA

Slag shall be removed from all completed welds. All welds and the adjacent base metal shall be cleaned by brushing or by any other suitable means prior to visual inspection. All welds shall meet visually acceptance criteria prior to any non-destructive or destructive testing. To be visually acceptable, a weld shall meet the following criteria:

- (1) The weld has no cracks.
- (2) Thorough fusion exists between adjacent layers of weld metal and between weld metal and base metal.
- (3) All craters are filled to the full cross section of the weld.
- (4) Weld profiles are in accordance with Appendixes V and VI.
- (5) When the weld is transverse to the primary stress in the part that is undercut, the undercut shall be no more than 0.010 in. (0.25 mm) deep.
- (6) When the weld is parallel to the primary stress in the part that is undercut, the undercut shall be no more than 1/32 in. (0.80 mm) deep.
- (7) The sum of the diameters of visible porosity shall not exceed 3/8 in. (9.5 mm) in any linear inch of weld nor shall the sum exceed 3/4 in. (19.0 mm) in any 12 in. (305 mm) length of weld.
- (8) Any single continuous fillet weld shall be permitted to underrun the nominal fillet weld size specified by 1/16 in. (1.6 mm).
- (9) Visual inspections of welds in all steels may begin immediately after the completed welds have cooled to ambient temperature. Final visual inspection for ASTM A 514 and A 517 steel welds shall be performed not less than 48 hours after completion of the weld and removal of preheat.
- (10) Arc strikes outside the weld groove are prohibited.

APPENDIX VIII

TEST RESULTS REQUIRED, GUIDED BENDS

All Guided Bend Tests. The convex surface of the bend test specimen shall be visually examined for surface discontinuities. For acceptance, the surface shall meet the following criteria:

- (1) No single discontinuity shall exceed 1/8 in. (3.2 mm) measured in any direction.
- (2) The sum of the greatest dimensions of all discontinuities exceeding 1/32 in. (0.8 mm) but less than or equal to 1/8 in. (3.2 mm) shall not exceed 3/8 in. (9.5 mm).
- (3) Corner cracks shall not exceed 1/4 in. (6.4 mm) unless the crack results from a visible slag inclusion or other fusion type discontinuities, then the 1/8 in. (3.2 mm) maximum shall apply.

The specimens with corner cracks exceeding 1/4 in. (6.4 mm) with no evidence of slag inclusions or other fusion type discontinuities shall be disregarded, and a replacement test specimen from the original weldment shall be tested.

APPENDIX IX

WELD METAL ANALYSIS

A-NUMBERS Classification of Ferrous Weld Metal Analysis for Procedure Qualification

			Analysis, % [Note (1)]									
A-No.	Types of Weld Deposit	С	Cr	Мо	Ni	Mn	Si					
1	Mild Steel	0.15	_	_	_	1.60	1.00					
2	Carbon-Molybdenum	0.15	0.50	0.40-0.65	_	1.60	1.00					
3	Chrome (0.4% to 2%)–Molybdenum	0.15	0.40-2.00	0.40-0.65	_	1.60	1.00					
4	Chrome (2% to 6%)–Molybdenum	0.15	2.00-6.00	0.40-1.50	_	1.60	2.00					
5	Chrome (6% to 10.5%)–Molybdenum	0.15	6.00-10.50	0.40-1.50	_	1.20	2.00					
6	Chrome-Martensitic	0.15	11.00–15.00	0.70	_	2.00	1.00					
7	Chrome–Ferritic	0.15	11.00–30.00	1.00	_	1.00	3.00					
8	Chromium-Nickel	0.15	14.50-30.00	4.00	7.50–15.00	2.50	1.00					
9	Chromium-Nickel	0.30	25.00-30.00	4.00	15.00–37.00	2.50	1.00					
10	Nickel to 4%	0.15	_	0.55	0.80-4.00	1.70	1.00					
11	Manganese-Molybdenum	0.17	_	0.25-0.75	0.85	1.25–2.25	1.00					
12	Nickel-Chrome-Molybdenum	0.15	1.50	0.25-0.80	1.25–2.80	0.75–2.25	1.00					

NOTE:

(1) Single values shown above are maximum.

APPENDIX X

ELECTRODE GROUPS

F-NUMBERS Grouping of Electrodes and Welding Rods for Qualification

Steel	F-No.	AWS Specification	AWS Classification
1 A5.4 EXXX(X)-25, EXXX(X)-26 1 A5.5 EXX20-XX, EXX27-XX 2 A5.1 EXX12, EXX13, EXX14, EXX19 2 A5.5 E(X)XX13-XX 3 A5.1 EXX10, EXX11 3 A5.5 E(X)XX10-XX, E(X)X11-XX 4 A5.1 EXX15, EXX16, EXX18, EXX18M, EXX48 4 A5.4 other than austenitic and duplex EXXX(X)-15, EXXX(X)-16, EXXX(X)-17 4 A5.5 E(X)XX15-XX, E(X)X16-XX, E(X)XX18-XX, E(X)XX18M, E(X)XX18M1 5 A5.4 austenitic and duplex EXXX(X)-15, EXXX(X)-16, EXXX(X)-17 6 A5.2 RX 6 A5.9 ERXXX(XXX), ECXXX(XXX), EQXXX(XXX) 6 A5.17 FXXX-EXX, FXXX-ECX 6 A5.18 ERXXS-X, EXXC-X, EXXC-XX 6 A5.20 EXXT-X, EXXT-XM 6 A5.20 EXXT-X, EXXX-XN 6 A5.23 FXXX-EXXX-X, FXXX-ECXXX-X 6 A5.23 FXXX-EXXX-X, FXXX-ECXXX-X 6 A5.26 EGXXS-X, EGXXT-X 6 A5.28			Steel
1 A5.5 EXX20-XX, EXX27-XX 2 A5.1 EXX12, EXX13, EXX14, EXX19 2 A5.5 E(X)XX13-XX 3 A5.1 EXX10, EXX11 4 A5.1 EXX15, EXX16, EXX18, EXX18M, EXX48 4 A5.4 other than austenitic and duplex EXXX(X)-15, EXXX(X)-16, EXXX(X)-17 4 A5.5 E(X)XX15-XX, E(X)XX16-XX, E(X)XX18-XX, E(X)XX18M, E(X)XX18M1 5 A5.4 austenitic and duplex EXXX(X)-15, EXXX(X)-16, EXXX(X)-17 6 A5.2 RX 6 A5.9 ERXXX(XXX), ECXXX(XXX), EQXXX(XXX) 6 A5.17 FXXX-EXX, FXXX-ECX 6 A5.18 ERXXS-X, EXXC-X, EXXC-XX 6 A5.20 EXXTX, EXXT-XM 6 A5.22 EXXXTX-X, RXXXT-1-5 6 A5.23 FXXX-EXXX-X, FXXX-ECXX-X 6 A5.23 FXXX-EXXX-X, FXXX-ECXX-X 6 A5.23 FXXX-EXXX, FXXX-ECXX-X 6 A5.26 EGXXS-X, EGXXT-X 6 A5.28 ERXX-EXXX, EXXX-EXXX 6 A5.30	1	A5.1	EXX20, EXX22, EXX24, EXX27, EXX28
2 A5.1 EXX12, EXX13, EXX14, EXX19 2 A5.5 E(X)XX13-XX 3 A5.1 EXX10, EXX11 3 A5.5 E(X)XX10-XX, E(X)XX11-XX 4 A5.1 EXX15, EXX16, EXX18, EXX18M, EXX48 4 A5.4 other than austenitic and duplex 5 E(X)XX15-XX, E(X)XX16-XX, E(X)XX18-XX, E(X)XX18M, E(X)XX18M1 5 A5.4 austenitic and duplex 6 EXXX(X)-15, EXXX(X)-16, EXXX(X)-17 6 A5.2 RX 6 A5.9 ERXXX(XXX), ECXXX(XXX), EQXXX(XXX) 6 A5.17 FXXX-EXX, FXXX-EXX 6 A5.18 ERXXS-X, EXXC-X, EXXC-XX 6 A5.20 EXXT-X, EXXT-XM 6 A5.20 EXXT-X, EXXT-XM 6 A5.23 FXXX-EXXX-X, FXXX-ECXX-X 6 A5.23 FXXX-EXXX-X, FXXX-ECXXX-X 6 A5.26 EGXXS-X, EGXXT-X 6 A5.26 EGXXS-X, EGXXT-X 6 A5.27 ESXX-EXXX-X, FXXX-ECXXX-X 7 ESXX-EXXX-X, FXXX-ECXXX-X 8 A5.28 ERXXS-XXX, EXXC-XX 9 A5.29 EXXT-X 9 A1.00 ERXT-X	1	A5.4	EXXX(X)-25, EXXX(X)-26
2 A5.5 E(X)XX13-XX 3 A5.1 EXX10, EXX11 3 A5.5 E(X)XX10-XX, E(X)XX11-XX 4 A5.1 EXX15, EXX16, EXX18, EXX18M, EXX48 4 A5.1 EXX15, EXX16, EXX18, EXX18M, EXX48 5 A5.4 other than austenitic and duplex 6 EXXX(X)-15, EXXX(X)-16, EXXX(X)-17 6 A5.2 EXXX(X)-15, EXXX(X)-16, EXXX(X)-17 6 A5.9 ERXXX(XX), ECXXX(XX), EQXXX(XXX) 6 A5.17 FXXX-EXX, FXXX-EX 6 A5.18 ERXXS-X, EXXC-X, EXXC-XX 6 A5.20 EXXT-X, EXXX-X-X 6 A5.23 FXXX-EXXX-X, FXXX-ECXX-X 6 A5.23 FXXX-EXXX-X, FXXX-ECXXX-X 6 A5.23 FXXX-EXXX-X, FXXX-ECXXX-X 6 A5.26 EGXXS-X, EGXXT-X 6 A5.26 EGXXS-X, EGXXT-X 6 A5.28 ERXXS-XXX, EXXC-XXX 6 A5.29 EXXTX-X 6 A5.29 EXXTX-X 6 A5.29 EXXTX-X 6 A5.20 EXXTX-X 6 A5.20 ERXXS-X, EXXC-XXX 6 A5.21 FXXX-EXXX-X, EXXX-EXXX-X 7 EXXX-EXXX-X EXXX-X 8 EXXX-EXXX-X EXXX-X 9 EXXX-EXXX-X 9 EXXX-X EXXX-X 9 EXXX-X EXXX-X 9 EXXX-X	1	A5.5	EXX20-XX, EXX27-XX
3 A5.1 EXX10, EXX11 3 A5.5 E(X)XX10-XX, E(X)XX11-XX 4 A5.1 EXX15, EXX16, EXX18, EXX18M, EXX48 4 A5.4 other than austenitic and duplex 5 A5.5 E(X)XX15-XX, E(X)XX16-XX, E(X)XX18-XX, E(X)XX18M, E(X)XX18M1 5 A5.4 austenitic and duplex EXXX(X)-15, EXXX(X)-16, EXXX(X)-17 6 A5.2 RX 6 A5.9 ERXX(XXX), ECXXX(XXX), EQXXX(XXX) 6 A5.17 FXXX-EXX, FXXX-ECX 6 A5.18 ERXXS-X, EXXC-X, EXXC-XX 6 A5.20 EXXT-X, EXXT-XM 6 A5.22 EXXXTX-X, RXXXT1-5 6 A5.23 FXXX-EXXX-X, FXXX-ECXX-X 6 A5.23 FXXX-EXXX-X, FXXX-ECXX-X 6 A5.23 FXXX-EXXX-X, FXXX-ECXXX-X 6 A5.26 EGXXS-X, EGXXT-X 6 A5.26 EGXXS-X, EGXXT-X 6 A5.26 EGXXS-X, EGXXT-X 6 A5.29 EXXTX-X 6 A5.29 EXXTX-X 6 A5.20 EXXTX-X 6 A5.20 EXXTX-X 6 A5.21 EXXX-EXXX-X 7	2	A5.1	EXX12, EXX13, EXX14, EXX19
3 A5.5 E(X)XX10-XX, E(X)XX11-XX 4 A5.1 EXX15, EXX16, EXX18, EXX18M, EXX48 4 A5.4 other than austenitic and duplex EXXX(X)-15, EXXX(X)-16, EXXX(X)-17 5 A5.5 E(X)XX15-XX, E(X)XX16-XX, E(X)XX18-XX, E(X)XX18M, E(X)XX18M1 5 A5.4 austenitic and duplex EXXX(X)-15, EXXX(X)-16, EXXX(X)-17 6 A5.2 RX 6 A5.9 ERXXX(XXX), ECXXX(XXX), EQXXX(XXX) 6 A5.17 FXXX-EXX, FXXX-ECX 6 A5.18 ERXXS-X, EXXC-X, EXXC-XX 6 A5.20 EXXTX, EXXT-XM 6 A5.21 EXXXX-XX, EXXX-XX, EXXX-XX 6 A5.22 EXXXT-X, RXXXT1-5 6 A5.23 FXXX-EXXX-X, FXXX-ECXXX-X 6 A5.23 FXXX-EXXX, FXXX-ECXXX-X 6 A5.25 FESXX-EXXX, FESXX-EWXX 6 A5.26 EGXXS-X, EGXT-X 6 A5.29 EXXTX-X 6 A5.29 EXXTX-X 6 A5.30 INXXX Aluminum and Aluminum Alloys	2	A5.5	E(X)XX13-XX
4 A5.1 EXX15, EXX16, EXX18, EXX18M, EXX48 4 A5.4 other than austenitic and duplex EXXX(X)-15, EXXX(X)-16, EXXX(X)-17 5 A5.4 austenitic and duplex EXXX(X)-15, EXXX(X)-16, EXXX(X)-17 6 A5.2 RX 6 A5.9 ERXXX(XXX), ECXXX(XXX), EQXXX(XXX) 6 A5.17 FXXX-EXX, FXXX-ECX 6 A5.18 ERXXS-X, EXXC-X, EXXC-XX 6 A5.20 EXXT-X, EXXT-XM 6 A5.22 EXXXTX-X, RXXX-1-5 6 A5.23 FXXX-EXXX-X, FXXX-ECXXX-X 6 A5.23 FXXX-EXXX-X, FXXX-ECXXX-XN 6 A5.25 FESXX-EXXX, FESXX-EWXX 6 A5.26 EGXXS-X, EGXXT-X 6 A5.29 EXXTX-X 6 A5.29 EXXTX-X 6 A5.30 INXXX Aluminum and Aluminum Alloys 21 A5.3 E1100, E3003 21 A5.10 ER5183, R5183, ER5356, R5356, ER5554, R5554, ER5556, ER5556, ER5654, R5656	3	A5.1	EXX10, EXX11
4 A5.4 other than austenitic and duplex EXXX(X)-15, EXXX(X)-16, EXXX(X)-17 4 A5.5 E(X)XX15-XX, E(X)XX16-XX, E(X)XX18-XX, E(X)XX18M, E(X)XX18M1 5 A5.4 austenitic and duplex EXXX(X)-15, EXXX(X)-16, EXXX(X)-17 6 A5.2 RX 6 A5.9 ERXXX(XXX), ECXXX(XXX), EQXXX(XXX) 6 A5.17 FXXX-EXX, FXXX-ECX 6 A5.18 ERXXS-X, EXXC-X, EXXC-XX 6 A5.20 EXXT-X, EXXT-XM 6 A5.22 EXXXTX-X, FXXX-ECXXX-X 6 A5.23 FXXX-EXXX-X, FXXX-ECXXX-X 6 A5.23 FXXX-EXXX-X, FXXX-ECXXX-XN 6 A5.25 FESXX-EXXX, FESXX-EWXX 6 A5.26 EGXXS-X, EGXXT-X 6 A5.29 EXXTX-X 6 A5.29 EXXTX-X 6 A5.30 INXXX Aluminum and Aluminum Alloys 21 A5.3 E1100, E3003 21 A5.10 ER1100, R1100, ER1188, R1188 22 A5.10 ER5183, R5183, ER5356, R5356, ER5554, R	3	A5.5	E(X)XX10-XX, E(X)XX11-XX
and duplex 4 A5.5 E(X)XX15-XX, E(X)XX16-XX, E(X)XX18-XX, E(X)XX18M, E(X)XX18M1 5 A5.4 austenitic and duplex EXXX(X)-15, EXXX(X)-16, EXXX(X)-17 6 A5.2 RX 6 A5.9 ERXXX(XXX), ECXXX(XXX), EQXXX(XXX) 6 A5.17 FXXX-EXX, FXXX-ECX 6 A5.18 ERXXS-X, EXXC-X, EXXC-XX 6 A5.20 EXXT-X, EXXT-XM 6 A5.21 EXXXT-X, EXXX-X 6 A5.22 EXXXTX-X, FXXX-ECXXX-X 6 A5.23 FXXX-EXXX-X, FXXX-ECXXX-X 6 A5.23 FXXX-EXXX, FXXX-ECXXX-XN 6 A5.25 FESXX-EXXX, FESXX-EWXX 6 A5.26 EGXXS-X, EGXXT-X 6 A5.28 ERXXS-XXX, EXXC-XXX 6 A5.29 EXXTX-X 6 A5.30 INXXX Aluminum and Aluminum Alloys 21 A5.3 E1100, E3003 21 A5.10 ER5183, R5183, ER5356, ER5554, R5554, ER5556, ES556, ER5654, R566	4	A5.1	EXX15, EXX16, EXX18, EXX18M, EXX48
5 A5.4 austenitic and duplex EXXX(X)-15, EXXX(X)-16, EXXX(X)-17 6 A5.2 RX 6 A5.9 ERXXX(XXX), ECXXX(XXX), EQXXX(XXX) 6 A5.17 FXXX-EXX, FXXX-ECX 6 A5.18 ERXXS-X, EXXC-X, EXXC-XX 6 A5.20 EXXT-X, EXXT-XM 6 A5.22 EXXXT-X, RXXX-ECXXX-X 6 A5.23 FXXX-EXXX-X, FXXX-ECXXX-X 6 A5.23 FXXX-EXXX-XN, FXXX-ECXXX-XN 6 A5.25 FESXX-EXXX, FESXX-EWXX 6 A5.26 EGXXS-X, EGXXT-X 6 A5.28 ERXXS-XXX, EXXC-XXX 6 A5.29 EXXTX-X 6 A5.30 INXXX Aluminum and Aluminum Alloys 21 A5.3 E1100, E3003 21 A5.10 ER5183, R5183, ER5356, ER5554, R5554, ER5556, R5556, ER5654, R566	4		EXXX(X)-15, EXXX(X)-16, EXXX(X)-17
6 A5.2 RX 6 A5.9 ERXXX(XXX), ECXXX(XXX), EQXXX(XXX) 6 A5.17 FXXX-EXX, FXXX-EX 6 A5.18 ERXXS-X, EXXC-X, EXXC-XX 6 A5.20 EXXT-X, EXXT-XM 6 A5.22 EXXTX-X, RXXXT1-5 6 A5.23 FXXX-EXXX-X, FXXX-ECXX-X 6 A5.23 FXXX-EXXX-X, FXXX-ECXXX-X 6 A5.23 FXXX-EXXX-XN, FXXX-ECXXX-XN 6 A5.25 FESXX-EXXX, FESXX-EWXX 6 A5.26 EGXXS-X, EGXXT-X 6 A5.28 ERXXS-XXX, EXXC-XXX 6 A5.29 EXXTX-X 1 A5.29 EXXTX-X 1 A5.30 INXXX	4	A5.5	E(X)XX15-XX, E(X)XX16-XX, E(X)XX18-XX, E(X)XX18M, E(X)XX18M1
6 A5.9 ERXXX(XXX), ECXXX(XXX), EQXXX(XXX) 6 A5.17 FXXX-EXX, FXXX-ECX 6 A5.18 ERXXS-X, EXXC-X, EXXC-XX 6 A5.20 EXXT-X, EXXT-XM 6 A5.22 EXXXT-X, RXXXT1-5 6 A5.23 FXXX-EXXX-X, FXXX-ECXXX-X 6 A5.23 FXXX-EXXX-XN, FXXX-ECXXX-XN 6 A5.25 FESXX-EXXX, FESXX-EWXX 6 A5.26 EGXXS-X, EGXXT-X 6 A5.28 ERXXS-XXX, EXXC-XXX 6 A5.29 EXXTX-X 6 A5.30 INXXX Aluminum and Aluminum Alloys 21 A5.3 E1100, E3003 21 A5.10 ER1100, R1100, ER1188, R1188 22 A5.10 ER5183, R5183, ER5356, ER5554, ER5554, ER5556, ER5556, ER5654, R566	5	A5.4 austenitic and duplex	EXXX(X)-15, EXXX(X)-16, EXXX(X)-17
6 A5.17 FXXX-EXX, FXXX-ECX 6 A5.18 ERXXS-X, EXXC-X, EXXC-XX 6 A5.20 EXXT-X, EXXT-XM 6 A5.22 EXXTX-X, RXXXT1-5 6 A5.23 FXXX-EXXX-X, FXXX-ECXXX-X 6 A5.23 FXXX-EXXX-XN, FXXX-ECXXX-XN 6 A5.25 FESXX-EXXX, FESXX-EWXX 6 A5.26 EGXXS-X, EGXXT-X 6 A5.28 ERXXS-XXX, EXXC-XXX 6 A5.29 EXXTX-X 6 A5.30 INXXX Aluminum and Aluminum Alloys 21 A5.3 E1100, E3003 21 A5.10 ER5183, R5183, ER5356, R5356, ER5554, ER5556, R5556, ER5654, R565	6	A5.2	RX
6 A5.18 ERXXS-X, EXXC-X, EXXC-XX 6 A5.20 EXXT-X, EXXT-XM 6 A5.22 EXXXTX-X, RXXXT1-5 6 A5.23 FXXX-EXXX-X, FXXX-ECXXX-X 6 A5.23 FXXX-EXXX-XN, FXXX-ECXXX-XN 6 A5.25 FESXX-EXXX, FESXX-EWXX 6 A5.26 EGXXS-X, EGXXT-X 6 A5.28 ERXXS-XXX, EXXC-XXX 6 A5.29 EXXTX-X 6 A5.30 INXXX Aluminum and Aluminum Alloys 21 A5.3 E1100, E3003 21 A5.10 ER1100, R1100, ER1188, R1188 22 A5.10 ER5183, R5183, ER5356, R5556, ER5554, R5556, ER5654, R565	6	A5.9	ERXXX(XXX), ECXXX(XXX), EQXXX(XXX)
6 A5.20 EXXT-X, EXXT-XM 6 A5.22 EXXXTX-X, RXXXT1-5 6 A5.23 FXXX-EXXX-X, FXXX-ECXXX-X 6 A5.23 FXXX-EXXX-XN, FXXX-ECXXX-XN 6 A5.25 FESXX-EXXX, FESXX-EWXX 6 A5.26 EGXXS-X, EGXXT-X 6 A5.28 ERXXS-XXX, EXXC-XXX 6 A5.29 EXXTX-X 6 A5.30 INXXX Aluminum and Aluminum Alloys 21 A5.3 E1100, E3003 21 A5.10 ER1100, R1100, ER1188, R1188 22 A5.10 ER5183, R5183, ER5356, R5356, ER5554, ES556, ES556, ER5654, R565	6	A5.17	FXXX-EXX, FXXX-ECX
6 A5.22 EXXXTX-X, RXXXT1-5 6 A5.23 FXXX-EXXX-X, FXXX-ECXXX-X 6 A5.23 FXXX-EXXX-XN, FXXX-ECXXX-XN 6 A5.25 FESXX-EXXX, FESXX-EWXX 6 A5.26 EGXXS-X, EGXXT-X 6 A5.28 ERXXS-XXX, EXXC-XXX 6 A5.29 EXXTX-X 6 A5.30 INXXX Aluminum and Aluminum Alloys 21 A5.3 E1100, E3003 21 A5.10 ER1100, R1100, ER1188, R1188 22 A5.10 ER5183, R5183, ER5356, R5356, ER5554, R5556, ER5654, R565	6	A5.18	ERXXS-X, EXXC-XX
6 A5.23 FXXX-EXXX-X, FXXX-ECXXX-X 6 A5.23 FXXX-EXXX-XN, FXXX-ECXXX-XN 6 A5.25 FESXX-EXXX, FESXX-EWXX 6 A5.26 EGXXS-X, EGXXT-X 6 A5.28 ERXXS-XXX, EXXC-XXX 6 A5.29 EXXTX-X 6 A5.30 INXXX Aluminum and Aluminum Alloys 21 A5.3 E1100, E3003 21 A5.10 ER1100, R1100, ER1188, R1188 22 A5.10 ER5183, R5183, ER5356, R5356, ER5554, ER5556, R5556, ER5654, R565	6	A5.20	EXXT-X, EXXT-XM
6 A5.23 FXXX-EXXX-XN, FXXX-ECXXX-XN 6 A5.25 FESXX-EXXX, FESXX-EWXX 6 A5.26 EGXXS-X, EGXXT-X 6 A5.28 ERXXS-XXX, EXXC-XXX 6 A5.29 EXXTX-X 6 A5.30 INXXX Aluminum and Aluminum Alloys 21 A5.3 E1100, E3003 21 A5.10 ER1100, R1100, ER1188, R1188 22 A5.10 ER5183, R5183, ER5356, R5356, ER5554, R5556, R5556, ER5654, R565	6	A5.22	EXXXTX-X, RXXXT1-5
6 A5.25 FESXX-EXXX, FESXX-EWXX 6 A5.26 EGXXS-X, EGXXT-X 6 A5.28 ERXXS-XXX, EXXC-XXX 6 A5.29 EXXTX-X 6 A5.30 INXXX Aluminum and Aluminum Alloys 21 A5.3 E1100, E3003 21 A5.10 ER1100, R1100, ER1188, R1188 22 A5.10 ER5183, R5183, ER5356, R5356, ER5554, R5556, R5556, ER5654, R565	6	A5.23	FXXX-EXXX-X, FXXX-ECXXX-X
6 A5.26 EGXXS-X, EGXXT-X 6 A5.28 ERXXS-XXX, EXXC-XXX 6 A5.29 EXXTX-X 6 A5.30 INXXX Aluminum and Aluminum Alloys 21 A5.3 E1100, E3003 21 A5.10 ER1100, R1100, ER1188, R1188 22 A5.10 ER5183, R5183, ER5356, R5356, ER5554, R5556, R5556, ER5654, R565	6	A5.23	FXXX-EXXX-XN, FXXX-ECXXX-XN
6 A5.28 ERXXS-XXX, EXXC-XXX 6 A5.29 EXXTX-X 6 A5.30 INXXX Aluminum and Aluminum Alloys 21 A5.3 E1100, E3003 21 A5.10 ER1100, R1100, ER1188, R1188 22 A5.10 ER5183, R5183, ER5356, R5356, ER5554, R5556, R5556, ER5654, R565	6	A5.25	FESXX-EXXX, FESXX-EWXX
6 A5.29 EXXTX-X 6 A5.30 INXXX Aluminum and Aluminum Alloys 21 A5.3 E1100, E3003 21 A5.10 ER1100, R1100, ER1188, R1188 22 A5.10 ER5183, R5183, ER5356, R5356, ER5554, R5556, R5556, ER5654, R565	6	A5.26	EGXXS-X, EGXXT-X
6 A5.30 INXXX Aluminum and Aluminum Alloys 21 A5.3 E1100, E3003 21 A5.10 ER1100, R1100, ER1188, R1188 22 A5.10 ER5183, R5183, ER5356, R5356, ER5554, R5554, ER5556, R5556, ER5654, R565	6	A5.28	ERXXS-XXX, EXXC-XXX
Aluminum and Aluminum Alloys 21 A5.3 E1100, E3003 21 A5.10 ER1100, R1100, ER1188, R1188 22 A5.10 ER5183, R5183, ER5356, R5356, ER5554, R5556, R5556, ER5654, R565	6	A5.29	EXXTX-X
21 A5.3 E1100, E3003 21 A5.10 ER1100, R1100, ER1188, R1188 22 A5.10 ER5183, R5183, ER5356, R5356, ER5554, R5556, R5556, ER5654, R565	6	A5.30	INXXX
21 A5.10 ER1100, R1100, ER1188, R1188 22 A5.10 ER5183, R5183, ER5356, R5356, ER5554, R5556, ER5556, R5556, ER5654, R565			Aluminum and Aluminum Alloys
22 A5.10 ER5183, R5183, ER5356, R5356, ER5554, R5556, R5556, ER5654, R565	21	A5.3	E1100, E3003
	21	A5.10	ER1100, R1100, ER1188, R1188
23 A5.3 E4043	22	A5.10	ER5183, R5183, ER5356, R5356, ER5554, R5554, ER5556, R5556, ER5654, R5654
<u>1 </u>	23	A5.3	E4043
23 A5.10 ER4009, R4009, ER4010, R4011, R4010, ER4043, R4043, ER4047, R4047, ER414 R4145, ER4643, R4643	23	A5.10	ER4009, R4009, ER4010, R4011, R4010, ER4043, R4043, ER4047, R4047, ER4145, R4145, ER4643, R4643
24 A5.10 R206.0, R-C355.0, R-A356.0, R357.0, R-A357.0	24	A5.10	R206.0, R-C355.0, R-A356.0, R357.0, R-A357.0
25 A5.10 ER2319, R2319	25	A5.10	ER2319, R2319

ELECTRODE GROUPS

F-NUMBERS Grouping of Electrodes and Welding Rods for Qualification

F-No.	AWS Specification	AWS Classification								
	l	Copper and Copper Alloys								
31	A5.6 and A5.7	RCu, ECu								
32	A5.6	ECuSi and ERCuSi-A								
33	A5.6 and A5.7	ECuSn-A, ECuSn-C, ERCuSn-A								
34	A5.6, A5.7, and A5.30	ECuNi, ERCuNi, IN67								
35	A5.8	RBCuZn-A, RBCuZn-B, RCuZn-C, RBCuZn-D								
36	A5.6 and A5.7	ERCuAl-A1, ERCuAl-A2, ERCuAl-A3, ECuAl-A2, ECuAl-B								
37	A5.6 and A5.7	RCuNiAl, ECuMnNiAl, ERCuMnNiAl								
	Nickel and Nickel Alloys									
41	A5.11, A5.14, and A5.30	ENi-1, ERNi-1, IN61								
42	A5.11, A5.14, and A5.30	ENiCu-7, ERNiCu-8, IN60								
43	A5.11	ENiCrFe-1, 2, 3, 4, 7, 9, and 10; ENiCrMo-2, 3, 6, and 12; ENiCrCoMo-1								
43	A5.14	ERNiCr-3, 4, and 6; ERNiCrFe-5, 6, 7, 8, and 11; ERNiCrCoMo-1; ERNiCrMo-2 and 3								
43	A5.30	IN6A, IN62, IN82								
44	A5.11	ENiMo-1, 3, 7, 8, 9, and 10; ENiCrMo-4, 5, 7, 10, 13, and 14								
44	A5.14	ERNiMo-1, 2, 3, 7 (B2), 8, 9, and 10; ERNiCrMo-4, 7 (alloy C4), 10, 13, 14; ERNiCrWMo-1								
45	A5.11	ENiCrMo-1, 9, and 11								
45	A5.14	ERNiCrMo-1, 8, 9, and 11; ERNiFeCr-1								
		Titanium and Titanium Alloys								
51	A5.16	ERTi-1, ERTi-2, ERTi-3, ERTi-4								
52	A5.16	ERTi-7								
53	A5.16	ERTi-9, ERTi-9ELI								
54	A5.16	ERTi-12								
55	A5.16	ERTi-5, ERTi-5ELI, ERTi-6, ERTi-6ELI, ERTi-15								
Zirconium and Zirconium Alloys										
61 A5.24 ERZr2, ERZr3, ERZr4										
Hardfacing Weld Metal Overlay										
71	A5.13 and A5.21	RXXX-X, EXXX-X								
Magnesium Alloys										
91	A5.19	ER AZ61A, ER AZ92A, ER EZ33A, ER AZ101A, R AZ61A, R AZ92A, R AZ101A, R EZ33A								

APPENDIX XI

WELDER QUALIFICATION TEST REQUIREMENTS

1. Tests on plate											
	Thickness of			Number of							
	Test Plate (T)	Visual		Bend Tests		T-Joint	Macroetch	Plate Thickness			
Type of Weld	As Welded, in.	Inspection	Face	Root	Side	Break	Test	Qualified, in.			
Groove	3/8	Yes	1	1	_		_	3/4 max ⁽¹⁾			
Groove	3/8 < T < 1	Yes	_	_	2	_	_	1/8-2T ⁽¹⁾			
Groove	1 or over	Yes	_	_	2	_	_	Unlimited ⁽¹⁾			
Fillet Option No. 1	1/2	Yes	_	_	_	1	1	Unlimited			
Fillet Option No. 2	3/8	Yes	_	2	_	_	_	Unlimited			

Note:

(1) Also qualifies for welding fillet welds on material of unlimited thickness.

2. Tests	on pipe	or tubing											
	•	or Tubing As Welded			Nu	mber of	Specime	ens			Ding or Tubo		
					sitions E G and 6	•	_	G and 6 sitions O	-	Pipe or	Plate, Pipe, Wall Thic Pipe or Tube Size		
Type of Weld	Diam	Nominal Thickness	Visual Inspection	Face Bend	Root Bend	Side Bend	Face Bend	Root Bend	Side Bend	Qualified, in.	Min	Max ⁽¹⁾	
Groove	2 in. or 3 in.	Sch. 80 Sch. 40	Yes	1	1	_	2	2	_	4 or smaller	1/8	3/4 ⁽¹⁾	
Groove	6 in. or 8 in.	Sch. 120 Sch. 80	Yes	_	_	2	_	_	4	4 or larger	3/16	Unlimited ⁽¹⁾	

Note:

(1) Also qualifies for welding fillet welds on material of unlimited thickness.

Welder Qualification—Type and Position Limitations

		Ту	pe of Weld and Posit	ion of Welding Qualifi	ed
Qualifica	ation Test	Pla	ate	Pi	ре
Weld	Plate or Pipe Positions	Groove	Fillet	Groove	Fillet
Plate-Groove	1G 2G 3G 4G 3G and 4G	F F, H F, H, V F, OH All	F, H F, H F, H, V F, H, OH All	F [Note (1)] F, H [Note (1)] F, H, V (Note (1)]	F, H F, H F, H F F, H
Plate-Fillet ⁽²⁾	1F 2F 3F 4F 3F and 4F		F F, H F, H, V F, H, OH All		F F, H F, H, V F, H, OH All
Pipe-Groove	1G 2G 5G 6G 2G and 5G 6GR	F F, H F, V, OH Note (3) Note (3)	F, H F, H F, V, OH Note (3) Note (3)	F F, H F, V, OH Note (3) Note (3)	F, H F, H F, V, OH Note (3) Note (3) All
Pipe-Fillet	1F 2F 2F Rolled 4F 4F and 5F		F F, H F, H F, H, OH All		F F, H F, H F, H, OH All

Notes

⁽¹⁾ Welders qualified to weld tubulars over 24 in. (600 mm) in diameter with backing or backgouging, for the test position indicated.

⁽²⁾ Not applicable for fillet welds between parts having a dihedral angle (ψ) of 60° or less.

⁽³⁾ Qualified for all except groove welds for T-, Y-, and K-connections.

APPENDIX XII

FILLET PROCEDURE QUALIFICATION REQUIREMENTS

			Test Sp	ecimens Red	quired	Sizes	Qualified
Test Specimen	Fillet Size	Number of Welds per Procedure	Macroetch	All-Weld- Metal Tension	Side- Bend	Plate Thickness	Fillet Size
Dista Tasat	Single-pass, max size to be used in construction	1 in each position to be used	3 faces		_	Unlimited	Max tested single-pass and smaller
Plate T-test	Multiple-pass, min size to be used in construction	1 in each position to be used	3 faces	_	_	Unlimited	Min tested multiple-pass and larger

APPENDIX XIII

GROOVE PROCEDURE QUALIFICATION REQUIREMENTS

1. Tests on plate	1. Tests on plate												
	Ni. washa ay a f			Test Specime	ens Required								
Plate Thickness (T) Tested, in.	Number of Sample Welds per Position	NDT*	Reduced- Section Tension	Root-Bend	Face-Bend	Side-Bend	Nominal Plate Thickness Qualified, T in.**						
1/8 ≤ T < 3/8	1	Yes	2	2	2	_	1/8 to 2T						
3/8	1	Yes	2	2	2	_	1/8 to 3/4						
3/8 < T < 1	1	Yes	2	_	_	4	1/8 to 2T						
1 and over	1	Yes	2	_	_	4	1/8 to Unlimited						

Note: All welded test plates shall be visually inspected.

^{**}For square groove welds, the maximum thickness qualified shall be limited to thickness tested.

2. Tests	on pipe or tubing	g								
Dina Ciz	e of Sample Weld	Number of		Test S	pecimen	s Requi	red			ckness lified, in.
Fipe Size	e of Sample Weld	Sample		Reduced-					Qua	illieu, III.
Diam.	Wall Thickness, T	Welds per Position	NDT*	Section Tension	Root- Bend	Face- Bend	Side- Bend	Diameter, in.	Min	Max
2 in.	Sch. 80									
or 3 in.	Sch. 40	2	Yes	2	2	2	_	3/4 through 4	1/8	3/4
6 in.	Sch. 120	1	Yes	2			4	4 and over	3/16	Unlimited
8 in.	Sch. 80	ı	163	۷			4	4 and over	3/10	Onlinitied
Job Siz	e Pipe or Tubing									
Diam.	Wall Thickness, T									
	1/8 ≤ T ≤ 3/8 in.	1	Yes	2	2	2	_		1/8	2T
< 24 in.	3/8 < T < 3/4 in.	1	Yes	2	_	_	4	Test diam. and over	T/2	2T
	T ≥ 3/4 in.	1	Yes	2		_	4		3/8	Unlimited
	$1/8 \le T \le 3/8 \text{ in.}$	1	Yes	2	2	2	_	Test diam. and over	1/8	2T
≥ 24 in.	3/8 < T < 3/4 in.	1	Yes	2	_		4	24 and over	T/2	2T
	T ≥ 3/4 in.	1	Yes	2		_	4	24 and over	3/8	Unlimited

Note: All welded test plates shall be visually inspected.

^{*}A minimum of 6 in. of effective weld length shall be tested by radiographic or ultrasonic testing prior to mechanical testing.

^{*}For pipe or tubing, the full circumference of the completed weld shall be tested by RT or UT prior to mechanical testing.

APPENDIX XIV

PREQUALIFIED BASE METAL—FILLER METAL COMBINATIONS FOR MATCHING STRENGTH^{7, 9}

G		Steel Specification R	Lequiremer	nts				Filler Meta	al Requirements	
r o u				ım Yield Strength		nsile		AWS Electrode		
p	Ste	el Specification ^{1, 2}	ksi	MPa	ksi	MPa	Process	Specification ³	Electrode Classification 10	
	ASTM A 36 ⁴		36	250	58-80	400–550	SMAW	A5.1	E60XX, E70XX	
	ASTM A 53	A5.5	35	240	60 min	415 min				
	ASTM A 106	Grade B	35	240	60 min	415 min		$A5.5^{6}$	E70XX-X	
	ASTM A 131	Grades A, B, CS, D, DS, E	34	235	58-71	400-490				
	ASTM A 139	Grade B	35	241	60 min	414 min	SAW	A5.17	F6XX-EXXX, F6XX-ECXXX,	
	ASTM A 381	Grade Y35	35	240	60 min		57111	113.17	F7XX-EXXX, F7XX-ECXXX	
	ASTM A 500	Grade A	33	228	45 min	310 min			,	
		Grade B	42	290	58 min	400 min		$A5.23^{6}$	F7XX-EXXX-XX,	
	ASTM A 501		36	250	58 min	400 min			F7XX-ECXXX-XX	
	ASTM A 516	Grade 55	30	205	55–75	380-515				
		Grade 60	32	220	60-80	415-550	GMAW	A 5 10	ED700 V E700 VC	
	ASTM A 524	Grade I	35	240	60-85	415–586	GMAW	A5.18	ER70S-X, E70C-XC, E70C-XM (Electrodes with the	
		Grade II	30	205	55-80	380-550			-GS suffix are excluded)	
I	ASTM A 529		42	290	60-85	415–585				
	ASTM A 570	Grade 30	30	205	49 min	340 min		$A5.28^{6}$	ER70S-XXX, E70C-XXX	
		Grade 33	33	230	52 min	360 min				
		Grade 36	36	250	53 min	365 min				
		Grade 40	40	275	55 min	380 min	FCAW	A5.20	E6XT-X, E6XT-XM,	
		Grade 45	45	310	60 min	415 min			E7XT-X, E7XT-XM (Electrodes with the -2,	
	ACTNA A 572	C = 1, (5	2.5	240	65.77	450 520			-2M, -3, -10, -13, -14X,	
	ASTM A 573	Grade 65	35	240	65–77	450–530			and -GS suffix are	
	A CITE A 4 700	Grade 58	32	220	58–71	400–490			excluded)	
	ASTM A 709	Grade 36 ⁴	36	250	58–80	400–550		A 5 206	E6XTX-X, E6XT-XM,	
	API 5L	Grade B	35	240	60	415		A5.29 ⁶	E7XTX-X, E7XTX-XM	
	A D.C.	Grade X42	42	290	60	415			L/AIA-A, L/AIA-AWI	
	ABS	Grades A, B, D, CS, DS			58–71	400–490				
		Grade E ⁵			58–71	400–490				

Note: ASTM A 570 Grade 50 has been deleted from Group I and added to Group II.

(continued)

G		Steel Specification Rec	quiremen	nts				Filler Meta	al Requirements
r o u				um Yield Strength		nsile inge		AWS Electrode	
p	Ste	el Specification ^{1, 2}	ksi	MPa	ksi	MPa	Process	Specification ³	Electrode Classification 10
	ASTM A 131	Grades AH32, DH32, EH32	46	315	68–85	470–585	SMAW	A5.1	E7015, E7016, E7018, E7028
		Grades AH36, DH36, EH36	51	350	71–90	490–620			
	ASTM A 441		40-50	275–345	60-70	415–485		$A5.5^{6}$	E7015-X, E7016-X, E7018-X
	ASTM A 516	Grade 65	35	240	65–85	450–585			
		Grade 70	38	260	70–90	485–620			
	ASTM A 537	Class 1	45-50	310–345	65–90	450–620	SAW	A5.17	F7XX-EXXX, F7XX-ECXXX
	ASTM A 570	Grade 50	50	345	65	450			
		Grade 55	55	380	70	480		$A5.23^{6}$	F7XX-EXXX-XX,
	ASTM A 572	Grade 42	42	290		415 min			F7XX-ECXXX-XX
	ASTM A 572	Grade 50	50	345	65 min				- ,
	ASTM A 588 ⁵	(4 in. [100 mm] and under)	50	345		485 min			
	ASTM A 595	Grade A	55	380		450 min	GMAW	A5.18	ER70S-X, E70C-XC,
		Grades B and C	60	415	70 min		GIVIZIVV	113.10	E70C-XM (Electrodes with
	ASTM A 606 ⁵		45–50	310-340		450 min			the -GS suffix are excluded)
	ASTM A 607	Grade 45	45	310	60 min				the -GS sums are excluded)
		Grade 50	50	345		450 min		$A5.28^{6}$	EDZOC VVV EZOC VVV
		Grade 55	55	380	70 min			A5.28°	ER70S-XXX, E70C-XXX
	ASTM A 618	Grades Ib, II, III	46–50	315–345	65 min	450 min			
II	ASTM A 633	Grade A	42	290	63-83	430–570	DG 1777		
		Grades C, D	50	345	70–90	485–620	FCAW	A5.20	E7XT-X, E7XT-XM
		(2-1/2 in. [65 mm] and under)							(Electrodes with the -2,
	ASTM A 709	Grade 50	50	345		450 min			-2M, -3, -10, -13, -14,
		Grade 50W	50	345	70 min				and -GS suffix are
	ASTM A 710	Grade A, Class $2 > 2$ in. (50 mm)	55	380		450 min			excluded)
	ASTM A 808	(2-1/2 in. [65 mm] and under)	42	290		415 min			
	ASTM A 913	Grade 50	50	345	65 min	450 min		$A5.29^6$	E7XTX-X, E7XTX-XM
	ASTM A 992		50–65	345–450	65	450			
	API 2H	Grade 42	42	290	62-80	430–550			
		Grade 50	50	345	70 min	485 min			
	API 2W	Grade 42	42–67	290–462	62 min	427 min			
		Grade 50	50-75	345–517	65 min				
		Grade 50T	50-80	345–552		483 min			
	API 2Y	Grade 42	42–67	290–462					
		Grade 50	50–75	345–517	65 min				
		Grade 50T	50-80	345–552		483 min			
	API 5L	Grade X52	52	360		455–495			
	ABS	Grades AH32, DH32, EH32	45.5	315	71–90				
		Grades AH36, DH36, EH36 ⁵	51	350	71–90	490–620			

(continued)

G		Steel Specification Req	uirement	S				Filler Metal	Requirements
r o u			Minimum Yield Point/Strength		Tensile Range			AWS Electrode	
p	St	teel Specification ^{1, 2}	ksi	MPa	ksi	MPa	Process	Specification ³	Electrode Classification ⁷
	API 2W	Grade 60	60-90	414–621	75 min	517 min	SMAW	A5.5 ⁶	E8015-X, E8016-X, E8018-X
	API 2Y ASTM A 572	Grade 60 Grade 60 Grade 65	60–90 60 65	414–621 415 450	75 min 75 min 80 min		SAW	A5.23 ⁶	F8XX-EXXX-XX, F8XX-ECXXX-XX
III	ASTM A 537 ASTM A 633 ASTM A 710	Class 2^5 Grade E^5 Grade A, Class $2 \le 2$ in. (50 mm)	46–60 55–60 60–65	315–415 380–415 415–450	75–100	550–690 515–690 495 min	GMAW	A5.28 ⁶	ER80S-XXX, E80C-XXX
	ASTM A 710 ASTM A 913 ⁸	Grade A, Class 3 > 2 in. (50 mm) Grade 60 Grade 65	60–65 60 65	415–450 415 450	70 min 75 min 80 min	485 min 520 min 550 min	FCAW	A5.29 ⁶	E8XTX-X, E8XTX-XM
							SMAW	A5.5 ⁶	E9015-X, E9016-X, E9018-X, E9018-M
IV	ASTM A 709 ASTM A 852	Grade 70W	70 70	485 485	90–110 90–110	620–760 620–760	SAW	A5.23 ⁶	F9XX-EXXX-XX, F9XX-ECXXX-XX
							GMAW	$A5.28^{6}$	ER90S-XXX, E90C-XXX
							FCAW	A5.29 ⁶	E9XTX-X, E9XTX-XM

Notes:

- 1. In joints involving base metals of different groups, either of the following filler metals may be used: (1) that which matches the higher strength base metal, or (2) that which matches the lower strength base metal and produces a low-hydrogen deposit. Preheating shall be in conformance with the requirements applicable to the higher strength group.
- 2. Match API standard 2B (fabricated tubes) according to steel used.
- 3. When welds are to be stress-relieved, the deposited weld metal shall not exceed 0.05 percent vanadium.
- 4. Only low-hydrogen electrodes shall be used when welding ASTM A 36 or ASTM A 709 Grade 36 steel more than 1 in. (25 mm) thick for cyclically loaded structures.
- 5. Special welding materials and WPS (e.g., E80XX-X low-alloy electrodes) may be required to match the notch toughness of base metal (for applications involving impact loading or low temperature), or for atmospheric corrosion and weathering characteristics (see 3.7.3).
- 6. Filler metals of alloy group B3, B3L, B4, B4L, B5, B5L, B6, B6L, B7, B7L, B8, B8L, B9, or any BXH grade in AWS A5.5, A5.23, A5.28, or A5.29 are not prequalified for use in the as-welded condition.
- 7. AWS A5M (SI Units) electrodes of the same classification may be used in lieu of the AWS A5 (U.S. Customary Units) electrode classification.
- 8. The heat input limitations of 5.7 shall not apply to ASTM A 913 Grade 60 or 65.

APPENDIX XV

MINIMUM PREHEAT AND INTERPASS TEMPERATURE^{3,4}

C a t							of Thickest Part t of Welding	Minimum I Interpass T	
e g									
g o									
r y		S	teel Specification		Welding Process	in.	mm	°F	°C
	ASTM A 36 ²		ASTM A 516	Grades 55 & 60		Up to 3/4	19 incl.	No	ne ¹
	ASTM A 53	Grade B	ASTM A 524	Grades I & II			10		
	ASTM A 106	Grade B	ASTM A 529		Shielded metal arc	Over 3/4	19	1.50	
	ASTM A 131	Grades A, B,	ASTM A 570	All grades	welding with other	thru 1-1/2.	38 incl.	150	66
A	ASTM A 139	CS, D, DS, E Grade B	ASTM A 573 ASTM A 709	Grade 65 Grade 36 ²	than low-hydrogen	Over 1-1/2	38		
	ASTM A 139 ASTM A 381	Grade B Grade Y35	API 5L	Grade B	electrodes	thru 2-1/2	38 64	225	107
	ASTM A 500	Grade A	API 5LX	Grade X42	electrodes	unu 2-1/2	04	223	107
	ASTWIA 300	Grade B	ABS	Grades A, B, D, CS, DS					
	ASTM A 501	Grade B	ADS	Grade E		Over 2-1/2	64	300	150
-	ASTM A 36 ²		ASTM A 570	All grades		0 (01 2 1/2		300	
	ASTM A 53	Grade B	ASTM A 572	Grades 42, 50					
	ASTM A 106	Grade B	ASTM A 573	Grade 65					
	ASTM A 131	Grades A, B,	ASTM A 588						
		CS, D, DS, E	ASTM A 595	Grades A, B, C		Up to 3/4	19 incl.	No	ne ¹
		AH 32 & 36	ASTM A 606			,			
		DH 32 & 36	ASTM A 607	Grades 45, 50, 55	Shielded metal arc				
		EH 32 & 36	ASTM A 618		welding with low-				
	ASTM A 139	Grade B	ASTM A 633	Grades A, B	hydrogen electrodes,				
В	ASTM A 242			Grades C, D	submerged arc	Over 3/4	19		
	ASTM A 381	Grade Y35	ASTM A 709	Grades 36, 50, 50W	welding, ² gas metal	thru 1-1/2	38 incl.	50	10
	ASTM A 441		API 5L	Grade B	arc welding, flux				
	ASTM A 500	Grade A	API 5LX	Grade X42	cored arc welding				
	1077 5 1 501	Grade B	API Spec. 2H		8	Over 1-1/2	38	4.50	
	ASTM A 501	G 1 55 0 60	ABS	Grades AH 32 & 36		thru 2-1/2	64 incl.	150	66
	ASTM A 516	Grades 55 & 60		DH 32 & 36					
	ASTM A 524	65 & 70 Grades I & II	ABS	EH 32 & 36					
	ASTM A 524 ASTM A 529	Grades I & II	ABS	Grades A, B, D,		Over 2-1/2	64	225	107
	ASTM A 529 ASTM A 537	Classes 1 & 2		CS, DS Grade E		Over 2-1/2	04	223	107
	ASTIM A JS/	Classes I & Z			antinuad)	L			

(continued)

C a t					of Thickest Part nt of Welding		Preheat and Temperature
e g o r							
У		Steel Specification	Welding Process	in.	mm	°F	°C
				Up to 3/4	19 incl.	50	10
				Over 3/4	19		
C	ASTM A 572 ASTM A 633 API 5LX	Grades 60, 65 Grade E	Shielded metal arc welding with low hydrogen electrodes, submerged arc welding, gas metal arc	thru 1-1/2	38 incl.	150	66
		Grade X52	welding, or flux cored arc welding	Over 1-1/2	38		
					64 incl.	225	107
				Over 2-1/2	64	300	150
				Up to 3/4	19 incl.	50	10
			Chielded mestel and coulding with law hardes and	Over 3/4	19		
D	ASTM A 514 ASTM A 517	Grades 100 & 100W	Shielded metal arc welding with low hydrogen electrodes, submerged arc welding with carbon or	thru 1-1/2	38 incl.	125	50
	ASTM A 709		alloy steel wire, neutral flux, gas metal arc welding, flux cored arc welding	Over 1-1/2	38		
			nux coreu are weiting	thru 2-1/2	64 incl.	175	80
				Over 2-1/2	64	225	107

Notes

- A. Zero °F (-18°C) does not mean the ambient environmental temperature but the temperature in the immediate vicinity of the weld. The ambient environmental temperature may be below 0°F, but a heated structure or shelter around the area being welded could maintain the temperature adjacent to the weldment at 0°F or higher.
- 1. When the base metal temperature is below 32°F (0°C), the base metal shall be preheated to at least 70°F (20°C) and this minimum temperature maintained during welding.
- 2. Only low hydrogen electrodes shall be used when welding A 36 or A 709 Grade 36 steel more than 1 in. thick for bridges.
- 3. Welding shall not be done when the ambient temperature is lower than 0°F (-32°C). When the base metal is below the temperature listed for the welding process being used and the thickness of material being welded, it shall be preheated (except as otherwise provided) in such manner that the surfaces of the parts on which weld metal is being deposited are at or above the specified minimum temperature for a distance equal to the thickness of the part being welded, but not less than 3 in. (76 mm) in all directions from the point of welding. Preheat and interpass temperatures must be sufficient to prevent crack formation. Temperature above the minimum shown may be required for highly restrained welds. For ASTM A 514, A 517, and A 709 Grades 100 and 100W steel, the maximum preheat and interpass temperature shall not exceed 400°F (205°C) for thickness up to 1-1/2 in. (38 mm) inclusive, and 450°F (230°C) for greater thickness. Heat input when welding ASTM A 514, A 517, and A 709 Grades 100 and 100W steel shall not exceed the steel producer's recommendations. ASTM A 415 and A 517 material are not recommended to be post weld heat treated.
- 4. In joints involving combinations of base metals, preheat shall be as specified for the higher strength steel being welded.

APPENDIX XVI

RADIOGRAPHIC TESTING

1. Welding Procedure Qualification

- 1.1 After meeting visual inspection acceptance criteria and before preparing mechanical test specimens, the procedure qualification test specimens, the qualification test plate, pipe, or tubing shall be nondestructively tested for soundness.
- 1.2 Either radiographic or ultrasonic testing shall be used. The entire length of the weld in the test plates, except the discard lengths at each end, shall be examined.
- 1.3 For acceptable qualification, the weld, as revealed by radiographic or ultrasonic testing, shall conform to the requirements of paragraph 3.

2. Welder Performance Qualification

- 2.1 Except for joints welded by GMAW-S, radiographic examination of a welder or welding operator qualification test plate or test pipe may be made in lieu of guided bend tests.
 - 2.1.1 If RT is used in lieu of the prescribed bend tests, the weld reinforcement need not be ground or otherwise smoothed for inspection unless its surface irregularities or juncture with the base mental would cause objectionable weld discontinuities to be obscured in the radiograph. If the backing is removed for radiography, the root shall be ground flush with the base metal.
 - 2.1.2 For welder qualification, exclude 1-1/4 in. (32 mm) at each end of the weld from evaluation in the plate test; for welding operator qualification exclude 3 in. (75 mm) at each end of the test plate length. Welded test pipe or tubing 4 in. (100 mm) in diameter or larger shall be examined for a minimum of one-half of the weld perimeter selected to include a sample of all positions welded.
 - 2.1.3 For acceptable qualification, the weld, as revealed by the radiograph, shall conform to the requirements of 3.1.

3. Radiographic Inspection

Discontinuities other than cracks shall be evaluated on the basis of being either elongated or rounded. Regardless of the type of discontinuity, an elongated discontinuity is one in which its length exceeds three times its width. A rounded discontinuity is one in which its length is three its width or less and may be round or irregular and may have tails.

3.1 Acceptance Criteria for Cyclically Loaded Nontubular Connections. Welds that are subject to radiographic testing in addition to visual inspection shall have no cracks and shall be unacceptable if the radiographic testing shows any of the types of discontinuities listed in 3.1.1 and 3.1.2.

- 3.1.1 For welds subjected to tensile stress under any condition of loading, the greatest dimension of any porosity or fusion-type discontinuity that is 1/16 in. (2 mm) or larger in greatest dimension shall not exceed the size, B indicated in Figure 6.4, for the weld size involved. The distance from any porosity or fusion-type discontinuity described above to another such discontinuity, to an edge, or to the toe or root of any intersecting flange-to-web weld shall be not less than the minimum clearance allowed, C, indicated in Figure 6.4 on page 25, for the size of discontinuity under examination.
- 3.1.2 Independent of the requirements of 3.1.1, discontinuities having a greatest dimension of less than 1/16 in. (2 mm) shall be unacceptable if the sum of their greatest dimensions exceeds 3/8 in. (10 mm) in any linear inch (25.4 mm) of weld.

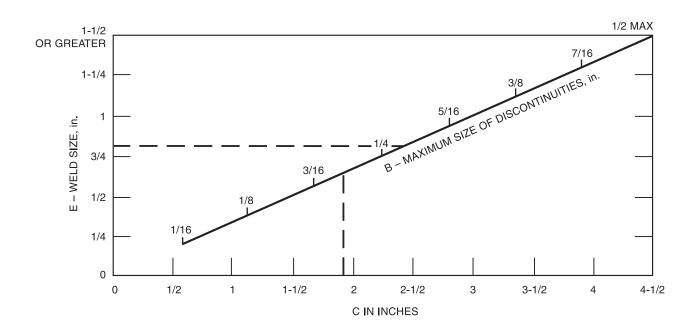
HOLE-TYPE IMAGE QUALITY INDICATOR (IQI) REQUIREMENTS

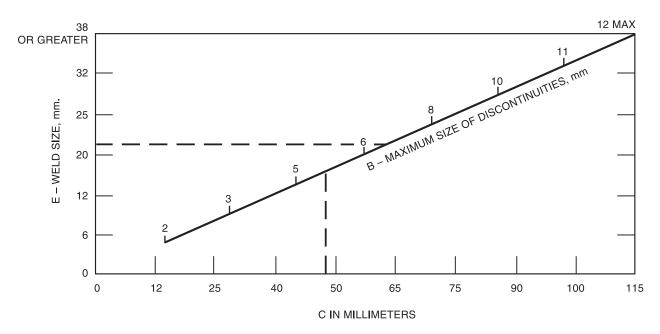
Nominal	Source	ce Side	Film Side ⁽²⁾		
Material Thickness ⁽¹⁾ Range, mm	Designation	Essential Hole	Designation	Essential Hole	
Up to 6 incl.	10	4T	7	4T	
Over 6 through 10	12	4T	10	4T	
Over 10 through 12	15	4T	12	4T	
Over 12 through 16	15	4T	12	4T	
Over 16 through 20	17	4T	15	4T	
Over 20 through 22	20	4T	17	4T	
Over 22 through 25	20	4T	17	4T	
Over 25 through 32	25	4T	20	4T	
Over 32 through 38	30	2T	25	2T	
Over 38 through 50	35	2T	30	2T	
Over 50 through 65	40	2T	35	2T	
Over 65 through 75	45	2T	40	2T	
Over 75 through 100	50	2T	45	2T	
Over 100 through 150	60	2T	50	2T	
Over 150 through 200	80	2T	60	2T	
	Material Thickness ⁽¹⁾ Range, mm Up to 6 incl. Over 6 through 10 Over 10 through 12 Over 12 through 16 Over 16 through 20 Over 20 through 22 Over 22 through 25 Over 25 through 32 Over 32 through 38 Over 38 through 50 Over 50 through 65 Over 65 through 100 Over 100 through 150	Material Thickness ⁽¹⁾ Range, mm Up to 6 incl. Over 6 through 10 Over 10 through 12 Over 12 through 16 Over 16 through 20 Over 20 through 22 Over 22 through 32 Over 25 through 38 Over 38 through 50 Over 50 through 75 Over 75 through 100 Over 100 through 150 Over 100 through 150 Over 100 through 150	Material Thickness ⁽¹⁾ Range, mm Designation Essential Hole Up to 6 incl. 10 4T Over 6 through 10 12 4T Over 10 through 12 15 4T Over 12 through 16 15 4T Over 16 through 20 17 4T Over 20 through 22 20 4T Over 22 through 25 20 4T Over 25 through 32 25 4T Over 32 through 38 30 2T Over 38 through 50 35 2T Over 50 through 65 40 2T Over 65 through 75 45 2T Over 75 through 100 50 2T Over 100 through 150 60 2T	Material Thickness(1) Range, mm Designation Essential Hole Designation Up to 6 incl. 10 4T 7 Over 6 through 10 12 4T 10 Over 10 through 12 15 4T 12 Over 12 through 16 15 4T 12 Over 16 through 20 17 4T 15 Over 20 through 22 20 4T 17 Over 22 through 25 20 4T 17 Over 25 through 32 25 4T 20 Over 32 through 38 30 2T 25 Over 38 through 50 35 2T 35 Over 50 through 65 40 2T 35 Over 65 through 75 45 2T 40 Over 75 through 100 50 2T 45 Over 100 through 150 60 2T 50	

Notes:

WIRE IMAGE QUALITY INDICATOR (IQI) REQUIREMENTS

Nominal Material Thickness ⁽¹⁾	Nominal Material Thickness ⁽¹⁾	Source Side Maximum Wire Diameter		Film Side ⁽²⁾ Maximum Wire Diameter		
Range, in.	Range, mm	in.	mm	in.	mm	
Up to 0.25 incl.	Up to 6 incl.	0.010	0.25	0.008	0.20	
Over 0.25 to 0.375	Over 6 to 10	0.013	0.33	0.010	0.25	
Over 0.375 to 0.625	Over 10 to 16	0.016	0.41	0.013	0.33	
Over 0.625 to 0.75	Over 16 to 20	0.020	0.51	0.016	0.41	
Over 0.75 to 1.50	Over 20 to 38	0.025	0.63	0.020	0.51	
Over 1.50 to 2.00	Over 38 to 50	0.032	0.81	0.025	0.63	
Over 2.00 to 2.50	Over 50 to 65	0.040	1.02	0.032	0.81	
Over 2.50 to 4.00	Over 65 to 100	0.050	1.27	0.040	1.02	
Over 4.00 to 6.00	Over 100 to 150	0.063	1.60	0.050	1.27	
Over 6.00 to 8.00	Over 150 to 200	0.100	2.54	0.063	1.60	


Notes:


⁽¹⁾ Single-wall radiographic thickness (for tubulars).

⁽²⁾ Applicable to tubular structures only.

⁽¹⁾ Single-wall radiographic thickness (for tubulars).

⁽²⁾ Applicable to tubular structures only.

General Notes:

- To determine the maximum size of discontinuity allowed in any joint or weld size, project E horizontally to B.
- To determine the minimum clearance allowed between edges of discontinuities of any size, project B vertically to C.
- · See Legend below for definitions.

Figure 6.4—Weld Quality Requirements for Discontinuities Occurring in Cyclically Loaded Nontubular Tension Welds (Limitations of Porosity and Fusion Discontinuities)

Legend

Dimensions of Discontinuities

- B = Maximum allowed dimension of a radiographed discontinuity.
- L = Largest dimension of a radiographed discontinuity.
- L' = Largest dimension of adjacent discontinuities.
- C = Minimum clearance measured along the longitudinal axis of the weld between edges of porosity or fusiontype discontinuities (larger of adjacent discontinuities governs), or to an edge or an end of an intersecting weld.
- C₁ = Minimum allowed distance between the nearest discontinuity to the free edge of a plate or tubular, or the intersection of a longitudinal weld with a girth weld, measured parallel to the longitudinal weld axis.
- W = Smallest dimension of either of adjacent discontinuities.

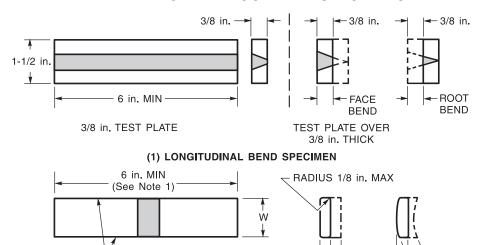
Material Dimensions

- E = Weld size.
- T = Plate or pipe thickness for CJP groove welds.

Definitions of Discontinuities

- An elongated discontinuity shall have the largest dimension (L) exceed 3 times the smallest dimension.
- A rounded discontinuity shall have the largest dimension (L) less than or equal to 3 times the smallest dimension.
- A cluster shall be defined as a group of nonaligned, acceptably-sized, individual adjacent discontinuities with spacing less than the minimum allowed (C) for the largest individual adjacent discontinuity (L'), but with the sum of the greatest dimensions (L) of all discontinuities in the cluster equal to or less than the maximum allowable individual discontinuity size (B). Such clusters shall be considered as individual discontinuities of size L for the purpose of assessing minimum spacing.
- Aligned discontinuities shall have the major axes of each discontinuity approximately aligned.

APPENDIX XVII

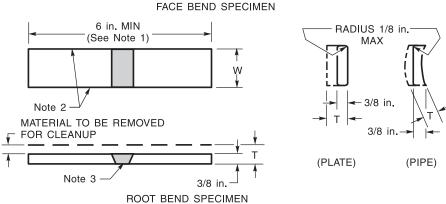

FACE AND ROOT BEND SPECIMENS

3/8 in.

(PLATE)

3/8 in.

(PIPE)



3/8 in.

Т

Note 3

(2) TRANSVERSE BEND SPECIMEN

Dimensions							
Test Weldment	Test Specimen Width, W in.						
Plate	1-1/2						
Test pipe or tube ≤ 4 in. in diameter	1						
Test pipe or tube > 4 in. in diameter	1-1/2						

General Notes:

- T = plate or pipe thickness.
- When the thickness of the test plate is less than 3/8 in. [10 mm], the nominal thickness shall be used for face and root bends.

Notes:

- A longer specimen length may be necessary when using a wraparound type bending fixture or when testing steel with a yield strength of 90 ksi [620 MPa] or more.
- 2. These edges may be thermal-cut and may or may not be machined.

Note 2

FOR CLEANUP

MATERIAL TO BE REMOVED

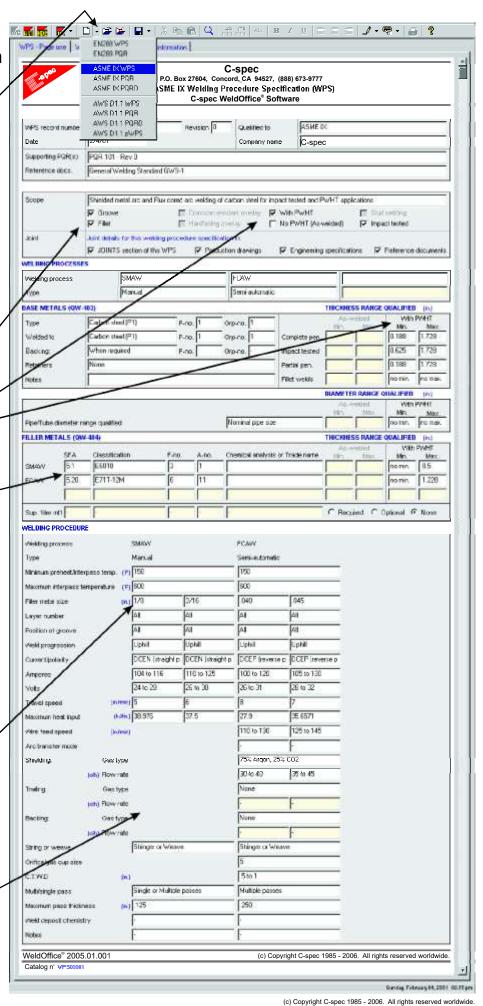
3. The weld reinforcement and backing, if any, shall be removed flush with the surface of the specimen. If a recessed backing is used, this surface may be machined to a depth not exceeding the depth of the recess to remove the backing; in such a case, the thickness of the finished specimen shall be that specified above. Cut surfaces shall be smooth and parallel.

Creating a WPS

Welding Procedure Specification

1 On the Tool Bar, click on the small drop-down arrow - next to the "New" icon. Select **ASME IX WPS**.

For automatic creation of a WPS, please see item 16 on the following page.


- 2 Begin filling out the record by entering the header information. While filling out this record, make sure to take advantage of the drop-down menus

 □ and databases □ rather than typing the information manually.
- 3 Take notice of the check marks in the "Scope' section of this example. The dynamic forms in WeldOffice " use these marks to determine which fields are needed. For example, when "With PWHT" is <u>not</u> selected, WeldOffice will' not require data to be entered for PWHT
- 4 When specifying the filler metal, remember to select it from the Filler Material Database instead of manually typing the information. To do this, place the cursor in the "SFA" field and click on the database icon 🛅 . Locate and select the desired filler metal(s) and then press the Accept button. Notice that WeldOffice® enters the proper SFA, Classification, F and A numbers automatically.

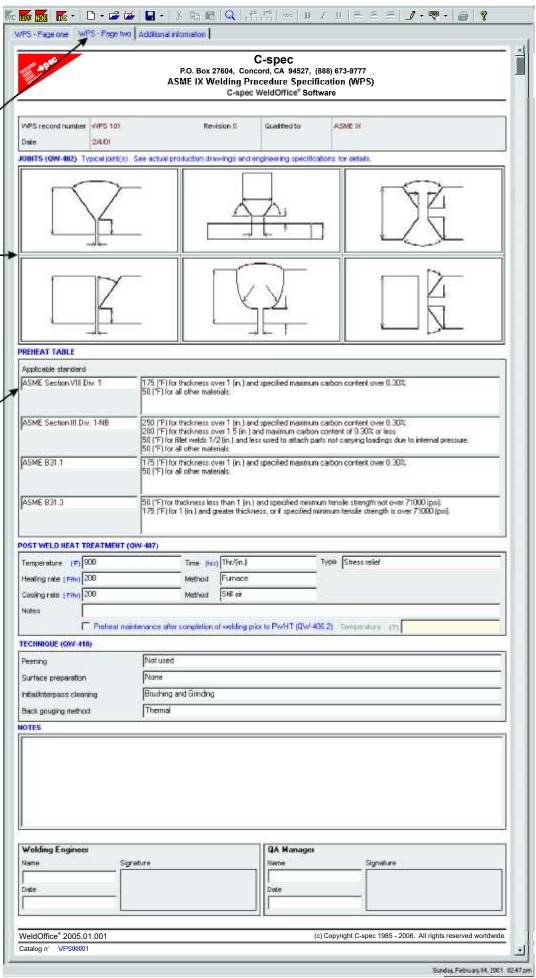
Note: Multiple filler metal classifications may be specified. Everything that is selected will appear in the Notes section on page 2.

- WeldOffice® allows you to specify up to three welding processes. Additionally, you can also specify up to five filler metal sizes for each process. To do this, click inside the "Filler metal size" field and then locate the Add Column is icon on the Tool Bar at the top of the screen. Click this icon and watch how this field splits with each click. This will also split all other applicable fields allowing specific data to be entered for each filler metal size.
- 6 Notice that there are no Gas fields available for SMAW. This is another feature of the dynamic forms. WeldOffice® prevents entry of non-relevant information and minimizes potential introduction of errors.

See next page for page two data entry instructions.

Creating a WPS

- 7 To enter data into the second page of the WPS, click on the tab at the top of the page entitled "WPS Page Two".
- 8 WeldOffice[®] is equipped with a comprehensive database of typical joint details already drawn for you. For more information on these sketches refer to the **Drawings & Sketches** section.
- 9 To specify the applicable preheat for the materials entered on page one, simply select up to four standards from WeldOffice[®]'s dropdown lists and the Code Checking will supply the appropriate data.


1() Printing this WPS:

When you are ready to print this record, go to the top of the screen and click on **File**. Then select the second print option which will say something like Print **Unassigned ASME WPS 00001**.

11Automatically create a WPS from a PQR:

Another way to create a WPS is to have WeldOffice® automatically generate the WPS off of a PQR. To do this you will need to open a completed PQR. If you have not yet made a PQR, please follow the instructions for creating a PQR.

With a PQR opened, go to the top of the screen and click on File / Save As New. Then select WPS. WeldOffice* will begin to take all applicable data from the PQR and place it on the WPS. Additionally, notice how the Code Checking supplies you with even more data straight out of the code such as the Thickness and Diameter ranges qualified.

C-spec P.O. Box 27604, Concord, CA 94527

ASME IX Welding Procedure Specification (WPS) C-spec WeldOffice® Software

WPS record number	WPS-101	Revision 0	Qualified to	ASME IX
Date	1/25/02		Company name	C-spec
Supporting PQR(s) Reference docs.	PQR-101 - Rev 0			

Scope	Shielded metal arc and Flux cored arc welding of carbon steel for impact tested and PWHT application Groove, fillet, no PWHT (As-welded), impact testing, with PWHT
Joint	Joint details for this welding procedure specification in: JOINTS section of this WPS, Production drawings, Engineering specifications, Reference documents

BASE METALS (QW-403)										
Туре	Carbon steel (P1)	P-no. 1	Grp-no. 1							
Welded to	Carbon steel (P1)	P-no. 1	Grp-no. 1							
Backing:	None	P-no	Grp-no							
Retainers	None									
Notes										

	THICKNESS RANGE QUALIFIED (in.									
		As-w	elded	With PWHT						
		Min.	Max.	Min.	Max.					
	Complete pen.	0.063	0.75	0.063	0.75					
	Impact tested	0.375	0.75	0.375	0.75					
	Partial pen.	0.063	0.75	0.063	0.75					
	Fillet welds	no min.	no max.	no min.	no max.					

	DIAMETER RANGE QUALIFIED							
	As-w	elded	With F	PWHT				
	Min.	Max.	Min.	Max.				
Nominal pipe size	no min.	no max.	no min.	no max.				

FILLER METALS (QW-404)

FILLER METALS (QW-404)	THICKNESS	RANGE QUA	LIFIED	(in.)					
	SFA	Classification	cation F-no.	A-no.	Chemical analysis or Trade name	As-welded		With PWHT	
		Classification			Chemical analysis of Trade name	Min.	Max.	Min.	Max.
SMAW	5.1	E6010 (smaw note)	3	1		no min.	0.25	no min.	0.25
FCAW	5.20	E70T-12 (fcaw note)	6	11		no min.	0.5	no min.	0.5
Sup. filler	-	-	-	-	-	- None -		ne -	

WELDING PROCEDURE

Welding process			SM	AW	FCAW		
Туре		Mar	nual	Semi-automatic			
Preheat temperature (°F)		(°F)	7	0	200		
Maximum inter	rpass temperature	(°F)	42	25	45	50	
Filler metal size (in.)		(in.)	3/32	1/8	1/8	3/32	
Layer number			All	All	All	All	
Position of gro	oove		All	All	All	All	
Weld progress	sion		Uphill	Uphill	Uphill & Downhill	Uphill & Downhill	
Current/polarity	у		DCEP (reverse polarity)	DCEP (reverse polarity)	DCEP (reverse polarity)	DCEP (reverse polarity)	
Amperes			100 - 115	110 - 135	110 - 135	120 - 180	
Volts			28 - 32	27 - 33	27 - 32	28 - 34	
Travel speed (in./min		(in./min)	6 - 8	7 - 9	7 - 10	7 - 11	
Maximum heat	t input	(kJ/in.)	28.0	29.5714	34.7143	40.8	
Wire feed speed (in./		(in./min)		-	120 - 145	130 - 160	
Arc transfer me	ode			-	Spray	Spray	
Shielding:	Gas type			-	75% Argon, 25% CO2		
	Flow rate	(cfh)		-	30	30	
Trailing:	Gas type			-	No	one	
	Flow rate	(cfh)		-	-	-	
Backing:	Gas type			-	No	one	
	Flow rate	(cfh)		-	-	-	
String or weav	e		Stringer of	or Weave	Stringer or Weave		
Orifice/gas cup	p size			-		5	
C.T.W.D				-	.7	75	
Multi/single pass			Single or mu	Itiple passes	Single or mu	ıltiple passes	
Maximum pass thickness			0.5	500	0.5	500	
Weld deposit of	chemistry						
Notes							

WeldOffice® 2005.01.001 Catalog n°

C-spec P.O. Box 27604, Concord, CA 94527 ASME IX Welding Procedure Specification (WPS) C-spec WeldOffice® Software

WPS record number	WPS-101		Revision	n 0	Qualified to	ASME IX		
Date	1/25/02	-dddd			Company name	C-spec		
JOINTS (QW-402) Typical joint(s	s). See actual pro	oduction drawing	gs and engineering sp	ecification	s for details.			
	7	.		5		1		
	7	-		5		Į		
PREHEAT TABLE								
Applicable standard	I							
ASME Section VIII Div. 1	175 (°F) for thick 50 (°F) for all oth		and specified maximur	n carbon co	ntent over 0.30%.			
ASME Section III Div. 1-NB	ASME Section III Div. 1-NB 250 (°F) for thickness over 1 (in.) and specified maximum carbon content over 0.30%. 200 (°F) for thickness over 1.5 (in.) and maximum carbon content of 0.30% or less. 50 (°F) for fillet welds 1/2 (in.) and less used to attach parts not carrying loadings due to internal pressure. 50 (°F) for all other materials.							
ASME B31.1	175 (°F) for thick 50 (°F) for all oth		and specified maximur	n carbon co	ntent over 0.30%.			
ASME B31.3					strength not over 71000 (psi). nsile strength is over 71000 (psi).			
POST WELD HEAT TREATMENT	(QW-407)							
Temperature (°F) 800				1hr/(in.)		Туре	Stress relief	
Heating rate (°F/hr) 200 Cooling rate (°F/hr) 200			Method	Furnace				
	!		Method	Still air				
Notes								
TECHNIQUE (QW-410)								
Peening Surface preparation		Not used None						
Initial/interpass cleaning		Brushing and Gr	rinding					
Back gouging method		Thermal						
NOTES								
NOTES: The following AWS/SFA classification	ations can be use	d with this proced	dure:					
(smaw note) E6010, E6011 (fcaw note) E70T-12, E70T-12M,	E71T-12, E71T-12	2M						
Welding Engineer					QA Manager			
Name		Signature			Name		Signature	
				· · · · · ·				

WeldOffice® 2005.01.01
Catalog n° WPS00001

Annexes

Annex VII (Informative) Welding Procedure Specification (WPS)

WPS Number		Date	Revision	_
[1]		[2]	[3]	Page 1 of 2
SUPPORTING PQR (s) ID.				
[4]				
SCOPE				
	[5]			
WELDING PROCESS(ES) & TYPE				
Process(es): [6]				
*				
JOINT DESIGN				
Joint Design:	[7]			
Root Spacing:	[8]			
Backing Material:	[9]			
Treatment of backside, method of	[10]			
gouging/preparation:				
Maximum Mismatch:	[11]			
Typical Joint Details:	[12]			
BASE METALS				
M-No. [14] Group No. [15] To N	/I-No. [16]	Group No.	[17]	
<u></u>		-		
Thickness Range Qualified: [18]				
Diameter (Tubular Only): [19]				
Coating Description or Type: [20]				
FILLER METALS	[24]			
Process:	[21]			
AWS Specification No.:	[22]			
AWS No. (Classification):	[23]			
F-No.	[24]			
Weld Metal Analysis A-No.:	[25]			
Weld Metal Deposit Thickness:	[26]			
Filler Metal Size:	[27]			
Flux-Electrode Classification:	[28]			
Supplemental Filler Metal:	[29]			
Consumable Insert & Type:	[30]			
Consumable Insert:	[31]			
Supplemental Deoxidant:	[32]			
Energized Filler Metal "Hot"	[33]			

	L	
	r	٠.
	ľ	_
	ľ	
	ľ	
	r	-
	7	7
	L	9
	Г	•
	ľ	2
	r	_
	١	J
	r	J
	١	٠

WPS Number		Date	Revision		
[:	1]	[2]	[3]	Page 2 of 2	
POSITION					
Welding Positions: [34]					
Progression for Vertical Weldi	ng: [35]				
PREHEAT AND INTERPASS					
Preheat Minimum: [36]					
Interpass Temperature Maxim					
Preheat Maintenance:	[38]				
HEAT TREATMENT					
PWHT Type: [39]					
PWHT Temperature:	[40]				
PWHT Holding Time:	[41]				
Heating and Cooling Rate:	[42]				
SHIELDING GAS	ype and % Composition (if app	dicable)	Flow Rate F	Pange	
Torch Shielding Gas:	ype and % Composition (III app [43]	meaniej	[48]	alige	
Root Shielding Gas:	[44]		[49]		
Environmental Shielding:	[45]		[49]		
Vacuum Pressure:	[46]				
Gas Cup Size:	[47]				
ELECTRICAL					
Process:	[50]				
Filler Metal Diameter:	[51]				
Current Type and Polarity:	[52]				
Amperage Range:	[53]				
Transfer Mode:	[54]				
Wire Feed Speed (m/min)	[55]				
Voltage Range:	[56]				
Tungsten Specification No.:	[57]				
Tungsten Classification:	[58]				
Tungsten Electrode Diameter:					
Maximum Heat Input (kJ/mm)					
Pulsed Current:	[61]				
VARIABLES					
Single to Multiple Electrodes:	[62]				
	3]				
Single or Multipass: [64]					
Contact Tube to Work Distanc	e [65]				
(mm):					
Cleaning: [66]	·				
Peening: [67]					
Conventional or Keyhole Tech	nique: [68]				
Stringer or Weave Bead: [69	9]				

Annex VIII (Informative) Procedure Qualification Record (POR)

	ocedure Quannica	ation record (FQR)			
WELDING PROCESS & Type		JOINTS			
Process 1: [1]		Weld Type: [31]			
Process 2: [2]		Groove Type: [32]			
		Root Spacing: [33]			
BASE METALS		Metal Backing: [34]			
Base Material Spec.: [3]	to [4]	Thermal Backgouging: [35]			
M-No.: [5] Group No.: to M-No.:	: Group No.:	[36]			
Plate or Pipe: [6] Pipe Diam	neter: [7]				
Thickness: [8]					
Coating: [9]					
FILLER METALS					
Specification No.: [10)]				
AWS No. Classification: [11	.]				
F-No.: [12	2]				
Weld Metal Analysis A-No.: [13	6]	Sketch of Joint			
Filler Metal Size: [14	l]	POSTWELD HEAT TREATMENT			
Supplemental Filler: [15	5]	PWHT Type: [37]			
Weld Metal Deposit Thickness: [16		PWHT Temperature: [38]			
	·•	PWHT Time: [39]			
POSITION					
Position of Joint: [17]		GAS			
Vertical Welding Progression: [18]		Shielding Gas: [40]			
		Composition: [41]			
PREHEAT		Flow: [42]			
Min. Preheat Temperature: [19]		Gas Cup Size: [43]			
Max. Interpass Temperature: [20]					
[20]		TECHNIQUE			
ELECTRICAL		Stringer or Weave: [44]			
Current & Polarity: [21]		Method of Cleaning: [45]			
Amperage Range: [22]		Oscillation: [46]			
Pulsed Current: [23]		Contact Tube to Work Distance: [47]			
Wire Feed Speed (m/min) [24]		Multipass or Single pass per side: [48]			
Voltage Range: [25]		Number of Electrodes: [49]			
Travel Speed (mm/min) [26]		Electrode Spacing: [50]			
Transfer Mode: [27]		Peening: [51]			
Maximum Heat Input (kJ/mm) [28]		r cennig.			
Tungsten Type: [29]					
Tungsten Diameter: [30]					
Tuligateli Diametel. [30]					
		MINATION: [52]			

Specimen No.	Width mm	Thickness mm	Area mm²	Ultimate Total Load (kN)	Ultimate Unit Stress (MPa)	Type of Failure & Location
[53]	[54]	[55]	[56]	[57]	[58]	[59]

GUIDED-BEND TESTS

Туре	Results	Туре	Results
[60]	[61]	[62]	[63]

Welder's Name	[64]	Stamp or Clock No.	[65]	

We certify that the statements in this record are correct and that the test welds were prepared, welded, and tested in accordance with the requirements of the Part B Practical CWI Exam Requirements. It is intended to be used for the CWI Part B Exam only and is not intended to be used for actual production welding or any other use without the written consent of AWS.

Annex IX (Informative) Welder Qualification Test Record (WQTR)

Welder's Name	[1]		D No.	[2]	Symbol _	[3]
Identification of WPS followed	:			[4]		
Specification of base metal(s)	welded:	[5]	Thickness:		[6]	
	Testing Va	ariables an	d Qualification	Limits		
Weldin	g Variables			tual Values	Range	Qualified
Welding Process(es)				[13]	_ [31]
Type (i.e.; manual, semi-autom	atic)			[14]	[32]
Backing (metal, weld metal)	Process 1:	[7]		[15]	[33]
	Process 2:	[8]		[16]		34]
☐ Plate ☐ Pipe (enter diame	er if pipe or tube)			[17]		35]
Base Metal M-Number to M-Nu	umber			[18]		36]
AWS Filler metal or Electrode S	pecification(s)		<u></u>	[19]		
Filler metal or electrode classifi	cation(s)		<u></u>	[20]	-	
Filler metal F-Numbers	Process 1:	[9]		[21]	[37]
	Process 2:	[10]		[22]	[38]
Consumable Insert for GTAW				[23]		3 9]
Weld deposit thickness for each	n welding process:					 ,
	Process 1:	[11]		[24]	[40]
	Process 2:	[12]		[25]		41]
Position Qualified (2G, 6G, etc.				[26]		42]
Vertical progression (Uphill or I	Downhill)		<u></u>	[27]		43]
Inert gas backing for GTAW or	GMAW		<u></u>	[28]	[44]
Transfer Mode (spray/globular	or pulse to short o	ircuit-GMA		[29]	[<u>45]</u>
GTAW welding current type/po	larity (AC, DCEP, D	CEN)		[30]	[46]
		Res	ults			
Visual Examination of Complete	ed Weld :			[47]		
Guided Bend	d Test Type:	Transve	rse Side	Transverse	Root & Face	
Specimen No.	Results		Speci	men No.	Res	ults
[48]	[49]		[50]	[5	1]
Alternative radiographic exami	nation results			[52]		
Fillet Weld – fracture test	[53]	Len	gth and percent		[54]	mm
Macro Examination [55]	Fillet size (mr		•	Concavity/con		[58]
Other tests	 [59]	, <u> </u>		,,	, , , <u> </u>	
Film or specimens evaluated by	,	[60]		Company	[61]	
Mechanical tests conducted by	[62	2]	Laborator		[63]	
Welding supervised by	-	•		4]	•	
We certify that the statements in t requirements of CWI Part B Practic used for actual production welding	al Book of Specificat	tions. It is to	be used for the O	CWI Part B Practica		
		Or	ganization		[65]	
		Ву		[66]	Date	[67]