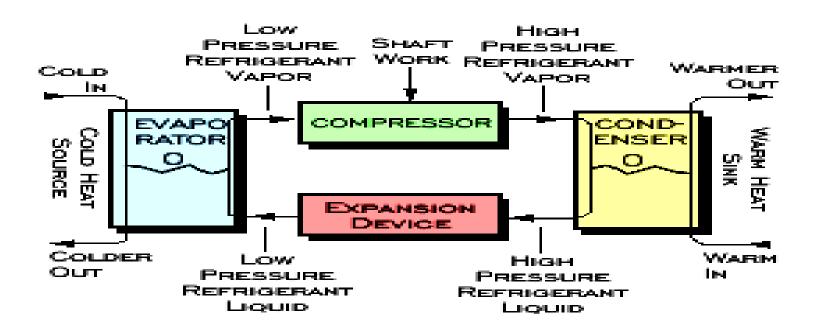
REFRIGERANTS

ENGINEER IN TRAINEE's

- 1. ALOK K N
- 2. MANISH KUMAR
- 3. ARPITA BANERJEE
- 4. ABHISHEK BRAHMPURYA

- **5. MANOJ KUMAR**
- **6. SURYA PRATAP BHANJA**
- 7. TANWI FARHEEN


CONTENTS:

- Definition
- History
- Classification
- Colour coding
- Properties
- Conclusion

REFRIGERANT:-

"Refrigerant acts as a transportation medium to move heat absorbed in the evaporator to the condenser where it is rejected".

HISTORY OF REFRIGERANTS:-

Natural refrigerants:-

- 1) Ice blocks
- 2) Using nocturnal cooling
- 3) Use of evaporation

Artificial refrigerants:-

- 1) In 1835, Jakob Perkins use ethyl ether as the refrigerant (b.p= 30'c). (if air mixed forms an explosive gas).
- 2) In 1874, Raowl Piolet designs the first sulphur dioxide based system. (forms H₂SO₄ when gets moisture).
- 3) In 1885, Fraunz Windhausen builds the first to use co₂ in Germany. (high operating pressure).
- 4)In 1920, iso-butane based domestic refrigerator (highly flammable), General Electric first introduce "Kelvinator" refrigerator.
- 5) In 1930, Introduction of CFC_s.

CLASSIFICATION OF REFRIGERANTS refreshingly different lemontree

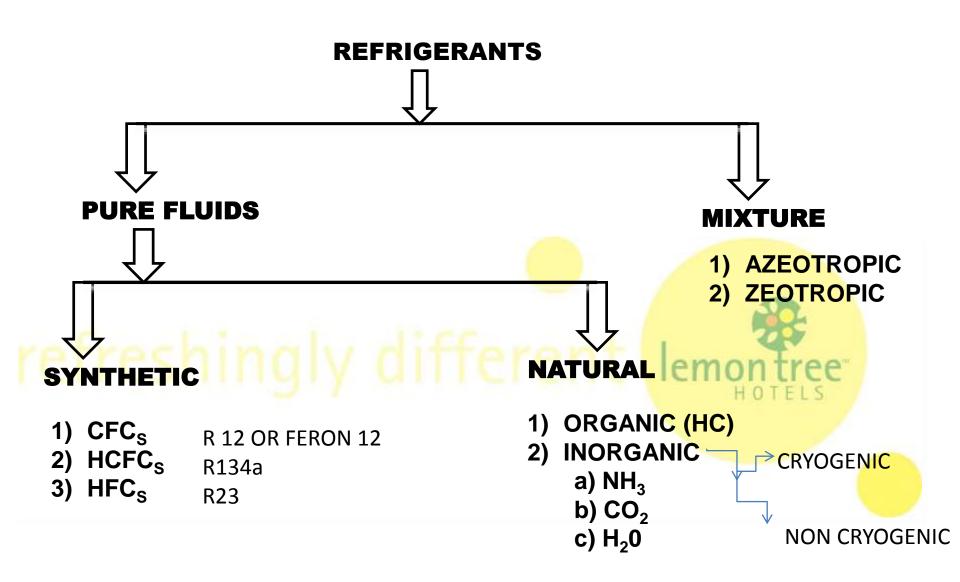
Based on Working Principle:

REFRIGERANTS

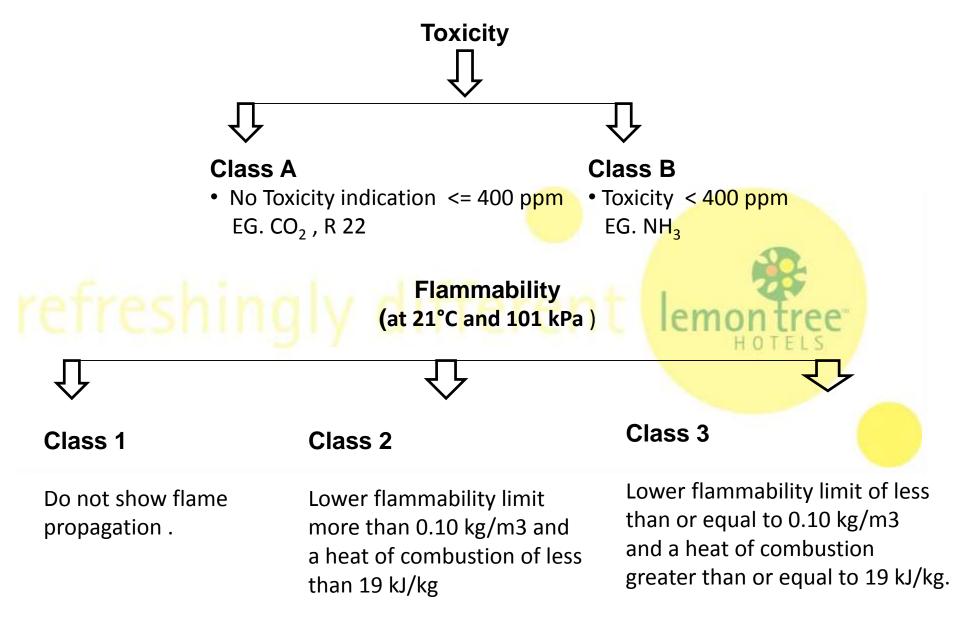
- Used directly as working fluids.
- 2) Undergo phase change. Eg, R134a, R404a

SECONDARY REFRIGERANTS

- Liquids that are used to transport energy.
- 2) Not undergo any phase change.Eg. Water , brines.


REFRIGERANT SELECTION CRITERIA:-

- i. Thermodynamic and Thermo-physical properties
- ii. Environmental and safety properties, and
- iii. Economics



BASED ON CHEMICAL PROPERTIES

BASED ON SAFETY:-

NOMENCLATURE (synthetic) (DU PONT CORP.)

All refrigerants are designated by R followed by a number **R xyz**

Where,

X+1 = Number of carbon atoms

Y -1 = Number of hydrogen atoms

Z = Number of fluorine atoms

The balance indicates number of CI atoms

 $X = 0 \Rightarrow No.$ of Carbon atoms = 0+1 = 1

 $Y = 2 \Rightarrow No.$ of Hydrogen atoms = 2-1 = 1

 $Z = 2 \Rightarrow No.$ of Fluorine atoms = 2

The balance = 4 - no. of (H+F) atoms = $4 - 1 - 2 = 1 \Rightarrow \text{No.}$ of Chlorine atoms = 1

∴The chemical formula of R 22 = CHCIF₂

	Safety group			
Higher Flammability	A3	В3		
Lower Flammability	A2	B2		
	<u>A2L</u> *	<u>B2L</u> *		
No flame Propagation	A1	B1		
	Lower Toxicity	Higher Toxicity		

^{*}A2L and B2L are lower flammability refrigerants with a maximum burning velocity of ≤ 10 cm/s

R 152a burns at 23 cm/s and R 32 burns at 6.27 cm/s

Classification of a few refrigerants

Classification	Denomination	Composition or chemical formula	Safety classification	
		(mass percentage)		
NORGANIC C	OMPOUND	10 V3		
R717	ammonia	NH ₃	B2	
R718	water	H ₂ O	A1	
R744	carbon dioxide	CO ₂	A1	
ORGANIC CO	MPOUND	***		
Hydrocarbons		38		
R170	ethane	CH₃CH₃	A3	
R290	propane	CH₃CH₂CH₃	A3	
R600a	isobutane	CH(CH ₃) ₂ CH ₃	A3	
Halocarbons) 10-10-4			
Chlorofluoro	carbons (CFCs) and Bromofluo	procarbons (BFCs)		
R11	trichlorofluoromethane	CCI ₃ F	A1	
R12	dichlorodifluoromethane	CCI ₂ F ₂	A1	
Hydrochloro	fluorocarbures (HCFC)	111000000000000000000000000000000000000		
R22	chlorodifluoromethane	CHCIF ₂	A1	
R141b	1,1-dichloro-1-fluoroethane	CH ₃ CCl ₂ F	A2	
R142b	1-chloro-1,1-difluoroethane	CH ₃ CCIF ₂	A2	
Hydrofluoro	carbons (HFCs)	10 10 10 10 10 10 10 10 10 10 10 10 10 1		
R32	difluoromethane	CH₂F₂	A2	
R125	pentafluoroethane	CHF ₂ CF ₃	A1	
R134a	1,1,1,2-tetrafluoroethane	CH ₂ FCF ₃	A1	
R143a	1,1,1-trifluoroethane	CH₃CF₃	A2	
R152a	1,1-difluoroethane	CH₃CHF₂	A2	
Azeotropic r	mixtures			
R502		R22/R115 (48.8/51.2)	A1	
R507		R125/R143a (50/50)	A1	
Zeotropic m	ixtures			
R404A	testroteck	R125/R143a/R134a	A1	

INORGANIC REFRIGERANTS:

Designated by number 7 followed by their molecular weight.

$$NH_3 = 17$$
, R 717
Ex :- CO_2 , H_2O , NH_3 .

•CO₂

- 1. Zero ODP & GWP is 1.
- 2. Non Flammable, Non toxic.
- 3. Drawback Operating pressure (high side): 80 bars.
- 4. Low efficiency

Ammonia

- 1. Toxic.
- 2. Flammable (16 28% concentration).
- 3. Not compatible with copper (cuperic oxide)

Water

- 1. Used in absorption system.
- 2. Cannot be used under higher working pressure.

MIXTURES

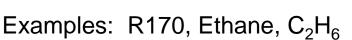
- 1) Azeotropic mixture: 500 series,
- A stable mixture of two or several refrigerant.
- vapor and liquid phases retain identical compositions over a wide range of temperatures.

Examples: R-500: 73.8% R12 and 26.2% R152

R-502: 8.8% R22 and 51.2% R115

2) Zeotropic mixture: 400 series,

- •Composition in liquid phase differs to that in vapor phase.
- •Do not boil at constant temperatures unlike azeotropic refrigerants because of dff. Boiling points.


Examples: R404a: R125/143a/134a (44%,52%,4%)

R407c: R32/125/134a (23%, 25%, 52%)

NATURAL REFRIGERANTS:-

Hydrocarbon

- ⇒ Their efficiency is good
- ⇒ With no ODP and very small GWP values
- ⇒ Compatible with lubricating oils
- ⇒ Extraordinary reliability.
- ⇒ Highly flammable

R290 , Propane C_3H_3 R600, Butane, C_4H_{10}

R600a, Isobutane, C₄H₁₀

Blends of the above Gases

<u>CFCs:</u>

- Combination of CARBON+CHLORINE+FLUORINE.
- Also commonly know as FREONS.
- High ODP=1 and high GWP.
- CHLORINE has an excellent anti-wear characteristic.
- As ODP & GWP is high so it got banned.
- Few examples are:
 - R-11
 - R-12
 - R-13 and many more.

CFCs:

REFRIGERANT	CHEMICAL NAME	APPLICATION
R-11	Trichloromonofluoromethane	Centrifugal chillers
R-12	Dichlorodifluoromethane	Reciprocating & rotatory equipment
R-13	Monochlorotrifluoromethane	Low stage cascade system
R-13B1	Bromotrifluoromethane	Low to medium temp. application
R-113	Trichlorotrifluoroethane	Low capacity chillers
R-114	Dichlorotetrafluoroethane	High capacity chillers
R-500	Refrig. 152A/12	Reciprocating compressor
R-502	Refrig. 22/115	Reciprocating equipments
R-503	Refrig. 23/13	Commercial refrigeration

HCFCs:

- Combination of HYDROGEN+CHLORINE+FLUORINE+CARBON.
- Low CHLORINE content than CFCs.
- It has ODP=0.05 & LESS but not zero.
- Low GWP value than CFCs.
- NON-FLAMMABLE & environment acceptable.

- R-123 ODP=0.02
 BP= -28'C
 Critical Temperature=183.68'C
- R-22 ODP=0.05
 BP= -40.81'C
 Critical Temperature=96.15'C

HCFCs:

REFRIGERANT	CHEMICAL NAMES	APPLICATION
R-22	Monochlorodifluoromethane	Commercial A.C
R-123	Dichlorotrifluoroethane	chillers
R-124	Chlorotetrafluoroethane	Medium chillers
R-401A	R-22 + R-152a + R-124	Medium temp. system
R-401B	R-22 + R-152a + R-124	Transport refrigerator
R-402A	R-22 + R-125 + R-290	Ice machine
R-402B	R-22 + R-125 + R-290	Super market refrigeration

HFCs:

- Combination of HYDROGEN+FLUORINE+CARBON.
- NON-FLAMMABLE, RECYCLABLE, LOW TOXICITY.
- Minimum EMISSION and maximize ENERGY-EFFICIENT.
- Its ODP=0 and LOW GWP.
- Require POE oil for the lubrication purpose.

- Few examples are:
 - R-410A ODP=0

BP = -48.5'C

Critical Temperature=72.8'C

■ R-134A **ODP=0**

BP= -26.06'C

Critical Temperature=101.08'C

HFCs:

REFRIGERANT	CHEMICAL NAMES	APPLICATION
R-23	Trifluoromethane	Low temp. refrigeration
R-134A	Tetrafluoroethane	Automative system & commercial ref.
R-404A	R-125 + R-143a + R-134a	Medium & low temp.
R-407C	R-32 + R-125 + R-134a	R 22 replacement
R-410A	R-32 + R-125	Residential A.C
R-507	Refrig. 125/143a	Commercial ref.

POE's

- Synthetic refrigeration lubricant is used with all HFC refrigerants such as R407A and R407C.
- Used in Centrifugal, Screw, Scroll, reciprocating types Compressors.
- They provide maximum protection and tree lubrication at higher compressor temperatures.

Refrigerant Acids:-

- HFC's & POE's are used widely.
- It causes formation of oil sludge's due to low stability.
- It leads to seize the compressors & further burn out.
- Do preventive maintenance to check inorganic acids.

COLOR CODES OF REFRIGERANTS

- Easy recognize gas cylinder
- Different refrigerant has different color coding
- Few examples are given below:

R-22 – LIGHT GREEN R-134A – LIGHT SKY BLUE R-404A – ORANGE

The name label of the gases are given on the cylinder.

PROPERTIES OF REFRIGERANTS refreshingly different lemontree HOTELS

Thermodynamic properties

- Boiling point :- It should have low boiling point.
- Freezing point :- It should have low freezing point.
- •Evaporative pressure :- It should be above atmospheric pressure.
- Condensing pressure :- It should have low condensing pressure.
- •Latent heat of vaporization :- It should have high latent heat of vaporization.
- •Critical pressure and temperature :- It should be above the condensing pressure and temperature.
- Thermal conductivity :- It should have high thermal conductivity.
- •Co-efficient of performance: COP has direct effect on running cost of refrigeration cycle so higher the COP lower will be the running cost.

Thermodynamic Properties

Refrigerants	R 12	R 22	R 134a	R 404a	R 407a	NH3	H ₂ O	CO ₂
B.P (°C)	-28.8	-40.81	-26.2	-46.4	-45	-33	100	-78.3
F.P (°C)	-157.7	-160	-96.66			-77.7	0	-56.6
Latent heat of vaporization (KJ/kg)	166.95	233.75	215.9	143.68	235.57	1371.2	2.25	571.3
Critical temp. (°C)	112	96.15	100.95	72.07	82.2	132.4	374	30.98
Critical pressure (bar)	41.15	49.9	40.6	37.32	45.15	8.88	217. 7	77.77
Specific heat (KJ/mol.K)	.074	.057	.08754	1.03	1.520	6.91	4.18	.0374
COP(@ 35'C)		3.677	3.701	3.586	3.603			

Chemical properties

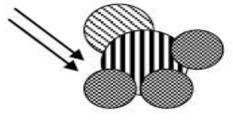
- •Toxicity: It should be non toxic. It should not be harmful for humans.
- Corrosiveness: It should not be corrosive and should not have any effect on materials used in equipments.
- •Flammability:- It should be inert and should not catch fire when subjected to high temperature.
- Miscibility with oil :- It should not react with lubrication oil.
- •Chemical stability & inertness :- It should be chemically stable for operating ranges of temperature.

Physical properties

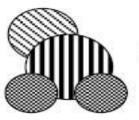
- Specific volume :- It should be low in vapour state.
- Viscosity: It should have low viscosity.
- •Leakage Detection :- It should have less tendency to leak & if it leaking it should have a pungent smell so that the leakage can be detected easily.

Refrigerants	R 12	R 22	R 134a	R 404a	R 407a	NHз	H ₂ O	CO ₂
Viscosity(c p)	.1076	.1256	.012	.001	.1	.276	1	.137

Other properties

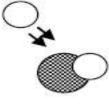

- •Handling & Maintenance :- It should be easy & safe to handle.
- Cost & Availability :- It should be readily available at LOW cost.
- •Performance of the System:- It should have high COP & LOW power requirement.

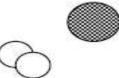
OZONE DEPLETION:


- Ozone layer gets depleted by the action of CFCs.
- The greatest concentration of ozone are found from 12 km to 50 km above the earth forming a layer in the stratosphere which is called the ozone layer.

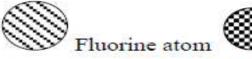
- Few examples are given in details:
 - R-12 **ODP** is "1"
 - R-22 **ODP** is "0.05"
 - R-134a ODP is "0"

1. UV radiation hits CFC


2. Chlorine atom breaks away.


3. Chlorine atom hits ozone molecule.

 Chlorine atom takes one oxygen atom to form chlorine monoxide and one molecule of oxygen.



 Oxygen atom hits chlorine monoxide molecule.

 Two oxygen atoms form an oxygen molecule.
 Chlorine atom is free and repeats the depletion process.

Chlorine atom Oxygen atom

Figure 4.4. Graphical Representation of the Reactions Involved in Ozone Depletion

GLOBAL WARMING POTENTIAL

- Measurement of global warming
- Done in relation with CO2, where co2 has GWP 1
- Lower the value of GWP better the refrigerant
- Few examples are given below:
 - R-11 High chlorine content
 GWP is 4000
 - R-22 Low chlorine content
 GWP is 1700
 - R-134A- No chlorine content
 GWP is 1300

MONTREAL PROTOCOL:-

- => SIGNED IN 1987 UNDER THE 'UNEP', AFTER MUCH DISCUSSIONS
- => MORE THAN 170 COUNTRIES HAVE RATIFIED
- => INDIA RATIFIED ON SEPT 17,1992

=> ONE OF MOST SUCCESSFUL EXAMPLE OF INTERNATIONAL COOPERATION IN UN HISTORY

ozone depleting substance	developed countries	developing countries HOTELS
CFCs	phased out end of 1995	total phase out by 2010
halons	phased out end of 1993	total phase out by 2010
HCFCs	total phase out by 2020	total phase out by 2040

TEWI

- Total Equivalent Warming Impact
- TEWI = direct emission (c)+ indirect (e).
- The refrigerants have been rated according to their LCCP(Life cycle climate performance).
- LCCP= TEWI + GWP(ID)+ GWP(D).

CONCLUSION

- Don't treat the today's refrigerants with yesterday's techniques.
- CFC's replaced by refrigerants blends.
- R & D of the refrigerants is in the field of environmental acceptability.
- TEWI, the factor used to decide the overall capability of a refrigerant.

Thank of

refreshingly different lemontree

