Experimental design in environmental assessment

© Environmental sampling and analysis (Quinn & Keough, 2003)

Principles of experimental design

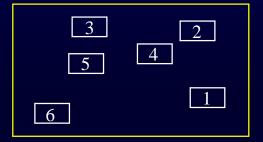
- Minimising confounding
 - replication
 - controls
 - randomisation
- Reducing unexplained variation
- Power analysis (Type II error)
 - determining required sample size
 - interpreting non-significant results

Confounding

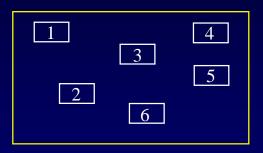
- Effect of different factors (predictor variables) cannot be distinguished
- Experiments:
 - treatment effects confounded with (inseparable from) other spatial or temporal differences
 - usually due to inappropriate replication or non-randomisation of treatments to experimental units

Replication

- Biological systems inherently variable
 - particularly ecological systems
- Replication:
 - allows estimation of variation in population
- ANOVA:
 - variation between groups compared to variation within groups (residual)
 - replication allows estimation of residual variation

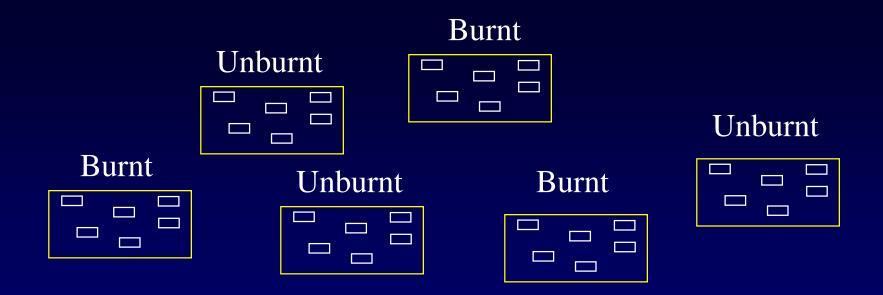

Replication and confounding

- Experimental units ("replicates") must be replicated at spatial and temporal scales appropriate for the treatments
- Inappropriate replication can result in confounding
 - replicates not at scale of treatments
 - unreplicated at correct scale


Field comparisons

- One burnt location and one unburnt location surveyed for mammals after fire
- Each location divided into 6 smaller plots
 - mammals sampled from each plot
- Mean no. mammals between locations compared with t test

Burnt


Unburnt

- Burning treatment applied to location, not to small plots
- Plots are only subsamples
 - termed "pseudoreplicates" (Hurlbert 1984)
- True replicates are locations
 - only 1 replicate per treatment

- Locations may be different in small mammal numbers irrespective of fire
- Effect of fire cannot be distinguished from other spatial differences between locations
 - confounding of two factors (burning and location)
 - no conclusions possible about effect of fire

Experiment requires replicate burnt and unburnt areas

Laboratory experiments

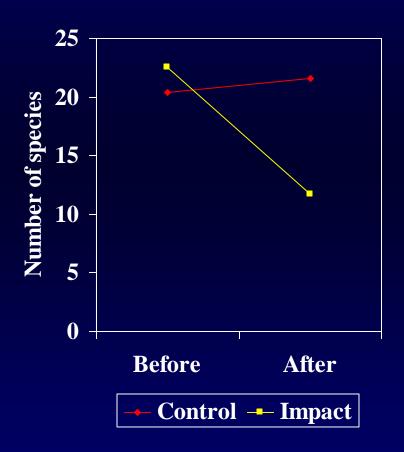
- The effects of uranium wastewater on growth rate of freshwater snails
- Two aquaria set up:
 - one aquarium receives wastewater
 - second aquarium receives equivalent amount of freshwater
 - 20 "replicate" snail in each aquarium
 - size of each snail measured at the start and end of experiment

- Wastewater treatment applied to whole aquaria, not to individual snails
- Snails are only pseudoreplicates
- True replicates are aquaria
 - only 1 replicate per wastewater treatment
- Confounding of wastewater effect and other differences between aquaria

Crossover design

- Run experiment with aquarium one with wastewater and aquarium two without wastewater
- Swap aquarium and wastewater treatment so aquarium one without wastewater and aquarium two with wastewater
 - confounding of wastewater and "aquarium" less likely
- Better but still "unreplicated"

Assessing human disturbances


- Sewage outfall on sandy beach
 - "Treatment" beach with outfall
 - Control beach without outfall
- Replicate sediment cores from each beach
- True replicates are beaches
 - only 1 replicate per human impact treatment
- Sewage effect confounded with beach

BACI designs

- Before-After-Control-Impact (BACI) design for impact assessment
- Control and impact locations recorded both before and after impact
- Does control-impact difference change from before to after impact?

BACI designs

- Test:
 - C-I difference changes from before to after impact

Controls

- Many factors that could influence the outcome of experiment are not under our control
 - allowed to vary naturally

- What would happen if the experimental manipulation had not been performed?
 - controls

Salamander competition

- Hairston (1989)
- Hypothesis
 - 2 species of salamanders
 (Plethodon jordani and P. glutinosus) in the Great
 Smoky Mountains compete

Source: University of Michigan, Museum of Zoology

Experiment:

Treatment = *P. glutinosus* removed from plots Control = *P. glutinosus* not removed

Treatment:

population of *P. jordani* increased following
 P. glutinosus removal

Control:

 population of *P. jordani* on control plots (with *P. glutinosus* not removed) showed similar increase

Laboratory experiments

- Effects of toxicant on survivorship of fish
 - compare response of fish injected with toxicant to response of control animals not injected
- Differences between control and injected animals may be due to injection procedure
 - handling effects, injury from needle etc.

- Suitable control is to inject animals with inert substance
 - handling effects, injury etc. same for control and treatment animals
- Any difference between treatment and control animals more likely due to effect of drug

Field experiments

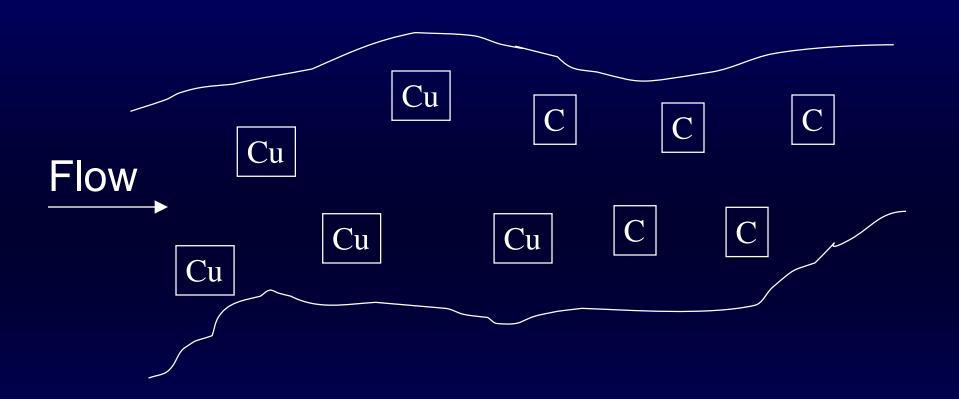
- The effect of predatory fish on marine benthic communities (eg. mudflats)
 - compare areas of mud with fish exclusion cages to areas of mud with no cages
- Differences between 2 types of areas may be due to cage effects
 - shading, reduced water movement,
 presence of hard structure etc.

- Must use cage controls
 - cages with small gaps to allow in fish
 - shading, water movement etc. same for cages and cage controls
- Any difference between exclusion and control areas more likely due to effect of fish

Randomisation

Experimental units must be randomly allocated to treatment groups

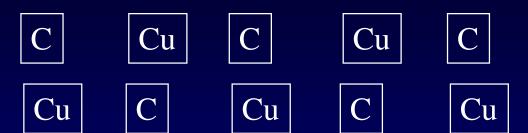
Ensures confounding is less likely


Allocation of replicates to treatments

- Effect of toxicant on [Hb] in blood of flathead
- Fish sampled from population of fish in aquarium
- First six fish caught:
 - used for treatment group
 - injected with toxicant before [Hb] is measured
- Next six fish:
 - used as the controls
 - control injection before [Hb] is measured

- BUT first 6 fish caught are probably slower or more stupid or less healthy, and hence easier to catch
- Effects of toxicant are confounded with health of fish?

Randomisation vs interspersion


- Experiment on effects of copper on stream invertebrates.
 - randomly choose 10 stones in stream
 - randomly allocate 5 as copper treatments(Cu) plots and 5 as control (C) plots
- Possible random arrangement:

- Interspersed of treatments important
 - avoids confounding copper effects with other spatial differences
- Re-randomise
 - to get reasonable interspersion
 - decide a priori unacceptable degree of spatial clumping
 - single re-randomisation usually improves interspersion

Why not systematic?

Why not arrange the treatments in a systematic way to guarantee perfect interspersion:

Problems with systematic

- Positions of plots not random:
 - not random sample of any population?
- Non-random spacing interval between neighbouring treatments:
 - may coincide with unknown environmental fluctuation
 - confound treatment effects