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ABSTRACT

Knowledge of hydraulic conductivity (K) is inevitable for sub-surface flow and aquifer studies. Hydrologists and groundwater
researchers are employing data-driven techniques to indirectly evaluate K using porous media characteristics as an alternative
to direct measurement. The study examines the ability of the Adaptive Neuro-Fuzzy Inference System (ANFIS) to predict the K of
porous media using two membership functions (MFs), i.e., triangular and Gaussian, and support vector machine (SVM) via four
kernel functions, i.e., linear, quadratic, cubic, and Gaussian. The techniques used easily measurable parameters namely effec-
tive and mean grain size, uniformity coefficient, and porosity as input variables. A 70 and 30% dataset is used for the training
and testing of models, respectively. The correlation coefficient (R) and root mean square error (RMSE) were used to evaluate the
models. The Gaussian MF-based ANFIS model outperformed the triangular model having R and RMSE values of 0.9661 & 0.0010
and 0.9532 & 0.0015, respectively, whereas the quadratic kernel-based SVM model with R and RMSE values of 0.9520 and
0.0015 performs better than the other SVM models. Based on the evaluation of ANFIS and SVM models, the study establishes
the efficacy of the Gaussian MF-based ANFIS model in estimating the K of porous media.
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HIGHLIGHTS

® The study focuses to develop a hydraulic conductivity model based on easily measurable grain-size parameters using the
two data-driven techniques, i.e., ANFIS and support vector machine.

® The data-driven approaches result in the quick estimation of hydraulic conductivity, which is useful in determining the
groundwater recharge with precise accuracy.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying,
adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).
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INTRODUCTION

Hydraulic conductivity (K) is a simple, yet critical porous media parameter that directs the flow of fluids
through porous media using Darcy’s law. The K of porous media is reliant on the physical properties of the flow-
ing fluid and the transmission medium such as particle size, porosity, and pore connectivity (Chandel et al
2021). Darcy’s law directly connects the seepage of fluid to the K and its knowledge is important for groundwater
recharge, landslide, and soil stability analysis. Soil’s K values can be measured or predicted using direct and
indirect approaches (Chapuis 2012; Elbisy 2015). Various efforts have been invested in estimating the K due
to the complex geometry of the soil particles and the multiscale pore structure of porous media (Jougnot et al.
2021).

The direct approach consists of the K measurement in the laboratory or field. Laboratory methods include con-
stant-head and falling-head tests, while the field methods include ring infiltrometer, instant profile, test basins
(Williams & Ojuri 2021; Chandel ef al. 2022a), auger hole, tension infiltrometer (Raoof et al. 2011), borehole
permeameter, and pressure infiltrometer (Deb & Shukla 2012). A detailed review of various laboratory and
field methods for determining the K of soil is covered by Amoozegar & Warrick (1986) and Wang et al.
(2017). Direct measurement is expensive and time-consuming and becomes infeasible due to temporal and geo-
graphical variations. It also needs sophisticated instruments and competent operators (Arshad et al. 2013;
Chandel & Shankar 2022). This resulted in the invention and widespread use of indirect techniques for estimat-
ing the K from more easily and inexpensively measured soil parameters such as porosity, specific gravity, and the
percentage of sand, silt, and clay content (More ef al. 2022). The indirect approaches involve the estimation of K
using empirical equations and models developed using data-driven techniques based on correlation analysis,
which relates the K to relevant contributing factors. The existing empirical methods have the significant benefit
of being able to estimate the K value more quickly than the direct measurement (Williams & Ojuri 2021; Chandel
et al. 2022b). As a result of their domain-specific development, empirical equations cannot be applied outside of
those boundary conditions (Chandel & Shankar 2021).

Recent research shows the effective use of data-driven techniques in different fields of engineering (Das et al.
2012). Learning, modelling, and obtaining a pattern from an experimental approach are all complex tasks that
data-driven techniques can perform with precise accuracy. The data-driven techniques can either be single such
as artificial neural networks (ANNSs), fuzzy, and support vector machine (SVM), or hybrids such as ANFIS and
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genetic algorithm-ANN (Williams & Ojuri 2021). Particle swarm optimization and Monte Carlo analysis can also be
used for model optimization and uncertainty analysis (Torabi Podeh ef al. 2022). These techniques have been effec-
tively practiced in water resource engineering challenges (Ghorbani et al. 2016; Kumar et al. 2020) and have a better
prediction efficiency as compared to the direct approaches (Sihag et al. 2021). Ekhmaj (2010) developed the
ANN and the multilinear regression (MLR) model to estimate the infiltration rate for different types of Libyan
soil and suggested that ANN has better prediction efficiency than MLR. To estimate the K value for clay liners,
Das et al. (2012) found that the SVM model was more effective than the neural network (NN) model. Yilmaz
et al. (2012) used ANNs and ANFIS to estimate the K of coarse-grained soils and found the ANFIS model to be
more reliable. Arshad et al. (2013) predicted the K using multi-layer perceptron neural networks (MLPNNSs),
MLR, ANFIS, and radial basis function neural network (RBFNN) models and found that ANFIS and RBFENN
were efficient approaches for K prediction with precise accuracy. Elbisy (2015) studied SVM for estimating the K
of sandy soil and found that SVM based on the radial basis function (RBF) model had a higher level of accuracy
when compared to the linear and sigmoid-based models. Sihag (2018) developed a fuzzy logic and ANN-based
model for estimating the K of soil, and the results showed that the ANN approach performed well. Sihag ef al.
(2018) used ANN, SVM, Gaussian process (GP), random forest (RF), M5P model tree, and two conventional
models to estimate the infiltration rate of fly-ash-mixed soils, and the result showed that SVM with RBF kernel
was the best-fit modelling technique among others. Boadu (2020) explored support vector regression (SVR) and
MLR to predict K and found that the SVR models were more accurate and achieve better performance. Singh
et al. (2021a) used SVM, RF, and MLR models to estimate the K of the soil and concluded that the SVM model
has better prediction efficiency. Singh et al. (2021a) investigated ANN, MLR, RF, and M5P tree-based models to pre-
dict the infiltration rate. The results showed that all models have relatively good prediction capability, with RF-based
models outperforming the others.

Several data-driven techniques were found to be useful in the literature review for estimating the K of porous
media using easily measurable soil properties; however, ANFIS and SVM showed impressive prediction perform-
ance in comparison to other techniques in the respective studies. The Takagi-Sugeno fuzzy inference system is
used in ANFIS, and it has been proven to be an effective tool for capturing non-linear relationships between
inputs and outputs (Nawaz ef al. 2015). SVMs reduce overfitting as they are based on the principle of structural
risk optimization and statistical learning algorithm, and they have gained more popularity because of better gen-
eralization (Das et al. 2012; Elbisy 2015). To the best of our knowledge, the ANFIS and SVM techniques have not
been used together to examine which technique is more effective in estimating the K of porous media. Based on
the literature review and the potential of ANFIS and SVM, the current study is conducted to examine and com-
pare the potency of both techniques in developing prediction models for estimating the K of porous media. The
main objectives of the study are given as follows:

1. To estimate the hydraulic conductivity of porous media by developing the ANFIS and SVM models and evalu-
ate their efficacy via statistical indicators, i.e., R and RMSE.
2. To compare the outcomes of the ANFIS and SVM models in terms of prediction performance capability.

Theoretical overview of ANFIS and SVM
Adaptive Neuro-Fuzzy Inference System

The fuzzy theory was developed by Zadeh in 1962, and ANFIS is the most convenient neuro-fuzzy model estab-
lished by Jang in 1993 (Azad et al. 2018). ANFIS makes utilization of neural network learning and fuzzy logic
reasoning capabilities. It produces a fuzzy inference system (FIS) based on the input-output dataset (Nawaz
et al. 2015). Each fuzzy rule in the FIS specifies a local system behaviour, and the network structure implements
the FIS and uses hybrid learning rules to train the model. ANFIS’s five-layer architecture is depicted in Figure 1,
and the layers and nodes are described below (Jalalkamali 2015; Nawaz et al. 2015).

Layer 1 - Every single node produces membership grades of an input variable. The shapes of the membership
functions, such as generalized bell-shaped, Gaussian, triangle-shaped, and trapezoidal-shaped functions, are
used to categorize the fuzzy set associated with each node.

Layer 2 - Every node is a fixed node labelled as [] and the output of every node is the product of the incoming
signal, which represents the firing strength of a rule.

Layer 3 — Every node is a fixed node labelled as N and computes the normalized firing strengths.
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Figure 1 | Basic structure of ANFIS.

Layer 4 - Every node i is an adaptive node and computes the input of the ith rule for the model output with node
function.
Layer 5 - Computes the overall output of the ANFIS by summing outputs of all incoming signals.

Support vector machine
SVM was developed by Vapnik, and is based on statistical learning theory. In support of vector regression, the
input x is projected into a high-dimensional feature space using a kernel function, and then a linear model is
developed in this feature space (Das ef al. 2012).

Consider a training set (x;, y;), (=1, 2, 3,...., n). The linear model f (x; w) in the feature space is given by

fx) = @ - () +b 1)

where x is the input vector and y is the output value

¢(x) is the non-linear mapping function that transforms the original input space to a higher dimensional feature
space, w is the weight vector of the regression function, b is the bias of the regression function.

The coefficients w and b are estimated by minimizing the regularized risk function (Ry).

Reg = 3l + 5 L(7@), ) ©
i=1

where

n is the number of patterns that contain all the information necessary to solve the learning task at hand herein-
after refers to as support vectors.

C is a regularization constant that determines the trade-off between the training error and the generalization
performance.

5 |w|[* = regularization term measures the flatness of the function L, (f(x), y) (Elbisy 2015; Boadu 2020).

The quality of prediction is measured by the e-insensitive loss function L.(f(x), ).
0 if |[f(x) -yl <e }
L, ,Y) = . 3
9.9 ={ 09 "y~ it 9 o1 = R

where ¢ is a precision parameter representing the radius of the tube located around the regression function.
Using positive slack variables & and £* in Equation (2), the optimization problem can be transformed into a
quadratic programming problem. Finally, the regression function of the SVM can be expressed as follows:

f) = Y yilai — af)K(xi, ) + b )

i=1

Subjected tof0 < o < Cland {0 < o; < C}
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where o* and a are Lagrange multipliers and K(x;, x) = ¢(x;)¢(x) is called the kernel function (Elbisy 2015). The
SVM technique was discussed in detail by Vapnik (1999), Samui et al. (2008), and Das et al. (2012).

MATERIALS AND METHODOLOGY
Experimental study

In the first phase of the study, experiments have been performed in the Hydraulic Laboratory located at NIT
Hamirpur, which includes the sieve analysis, specific gravity, and constant-head permeameter test. The samples
were collected from the Ravi riverbank (32°33'10.3” N, 76°07'19.2” E) nearby the Irrigation and Public Health
Department Chamba of Himachal Pradesh in India. A total number of 56 porous media samples having different
proportions of fines (diameter <0.075 mm), fine sand (0.075-0.425 mm), medium sand (0.425-2 mm), coarse
sand (2-4.75 mm), and fine gravel (4.75-20 mm) were used for measurement. Soil samples were sieved according
to the American Society for Testing and Materials standards (ASTM 2007). From the grain-size curve, the par-
ameters namely dyo, dso, and dgo (grain diameter at which 10, 50, and 60% particles are finer) and C,
(uniformity coefficient) were determined. To determine the porosity () of the sample, the specific gravity test
was carried out using the pycnometer method (Chandel & Shankar 2021). Figure 2 depicts the usage of a con-
stant-head permeameter with a diameter of 10.16 cm and total and test lengths of 106 and 46.5cm,
respectively, for the determination of K. To observe the head difference between the start and endpoint of the
soil sample, four pressure taping points at an angle of 90° were provided along the circumference of the permea-
meter. The K was calculated by dividing the flow rate (cm>/s) by the permeameter area (cm?) times the hydraulic
gradient (ASTM 2006; Alabi 2011). At the beginning and end of each test run, the water temperature was
measured digitally using a thermometer.

‘INLET UTLET VALVE M:p:‘gig*&nmli
")
P &

f (UUUARAT AIR-WATER
15 cm I_ misisiilelm MANOMETER
PERMEAMETER
10 SIZE (10.16 ¢cm) =——wWOODEN BOARD

COUPLING—_]
WITH SCREEN

GLASS TUBES

PRESSURI
TAPPINGS

[y

106 cm 46.5 cm

e —
‘K
I
[

]

I
I
rI
—1

"

UBBER TUBES

\— =
COUPLING x \
SCREEN\‘\““J .
Yo
30 cm
UTLET VALVE
1S cm /g )

‘ OUTLET

Figure 2 | Experimental set-up of constant-head permeameter.
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Model development

The second phase of the study used the observations obtained from the experimental investigations for estimating
the K of porous media using ANFIS and SVM techniques. The agreement between the predicted and observed K
values was checked statistically by calculating R and RMSE. The modelling strategies used and performance
evaluation parameters are summarized in the following section.

ANFIS modelling strategy

Developing the ANFIS model is a trial-and-error method. Estimation using the ANFIS model includes defining
the number and shape of MF. In this study, two numbers of MF for each parameter and two shapes (triangular
and Gaussian) of the MFs for input and output parameters were selected for generating the FIS. The training par-
ameters were optimized using the hybrid optimization algorithm. The ANFIS modelling was performed using the
neuro-fuzzy designer toolbox in MATLAB R2021a according to the procedure as shown in Figure 3.

I Load Training Data |
PR A
*S- | Define Inputs and output |
E
2 | Select -
© 1. Number of membership functions
> —
8 | Generate FIS Model 2. Type of membership function
3 3. Optimization method
[=] h 4
= | Train the ANFIS |
—
-
| Export the FIS model |
L
 —4
2 | Test the ANFIS |~—[ Load Testing Data ]
=
™
> A
§ Get ANFIS predicted values
= (evalfis)

4
STOP

Figure 3 | Flowchart representing the ANFIS modelling approach.

SVM modelling strategy

The SVM regression models with linear, quadratic, cubic, and Gaussian kernel functions were developed and
validated using the regression learner toolbox of MATLAB R2021a. The 5-fold cross-validation of the develop-
ment dataset was done to protect the model from overfitting. The procedure implemented for SVM modelling
is shown in Figure 4.

Model performance evaluation

To analyse the competence of ANFIS and SVM models in estimating the K of the porous media, R and RMSE
values were calculated. Values closer to 1 for R and lower values close to 0 for RMSE indicate better agreement
between the observed and predicted values (Chandel & Shankar 2021). The model performance evaluation
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Figure 4 | Flowchart representing the SVM modelling approach.

Model Validation

parameters are defined as follows:

N _ _
(P; — P)(E; — E)
- e— g
\/ > (P — P’ )?
(6)

where N is the number of samples;

E; is the experimentally observed K value; P; is the model-predicted K value;
E is the experimental observation mean value; P is the model prediction mean value (Elbisy 2015).

RESULTS AND DISCUSSION

The observations of the laboratory experiments and findings of the developed ANFIS and SVM models to esti-
mate the K have been analysed and discussed in the following section. The first section describes the
statistical analyses of the porous media dataset, and the second section presents the performance analysis of
the developed models.

Statistical analysis

The porous media properties obtained in the laboratory include fines (%), fine sand (%), medium sand (%), coarse
sand (%), fine gravel (%), d1¢, ds0, dso, Cu, 1, and K. The statistical indices such as maximum, minimum, mean,
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and standard deviation values of each porous media property are presented in Table 1. The observed K values for
56 porous media samples have maximum and minimum values of 0.315 and 0.006 cm/s, respectively. The corre-
lation coefficient of dyg, dso, C,,, and n with the K is presented in Table 2. From Table 2, it is evident that d,o and n
have a more significant influence on K, whereas dso and C,, have a moderate influence on K with correlation coef-
ficients of 0.94 & 0.77 and 0.58 & 0.52, respectively.

Table 1 | Physical properties of the samples

Property Maximum Minimum Mean Standard deviation
Fines (%) 3.256 0.000 0.479 0.745
Fine sand (%) 91.234 11.354 44.662 22.302
Medium sand (%) 88.646 8.579 49.250 20.614
Coarse sand (%) 13.529 0.000 4.046 4.763
Fine gravel (%) 20.944 0.000 1.563 4.689
dio (mm) 0.410 0.090 0.213 0.073
dso (mm) 1.184 0.249 0.472 0.191
deo (mm) 1.906 0.273 0.566 0.315
(o 5.580 1.793 2.883 0.806
n® 0.427 0.316 0.377 0.030
K (cm/s) 0.315 0.006 0.071 0.065

2The dimensionless properties.

Table 2 | Correlation coefficient of various soil parameters with K

dyo dso Cy n K
dio 1.00
dso 0.52 1.00
Cy, 0.36 0.83 1.00
n 0.77 0.51 0.33 1.00
0.94 0.58 0.52 0.77 1

Dataset for ANFIS and SVM

The success of the model to estimate the K of the porous media depends upon the degree of the training dataset.
Out of 56 sample datasets, 40 were chosen for training, while the remaining 16 were used for testing the model.
Input variables include d,o, dso, C,, and n, whereas K was considered as the output variable. Table 3 shows the
range of different input and output parameters used in ANFIS and SVM techniques.

Table 3 | Characteristics of training and testing data

Training data Testing data

Maximum Minimum Mean Maximum Minimum Mean
Input variable
dio (mm) 0.410 0.090 0.218 0.296 0.136 0.200
dso (mm) 1.184 0.249 0.503 0.871 0.300 0.395
(o 5.580 1.793 3.033 4.261 1.946 2.508
n® 0.427 0.316 0.381 0.415 0.321 0.367
Output variable
K (cm/s) 0.315 0.006 0.080 0.132 0.018 0.050

aThe dimensionless properties.
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Estimation of K using ANFIS

For the study, the structure of the ANFIS model used with two numbers of MF is shown in Figure 5. The results of
the performance evaluation parameters of the ANFIS model for both training and testing datasets are listed in
Table 4. Notably, the triangular (ANFIS) and Gaussian (ANFIS) are associated with the results of the triangular
MF and Gaussian MF-based ANFIS models, respectively. From Table 4, the Gaussian (ANFIS) model outper-
forms the triangular (ANFIS) model, with R and RMSE values of 0.9884 & 0.0002 and 0.9661 & 0.0010 for
the training and testing dataset, respectively. Scatter plots of experimentally observed and model-predicted K
values for training and testing datasets are shown in Figures 6 and 7 respectively. The performance of ANFIS
was satisfactory during training and testing, which infers that the model constructed via ANFIS can effectively
predict the K of porous media. Furthermore, the scatter plot of the testing dataset as shown in Figures 6(b)

output

u§

Operations
and
or
not

Figure 5 | Structure of the ANFIS MF2 model for K prediction.

Table 4 | Performance evaluation parameter of training and testing datasets for the ANFIS model

Training Testing
Studied model No. of MF R RMSE R RMSE
Triangular (ANFIS) 2 0.9726 0.0007 0.9532 0.0015
Gaussian (ANFIS) 2 0.9884 0.0002 0.9661 0.0010
(@) o35 - (b) 0.6 -
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<020 4 =
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Figure 6 | Scatter plots of triangular (ANFIS) model for predicting K during (a) training and (b) testing stages.
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Figure 7 | Scatter plots of Gaussian (ANFIS) model for predicting K during (a) training and (b) testing stages.

and 7(b) shows that the points are concentrated close to the agreement line for lower values of K, which implies
superior prediction performance, but for higher K values the prediction capability was relatively decent (More
et al. 2022). ANFIS model’s predictions are influenced by what they learn during training. The more the data
in a given input range, the better the performance. More K values in the (0.006-0.07) range appeared in the train-
ing dataset for the ANFIS model, which may have contributed to the model’s superior performance in the lower
region during testing.

Estimation of K using SVM

Results of the performance evaluation parameters of the SVM model based on different kernel functions for train-
ing and testing datasets have been provided in Table 5. Notably, the linear (SVM), Gaussian (SVM), cubic (SVM),
and quadratic (SVM) are associated with the results of the linear, Gaussian, cubic, and quadratic kernel function-
based SVM models, respectively. The linear (SVM) and cubic (SVM) models performed well during training with
R and RMSE values of 0.9741 & 0.0008 and 0.9724 & 0.0011, respectively, but performed poorly during testing
with R and RMSE values of 0.9296 & 0.0021 and 0.9352 & 0.0028, respectively. The performance of the quad-
ratic (SVM) and Gaussian (SVM) models was better during both stages. The comparison of the performance
evaluation parameters shows that the quadratic (SVM) model has better prediction capability with R and
RMSE values of 0.9520 and 0.0015, respectively, during testing. The analysis of the results shows that the non-
linear kernel function has a better prediction efficiency of K than the linear kernel. Scatter plots of experimentally
observed and model-predicted K values for training and testing datasets are shown in Figures 8-11. The figures
show that all the kernel function-based models give significant prediction performances for lower values of K as
the points were concentrated close to the agreement line, but, for higher K values, the prediction capability was
relatively decent (More et al. 2022).

Table 5 | Performance evaluation parameter of training and testing datasets for the SVM model

Training Testing
Studied model R RMSE R RMSE
Linear (SVM) 0.9741 0.0008 0.9296 0.0021
Gaussian (SVM) 0.9781 0.0006 0.9404 0.0016
Cubic (SVM) 0.9724 0.0011 0.9352 0.0028
Quadratic (SVM) 0.9831 0.0004 0.9520 0.0015

Comparison of models

The results of the ANFIS and SVM models were compared to determine the best-performing model for estimating
the K of the porous media. Based on the statistical indicators, i.e., R and RMSE as shown in Tables 4 and 5, the
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Figure 8 | Scatter plots of linear (SVM) model for predicting K during (a) training and (b) testing stages.
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Figure 9 | Scatter plots of Gaussian (SVM) model for predicting K during (a) training and (b) testing stages.
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Figure 10 | Scatter plots of cubic (SVM) model for predicting K during (a) training and (b) testing stages.

prediction performance of the Gaussian (ANFIS) model is better than the quadratic (SVM) model. A graph
between the number of test samples and K is plotted as shown in Figure 12 to indicate the variation in predicted
K values obtained from Gaussian (ANFIS) and quadratic (SVM) models in comparison to the experimentally
observed K values. It can be inferred from Figure 12 that predicted K values provided by ANFIS were close to
the experimental K values and were found to follow the same pattern.
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Figure 11 | Scatter plots of quadratic (SYM) model for predicting K during (a) training and (b) testing stages.
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Figure 12 | Comparison of experimental K values with the predicted K values using Gaussian (ANFIS) and quadratic (SVM)
models.

CONCLUSIONS

The study focuses on estimating the K of porous media using two data-driven techniques, i.e., ANFIS and SVM.
Based on the correlation analysis, d;, dso, Cy,, and n were found to be the influential parameters to predict the K
of the porous media. The results of the study infer that both techniques are effective with the dataset in estimating
the K values. The findings of the ANFIS model show that the Gaussian (ANFIS) model outperforms the triangu-
lar (ANFIS) model having R and RMSE values of 0.9661 and 0.0010 for the testing dataset, respectively, whereas
the quadratic (SVM) model performs better than linear (SVM), Gaussian (SVM), and cubic (SVM) models with R
and RMSE values of 0.9520 and 0.0015, respectively, for the testing dataset. The comparison of performance
evaluation parameters signifies that the Gaussian (ANFIS) approach predicts better K values as compared to
the SVM approaches. Furthermore, the prediction performance of these techniques can be checked with a greater
number of datasets, and the application of these approaches in other hydrological studies could be the subject of
in-depth study in the future.

DATA AVAILABILITY STATEMENT

All relevant data are included in the paper or its Supplementary Information.

CONFLICT OF INTEREST

The authors declare there is no conflict.

Downloaded from http://iwaponline.com/wpt/article-pdf/17/12/2625/1155412/wpt0172625.pdf

bv auest



Water Practice & Technology Vol 17 No 12, 2637

REFERENCES

Alabi, O. O. 2011 Validity of Darcy’s law in laminar regime. Electronic Journal of Geotechnical Engineering 16(A), 27-40.

Amoozegar, A. & Warrick, A. W. 1986 Hydraulic conductivity of saturated soils: field methods. Methods of Soil Analysis: Part 1
Physical and Mineralogical Methods 5, 735-770.

Arshad, R. R, Sayyad, G., Mosaddeghi, M. & Gharabaghi, B. 2013 Predicting saturated hydraulic conductivity by artificial
intelligence and regression models. International Scholarly Research Notices 2013, 1-8.

ASTM 2006 Standard D2434 - Permeability of Granular Soils (Constant Head). ASTM International, West Conshohocken, PA,
USA.

ASTM 2007 Standard D422 - Particle-Size Analysis of Soils. ASTM International, West Conshohocken, PA, USA.

Azad, A., Karami, H., Farzin, S., Saeedian, A., Kashi, H. & Sayyahi, F. 2018 Prediction of water quality parameters using ANFIS
optimized by intelligence algorithms (case study: Gorganrood River). KSCE Journal of Civil Engineering 22(7), 2206-2213.

Boaduy, F. K. 2020 A support vector regression approach to predict geotechnical properties of soils from electrical spectra based
on Jonscher parameterization. Geophysics 85(3), EN39-EN48.

Chandel, A. & Shankar, V. 2021 Evaluation of empirical relationships to estimate the hydraulic conductivity of borehole soil
samples. ISH Journal of Hydraulic Engineering 1-10.

Chandel, A. & Shankar, V. 2022 Grain-size model for hydraulic conductivity estimation of porous media. Water Practice &
Technology 17(9), 1836-1848.

Chandel, A., Shankar, V. & Alam, M. A. 2021 Experimental investigations for assessing the influence of fly ash on the flow
through porous media in Darcy regime. Water Science and Technology 83(5), 1028-1038.

Chandel, A., Fayaz, F. & Shankar, V. 2022a Assessment of column to particle diameter ratio on the hydraulic conductivity of
porous media: wall effect in Darcy Regime. ISH Journal of Hydraulic Engineering 1-9.

Chandel, A., Sharma, S. & Shankar, V. 2022b Prediction of hydraulic conductivity of porous media using a statistical grain-size
model. Water Supply 22(4), 4176-4192.

Chapuis, R. P. 2012 Predicting the saturated hydraulic conductivity of soils: a review. Bulletin of Engineering Geology and the
Environment 71(3), 401-434.

Das, S. K., Samui, P. & Sabat, A. K. 2012 Prediction of field hydraulic conductivity of clay liners using an artificial neural
network and support vector machine. International Journal of Geomechanics 12(5), 606-611.

Deb, S. K. & Shukla, M. K. 2012 Variability of hydraulic conductivity due to multiple factors. American Journal of
Environmental Sciences 8(5), 489.

Ekhmaj, A. 1. 2010 Predicting soil infiltration rate using artificial neural network. In 2010 International Conference on
Environmental Engineering and Applications. IEEE, pp. 117-121.

Elbisy, M. S. 2015 Support vector machine and regression analysis to predict the field hydraulic conductivity of sandy soil.
KSCE Journal of Civil Engineering 19(7), 2307-2316.

Ghorbani, M. A., Khatibi, R., Goel, A., FazeliFard, M. H. & Azani, A. 2016 Modeling river discharge time series using support
vector machine and artificial neural networks. Environmental Earth Sciences 75(8), 1-13.

Jalalkamali, A. 2015 Using of hybrid fuzzy models to predict spatiotemporal groundwater quality parameters. Earth Science
Informatics 8(4), 885-894.

Jougnot, D., Thanh, L. D., Van Do, P, Thuy, T. T. C., Hue, D. T. M. & Hung, N. M. 2021 Predicting water flow in fully and
partially saturated porous media: a new fractal-based permeability model. Hydrogeology Journal 29(6), 2017-2031.
Kumar, M., Tiwari, N. K. & Ranjan, S. 2020 Prediction of oxygen mass transfer of plunging hollow jets using regression models.

ISH Journal of Hydraulic Engineering 26(1), 23-30.

More, S. B, Deka, P. C,, Patil, A. P. & Naganna, S. R. 2022 Machine learning-based modeling of saturated hydraulic
conductivity in soils of tropical semi-arid zone of India. Sadhana 47(1), 1-15.

Nawaz, N., Harun, S. & Talei, A. 2015 Application of adaptive network-based fuzzy inference system (ANFIS) for river stage
prediction in a tropical catchment. Applied Mechanics and Materials 735, 195-199.

Raoof, M., Nazemi, A. H., Sadraddini, A. A., Marofi, S. & Pilpayeh, A. 2011 Measuring and estimating saturated and
unsaturated hydraulic conductivity in steady and transient states on sloping lands. World Applied Sciences Journal 12(11),
2023-2031.

Samui, P., Sitharam, T. G. & Kurup, P. U. 2008 OCR prediction using support vector machine based on piezocone data. Journal
of Geotechnical and GeoEnvironmental Engineering 134(6), 894-898.

Sihag, P. 2018 Prediction of unsaturated hydraulic conductivity using fuzzy logic and artificial neural network. Modeling Earth
Systems and Environment 4(1), 189-198.

Sihag, P., Singh, B., Gautam, S. & Debnath, S. 2018 Evaluation of the impact of fly ash on infiltration characteristics using
different soft computing techniques. Applied Water Science 8(6), 1-10.

Sihag, P., Kumar, M. & Singh, B. 2021 Assessment of infiltration models developed using soft computing techniques. Geology,
Ecology, and Landscapes 5(4), 241-251.

Singh, B., Sihag, P., Pandhiani, S. M., Debnath, S. & Gautam, S. 2021a Estimation of permeability of soil using easy measured
soil parameters: assessing the artificial intelligence-based models. ISH Journal of Hydraulic Engineering 27, 38-48.
Singh, B., Sihag, P., Parsaie, A. & Angelaki, A. 2021b Comparative analysis of artificial intelligence techniques for the prediction

of infiltration process. Geology, Ecology, and Landscapes 5(2), 109-118.

Downloaded from http://iwaponline.com/wpt/article-pdf/17/12/2625/1155412/wpt0172625.pdf

bv auest


http://dx.doi.org/10.1093/imrn/rnr226
http://dx.doi.org/10.1093/imrn/rnr226
http://dx.doi.org/10.1007/s12205-017-1703-6
http://dx.doi.org/10.1007/s12205-017-1703-6
http://dx.doi.org/10.1190/geo2019-0256.1
http://dx.doi.org/10.1190/geo2019-0256.1
http://dx.doi.org/10.2166/wpt.2022.101
http://dx.doi.org/10.2166/wst.2021.042
http://dx.doi.org/10.2166/wst.2021.042
http://dx.doi.org/10.1080/09715010.2022.2094732
http://dx.doi.org/10.1080/09715010.2022.2094732
http://dx.doi.org/10.2166/ws.2022.043
http://dx.doi.org/10.2166/ws.2022.043
http://dx.doi.org/10.1007/s10064-012-0418-7
http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0000129
http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0000129
http://dx.doi.org/10.3844/ajessp.2012.489.502
http://dx.doi.org/10.1007/s12205-015-0210-x
http://dx.doi.org/10.1007/s12665-016-5435-6
http://dx.doi.org/10.1007/s12665-016-5435-6
http://dx.doi.org/10.1007/s12145-015-0222-6
http://dx.doi.org/10.1007/s10040-021-02364-6
http://dx.doi.org/10.1007/s10040-021-02364-6
http://dx.doi.org/10.4028/www.scientific.net/AMM.735.195
http://dx.doi.org/10.4028/www.scientific.net/AMM.735.195
http://dx.doi.org/10.1061/(ASCE)1090-0241(2008)134:6(894)
http://dx.doi.org/10.1007/s40808-018-0434-0
http://dx.doi.org/10.1007/s13201-018-0835-2
http://dx.doi.org/10.1007/s13201-018-0835-2
http://dx.doi.org/10.1080/24749508.2020.1720475
http://dx.doi.org/10.1080/09715010.2019.1574615
http://dx.doi.org/10.1080/09715010.2019.1574615
http://dx.doi.org/10.1080/24749508.2020.1833641
http://dx.doi.org/10.1080/24749508.2020.1833641

Water Practice & Technology Vol 17 No 12, 2638

Torabi Podeh, H., Parsaie, A., Shahinejad, B., Arshia, A. & Shamsi, Z. 2022 Development and uncertainty analysis of infiltration
models using PSO and Monte Carlo method. Irrigation and Drainage.

Vapnik, V. N. 1999 An overview of statistical learning theory. IEEE Transactions on Neural Networks 10(5), 988-999.

Wang, J. P., Francois, B. & Lambert, P. 2017 Equations for hydraulic conductivity estimation from particle size distribution: a
dimensional analysis. Water Resources Research 53(9), 8127-8134.

Williams, C. G. & Ojuri, O. O. 2021 Predictive modelling of soils’ hydraulic conductivity using artificial neural network and
multiple linear regression. SN Applied Sciences 3(2), 1-13.

Yilmaz, 1., Marschalko, M., Bednarik, M., Kaynar, O. & Fojtova, L. 2012 Neural computing models for prediction of
permeability coefficient of coarse-grained soils. Neural Computing and Applications 21(5), 957-968.

First received 1 September 2022; accepted in revised form 18 November 2022. Available online 24 November 2022

Downloaded from http://iwaponline.com/wpt/article-pdf/17/12/2625/1155412/wpt0172625.pdf
bv auest


http://dx.doi.org/10.1109/72.788640
http://dx.doi.org/10.1002/2017WR020888
http://dx.doi.org/10.1002/2017WR020888
http://dx.doi.org/10.1007/s42452-020-03974-7
http://dx.doi.org/10.1007/s42452-020-03974-7
http://dx.doi.org/10.1007/s00521-011-0535-4
http://dx.doi.org/10.1007/s00521-011-0535-4

	Estimation of hydraulic conductivity of porous media using data-driven techniques
	INTRODUCTION
	Theoretical overview of ANFIS and SVM
	Adaptive Neuro-Fuzzy Inference System
	Support vector machine


	MATERIALS AND METHODOLOGY
	Experimental study
	Model development
	ANFIS modelling strategy
	SVM modelling strategy
	Model performance evaluation

	RESULTS AND DISCUSSION
	Statistical analysis
	Dataset for ANFIS and SVM
	Estimation of K using ANFIS
	Estimation of K using SVM
	Comparison of models

	CONCLUSIONS
	DATA AVAILABILITY STATEMENT
	CONFLICT OF INTEREST
	REFERENCES


