

Better Food, Better Health, Better World.

Water for human use:
PFAS and Bisphenol A,
from the new directive (UE) 2020/2184
to lab tests

Paola Verza with F. Faraon, B. Scantamburlo, A. Mattiazzo

Chemical Mobility of emerging contaminants

The mobility of chemicals released into the environment governs their bioavailability to organisms and their partitioning between environmental compartments, and thus represents a direct link between environmental pollution and ecotoxicity.

This combined exposure on water, food, and consumer products, such is an arising issue.

The main challenge is to tackle the **cumulative impact** of different chemicals.

FOCUS ON PFAS AND BPA

- Widely used in consumer goods and food contact applications
- Some PFAS are classified as Persistent, Bioaccumulative and Toxic (PBT) and very Persistent and very Bioaccumulative (vPvB) under REACH
- BPA is an endocrine disruptor and SVHC under REACH

The road to the new directive EU 2020/2184

In ancient times

The requirements for describing water were sensory ones:

- Waters had to be clear, odourless, colourless and of pleasant taste
- Malodorous or turbid water was considered contaminated
- Recognised as sources of contamination: droppings, metals, algae
- Few or no analytical methods

Pont du Gard Roman aqueduct

Nowadays

The scientific approach has greatly developed:

- Quality requirements with parameters, frequencies of analysis, analytical methods
- Emerging contaminants monitoring
- Regulation open to future scientific and technical development

European Regulations

The importance of the new Directive

UE DIRECTIVE 2020/2184

on the quality of water intended for human consumption

It substitues EU Directive 83/1998

In many States it will be the new National reference for water for human consumption

Member States must introduce it in national law before 2023

In Italy, European Delegation Law.127 (4/8/2022) gives to the Government the delegation to transpose this Directive into Italian law

MAIN CHANGES

- new parameters
- redefinition of scope
- approach to safety based on risk analysis
- minimum hygiene requirements for materials in contact with water for human use
- minimum requirements for chemical products and filtering materials used for water treatment
- control parameters and frequencies depending on the amount of water used
- search for the method of analysis for microplastics

Changes introduced by the new Directive

Parameters introduced by EU Directive 2020/2184

BISPHENOL A

PFAS

CHLORITES AND CHLORATES

MICROCYSTINE L-R

HALOACETIC ACIDS

URANIUM

Field of application

spring waters used for drinking purposes **INCLUDED**

mineral and medicinal waters, which are regulated by other directives, **EXCLUDED**

Analysis

The **frequency of monitoring** depends on the volume of water distributed or produced each day in a supply zone

The analytical methods used for monitoring purposes must be validated and documented in accordance with **EN ISO/IEC 17025** or other equivalent internationally accepted standards.

Materials and chemical in contact with waters

An initial **list of authorised substances** will be defined at European level, as well as procedures and methods for testing and validating materials and products.

Similarly for treatment chemicals and filter material that come into contact with water intended for human consumption

Changes introduced by the new Directive

Parameters introduced by EU Directive 2020/2184

BISPHENOL A

PFAS

CHLORITES AND CHLORATES

MICROCYSTINE L-R

HALOACETIC ACIDS

URANIUM

Field of application

spring waters used for drinking purposes **INCLUDED**

mineral and medicinal waters, which are regulated by other directives, **EXCLUDED**

Analysis

The **frequency of monitoring** depends on the volume of water distributed or produced each day in a supply zone

The analytical methods used for monitoring purposes must be validated and documented in accordance with **EN ISO/IEC 17025** or other equivalent internationally accepted standards.

Materials and chemical in contact with waters

An initial **list of authorised substances** will be defined at European level, as well as procedures and methods for testing and validating materials and products.

Similarly for treatment chemicals and filter material that come into contact with water intended for human consumption

New approach to emerging contaminants

WATER SAFETY PLANS

Site-specific water monitoring plans:

contaminants present in particular polluted areas should be included in monitoring plans

WATCH LIST MECHANISM

- to respond to growing concerns
- to enable follow-up on new knowledge about the relevance for human health of those emerging compounds and most appropriate monitoring approaches and methodologies

By 12 January 2024:

- technical guidelines on analytical methods for PFAS
- methodology for measuring microplastics with the aim to include them in the watch list

PFAS and BPA as emerging contaminants

PFAS

$$CF_3 \leftarrow \begin{matrix} F \\ C \end{matrix} - \begin{matrix} I \\ I \end{matrix} - \begin{matrix} I \end{matrix}$$

BPA

Anti greasing and water repellent

INTENTIONALLY ADDED FOR THEIR PROPERTIES

Important structural additive for plastics and epoxy resins

SUBJECT TO RESTRINCTIONS OR HEALTH LIMITS
IN WATER, ARTICLES AND FOOD,
DUE TO THEIR EFFECTS ON HUMAN HEALTH

«USEFUL» MOLECULES THAT ARE ALSO CONTAMINANTS AND WHICH PRESENCE IN DIFFERENT ENVIRONMENTAL MATRICES, FIRST OF ALL WATER, CAN BE UNCONTROLLED DUE TO THEIR UBIQUITARITY.

REGULATED IN WATER FOR HUMAN CONSUMPTION THANKS TO UE DIRECTIVE 2020/2184

Focus PFAS

PFAS: emerging contaminants

The most known PFAS are Perfluorooctanesulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA) belonging to (per) fluorinated organic surfactants.

PFOS:

- Completely fluorinated compound containing 8 carbon atoms and a sulphonated group
- Wide variety of applications due to its surface- active properties

Perfluorooctane sulfonate (PFOS)

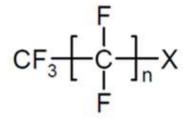
Tail F₃C-CF₂-CF₂-CF₂-CF₂-CF₂-CF₂-CF₂ Head

PFOA:

- Completely fluorinated organic acid
- Used primarily as emulsifier in industrial applications
- Linear 8 carbons- chain structure

Perfluorooctane carboxylate (PFOA)

Tail F₃C-CF₂-CF₂-CF₂-CF₂-CF₂-CF₂ Head

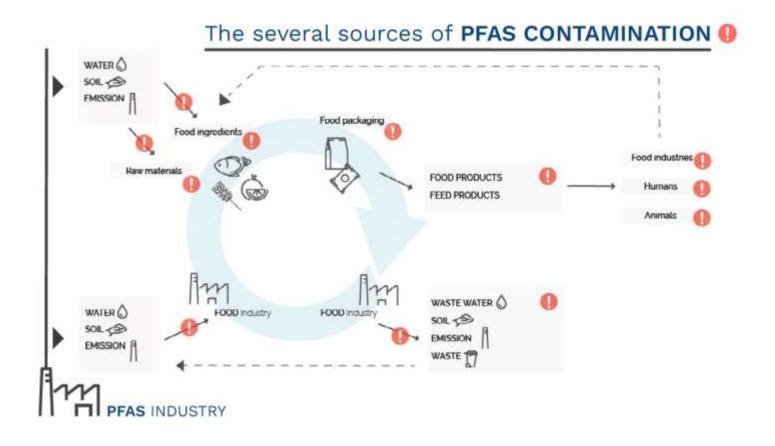

PFAS: emerging contaminants

Per- and polyfluoroalkyl substances (PFAS):

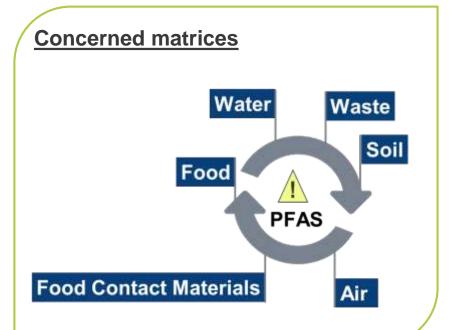
- Family of nearly 5000 synthetic chemicals
- Persistent contaminants, also called «forever contaminants»
- Emerging contaminants dangerous to environment and human health (suspected endocrine disruptors, carcinogens and affecting the immune system)

Diet is considered the main source of exposure to PFASs for humans.

EFSA: Tolerable Weekly Intake (TWI) of 4.4 ng/kg body weight per week for the sum of PFOS, PFOA, PFNA and PFHxS



- Excellent surfactants
- Strong C-F bound
- Applied everywhere in society (household, industry, automotive, medical etc)



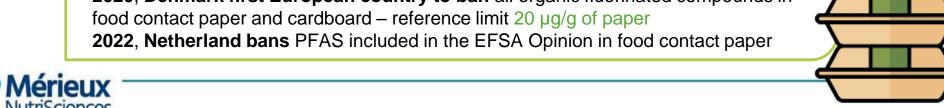
Sources of contamination and concerned matrices

- Domestic, civil and industrial contamination → strongly present in water environment, also because of their mobility
- Conventional treatment do not eliminate this contaminants either from drinking or waste water

BIOACCUMULATION IN FOOD CHAIN

EU Legislation on PFAS

2017, PFOA and PFOS are classified as priority hazardous substances under the Water Framework Directive (EC, 2017; EU, 2000)


2020, EU Directive 2020/2184 on drinking water, sum of PFAS < 0,50 µg/l – analytical guidelines to be decided before 2024 (a list of PFAS is provided in the Annex). Directive to be adopted by Member States in 2023.

> **2010**, Commission Recommendation on the monitoring of PFAS in food 2018/2020, EFSA Scientific Opinions on PFAS in food 2020 - Proposal of a group TWI of 4,4ng/kg bw for PFOA, PFNA, PFHxS and PFOS, Identification of new critical health effects

2022 Draft Recommendation with limits up to 0,1 µg/kg for specific PFAS in some type of food and Guidelines for analitical determination with LOQ up to 0,001 µg/kg

2020: EU regulation restricts PFOA, PFOA salts and related substances for production and placing on the market (a maximum of 25 ppb of PFOA including its salts or 1 000 ppb of one or a combination of PFOA-related substances)

2020, **Denmark first European country to ban** all organic fluorinated compounds in food contact paper and cardboard – reference limit 20 µg/g of paper

PFAS limits in compostable and paper packaging

COMPOSTABLE PACKAGING

EN 13432:2000

Table A.1 - Maximum element content of packaging material and whole packaging

Element	mg/kg on dry substance	Element	mg/kg on dry substance
Zn	150	Cr	50
Cu	50	Mo	1
Ni	25,0	Se	0,75
Cd	0,5	As	5
Pb	50	F	100
Hg	0,5		

ISO 17088-2021, Specification for compostable plastics

From a precautionary perspective, per- and polyfluorinated substances compounds (PFCs) shall not be intentionally added to a plastics product or a material. The concentration of per- and poly-fluorinated compounds (PFCs) in the plastics product or material **shall be determined as fluorine**.

BAN ON PFAS IN SEEDLING CERTIFICATE MATERIALS

From October 2021 holders of this certification will be required to submit a self-declaration confirming that no PFAS has been intentionally added to the certified material or product, nor used at any stage of the production process.

PAPER PACKAGING

Danish Veterinary and Food Administration

Indicator value 20 microgram organic fluorine per gram of paper.

Content below the indicator value is considered as unintentional background pollution. For both the analytical methods proposed, companies should ensure that inorganic fluorine is subtracted from the result, since inorganic fluorine can cause an error in the analysis methods for total organic fluorine and extractable organic fluorine.

PFAS in food

SANTE/11183/2018 - Last draft version

 DRAFT - COMMISSION REGULATION (EU) amending the Regulation (EC) 1881/2006 – as regards maximum levels of perfluoroalkyl substances in certain foodstuffs

The determination of the following analytes in the concerned foods will be mandatory

analytes to monitor

sum of the

PFOS	Perflorooctane sulfonic acid	
PFOA	Perfluorooctanoic acid	
PFNA	Pefluorononanoic acid	
PFHxS	Perfluorohexane sulfonic acid	

TO BE IN COMPLIANCE

SANTE/10010/2021 - official

 COMMISSION RECOMMENDATION on the monitoring of perfluoroalkyl substances in food as discussed in the Working Group on Persistent Organic Pollutants in Foods

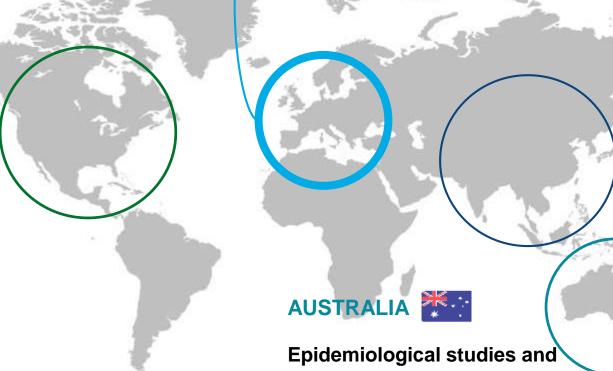
EU Member States should **collect monitoring data on the presence of PFAS in food**, also from different type of production, including organic production: animal products, plant-based products and food for infants and young children.

+27
analytes to monitor, limits up to 1 ppt

Mérieux NutriSciences

Global context

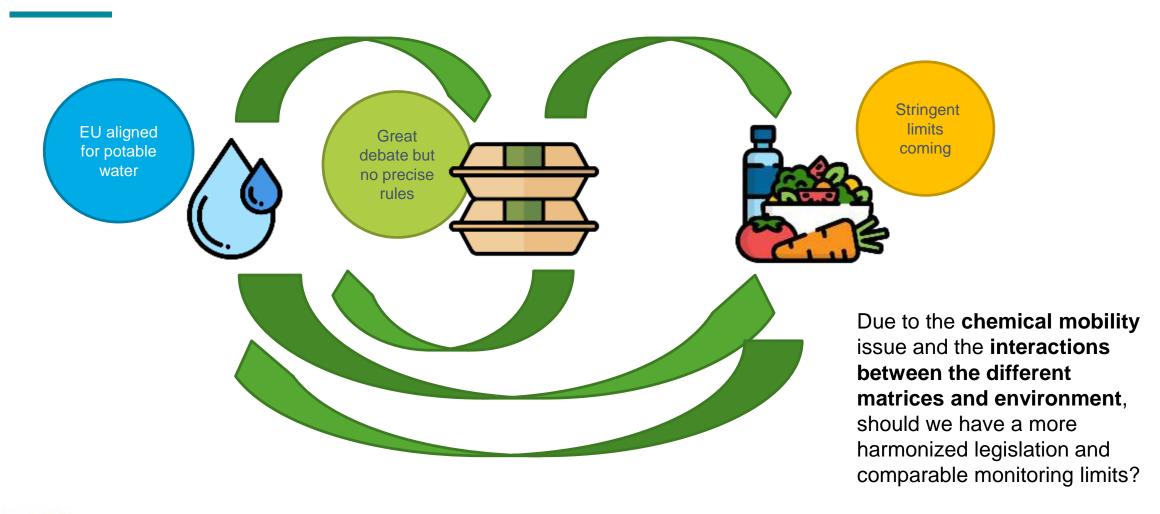
- **EUROPE Our Focus**
- **Stockholm Convention on POPs**
- Changes and updates about PFAS residues in food



PFAS Strategic Roadmap: **EPA's Commitments to Action** 2021-2024

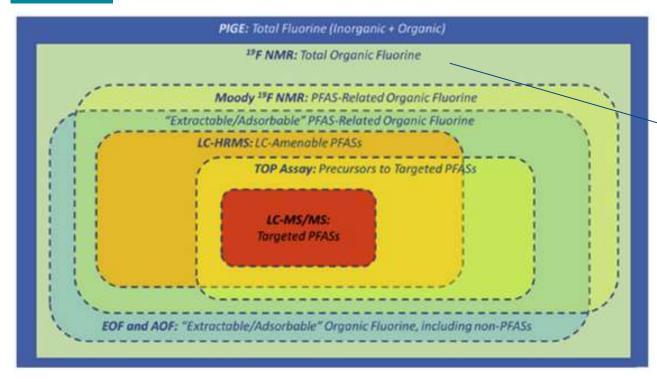
Establish a national primary drinking water regulation for PFOA and PFOS Proposed Rule Expected Fall 2022, Final Rule Expected Fall 2023

Laws and draft laws in the different States about **PFAS** in consumer goods



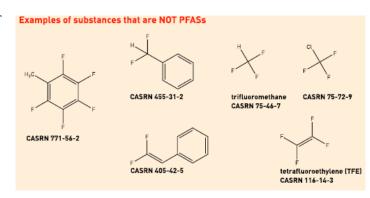
- No official limits
- Standard methods for food contact materials

concern about the topic



Need of harmonized legislation?

GRAY ZONE: PFAS selectivity and inclusivity



Selectivity and inclusivity associated with total organofluoride methods. Image source: Mcdonough, Carrie A., et al., 2019, Current Opinion in Environmental Science & Health

It is a large family of compounds; which should be the right technique to investigate them?

 Non-specific total determination has limit issues and might include also non-PFAS

not all the organic F-C are PFAS!

 A super specific target won't include all possible dangerous PFAS.

Future harmonized legislative indications or toxicological relevance will be the drivers to decide.

EU DIRECTIVE 2020/2184 on PFAS

PFAS Total	0,50	µg/l	PFAS Total' means the totality of per- and polyfluoroalkyl substances. This parametric value shall only apply once technical guidelines for monitoring this parameter are developed in accordance with Article 13(7). Member States may then decide to use either one or both of the parameters 'PFAS Total' or 'Sum of PFAS'.
Sum of PFAS	0,10	µg/l	'Sum of PFAS' means the sum of per- and polyfluoroalkyl substances considered a concern as regards water intended for human consumption listed in point 3 of Part B of Annex III. This is a subset of 'PFAS Total' substances that contain a perfluoroalkyl moiety with three or more carbons (i.e. −CnF2n−, n ≥ 3) or a perfluoroalkylether moiety with two or more carbons (i. e. −CnF2nOCmF2m−, n and m ≥ 1).

3. Sum of PFAS

The following substances shall be analysed based on the technical guidelines developed in accordance with Article 13(7):

- Perfluorobutanoic acid (PFBA)
- Perfluoropentanoic acid (PFPA)
- Perfluorohexanoic acid (PFHxA)
- Perfluoroheptanoic acid (PFHpA)
- Perfluorooctanoic acid (PFOA)
- Perfluorononamoic acid (PFNA)
- Perfluorodecanoic acid (PFDA)
- Perfluoroundecanoic acid (PFUnDA)
- Perfluorododecanoic acid (PFDoDA)
- Perfluorotridecanoic acid (PFTrDA)
- Perfluorobutane sulfonic acid (PFBS)
- Perfluoropentane sulfonic acid (PFPS)
- Perfluorohexane sulfonic acid (PFHxS)
- Perfluoroheptane sulfonic acid (PFHpS)
- remuoronepiane sanonic acia (rrrip.
- Perfluorooctane sulfonic acid (PFOS)
- Perfluorononane sulfonic acid (PFNS)
- Perfluorodecane sulfonic acid (PFDS)
- Perfluoroundecane sulfonic acid
- Perfluorododecane sulfonic acid
- Perfluorotridecane sulfonic acid

Those substances shall be monitored when the risk assessment and risk management of the catchment areas for abstraction points carried out in accordance with Article 8 conclude that those substances are likely to be present in a given water supply.

Possible answers?

Analytical method	LoQ	
EPA 537-09 drinking water groundwater (clean water)	0,01 μg/Lt	
ISO 25101:2009 drinking water	0,001 μg/Lt for PFOA and PFOS and for others 0.005 μg/Lt	
EPA ASTM D7979-17 waste water	0,05-0,1 μg/Lt for all PFAS Except for PFOS a 0,01 μg/Lt	

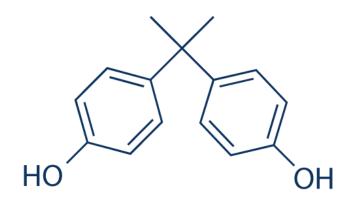
Possible future answers?

Non-targeted PFAS discovery

EPA Experience:

They are working to develop and apply high-resolution mass spectrometry techniques to conduct Non-Targeted Analysis of PFAS in the environment.

Potential: HRMS permits to detect and proposed structures for ~980 new PFAS analytes (not branched isomers)


Focus BPA and endocrine disruptors

Bisphenol A

2,2-bis (4-hydroxyphenyl) propane

- Identified as an endocrine disruptor
- basic component in the production of polycarbonate
- widely used in the past in beverage bottles, infant feeding (baby) bottles, tableware (plates and mugs) and storage containers
- can be present in thermal paper, ink and glue formulations
- can be present and permitted in certain types of bottles and containers for food, drinks, CDs, DVDs, reusable plastic tableware, mobile phones, kettles as well as various medical devices and toys

Concern over Bisphenol

2011 As a precautionary measure, the European Commission banned the use of BPA in the production of polycarbonate baby bottles

2016 The European Food Safety Authority promoted restrictions on use due to the health risk to the general public

2017 It was added to the Candidate List of substances of very high concern by the European Chemical Agency

2018 The European Union established even stricter rules for the production of plastic materials in contact with food, following a precautionary principle pending further clarity.

its use in contact with food is authorized by Commission Regulation (EU) No. 10/2011, except for infant feeding bottles: the Specific Migration Limit has been recently lowered to 0.05 mg/kg

Bisphenol in water for human consumption

Endocrine disruptors

In addition to the European Directive, Decision (EU) 2022/679 was also issued, adding also:

- 17 betastradiol
- nonylphenol

For nonylphenol the suggested method was **EN ISO 18857-2**, so the lab upgrade the method used for Bisphenol A for many years, **applying this one both to Bisphenol A and nonylphenol**

Bisphenol...or bisphenols?

There are **many Bisphenols** and some of them are used in substitution of Bisphenol A, but with similar concern about the toxicity.

The analysis is always in GC-MS applying EN ISO 18857-2

4,4'-Methylenediphenol (Bisphenol F)	620-92-8
4-Nonylphenol	104-40-5
4-Nonylphenol, branched	84852-15-3
Bisphenol A	80-05-7
Nonylphenol (mixed isomers)	25154-52-3+84852-15-
Bisphenol Z	843-55-0
Bisphenol C	79-97-0
Bisphenol B	77-40-7
Bisphenol S	80-09-1

What should a lab do?

- Testing plan suitable for the goal
- Efficient extraction techniques
- Representative analytical techniques
- Markers and target substances
- Identification propaedeutical to risk assessment
- Keep the eye on legislation

Thank you

paola.verza@mxns.com

Phone - 0423 7177

Head Office - Via Fratta 25, 31023 Resana (TV)

www.merieuxnutrisciences.com/it

Copyright: The document and its entire content are subject to copyright law. They may not be copied other than for non-commercial purposes and internal use; appropriate reference shall always include copyright notices. Nothing contained herein shall be construed as conferring by implication or otherwise any license or right under any copyright of Mérieux NutriSciences Corporation, or any affiliated party.

Disclaimer: This document contains information derived from third party published literature or other public resources for general information purposes only. This document and the information contained herein are provided "As Is", and are not intended to be exhaustive. Consequently, Mérieux NutriSciences Corporation shall not be held liable for any errors, inaccuracies or omissions in the content of this document, which is not meant to be a substitute for the

consequential or special damage or punitive damages arising out of use of the document by any person.

Photos: Shutterstock, Pixabay, Mérieux NutriSciences