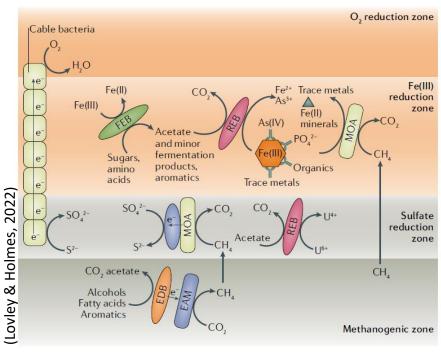


Microbial electrochemical Cr(VI) reduction in a continuous flow system

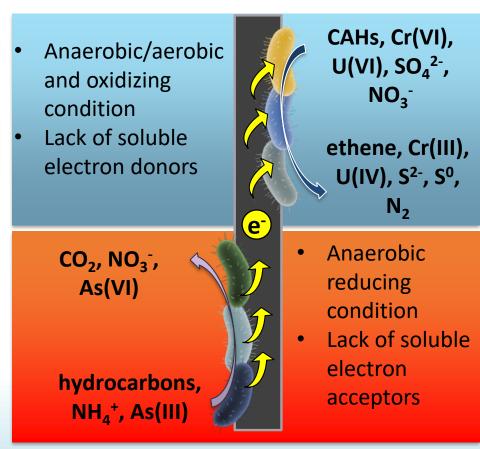
Gabriele Beretta

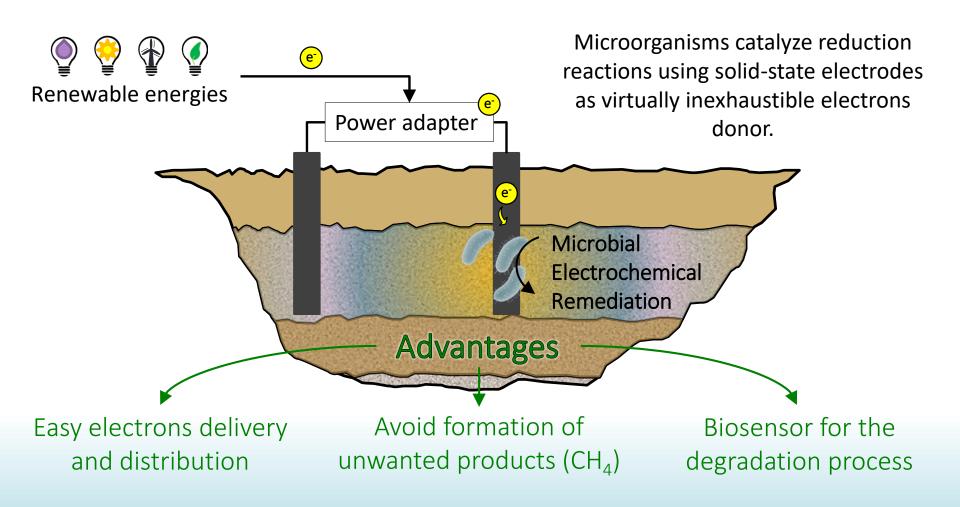

Politecnico di Milano_Department of Environmental and Civil Engineering gabriele.beretta@polimi.it

SESSION 25: Challenges and research in remediation

23 September 2022

Microbial Electrochemical Remediation (MER) Electroactive bacteria (EAB)

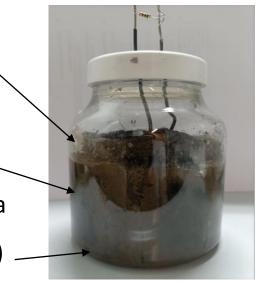

Ability to transfer electrons outside the cell from/to other cells and solid materials/minerals

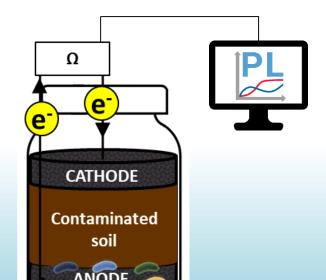

FEB: Fermentative Electroactive Bacteria REB: Respiratory Electroactive Bacteria

MOA: Methane-Oxidizing Archea EDB: Electron-Donating Bacteria

EAM: Electron-Accepting Methanogens

Microbial Electrochemical Remediation (MER)

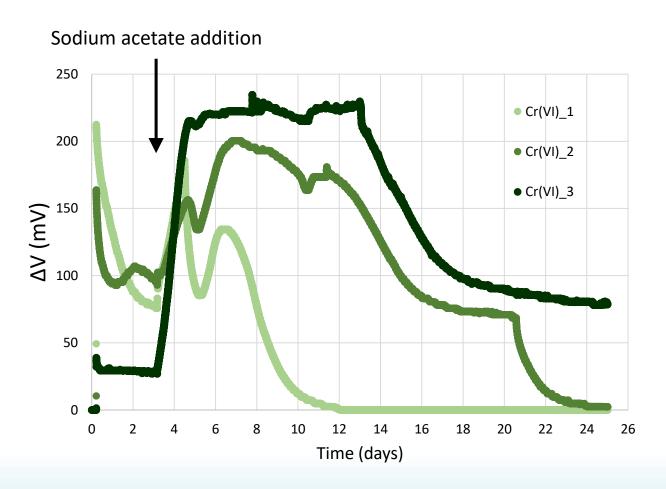

MER Experimental procedure


2. Continuous-flow MER 1. Enrichments of EAB Ω CATHODE Cr(VI) contaminated soil **CATHODE** ΔV Cr(VI) Contaminated soil ANODE Soil Microbial Fuel Cell (SMFC) **BioElectrochemical Continuous Flow** system (BECF)

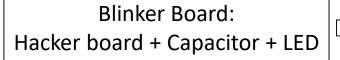
1. Enrichments of EAB (Method_pt.1)

Soil MFCs composition:

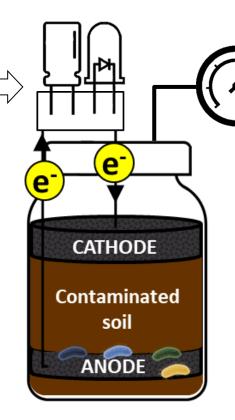
- Cathode: Graphite felt + stainless steel wire (50 cm²)
- Substrate: Acetate (0.05 g/L; 31 mg/kg)
- Contaminated soil: 3.13 ± 0.63 mg Cr(VI) /kg dry soil
- Inoculum: Cr(VI) contaminated soil indigenous bacteria
- Anode: Graphite granules + titanium wire (20,000 cm²)



Monitoring and evaluation:


- Continuous recording of the circulating currents by datalog software
- Microbial analysis: 16S rRNA gene sequencing

1. Enrichments of EAB (Results_pt.1)


Voltage production correlated to biological oxidation of acetate
→ development of an *electroactive biofilm*

1. Enrichments of EAB (Method_pt.2)

REC LED Flashing frequency

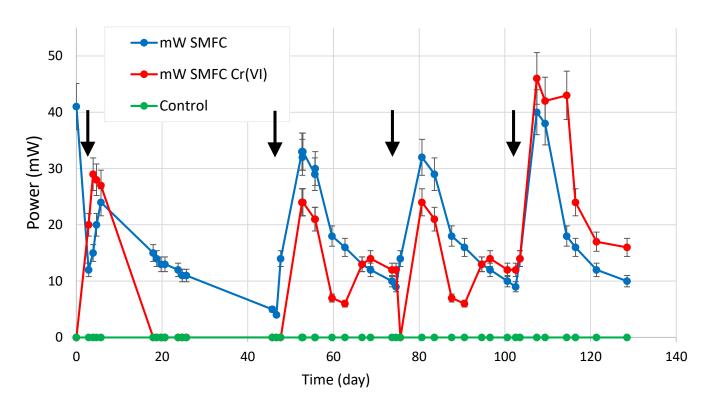
LED blinking frequency (Hz) is proportional to EAB power generation (mW)

• REC SMFC Internal pressure

Pressure gauge

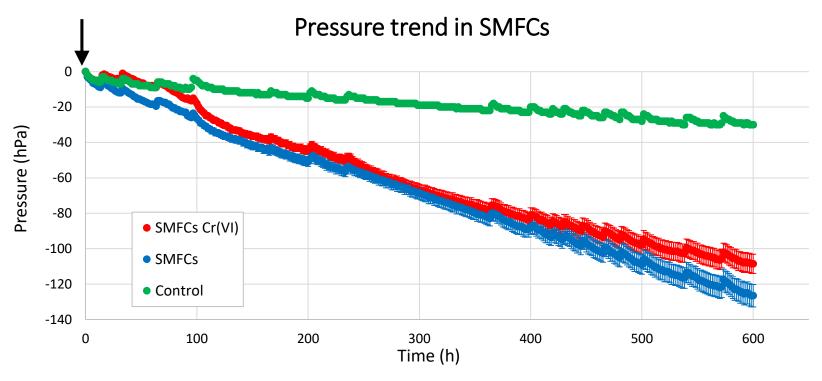
Pressure (hPa) diminishing trend with time associated to bacterial oxygen consumption and/or biocathodic oxygen reduction.

$$C_2H_4O_2 + 2O_2 \rightarrow 2CO_2 + 2H_2O$$
(Aerobic portion of soil)

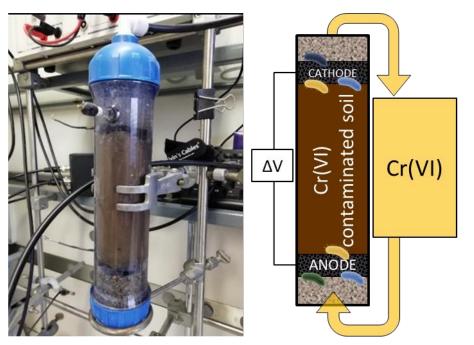

 $CH_3COO^-+4H_2O\rightarrow 2HCO_3^-+9H^++8e^-$ (Anode region, anaerobic)

$$2 O_2 + 8 e^- + 8 H^+ \rightarrow 4 H_2 O$$
 (Cathode region, aerobic)

CO₂ trapped to Na₂CO₃

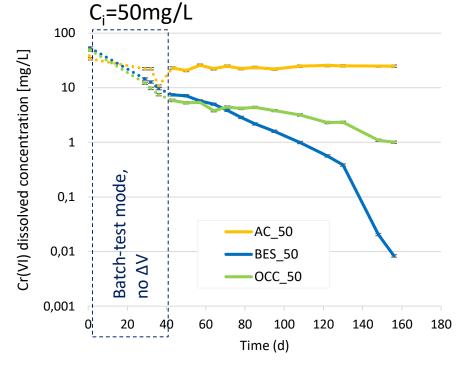

1. Enrichments of EAB (Results_pt.2)

Electrical power produced by EAB


	Σ electric energy production (Wh)	Average power rate (mW/d)	Average power rate/kg soil (mW/d*kg)	Max peak power (mW)
SMFC	72.2	5.91	24.63	41
SMFC (CrVI)	54.0	4.61	19.22	46

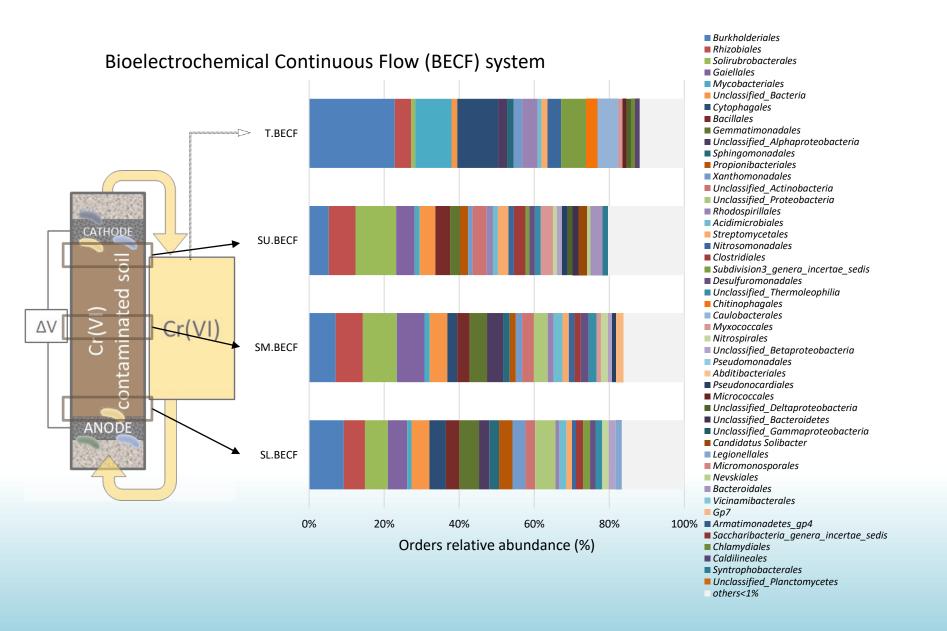
1. Enrichments of EAB (Results_pt.2)

	Pressure variation (Δ hPa)	Oxygen consumption (mmol O ₂)	O ₂ consumption rate (mmol O ₂ /kg d.s.*d)	Trapped CO ₂ (mmol C)	C mineralization rate (mmol C/kg d.s.*d)
SMFCs	- 126.5	0.040	6.36·10 ⁻³	6.44	1.07
SMFCs Cr(VI)	- 108.5	0.029	4.68·10 ⁻³	6.76	1.13
Control	- 30	0.002	3.57·10 ⁻⁴	1.85	0.31


Continuous-flow MER (Method)

- Electrode: Granular graphite from Soil
 MFCs + Stainless steel mesh and titanium wire
- Carbon source: Naturally present in soil
- Solution: Cr(VI) contaminated tap water (20-50 mg/L)
- Experimental condition:
 - Applied costant voltage (0.6 V)
 - Abiotic (AC) and Open Circuit controls(OCC)
 - -Flow velocity 5 m/d, Q= 0.67 mL/min
- Up-flow system has been realized to simulate a real Cr(VI) contaminated aquifer condition
- Electroactive biofilm transferred from Soil MFCs
- To the electrodes buried in soil 0.6 V has been applied
- Two different Cr(VI) concentration have been tested

Continuous-flow MER - Chemical Results



- >80% of Cr(VI) reduction in all the 3 systems
- In BES the 95% of dissolved Cr(VI) has been removed after 9 days
- 99.5% bioelectrochemical removal of dissolved Cr(VI) in 20 days equal to a removal rate of 1.00 mg/L*d.

- Batch test mode and no voltage applied
- BES and OCC same trend until 70th day of test
- 99.9% bioelectrochemical removal of dissolved Cr(VI) in 148 days equal to a removal rate of 0.34 mg/L*d.

Continuous-flow MER_ Preview results of 16S rRNA gene sequencing

Conclusion

- The relationship between the bioavailability of substrate and the production of a
 potential difference indicates the development of a community of electroactive
 bacteria (EAB).
- The initial phase of EAB enrichment proved to be fundamental in improving the
 efficiency of bioelectrochemical reduction of Cr (VI), this approach could be
 considered in full-scale implementation also with other contaminants.
- Results from continuous flow-test demonstrate that the microbial electrochemical removal of Cr (VI) can occur, even in the absence of organic carbon.
- Although bioelectrochemical treatment needs further studies (pilot-scale and field scale) also from an economic feasibility point of view, it can represent an innovative and sustainable approach for the removal of contaminants from soil and groundwater.

Thanks for your attention!

and many thanks to:

- Master student Michela Sangalli
- Assistant Professor Elena Sezenna (Supervisor)
- Associate Professor Sabrina Saponaro (Tutor)

- PhD Anna Espinoza
- Associate Professor Andrea Franzetti

PhD. Gabriele Beretta Politecnico di Milano gabriele.beretta@polimi.it