Screw Press

Screw Press SP

Sludge Dewatering

Screw Press Technology although new to Australia, has been use in Japan for 25 and Europe for 15 years on waste water.

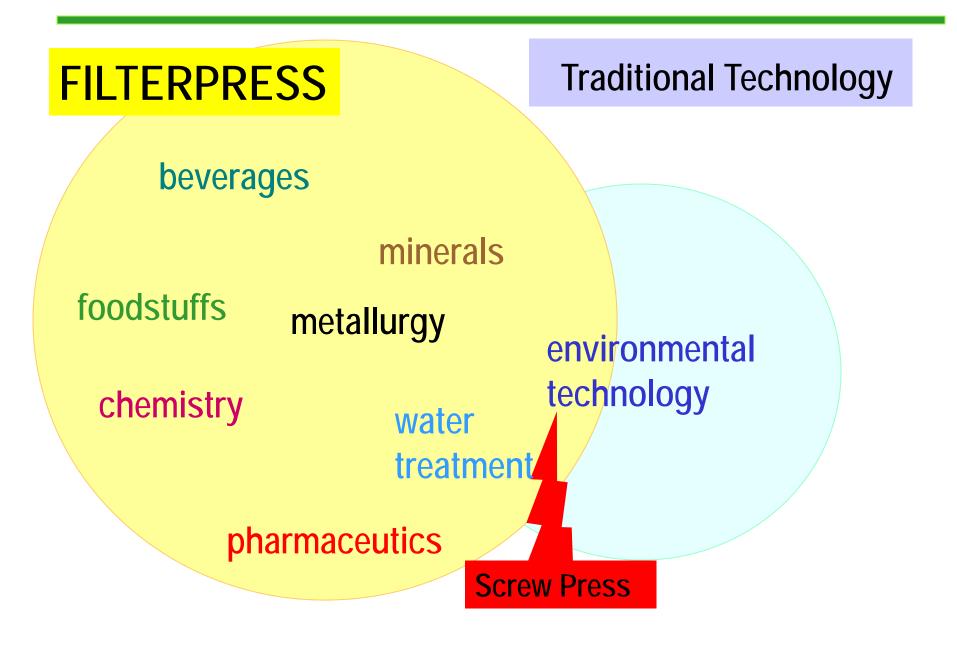
In Australia the first installation of Ishigaki's Screw Press for dewatering waste water sludge was Clarence Valley Council in 2012.

Screw Press offers several advantages over traditional dewatering technologies

Operating philosophy SP

- High performance
- Light weight
- Compact
- Fully enclosed (no odours, no mists)
- Low speed operation 0.2 to 2.0 RPM
- Very low noise levels and no vibration
- Low Carbon Footprint energy consumption
 - Low water usage
- Low maintenance costs
- Simple operation & installation
- Adaptable to varying flow rates and feed characteristics
- Automatic and thorough washing system

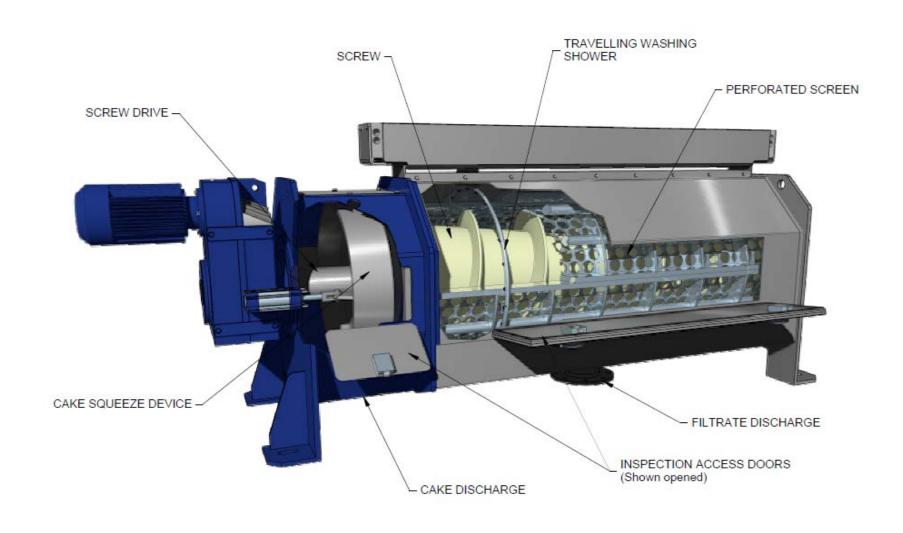
O ISHIGAKI Oceania


Experts in Filtration & Separation

CONTINUOUS SLUDGE DEWATERING

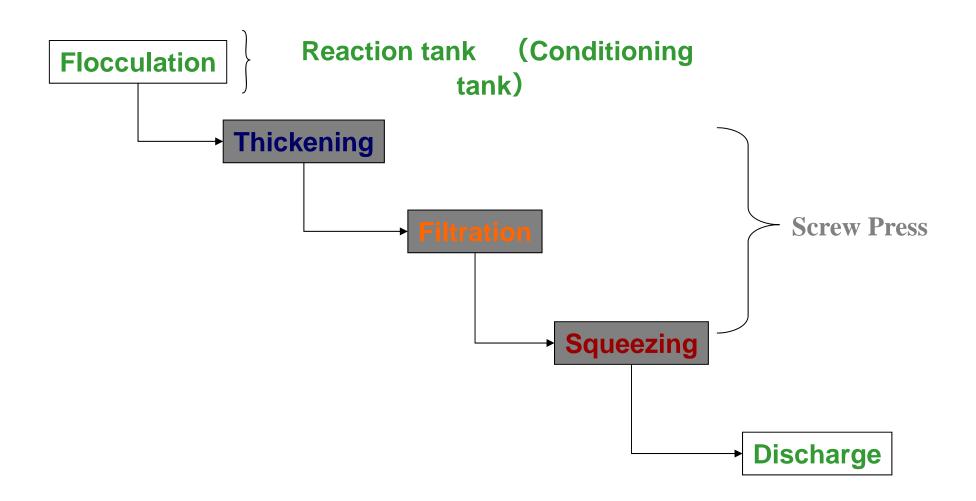
Fields of application

Applications for the ISGK

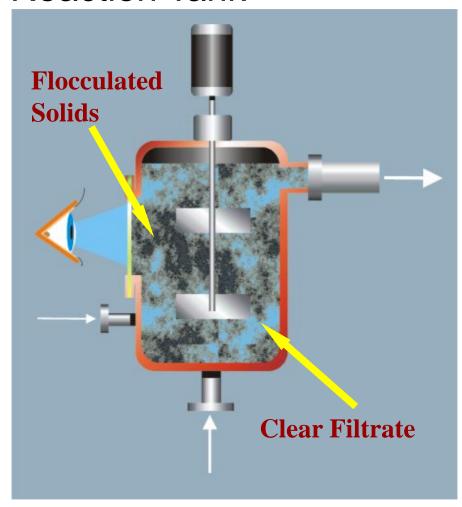


Screw Press Applications:

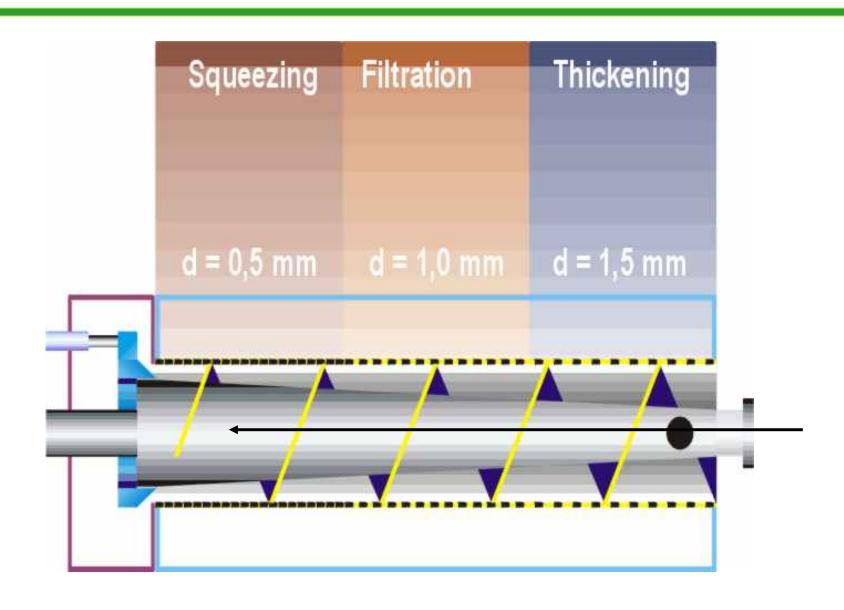
- Municipal waste water
- Industrial waste water
- Water treatment plant waste water
- Mining applications tailings


Mechanical Design

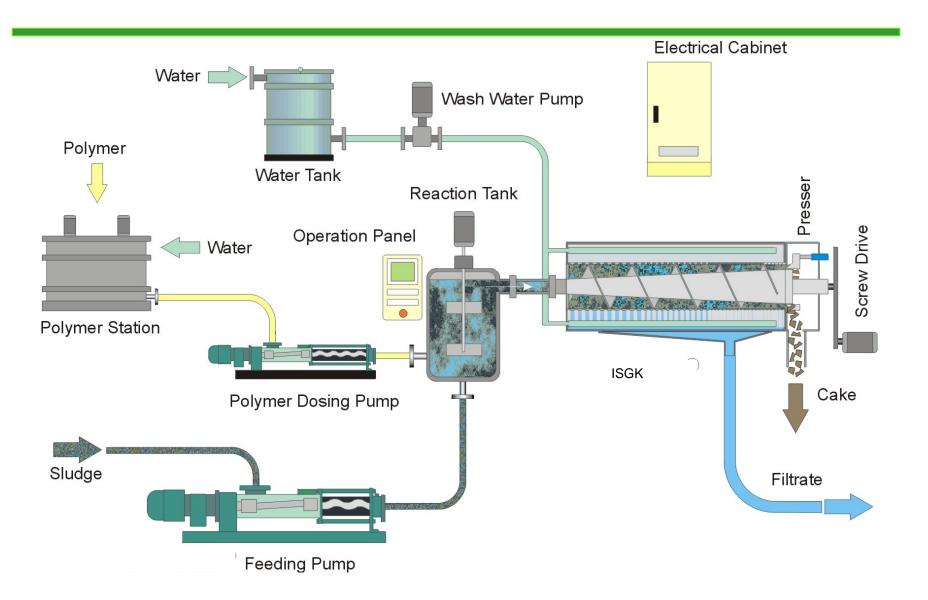
Continuous process


Flocculation

Ideal dewatering conditions


- -Easy control of flocculation
- -Effective geometry

Reaction Tank


Set up of the perforated screen

Process flow sheet

Comparison with Conventional Dewatering Equipment

	Screw Press	Centrifuge	Belt Filter
Comparison	Sciew Fiess	Centilluge	Dell Filler
Noise	Very Low	High	Moderate
Vibration	Nil	Yes	Nil
Maintenance cost	Low	High	High
Power consumption	Very Low	High	High
Operation	Simple	Complex	Intricate
Installation	Assembled	Required	Required

Case Study CVC

Tender fixed (Yamba) and mobile dewatering units.

- requested traditional technologies, 15% DS in the cake
- **❖** Ishigaki Oceania lodged a variation tender; new technology
 - CVC requested Ishigaki trial unit for evaluation
 - Test results exceeded client's expectations
 - Ishigaki granted permission to tender
- Ishigaki awarded tender in a very competitive environment
- Project came in on budget and substantially within required completion date.

Yamba NSW

CVC Mobile Unit Results

RESULTS OF BIOSOLID ANALYSIS (Page 1 of 1)

9 samples supplied by Clarence Valley Council on the 9th November, 2012 - Lab Job No. C3101 Analysis requested by Steve Bray.

(Locked Bag 23, GRAFTON NSW 2460).

		Sample 2 Sludge Pond 1-2		Sample 4 Sludge Pond 2-1	Sample 5 Sludge Pond 2-2	Sample 6 Sludge Pond 2-3	Sample 7 Sludge Pond 3-1	Sample 8 Sludge Pond 3-2	Sample 9 Sludge Pond 3-3
SAMPLE CODE METHODS REFERENCE		(refer note 5)	(refer note 5)	(refer note 5)	(refer note 5)	(refer note 5)	(refer note 5)	(refer note 5)	(refer note 5)
	C310	C3101/2	2 C3101/3	C3101/4	C3101/5	C3101/6	C3101/7	C3101/8	C3101/9
tent (%)	80.	72.5	70.1	80.0	80.8	81.1	70.8	74.4	71.6
7		0	80.8	8.	1.1	70.8		74.4	71.6
g/Kg) Kg)		26 740	26 699	23 742	23 735	22 696	31 623	24 613	23 612
mg/Kg) g) y/Kg) y/Kg)	17 6 779	8,263 17 5 818 0.47	8,744 19 5 759 0.46	7,460 17 6 779 0.56	8,119 17 6 774 0.49	7,639 18 6 736 0.52	8,250 24 6 702 0.60	7,809 19 6 735 0.52	7,493 19 5 732 0.49
i)		1.19 4.44	1.31 5.08	1.05 5.14	1.16 5.21	1.10 5.27	1.58 5.69	1.53 5.40	1.49 5.28
DE (mg/Kg) a) Kg) g/Kg) mg/Kg)) (Kg)	<0.0 <0.0 <0.0 <0.0 <0.0 <0.0	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
	<0.0	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05	

CVC Mobile Unit

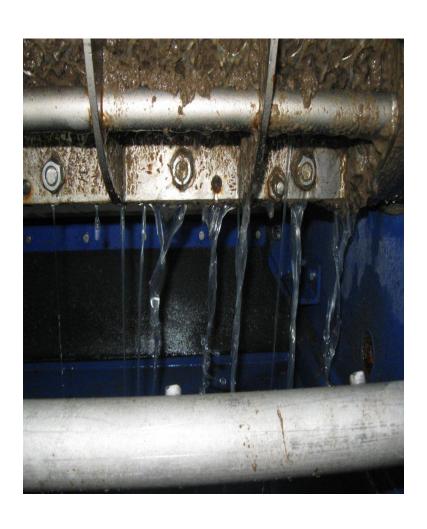
Skid Mounted SP 0305 North Queensland

Ishigaki Screw Tests

On Site Supplier Testing

Flow Speeds													
			Feed		Poly		Screw Speed		Cone		Moistur		Avorago
Sample	Date	Time	Hz	m3/hr	Hz	m3/hr	Hz	Rev/min	Pressur	Polymer	e Content (%)	Solids (%)	Average Solids (%)
1	17/04/2012	8:50	70	1.64	20		20		0.1	71306	85.97	14.03%	
2	17/04/2012	10:10	75	1.77	25	0.10	25		0.1	71306	81.33	18.67%	
3	17/04/2012	11:00	85	2.00	35	0.15	35		0.1	71306	85.63	14.37%	
4	17/04/2012	11:45	42	1.00	18		20		0.1	71306	82.60	17.40%	
5	17/04/2012	13:40	42	1.00	18		10		0.1	71300	81.40	18.60%	17.05%
6	17/04/2012	14:00	70	1.64	25	0.10	25		0.1	71300	83.70	16.30%	
7	18/04/2012	10:30	70	1.64	22		15		0.1	71306	84.63	15.37%	
8	18/04/2012	12:50	50	2.00	22		20		0.1	71306	82.60	17.40%	
9	18/04/2012	14:00	70	3.00	40		35		0.1	71306	84.39	15.61%	
Belt Press	17/04/2012	9:00									87.23	12.77%	
Belt Press	18/04/2012	9:00									87.24	12.76%	

Mt Cotton Results



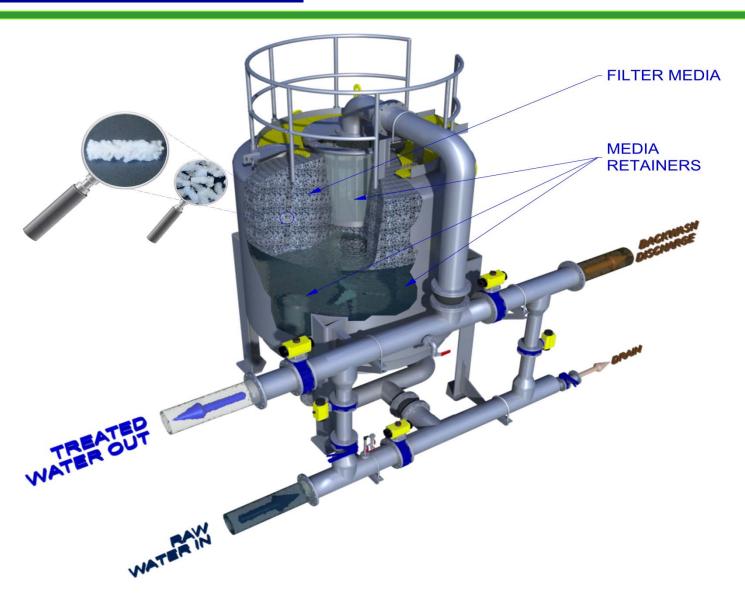
Mt Cotton Results

Year	Model/type	Application	Location
2012	905 (Mobile unit)	Sewage Sludge, NSW	Australia
2012	605	Sewage Sludge, NSW	Australia
2012	305 (Skid mounted)	Sewage Sludge, QLD	Australia
2012	405	Sewage Sludge, QLD	Australia
2012	505	Sewage Sludge, QLD	Australia

Other Ishigaki Technologies

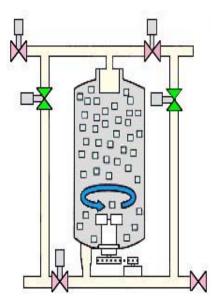
Filter Presses

Polishing Filters



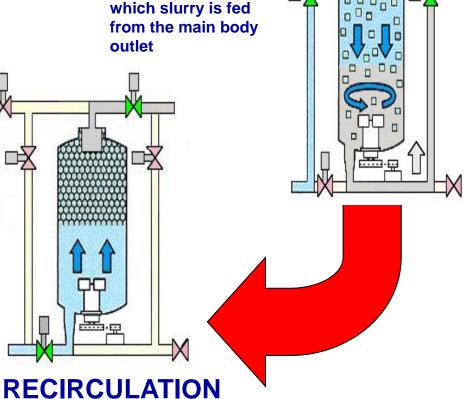
With the Ishigaki Oceania Polishing Filter!

- Fully Automatic
- Huge Capacities
- High Solids
 Retention
- Australian Made


CONSTRUCTION

OPERATION SEQUENCE WASHING

AGITATION



When FW detects the parameters of washing times via the pressure gauge, the agitator begins to wash the media

After the washing filter media process ends, the feed slurry purges all the solids that remain suspended in the main body and the water then re-circulates.

WASHING FILTER MEDIA

After the agitator begins operating the washing filter media process follows, in which slurry is fed from the main body outlet

(1) ISHIGAKI Oceania Pty. Ltd. Filtration & Separation

PHYSICAL RESULTS

FEED

FILTRATE

BACKWASH

Installations:

Iron Ore WA

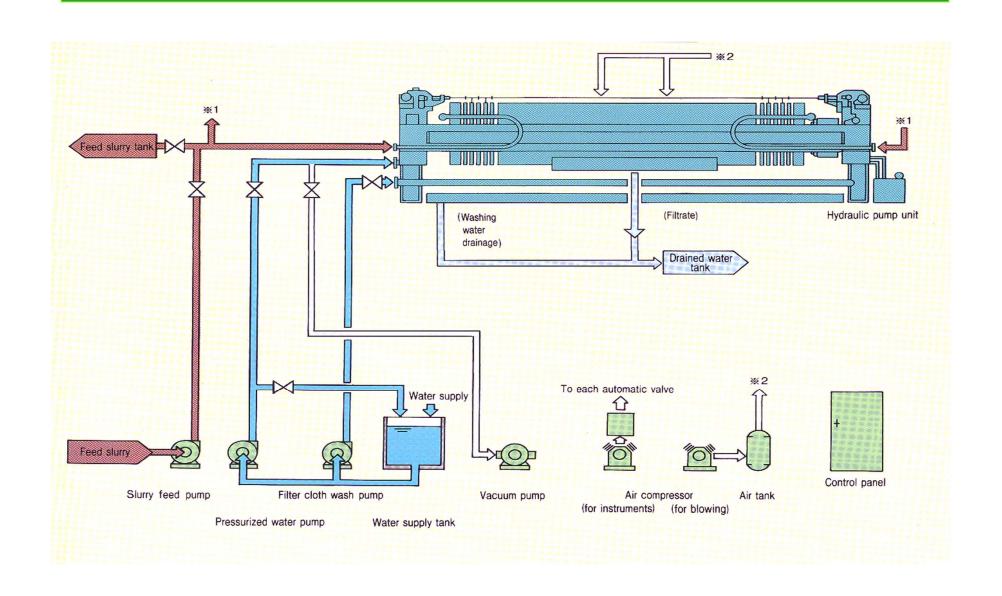
QLDs Coal

FOOTPRINT COMPARISON

Treating Capacity: 2500 m³/d

Model : FW 120 Filtration Area 3.1 m²

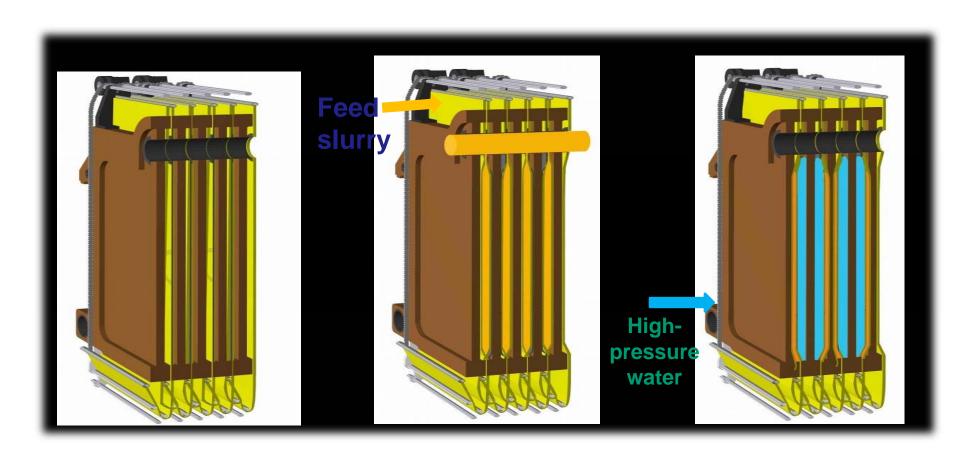
Sand Filter 20 m2


Reference List Polishing Filter

Year	Model/Type	Application	Location
2012	200	Thickener Overflow, QLD	Australia
2012	200	Thickener Overflow, QLD	Australia
2012	120	Thickener Overflow, QLD	Australia
2011	120	Thickener Overflow, WA	Australia
2011	120	Thickener Overflow, WA	Australia

Ishigaki Polishing Filters now:
 Made in Western Australia

♦ Typical Flow Sheet LASTA Giant Press

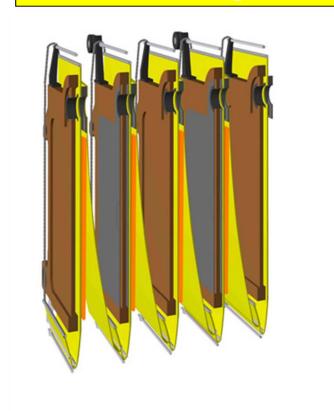

The Ishigaki Filter Press is fully <u>automatic</u>, requiring no operator interaction, while returning high total solid in the cake.

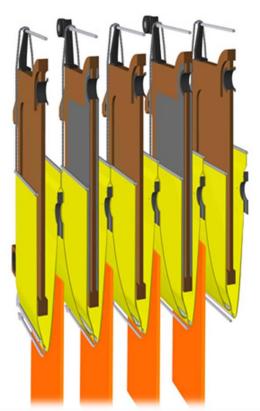
2013, Ishigaki awarded contact to install Filter Press into Auckland for dewatering water treatment sludge.

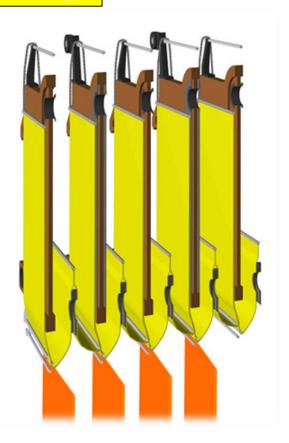
LASTA Filter Dewatering System

1) ISHIGAKI Oceania Pty. Ltd. Filtration & Separation

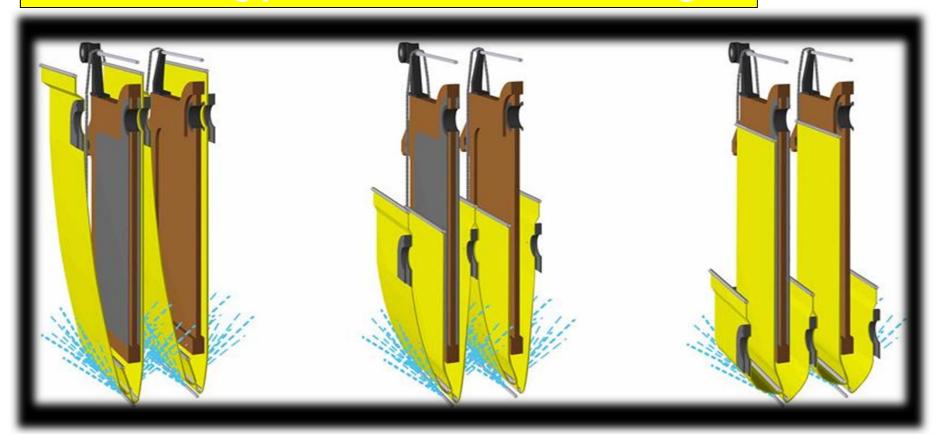
Filtration & Compressing Process






LASTA Filter Dewatering System

Cake Discharge Process with Cloth Traveling



LASTA Filter Dewatering System

Cloth Washing process with Cloth Traveling

