

Rapid Sand Filtration

Marco Bruni, seecon international gmbh

Rapid Sand Filtration

Copyright & Disclaimer

Copy it, adapt it, use it - but acknowledge the source!

Copyright

Included in the SSWM Toolbox are materials from various organisations and sources. **Those materials are open source.** Following the open-source concept for capacity building and non-profit use, copying and adapting is allowed provided proper acknowledgement of the source is made (see below). The publication of these materials in the SSWM Toolbox does not alter any existing copyrights. Material published in the SSWM Toolbox for the first time follows the same open-source concept, with all rights remaining with the original authors or producing organisations.

To view an official copy of the the Creative Commons Attribution Works 3.0 Unported License we build upon, visit http://creativecommons.org/licenses/by/3.0. This agreement officially states that:

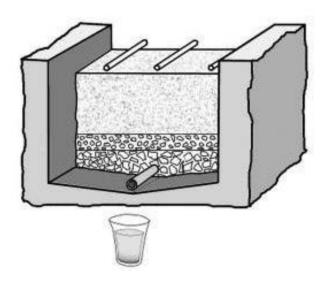
You are free to:

- Share to copy, distribute and transmit this document
- Remix to adapt this document. We would appreciate receiving a copy of any changes that you have made to improve this document.

Under the following conditions:

• Attribution: You must always give the original authors or publishing agencies credit for the document or picture you are using.

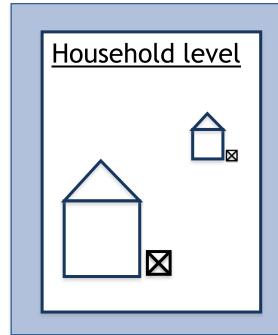
Disclaimer


The contents of the SSWM Toolbox reflect the opinions of the respective authors and not necessarily the official opinion of the funding or supporting partner organisations.

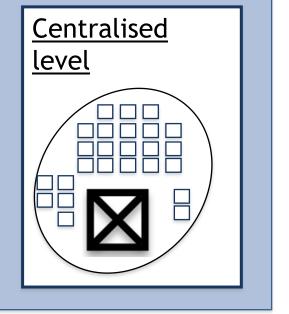
Depending on the initial situations and respective local circumstances, there is no guarantee that single measures described in the toolbox will make the local water and sanitation system more sustainable. The main aim of the SSWM Toolbox is to be a reference tool to provide ideas for improving the local water and sanitation situation in a sustainable manner. Results depend largely on the respective situation and the implementation and combination of the measures described. An in-depth analysis of respective advantages and disadvantages and the suitability of the measure is necessary in every single case. We do not assume any responsibility for and make no warranty with respect to the results that may be obtained from the use of the information provided.

Contents

- 1. Concept
- 2. How Rapid Sand Filtration Can Optimise SSWM
- 3. Design Principles
- 4. Treatment Efficiency and Health Aspects
- 5. Construction and Operation & Maintenance
- 6. Applicability
- 7. Advantages and Disadvantages
- 8. References

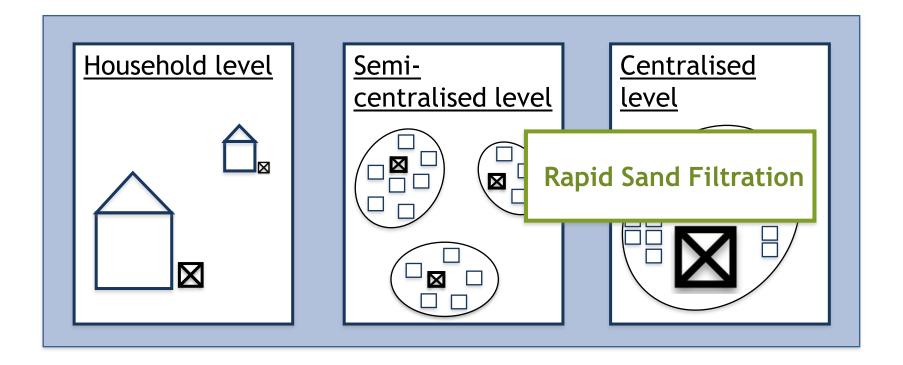



Water Purification


Households

Communities

Water supply systems in densely populated urban areas



Water Purification

 Rapid sand filtration is a purely physical drinking water purification method on a centralised (or semi-centralised) level

Water Purification through Rapid Sand Filtration

Working Principle

After being pre-treated (coagulation-flocculation), freshwater flows through a sand- and gravel bed. Hereby, particles are removed through a physical filter process. Final disinfection.

Rapid sand filtration is an integral part of a particular water treatment procedure and cannot produce drinking-water without precedent and subsequent treatment steps.

Water Purification through Rapid Sand Filtration

Processes are interlinked

Working Principle

After being pre-treated (coagulation-flocculation), freshwater flows through a sand- and gravel bed. Hereby, particles are removed through a physical filter process. Final disinfection.

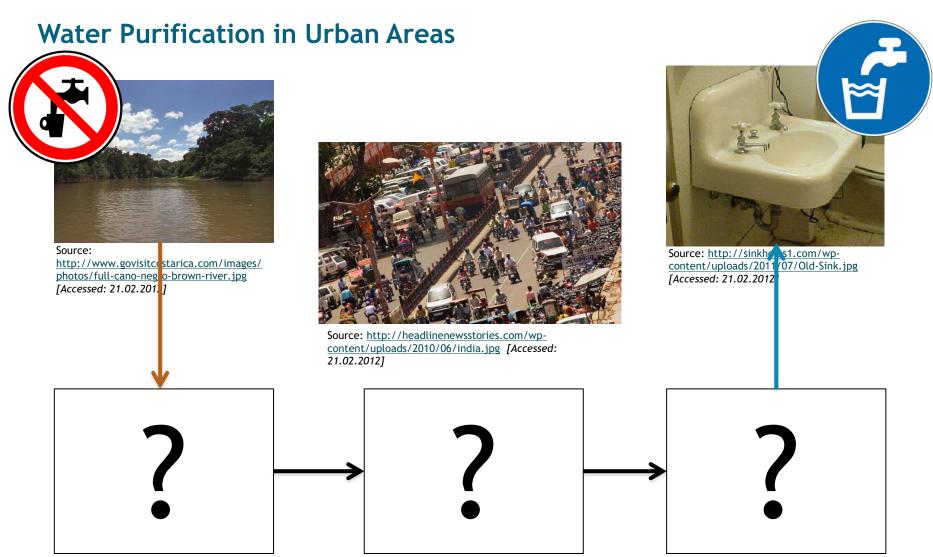
Rapid sand filtration is an integral part of a particular water treatment procedure and cannot produce drinking-water without precedent and subsequent treatment steps.

2. How Rapid Sand Filtration Can Optimise SSWM

Characteristics of Urbanised Areas

Large water demand

Source: http://headlinenewsstories.com/wp-content/uploads/2010/06/india.jpg [Accessed: 21.02.2012]


High population density

High Land Prices

Limited Space

2. How Rapid Sand Filtration Can Optimise SSWM

2. How Rapid Sand Filtration Can Optimise SSWM

Water Purification in Urban Areas

Source: http://www.govisitcestarica.com/images/ photos/full-cano-neg o-brown-river.jpg [Accessed: 21.02.201.]

Source: http://headlinenewsstories.com/wp-content/uploads/2010/06/india.jpg [Accessed: 21.02.2012]

Source: http://sinkho.s1.com/wp-content/uploads/2011 07/Old-Sink.jpg [Accessed: 21.02.2012

Pre-Treatment

Coagulation-Flocculation Rapid Sand Filtration

Post-Treatment

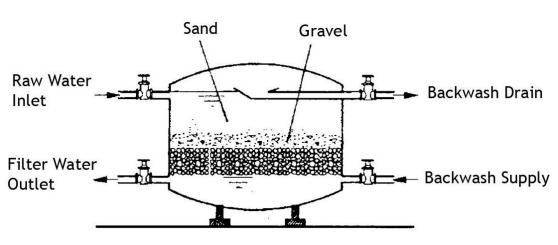
Chlorination

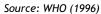
3. Design Principles

Types of Rapid Sand Filters 1/2

1. Open Rapid Sand Filters (Gravity Filter)

http://img1.tradeget.com/suffuss/L191X41Q1rapidgravityfiltratio


nplant.jpg [Accessed: 21.02.2012]



3. Design Principles

Types of Rapid Sand Filters 2/2

2. Closed Rapid Sand Filters (Pressure Filter)

Source: http://i01.i.aliimg.com/img/pb/532/961/244/1272335696406 hz_myalibaba_web2_545.JPG [Accessed: 22.02.2012]

4. Treatment Efficiency and Health Aspects

Efficiency versus Drinking-water Quality

Performance

4'000 - 12'000 litres per hour per m² of surface (slow sand filter: 100 - 300 litres)

→ High rate, small land requirements

Source: http://www.cs.iupui.edu/~momeredi/n399/bliss/images/intro_cheetah.jpg [Accessed: 21.02.2012]

Health Aspects

Moderately effective for:	Somewhat effective for	Not effective for:	
- Turbidity	- Odour, Taste	- Viruses	
- Iron, Manganese	- Bacteria	- Fluoride	
	- Organic matter	- Arsenic	
		- Salts	
		- Majority of chemica	ls

Adapted from: BRIKKE & BREDERO (2003), DEBOCH & FARIS (1999), SDWF (n.y.) and WHO (n.y.)

Typical treatment performance of rapid sand filters if freshwater has been pre-treated with coagulation-flocculation

Rapid sand filtration provides safe drinking-water only in combination with pre- and post-treatment measures

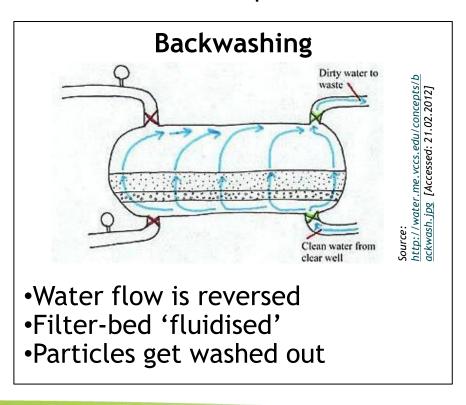
5. Construction and Operation & Maintenance

Construction

- Supervision of a competent engineer and skilled workers
- Many technical installations required

Construction Material

- Pumps
- (Reinforced-) concrete
- Pipes
- Valves
- Sand, Gravel
- Tools

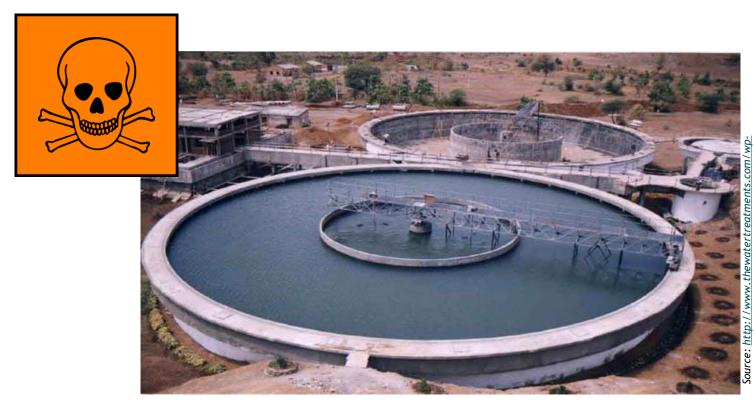

NOTE: Construction of pre- and post-treatment facilities equally require complex working steps, expensive material and skilled workers.

5. Construction and Operation & Maintenance

O&M of a Rapid Sand Filter

- Cleaning of the filter-bed (backwashing) every 24 72 hours
- Backwashing water and sludge often toxic → Treatment required
- Skilled caretaker required

Arsenic sludge from backwashing disposed untreated into Kumar River in Bangladesh


arsenic.net/english/projectreport_images/image028.jpg [Accessed: 21.02.2012]

5. Construction and Operation & Maintenance

O&M of Pre- and Post-Treatment Facilities

 Highly skilled workers required for control and dosage of coagulants/ flocculats and disinfection with chlorine

Large flocculation tank in operation

6. Applicability

Rapid Sand Filtration - a rather high-tech Solution

Prerequisites

- Availability of pre- and post-treatment facilities and material (e.g. chemicals for coagulation-flocculation, chlorine, water quality testkits)
- Skilled supervision (both for construction and operation)
- Electricity
- Treatment facilities for backwashing water and sludge available

Main areas

• Exclusively where land is a limiting factor and electricity, spare parts and skilled labour is available

7. Advantages and Drawbacks

Rapid Sand Filtration Put in a Nutshell

Advantages:

- Very effective in removing turbidity / large particles (<0.1-1 NTU)
- High filter rate (4'000 12'000 litres per hour per m²)
- Small land requirements
- No limitation regarding initial turbidity level
- Cleaning time (backwashing)
 only takes several minutes

Disadvantages:

- Not effective in removing bacteria, viruses, protozoa, fluoride, arsenic, salts, odour and organic matter (unless pre- and post-treated)
- High investment and operational costs
- Frequent cleaning required (every 24-72h)
- Skilled supervision essential
- Highly energy demanding
- Treatment of backwashing water and sludge necessary

8. References

BRIKKE, F.; BREDERO, M. (2003): Linking Technology Choice with Operation and Maintenance in the Context of Community Water Supply and Sanitation. Geneva: World Health Organization (WHO). URL:

http://www.who.int/water_sanitation_health/hygiene/om/linkingintro.pdf [Accessed: 06.02.3012].

DEBOCH, B.; FARRIS, K. (1999): Evaluation on the Efficiency of Rapid Sand Filtration. Addis Abada: 25th WECD Conference.

SDWF (n.y.): Conventional Water Treatment: Coagulation and Filtration. Saskatoon: Safe Drinking Water Foundation (SDWF). URL: http://www.safewater.org/PDFS/knowthefacts/conventionalwaterfiltration.pdf [Accessed: 15.02.2011].

SDWF (n.y.): Conventional Water Treatment: Coagulation and Filtration. Saskatoon: Safe Drinking Water Foundation (SDWF). URL: http://www.safewater.org/PDFS/knowthefacts/conventionalwaterfiltration.pdf [Accessed: 15.02.2011].

TWT (n.y.): Components of an Open Rapid Sand Filter. Unknown Location: The Water Treatments (TWT). URL: http://www.thewatertreatments.com/wp-content/uploads/2009/01/components-rapid-sand-filters5.jpg [Accessed: 21.02.2012].

WHO (n.y.): Chapter 12: Water Treatment. In: WHO: Seminar Pack for Drinking-water Quality, Water Sanitation and Health (WSH). Geneva: World Health Organization (WHO). URL: http://www.who.int/water_sanitation_health/dwq/S12.pdf [Accessed: 07.02.2012].

WHO (1996): Rapid Sand Filtration. (= Fact Sheets on Environmental Sanitation, No. 2.14). Geneva: World Health Organization (WHO) URL: http://www.who.int/water_sanitation_health/hygiene/emergencies/fs2_14.pdf [Accessed: 15.02.2012].

19

"Linking up Sustainable Sanitation, Water Management & Agriculture"

SSWM is an initiative supported by:

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizza

Federal Department of Foreign Affairs FDFA
Swiss Agency for Development and Cooperation SDC

sustainable sanitation alliance

