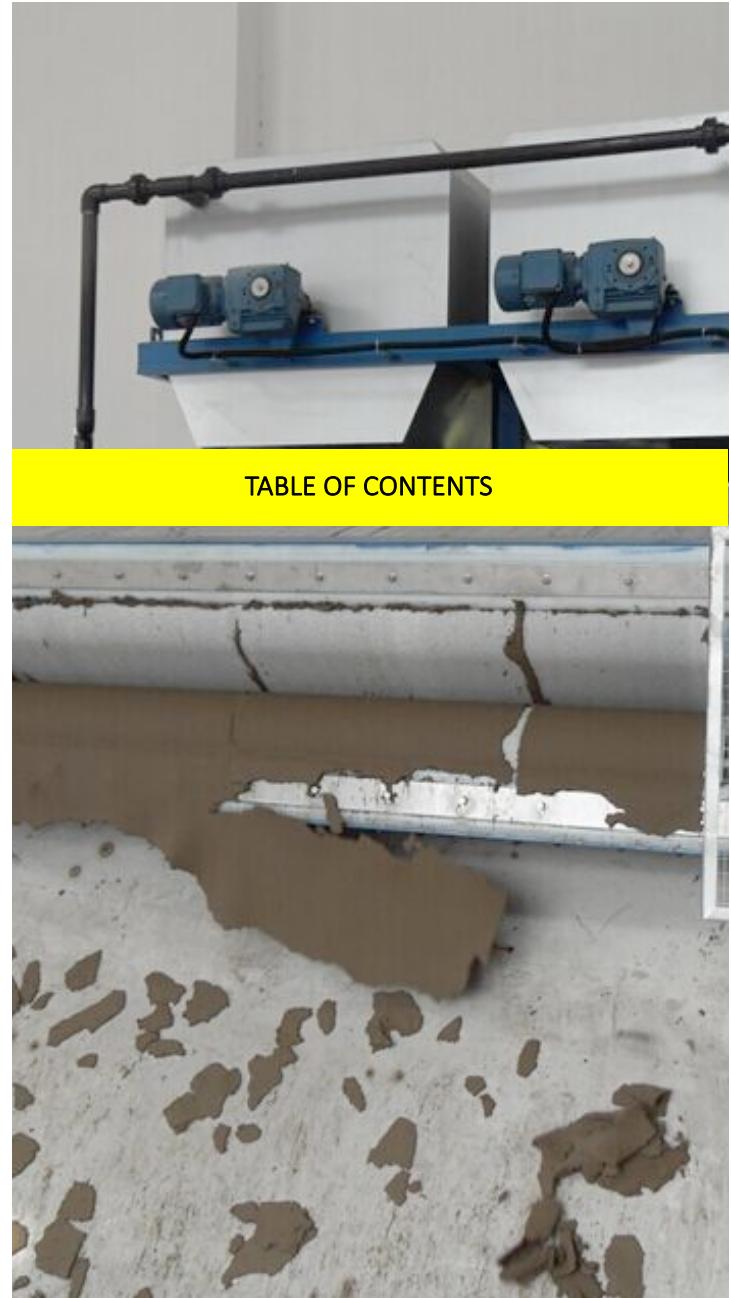


# Sludge Thickening, Dewatering, and Drying Technologies


A summary of known solutions

Sludge dewatering by GeoTube®. Image Source: Admir Technologies

JANUARY 2018

## The Sanitation Technology Platform

Please Note: This report is a good faith effort by RTI International to accurately represent information available via secondary and primary sources at the time of the information capture. The report is confidential and proprietary and only for internal uses and not for publication or public disclosure.



## TABLE OF CONTENTS

### Overview

Technology Overview

Thickening Technologies

Dewatering Technologies

Thermal Sludge Drying

# Overview

Sludge pre-processing is an essential part of fecal sludge management (FSM). Sludge treatment has historically focused on decreasing sludge volume for the purpose of reducing transport and disposal costs; however, new emphasis on pathogen elimination and resource creation has driven the development of new technologies.

The Bill & Melinda Gates Foundation (BMGF) is funding new product development in the sanitation sector. Most of the Reinvented Toilet (RT) and Omni Processor (OP) technologies require fecal sludge (FS) dewatering, with varying requirements around outlet characteristics. To help technology partners (TPs) and commercial partners (CPs) identify pre-processing systems that meet their needs, STeP has compiled data from numerous independent reports into this working document.

## Technologies Covered

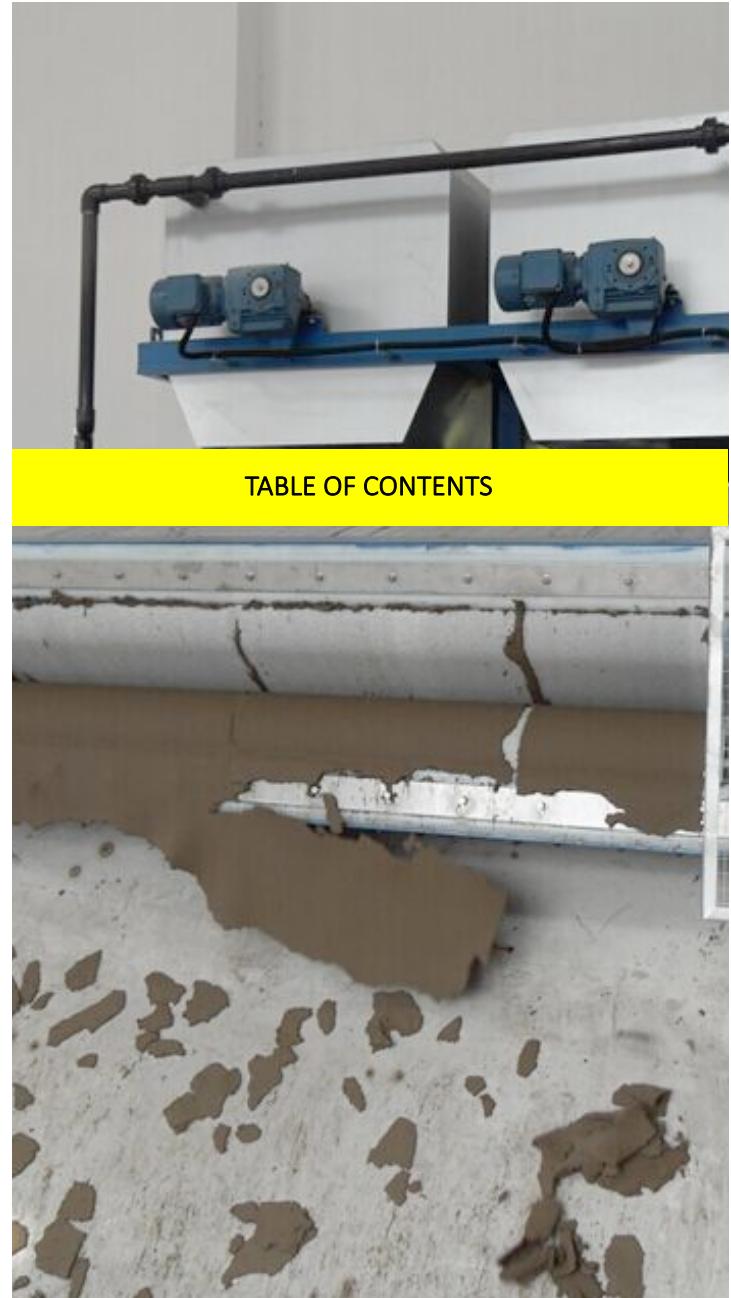
Three types of pre-processing technologies are included in this analysis: thickening technologies, dewatering technologies, and thermal drying technologies. Sludge thickening is typically the first step aimed at removing free water and increasing the concentration of sludge from very dilute to a thicker, more concentrated solution of 2%–15% total solids (TS). The most common types of sludge thickening are gravity thickening, rotary drum thickening, and dissolved air flotation thickening. Sludge dewatering removes water from the interstices between sludge particles and typically achieves 20%–25% TS, with a few exceptions. Common dewatering methods include presses, centrifuges, and drying beds. Thermal drying technologies force off bound water and can achieve up to 92% TS. Only two thermal drying technologies are featured in this report, which does not reflect the breadth of systems available in the marketplace.

## Data Sources

Readers should use caution when interpreting capital and lifecycle cost data, as certain systems were evaluated at a specific scale (see footnotes throughout) and with India-specific input assumptions for labor, electricity, etc.; therefore, findings may not be reflective of all situations.

The majority of the data in this analysis is derived from four key sources:<sup>1</sup>

- STeP: secondary research and primary interviews with nine equipment manufacturers
- Isle Consulting Report for BMGF: primary research with three equipment manufacturers and secondary data on a fourth
- Intellectual Ventures RFI for new dewatering technologies: secondary research of established and emerging technologies
- Partner-published reports, where noted


The following manufacturers provided inputs on this analysis:



## Communicating New Data to STeP

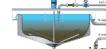
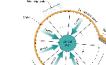
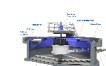
This is intended to be a working document that evolves with inputs from the broader sanitation community. If you would like to contribute to this analysis, please email Andrea Stowell at [astowell@rti.org](mailto:astowell@rti.org).

<sup>1</sup>Where available, primary data was used in place of secondary data.

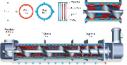


## TABLE OF CONTENTS

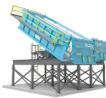
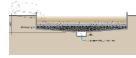
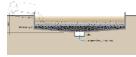
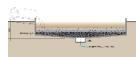
Overview




[Technology Overview](#)

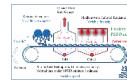
Thickening Technologies


Dewatering Technologies

Thermal Sludge Drying





# Sludge Thickening: Overview of Common Technologies

| Thickening Technology                                                                                             | Established or Emerging                 | Technology Vendors                         | Outlet Cake Solid (%)                                      | Footprint | Experience with FS                                    | Suitable for large volume | Capital Cost <sup>1</sup> | 20-Year Lifecycle Cost <sup>2</sup> | Polymer Required             | Odors                                       | Batch or Continuous |
|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------|------------------------------------------------------------|-----------|-------------------------------------------------------|---------------------------|---------------------------|-------------------------------------|------------------------------|---------------------------------------------|---------------------|
|  Gravity                         | Established                             | Ovivo, Ion Exchange                        | 2%–15% (depends on residence time)                         | Large     | Yes                                                   | Yes                       | Low                       | Unknown                             | None                         | Not contained                               | Continuous or batch |
|  Gravity Belt                    | Established                             | BDP Industries, Komline-Sanderson, Bellmer | 4%–7%                                                      | Moderate  | Unknown                                               | Unknown                   | Moderate                  | Unknown                             | Low: 1.5–6 kg/ton dry solids | Not contained <sup>3</sup>                  | Continuous          |
|  Metal Screen                    | Emerging                                | Unknown                                    | Unknown                                                    | Unknown   | Unknown                                               | Unknown                   | Unknown                   | Unknown                             | Unknown                      | Unknown                                     | Unknown             |
|  Rotary Drum (Vacuum Filtration) | Established                             | Parkson, PWTech                            | 4%–10%                                                     | Small     | Unknown                                               | Unknown                   | Moderate                  | Unknown                             | Moderate                     | Contained                                   | Continuous          |
|  Dissolved Air Flotation       | Established (with adaptations emerging) | Evoqua, WesTech, FRC                       | 2%–5% (6%–10% using anoxic gas)                            | Large     | Yes. But not suitable for FS with high-density solids | Unknown                   | Low                       | Unknown                             | Moderate                     | Not contained (but reduced with anoxic gas) | Continuous          |
|  Membrane Filtration           | Established                             | Ovivo                                      | 4%                                                         | Small     | Yes, although mostly used for waste activated sludge. | Unknown                   | High                      | Unknown                             | None                         | Not contained <sup>3</sup>                  | Continuous          |
|  SLG                           | Emerging                                | Orge                                       | Increases dryness of dewatering technologies by +3% to +8% | Small     | No                                                    | Unknown                   | Unknown                   | Unknown                             | Yes. Quantity Unknown        | Contained                                   | Unknown             |

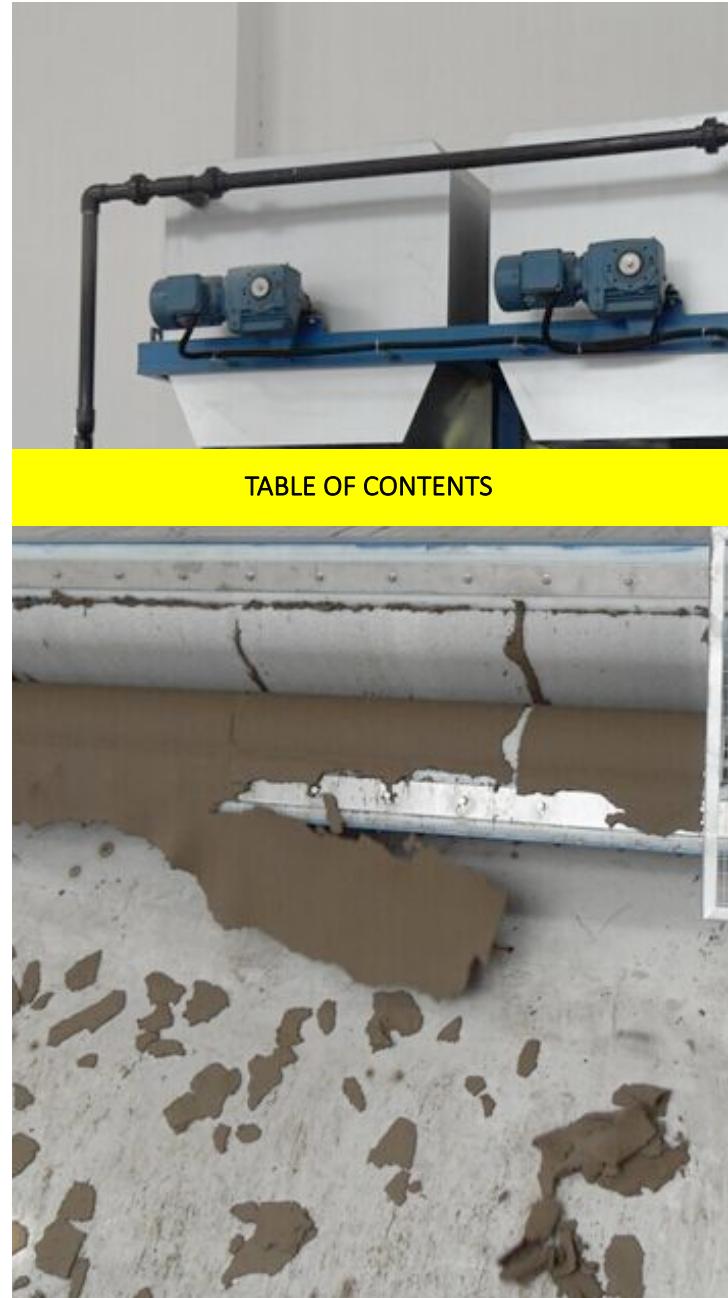


# Mechanical Sludge Dewatering: Overview of Common Technologies

| Dewatering Technology                                                                                             | Established or Emerging | Technology Vendors                     | Outlet Cake Solid (%)              | Footprint                                    | Experience with FS | Suitable for large volume            | Capital Cost <sup>1</sup>                 | 20-Year Lifecycle Cost <sup>2</sup> | Polymer Required                  | Odors                      | Batch or Continuous |
|-------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------|------------------------------------|----------------------------------------------|--------------------|--------------------------------------|-------------------------------------------|-------------------------------------|-----------------------------------|----------------------------|---------------------|
|  Belt Filter Press               | Established             | Alfa Laval, Bilfinger                  | 15%–18%                            | Small: <50 m <sup>2</sup>                    | Yes                | Yes                                  | Moderate: \$200K–\$250K                   | \$2.5M                              | Moderate: 4.5 kg / ton dry solids | Not contained <sup>3</sup> | Continuous          |
|  Screw Press                     | Established             | Huber, Alfa Laval, Bilfinger, Benenv   | 18%–20%                            | Small: <50 m <sup>2</sup>                    | Yes                | Yes                                  | Moderate: \$250K–\$550K                   | \$10.4M                             | High: 15 kg/ton dry solids        | Contained                  | Continuous          |
|  Centrifuge                      | Established             | Hiller, GEA, Alfa Laval                | 20%                                | Small: <50 m <sup>2</sup>                    | Yes                | Yes                                  | Low: \$25K–\$60K                          | \$4.4M                              | Low: 2–3 kg /ton dry solids       | Contained                  | Continuous          |
|  Volute Press                    | Established             | SBS AMCON                              | 16%–30% (for well-digested sludge) | Small: <50 m <sup>2</sup>                    | Yes                | Yes                                  | Moderate: \$40K–\$165k                    | \$2.9M                              | Moderate: 5–7 kg / ton dry solids | Contained                  | Continuous          |
|  Rotary Press                   | Established             | Prime Solutions, Fournier              | 20%–44%                            | Small: <50 m <sup>2</sup>                    | Yes                | Yes                                  | Moderate: \$220K–\$450K                   | \$1.7M                              | Low: 2–4 kg /ton dry solids       | Contained                  | Continuous          |
|  Membrane Filter Press         | Established             | Andritz, PP Filter, Alfa Laval, Evoqua | 35%–50%                            | Small: <50m <sup>2</sup>                     | Unknown            | Yes                                  | Low to Moderate: \$40K–\$220K             | \$2.2M                              | High: Unknown                     | Not contained <sup>3</sup> | Batch               |
|  Electro Dewatering            | Emerging                | Ovivo, Siemens                         | 25%–45%+                           | Small: Unknown                               | Unknown            | Unknown                              | Unknown                                   | Unknown                             | Unknown                           | Contained and improved     | Semi-continuous     |
|  Bucher Hydraulic Press        | Emerging                | Bucher Hydraulics                      | Unknown                            | Small: Unknown                               | Unknown            | Unknown                              | Unknown                                   | Unknown                             | Unknown                           | Contained                  | Batch               |
|  Salsnes Mechanical Filtration | Established             | Salsnes Filter                         | 20%–30%                            | Small: 60m <sup>2</sup> –1,000m <sup>2</sup> | No                 | Yes                                  | Low: \$86,355 for 800 m <sup>3</sup> /day | Unknown                             | None                              | Contained                  | Continuous          |
|  Solid-Liquid-Separation       | Emerging                | Agaeventure Systems                    | 10%–20% solids or a paste material | Very Small: Pilot ≤ 1m <sup>2</sup>          | No                 | No (industrial application underway) | \$250,000 (pilot)                         | Unknown                             | None                              | Contained                  | Continuous          |

# Passive Sludge Dewatering: Overview of Common Technologies

| Dewatering Technology                                                                                           | Established or Emerging | Technology Vendors              | Outlet Cake Solid (%)            | Footprint             | Experience with FS | Suitable for large volume  | Capital Cost <sup>1</sup>                              | 20- Year Lifecycle Cost <sup>2</sup>                       | Polymer Required | Odors                         | Batch or Continuous |
|-----------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------|----------------------------------|-----------------------|--------------------|----------------------------|--------------------------------------------------------|------------------------------------------------------------|------------------|-------------------------------|---------------------|
|  Box Dewatering                | Unknown                 | Park Process                    | Unknown                          | Very small            | Unknown            | Unknown                    | Unknown                                                | Unknown                                                    | System dependent | System dependent <sup>3</sup> | Batch               |
|  Geotextile Bags               | Established             | Tencate, DRM Industrial Fabrics | 20%+ (depends on residence time) | Large: ~0.5 acres     | Yes                | No                         | Moderate: Site Dev. + bags @ \$20–\$37.50 / linear ft. | Unknown. Bag costs is expected to be significant (~\$250K) | Yes              | Contained                     | Batch               |
|  Covered Drying Bed @ 20% TS   | Established             | N/A                             | 20%                              | Large: 0.7 acres      | Yes                | Yes                        | Moderate: \$210K–\$235K                                | \$840K                                                     | Optional         | Not contained                 | Batch               |
|  Covered Drying Bed @ 45% TS  | Established             | N/A                             | 45%                              | Very large: 8.0 acres | Yes                | Yes (but significant land) | High: \$2.6M–\$2.9M                                    | \$3.7M                                                     | Optional         | Not contained                 | Batch               |
|  Covered Drying Bed @ 60% TS | Established             | N/A                             | 60%                              | Very large: 9.5 acres | Yes                | Yes (but significant land) | High: \$3M–\$3.5M                                      | \$4.2M                                                     | Optional         | Not contained                 | Batch               |

# Thermal Sludge Drying: Overview of Common Technologies


| Thermal Drying Technology                                                                            | Established or Emerging | Technology Vendors | Outlet Cake Solid (%) | Footprint                | Experience with FS | Suitable for large volume                                 | Capital Cost <sup>1</sup>                                    | 20- Year Lifecycle Cost <sup>2</sup> | Polymer Required | Odors     | Batch or Continuous |
|------------------------------------------------------------------------------------------------------|-------------------------|--------------------|-----------------------|--------------------------|--------------------|-----------------------------------------------------------|--------------------------------------------------------------|--------------------------------------|------------------|-----------|---------------------|
|  STC Thermal Drying | Emerging                | Aqualogy           | 75-92%                | Small: ~60m <sup>2</sup> | No                 | Yes                                                       | Dependent on size and energy recovery system. \$600K- \$4.8M | Unknown                              | None             | Contained | Continuous          |
|  LaDePa             | Emerging                | PSS/UKZN           | 80%                   | Small: <502              | Yes                | Unlikely, although systems could be installed in parallel | Unknown                                                      | Unknown                              | No               | Contained | Continuous          |

Note: Numerous other thermal drying technologies exist but were not originally the focus of this analysis. The STC drying system was included because it was identified by Isle Consulting as an emerging technology of interest. LaDePa was included due to the publication of key findings by BMGF partners.

<sup>1</sup>Where provided, capital costs of mechanical systems reflect those obtained through primary research for capacities ranging from 250 to 1000 m<sup>3</sup>/ day. Small-capacity systems were not evaluated through the course of this analysis. Drying bed capex assumes climate conditions in India, that beds are covered with a simple overhang, incoming TS of 2.3%, 734 m<sup>3</sup>/day, and stated TS outputs. A capex range of \$80-\$90/m<sup>2</sup> of installed capacity was assumed based on data from Dakar and India.

<sup>2</sup>Lifecycle costs assume the following: 10-year lifespan for mechanical dewatering systems, 20-year lifespan for drying beds; labor cost = \$1.2 /hr, 310 operating days/year, Polymer price = \$7.4/kg, Electricity price = \$0.10/ kWh, Water price = \$0, Discount rate = 5%. Capex for mechanical systems are based on 1,000 m<sup>3</sup>/day of installed capacity, while Opex is based on a daily throughput of 734 m<sup>3</sup> at 1%-2% TS. Drying bed lifecycle costs assume a 20-year lifespan, 734 m<sup>3</sup>/day design capacity and throughput, and 2.3% TS content. No upfront thickener is assumed in any scenario.

<sup>3</sup> While some small-footprint mechanical systems do not contain odors, because of their small size, they can be installed inside a small structure, thereby eliminating odors.



## TABLE OF CONTENTS

Overview

Technology Overview

### Thickening Technologies

Dewatering Technologies

Thermal Drying Technologies

## Thickening Technology: Gravity Thickening

**Technology Description:** A gravity thickener is one of the easiest and cheapest methods for thickening sludge. It is a settling tank that concentrates solids by gravity-induced settling and compaction. Gravity thickeners are typically used to thicken primary solids and can be used without any chemical additions. They consist of a rectangular or circular tank with a sloped floor. Gravity thickeners can be operated in continuous or batch operation and are favored for their flow equalization and storage capacities. Overflow rate is the rate at which water moves out of the tank and can range from 0.2 to 0.4 liters per second per square meter. Gravity thickeners require significant space and settling time and are unlikely to be an appropriate technology for a mobile dewatering operation.

| PARAMETER                                                                           |                            | PERFORMANCE                                         |
|-------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------|
|    | Status                     | Established                                         |
|    | Odors                      | Not contained                                       |
|    | Batch or Continuous        | Continuous or batch                                 |
|    | Expected Solids            | Low: 2%–15%, depending on residence time            |
|    | Footprint                  | Large                                               |
|    | Capital Cost               | Low                                                 |
|                                                                                     | Electricity Usage          | Low: 0–20 kWh/metric ton of solids                  |
|                                                                                     | Wash Water                 | Unknown                                             |
|                                                                                     | Labor and Operation        | Very low                                            |
|                                                                                     | Polymer Requirement        | None                                                |
|                                                                                     | Maintenance                | Simple operation and maintenance; cyclic operations |
|  | Experience with FS         | Yes                                                 |
|                                                                                     | Suitable for Large Volumes | Yes                                                 |

Source: Intellectual Ventures, 2017; STeP

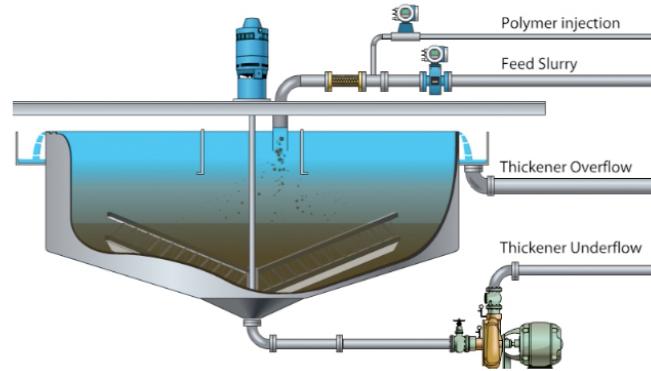



Figure: Gravity Thickening Tank—Source: ION India Limited

# Thickening Technology: Gravity Belt Thickening

**Technology Description:** Gravity belt thickeners (GBTs) operate by laying sludge on a porous horizontal belt, while free water drains by gravity. The feed rate is a key operational control for GBT processes and it is typically at or below 10 liters per second for each meter of belt width. GBT is heavily reliant on polymer dosing but has a relatively small footprint.

| PARAMETER                                                                           | PERFORMANCE                |
|-------------------------------------------------------------------------------------|----------------------------|
|    | Status                     |
|    | Odors                      |
|    | Batch or Continuous        |
|    | Expected Solids            |
|    | Footprint                  |
|    | Capital Cost               |
|                                                                                     | Electricity Usage          |
|                                                                                     | Wash Water                 |
|                                                                                     | Labor and Operation        |
|                                                                                     | Polymer Requirement        |
|                                                                                     | Maintenance                |
|  | Experience with FS         |
|                                                                                     | Suitable for Large Volumes |

Source: Intellectual Ventures, 2017; Sludge Management. Bhola R. Gurjar, Vinay Kumar Tyagi . CRC Press 2017; STeP

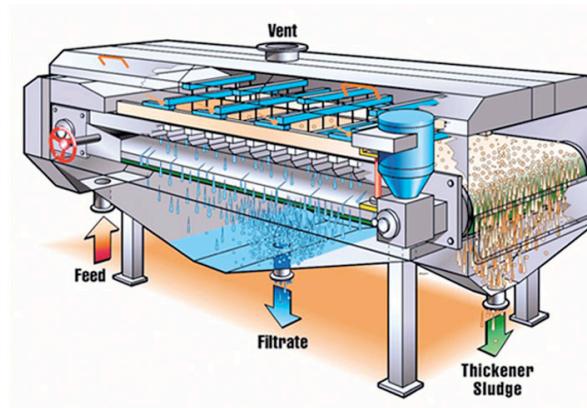



Figure: Gravity Belt Thickener—Source: BDP Industries

# Thickening Technology: Metal Screen Thickening

**Technology Description:** Sludge thickening with metal screens is a new technology that has been previously piloted but has no full-scale operations. The system uses a set of slit screens that are installed in a mixing tank. Thickening occurs by low-pressure cross-flow filtration through the screens. The screens feature sub-millimeter openings.

| PARAMETER                                                                           | PERFORMANCE                |          |
|-------------------------------------------------------------------------------------|----------------------------|----------|
|    | Status                     | Emerging |
|    | Odors                      | Unknown  |
|    | Batch or Continuous        | Unknown  |
|    | Expected Solids            | Unknown  |
|    | Footprint                  | Unknown  |
|    | Capital Cost               | Low      |
|                                                                                     | Electricity Usage          | Unknown  |
|                                                                                     | Wash Water                 | Unknown  |
|                                                                                     | Labor and Operation        | Moderate |
|                                                                                     | Polymer Requirement        | Unknown  |
|                                                                                     | Maintenance                | Unknown  |
|  | Experience with FS         | Unknown  |
|                                                                                     | Suitable for Large Volumes | Unknown  |

Source: Intellectual Ventures, 2017



Figure: Metal Screen used for Sludge Thickening—Source: Huber

## Thickening Technology: Rotary Drum (Vacuum Filter)

**Technology Description:** A rotary drum thickener—or a rotary vacuum-drum filter—consists of a rotating drum covered with cloth or other semi-porous textile. The drum is submerged in a slurry, or sludge, and sucks solids onto the surface of the textile while rotating out of the liquid/solid mixture. The vacuum continues to dewater the caked solids on the drum until they are discharged before the drum re-enters the liquid/solid slurry. The drum is rotated with a variable-speed drive that is usually operated between 5 and 20 rpm.

| PARAMETER                                                                           |                            | PERFORMANCE                                |
|-------------------------------------------------------------------------------------|----------------------------|--------------------------------------------|
|    | Status                     | Established                                |
|    | Odors                      | Contained                                  |
|    | Batch or Continuous        | Continuous                                 |
|    | Expected Solids            | Low: 4%–10%, depending on residence time   |
|    | Footprint                  | Small                                      |
|    | Capital Cost               | Moderate                                   |
|                                                                                     | Electricity Usage          | 10–30 kWh/metric ton of solids             |
|                                                                                     | Wash Water                 | Requires wash water for drum cleaning      |
|                                                                                     | Labor and Operation        | Can require significant operator attention |
|                                                                                     | Polymer Requirement        | Moderate                                   |
|                                                                                     | Maintenance                | Unknown                                    |
|  | Experience with FS         | Unknown                                    |
|                                                                                     | Suitable for Large Volumes | Unknown                                    |

Source: Intellectual Ventures, 2017; STeP

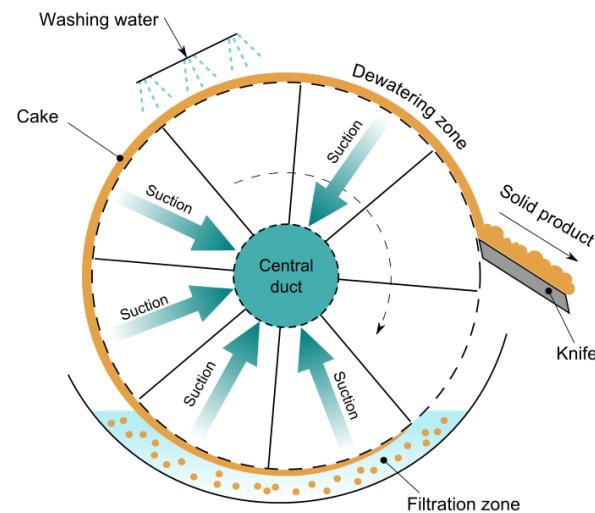



Figure: Rotary vacuum-drum filter – Source: [Wikipedia Commons](#)

# Thickening Technology: Dissolved Air Flotation

**Technology Description:** Dissolved Air Flotation (DAF) thickening reduces the specific gravity of solids in FS to less than that of water by attaching microscopic air bubbles to suspended solids. The flocculated particles then float to the surface of the tank and are removed by skimming. It can achieve 2%–5% TS in the thickened sludge with only moderate polymer dosing. However, DAF is a clarification process not suitable for sludge with high-density solids. Gravity thickeners are generally used for primary sludge instead of DAF because of better performance with variable or primary sludge. **Flotation – Anoxic Gas (Recuperative Thickening):** Using anoxic gas in DAF thickening processes has been applied as a supplemental process to increase the speed of anaerobic digesters. In pilots, it achieved 6%–10% solids concentration in the final product. The process involves removing digested biosolids from an anaerobic digestion process, thickening with anoxic gas, and then returning it to the digestion process. It also has been shown to have better odor control than traditional flotation thickening.

| PARAMETER | PERFORMANCE                                                                  |
|-----------|------------------------------------------------------------------------------|
|           | Status                                                                       |
|           | Established (with Anoxic Gas: Emerging)                                      |
|           | Odors                                                                        |
|           | Not contained (but reduced with Anoxic Gas)                                  |
|           | Batch or Continuous                                                          |
|           | Continuous                                                                   |
|           | Expected Solids                                                              |
|           | Low: 2%–5% (6%–10% with anoxic gas)                                          |
|           | Footprint                                                                    |
|           | Large                                                                        |
|           | Capital Cost                                                                 |
|           | Low                                                                          |
|           | Electricity Usage                                                            |
|           | Unknown                                                                      |
|           | Wash Water                                                                   |
|           | Unknown                                                                      |
|           | Labor and Operation                                                          |
|           | Low                                                                          |
|           | Polymer Requirement                                                          |
|           | Moderate                                                                     |
|           | Maintenance                                                                  |
|           | Experience with FS                                                           |
|           | Unknown; gravity thickeners are known to perform better with variable sludge |
|           | Suitable for Large Volumes                                                   |
|           | Unknown                                                                      |

Source: Intellectual Ventures, 2017; STeP

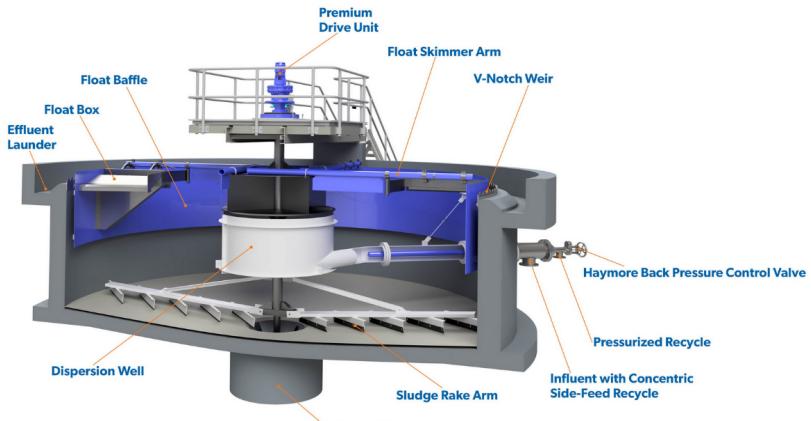



Figure: DAF System—Source: WesTech

## Thickening Technology: Membrane Filtration

**Technology Description:** Membrane filtration can be used for thickening or dewatering and is similar to membrane bioreactors (MBR), which are widely used in the wastewater-treatment industry for activated sludge treatment. Membrane units are submerged in a basin with suspended biomass and create a barrier for the solid-liquid separation. There are many different suppliers of both off-the-shelf and custom membrane systems. Some of the different types of membrane configurations include tubular, hollow-fiber, spiral wound sheets, plate and frame, and pleated-cartridge filters. Thickening up to 4% solids has been reported for FS, though an aerobic environment is required for non-activated sludge.

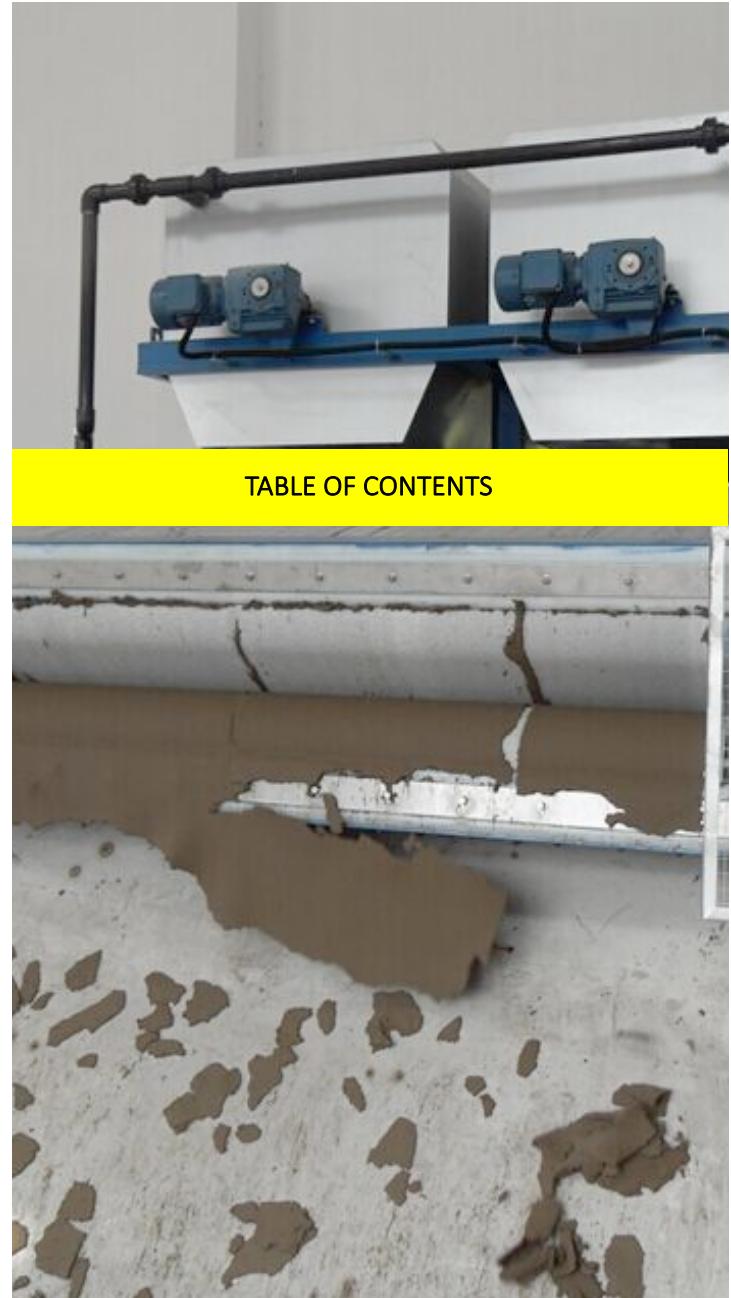
| PARAMETER                                                                           |                            | PERFORMANCE                           |
|-------------------------------------------------------------------------------------|----------------------------|---------------------------------------|
|    | Status                     | Established                           |
|    | Odors                      | Not contained                         |
|    | Batch or Continuous        | Continuous                            |
|    | Expected Solids            | Low: 4%                               |
|    | Footprint                  | Small                                 |
|    | Capital Cost               | High                                  |
|                                                                                     | Electricity Usage          | Unknown                               |
|                                                                                     | Wash Water                 | Unknown                               |
|                                                                                     | Labor and Operation        | Moderate                              |
|                                                                                     | Polymer Requirement        | None                                  |
|                                                                                     | Maintenance                | Complicated maintenance and operation |
|  | Experience with FS         | Yes                                   |
|                                                                                     | Suitable for Large Volumes | Unknown                               |

Source: Intellectual Ventures, 2017; STeP



Figure: Ceramic Membrane in Sludge Thickening Application—Source: Ovivo

## Thickening Technology: SLG


**Technology Description:** The SLG is a patented technology that conditions municipal and industrial sludge by breaking colloids using super pressurized air. It then uses a flocculant to agglomerate the de-constructed colloids, increasing the dry-solid content of the dewatered sludge and decreasing the volume of sludge by a factor of 2 to 3. The SLG is a compact technology that can be installed ahead of traditional dewatering technologies to increase their performance. Currently, Orege is preparing an installation on an industrial biological wastewater-treatment plant. In this case, the SLG is expected to increase the TS content from 15% to 30%. They have also developed a mobile unit with the capacity of treating 1–20 m<sup>3</sup>/hour with a power requirement of 15 KW.

| PARAMETER                                                                           | PERFORMANCE                |
|-------------------------------------------------------------------------------------|----------------------------|
|    | Status                     |
|    | Odors                      |
|    | Batch or Continuous        |
|    | Expected Solids            |
|    | Footprint                  |
|   | Capital Cost               |
|  | Electricity Usage          |
|  | Wash Water                 |
|  | Labor and Operation        |
|  | Polymer Requirement        |
|  | Maintenance                |
|  | Experience with FS         |
|  | Suitable for Large Volumes |

Source: Isle Consulting; STeP



Figure: Orege Mobile Thickening Unit, SLG—Source: [LinkedIn](#)



## TABLE OF CONTENTS

Overview

Technology Overview

Thickening Technologies

**Dewatering Technologies**

Thermal Drying Technologies

## Dewatering Technology: Belt Filter Press

**Technology Description:** Belt filter presses use a combination of gravity drainage and compression to dewater sludge. The first stage of a belt filter press is similar to a gravity belt thickener, where sludge is conditioned with polymers then placed on a porous horizontal belt that allows free water drainage. The second stage further dewater the sludge by compressing the sludge between two porous belts and applying pressure and shear force through rollers. Belt filter presses that are dewatering raw primary sludge usually operate at 2 to 5 liters per second for every meter of belt width. Advances in belt filter press technology include the use of 3 belts and using larger rollers for applying gentle pressure when dealing with smooth sludge.

| PARAMETER                                                                           | PERFORMANCE                                                                                        |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|    | Status                                                                                             |
|    | Odors                                                                                              |
|    | Batch or Continuous                                                                                |
|    | Expected Solids                                                                                    |
|    | Footprint                                                                                          |
|   | Capital Cost                                                                                       |
|                                                                                     | Moderate: \$200K for 250 m <sup>3</sup> /day to \$250K for 1,000 m <sup>3</sup> /day               |
|                                                                                     | Electricity Usage                                                                                  |
|                                                                                     | Medium: 140–700 Wh/m <sup>3</sup> of sludge                                                        |
|                                                                                     | Wash Water                                                                                         |
|                                                                                     | High: more than 400 L/m <sup>3</sup> of sludge                                                     |
|                                                                                     | Labor and Operation                                                                                |
|                                                                                     | Low: less than 2 hours per day                                                                     |
|                                                                                     | Polymer Requirement                                                                                |
|                                                                                     | Moderate: 4.5 kg/ ton dry solids                                                                   |
|                                                                                     | Maintenance                                                                                        |
|                                                                                     | Moderate: frequent but straightforward maintenance of many moving parts; can be difficult to clean |
|  | Experience with FS                                                                                 |
|                                                                                     | Yes; very sensitive to sludge properties                                                           |
|                                                                                     | Suitable for Large Volumes                                                                         |
|                                                                                     | Yes                                                                                                |

Source: Intellectual Ventures, 2017; STeP: Primary research with technology vendors. Expected solids based on primary research although literature sources suggest solids content could be higher with pre-thickened sludge.

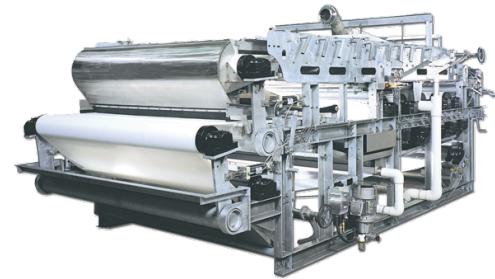



Figure: Belt Filter Press—Source: Alfa Laval

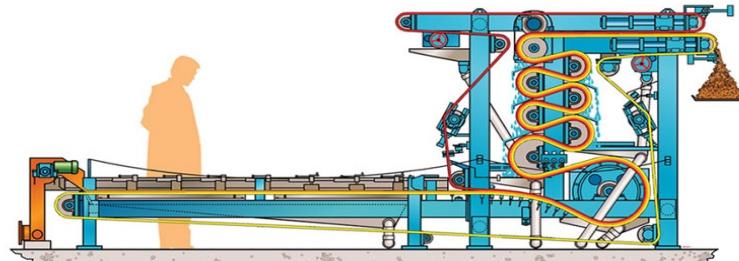



Figure: Belt Filter Press—Source: BDP Industries

## Dewatering Technology: Screw Press

**Technology Description:** The screw press is a relatively new technology in the sludge dewatering field. It was developed in the pulp/paper industry. Compared with other mechanical dewatering technologies, it is a simple, low maintenance system. The slow rotational speed results in less noise than centrifugation and will reduce the costs of long-term maintenance. Screw press designs include both horizontal and inclined configurations. Typical input flow rates are between 1 and 5 liters per second.

| PARAMETER                                                                           | PERFORMANCE                                                                                       |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
|    | Status                                                                                            |
|    | Odors                                                                                             |
|    | Batch or Continuous                                                                               |
|    | Expected Solids                                                                                   |
|    | Footprint                                                                                         |
|    | Capital Cost                                                                                      |
|                                                                                     | Moderate: \$200K for 250 m <sup>3</sup> /day to \$550K for 1,000 m <sup>3</sup> /day              |
|                                                                                     | Electricity Usage                                                                                 |
|                                                                                     | Low: 140 Wh/m <sup>3</sup> of sludge                                                              |
|                                                                                     | Wash Water                                                                                        |
|                                                                                     | Medium: 8 L/m <sup>3</sup> sludge                                                                 |
|                                                                                     | Labor and Operation                                                                               |
|                                                                                     | Medium: less than 2 hours per day labor but other chemicals required. Fully automated operation.  |
|                                                                                     | Polymer Requirement                                                                               |
|                                                                                     | High: 15 kg/ton dry solid                                                                         |
|                                                                                     | Maintenance                                                                                       |
|                                                                                     | Moderate: greasing bearings, replacing internal wiper every 6 months; reduced noise and vibration |
|  | Experience with FS                                                                                |
|                                                                                     | Yes                                                                                               |
|                                                                                     | Suitable for Large Volumes                                                                        |
|                                                                                     | Yes                                                                                               |

Source: Intellectual Ventures, 2017; STeP: Primary research with technology vendors.

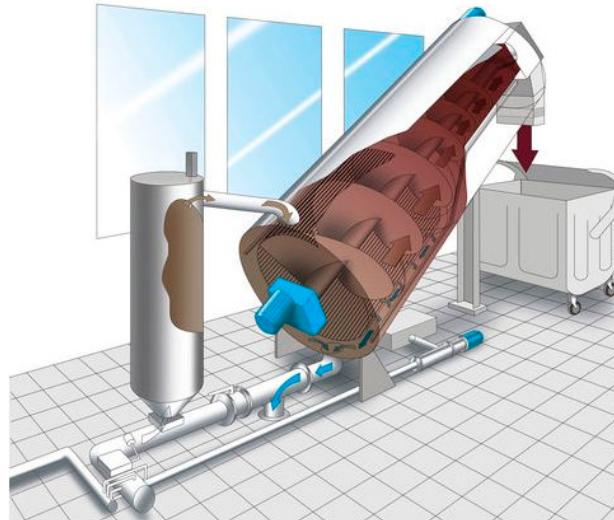



Figure: Inclined Screw Press—Source: Huber

## Dewatering Technology: Screw Press (Truck Mounted)

**Technology Description:** Benenv has developed a compact, mobile sludge dewatering system based on a scaled down mixing plus flocculation tank followed by a screw press. The development of this technology was funded by the Government of China to reduce hauling costs associated with fecal sludge transport. The CDS-312 model has a throughput of 100-200 kg dissolved solids / hour. The truck-mounted unit can reportedly reduce sludge disposal volume by 1/3, and remove 99% of suspended solids, 98.5% of BOD and 99.7% of COD from the filtrate.

| PARAMETER                                                                           | PERFORMANCE                                                                     |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
|    | Status Emerging                                                                 |
|    | Odors Contained                                                                 |
|    | Batch or Continuous Continuous                                                  |
|    | Expected Solids 25%                                                             |
|    | Footprint Low: Same as desludging truck area                                    |
|    | Capital Cost Unknown                                                            |
|                                                                                     | Electricity Usage Low: Amount unknown                                           |
|                                                                                     | Wash Water Unknown                                                              |
|                                                                                     | Labor and Operation Truck drivers appears able to also operate dewatering unit. |
|                                                                                     | Polymer Requirement Yes but quantity unknown                                    |
|                                                                                     | Maintenance Easy. Fully automated system with few wearing parts.                |
|  | Experience with FS Yes                                                          |
|                                                                                     | Suitable for Large Volumes No                                                   |



Figures (Top to Bottom): Interior of mobile screw press;  
Screw press contained inside – Source: Benenv

## Dewatering Technology: Centrifuge

**Technology Description:** A centrifuge is a high-speed process that separates fecal solids from sludge through centrifugal force. They have been used in the wastewater treatment industry since the 1930s and are still a commonly used technology. Centrifuges are one of the most versatile of all sludge dewatering technologies, and their operation can be varied to thicken or dewater sludge to desired levels. They are able to operate within one of the smallest footprints, but they are also more complicated to operate and have one of the highest energy requirements.

| PARAMETER                                                                           |                            | PERFORMANCE                                                                              |
|-------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------|
|    | Status                     | Established                                                                              |
|    | Odors                      | Contained                                                                                |
|    | Batch or Continuous        | Continuous                                                                               |
|    | Expected Solids            | Low: 4%–20%                                                                              |
|    | Footprint                  | Low: less than 50 m <sup>2</sup>                                                         |
|    | Capital Cost               | Low: \$25K for 250 m <sup>3</sup> /day to \$60K for 1,000 m <sup>3</sup> /day            |
|                                                                                     | Electricity Usage          | High: more than 1 k Wh/m <sup>3</sup> of sludge                                          |
|                                                                                     | Wash Water                 | Medium: 14 L/m <sup>3</sup>                                                              |
|                                                                                     | Labor and Operation        | Very Low: less than 2 hours per day; requires skilled operators                          |
|                                                                                     | Polymer Requirement        | Low: 2–3 kg/ton dry solids                                                               |
|                                                                                     | Maintenance                | High: yearly maintenance by technician and 5-year scroll servicing; operations are noisy |
|  | Experience with FS         | Yes                                                                                      |
|                                                                                     | Suitable for Large Volumes | Yes                                                                                      |

Source: Intellectual Ventures, 2017; STeP: Primary research with technology vendors.

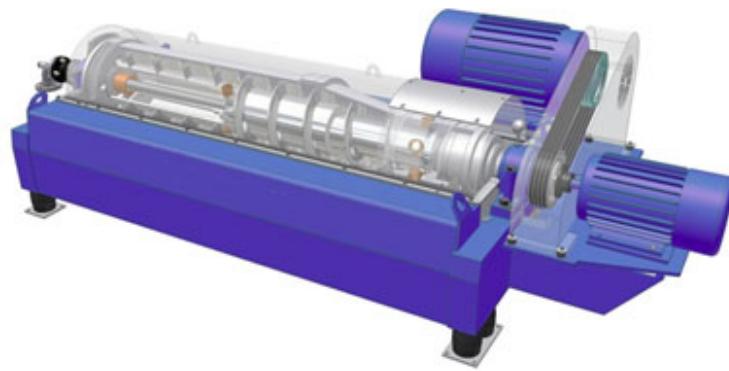



Figure: Two Phased Decanter—Source: Hiller

## Dewatering Technology: Volute Press

**Technology Description:** The Volute Press® (a registered trademark of AMCOM, Inc. of Yokohama, Japan) consists of a central screw and slowly oscillating multi-disk filters to gradually increase pressure on the sludge. The technology combines flocculation, thickening, and dewatering, eliminating the need for additional equipment. The pitch of the screw narrows, and the gaps between the rings decrease towards the end-plate, where solids are discharged. Key features of the technology are that it is capable of processing dilute sludges with TS contents greater than 0.1%. The AMCOM technology has an automatic polymer feed system and a self-cleaning feature, enabling continuous operations. The Volute dewatering press comes in a variety of sizes suitable for smaller applications as well as large scale wastewater treatment plants. The process treatment capacity of the systems ranges from 0.3 to 90 m<sup>3</sup>/h but can vary depending on the waste characteristics.

| PARAMETER                                                                           | PERFORMANCE                                                        |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------|
|    | Status                                                             |
|    | Odors                                                              |
|    | Batch or Continuous                                                |
|    | Expected Solids                                                    |
|    | Footprint                                                          |
|   | Capital Cost                                                       |
|                                                                                     | Low to Moderate: \$40K–\$165k larger capacity systems              |
|                                                                                     | Electricity Usage                                                  |
|                                                                                     | Low: 140–360 Wh/m <sup>3</sup> of sludge                           |
|                                                                                     | Wash Water                                                         |
|                                                                                     | Low: less than 1 L/m <sup>3</sup> of sludge                        |
|                                                                                     | Labor and Operation                                                |
|                                                                                     | Very Low: less than 2 hours per day                                |
|                                                                                     | Polymer Requirement                                                |
|                                                                                     | Medium: 5–7 kg/ton dry solids                                      |
|                                                                                     | Maintenance                                                        |
|                                                                                     | Low: none required for at least 5 years except control electronics |
|  | Experience with FS                                                 |
|                                                                                     | Yes                                                                |
|                                                                                     | Suitable for Large Volumes                                         |
|                                                                                     | Yes                                                                |

Source: STeP: Primary research with technology vendors; [PWTech](#); Isle Consulting

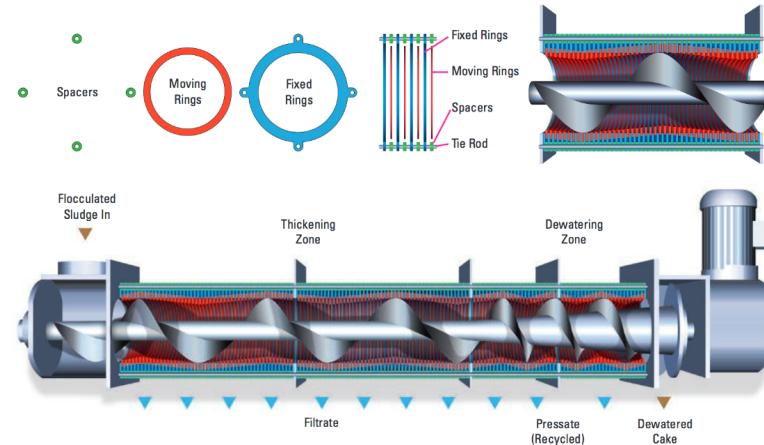



Figure: Volute Press—Source: PWTech

## Dewatering Technology: Rotary Press

**Technology Description:** Sludge is fed at low pressure into the channels and rotates between two parallel revolving stainless steel, chrome-plated filtering elements. As free water passes through the screens, the sludge continues to dewater as it travels around the channel. The flocculated sludge builds up solids until enough pressure is generated against the outlet restricted arm. The frictional force of the slow-moving filtering elements, coupled with controlled outlet restriction, generates enough back-pressure to dewater the remaining solids, resulting in the extrusion of a very dry cake (Fournier). Technology vendors offer stationary and skid-mounted units.

| PARAMETER                                                                           | PERFORMANCE                                                                                   |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|    | Status                                                                                        |
|    | Odors                                                                                         |
|    | Batch or Continuous                                                                           |
|    | Expected Solids                                                                               |
|    | Footprint                                                                                     |
|    | Capital Cost                                                                                  |
|   | Electricity Usage                                                                             |
|  | Wash Water                                                                                    |
|  | Labor and Operation                                                                           |
|  | Polymer Requirement                                                                           |
|  | Maintenance                                                                                   |
|  | Experience with FS                                                                            |
|  | Suitable for Large Volumes                                                                    |
|                                                                                     | Established                                                                                   |
|                                                                                     | Contained                                                                                     |
|                                                                                     | Continuous                                                                                    |
|                                                                                     | High: 20%–44%                                                                                 |
|                                                                                     | Small: less than 50 m <sup>2</sup>                                                            |
|                                                                                     | Moderate: \$220K for 250 m <sup>3</sup> /day to \$450K for 1,000 m <sup>3</sup> /day          |
|                                                                                     | Medium: 150–500 Wh/m <sup>3</sup> of sludge                                                   |
|                                                                                     | Medium: 6–8 L/m <sup>3</sup> of sludge                                                        |
|                                                                                     | Very low: less than 2 hours per day.                                                          |
|                                                                                     | Low: 2–4 kg/ton dry solids                                                                    |
|                                                                                     | Low: simple maintenance and shut down procedures; \$3,500–\$5,000 / year in parts replacement |
|                                                                                     | Yes, limited to North American applications                                                   |
|                                                                                     | Yes                                                                                           |

Source: STeP: Primary research with technology vendors.



Figure: Rotary Press—Source: Fournier

## Dewatering Technology: Chamber Press and Membrane-Filter Press

**Technology Description:** In a chamber press, the sludge to be dewatered is injected into the center of the press, and each chamber is filled in turn. Then the liquid portion of the sludge is filtered out through textile media by adding streams of compressed air or water. Chamber presses have been most widely used for dewatering mining slurries, but have been widely applied to other industries. They are typically only operated in batch processes and are a relatively slow method of dewatering. The membrane-filter press is a further development of the chamber press. It is reported to have shorter filter times than a chamber filter press, along with higher final solids content.

| PARAMETER                                                                           | PERFORMANCE                                                                                                                             |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|    | Status                                                                                                                                  |
|    | Odors                                                                                                                                   |
|    | Batch or Continuous                                                                                                                     |
|    | Expected Solids                                                                                                                         |
|    | Footprint                                                                                                                               |
|    | Capital Cost<br>Moderate: \$40K–\$100K for 250 m <sup>3</sup> /day; \$75K–\$220K for 1,000 m <sup>3</sup> /day (Manufacturer dependent) |
|                                                                                     | Electricity Usage                                                                                                                       |
|                                                                                     | Wash Water                                                                                                                              |
|                                                                                     | Labor and Operation                                                                                                                     |
|                                                                                     | Polymer Requirement                                                                                                                     |
|                                                                                     | Maintenance                                                                                                                             |
|  | Experience with FS                                                                                                                      |
|                                                                                     | Suitable for large volumes                                                                                                              |



Figure: Membrane Filter Press—Source: Fournier

## Dewatering Technology: Electro Dewatering

**Technology Description:** Electro dewatering processes combine electro-osmosis and mechanical pressure to dewater sludge. It is a newer dewatering technology with only a few suppliers. It has been reported to have the added benefit of pathogen reduction due to the electric field. Electroacoustic dewatering has been tested at the bench scale. Electro dewatering is a secondary drying technology that is typically used after a traditional mechanical system, such as a belt filter press or a centrifuge. Tests report that solids contents were increased by 3.4% to 10.4%, although some pilots are known to have achieved cake solids concentrations of 50%–70%.

| PARAMETER                                                                           | PERFORMANCE                |
|-------------------------------------------------------------------------------------|----------------------------|
|    | Status                     |
|    | Odors                      |
|    | Batch or Continuous        |
|    | Expected Solids            |
|    | Footprint                  |
|    | Capital Cost               |
|                                                                                     | Electricity Usage          |
|                                                                                     | Wash Water                 |
|                                                                                     | Labor and Operation        |
|                                                                                     | Polymer Requirement        |
|                                                                                     | Maintenance                |
|  | Experience with FS         |
|                                                                                     | Suitable for Large Volumes |

Source: Intellectual Ventures, 2017. Siemens conducted a pilot study in which it first dewatered solids to 20%–27% TS using a centrifuge, followed by electro dewatering using the SELO-500 to achieve cake solids of 50%–70%.

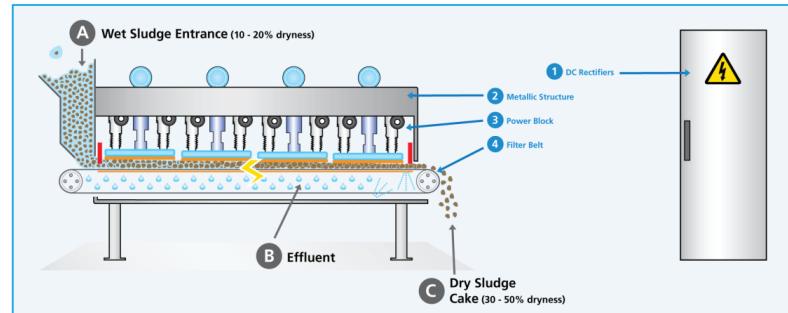



Figure: Electro dewatering – Source: [TreatmentEquipment.com](http://TreatmentEquipment.com)

## Dewatering Technology: Bucher Hydraulic Press

**Technology Description:** Bucher Unipektin manufactures a hydraulic dejuicing press that has been tested on biosolids in limited environments. The press consists of a cylinder and a moving piston that squeezes the sludge while free water passes through porous cloth filter elements. It can obtain 25% more total solids than a belt filter press but is a batch process.

| PARAMETER                                                                           | PERFORMANCE                |
|-------------------------------------------------------------------------------------|----------------------------|
|    | Status                     |
|    | Odors                      |
|    | Batch or Continuous        |
|    | Expected Solids            |
|    | Footprint                  |
|    | Capital Cost               |
|                                                                                     | Electricity Usage          |
|                                                                                     | Wash Water                 |
|                                                                                     | Labor and Operation        |
|                                                                                     | Polymer Requirement        |
|                                                                                     | Maintenance                |
|  | Experience with FS         |
|                                                                                     | Suitable for Large Volumes |

Source: Intellectual Ventures, 2017



Figure: Bucher Filter Press – Source: [Bucher Unipektin](#)

## Dewatering Technology: Salsnes Mechanical Filter

**Technology Description:** Salsnes Filter is a mechanical filtration system that has been used as a replacement for conventional primary sludge treatment in wastewater plants. Three processes are performed in one compact unit: solids separation, sludge thickening, and sludge dewatering. Waste is processed through a polyethylene mesh, where solids are separated; the particles collected on the mesh undergo a drying process through the Air Knife (compressed air) that starts automatically when the mesh begins to rotate. This is applied both to perform sludge pre-treatment by drying the particles for more efficient consequent sludge de-watering and to clean and preserve the mesh. The Salsnes Filter is covered by multiple patents.

| PARAMETER | PERFORMANCE                                                                                                                                                                                                                                                                                                                                                                               |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | Status                                                                                                                                                                                                                                                                                                                                                                                    |
|           | Contained                                                                                                                                                                                                                                                                                                                                                                                 |
|           | Batch or Continuous                                                                                                                                                                                                                                                                                                                                                                       |
|           | Expected Solids                                                                                                                                                                                                                                                                                                                                                                           |
|           | Footprint                                                                                                                                                                                                                                                                                                                                                                                 |
|           | Capital Cost<br>\$86,355 for 800 m³/day<br>Electricity Usage<br>0.02–0.15 kWh/m³ of sludge<br>Wash Water<br>100 liters/day at 4–6 bar pressure<br>Labor and Operation<br>Unknown; nominal labor, electricity, water<br>Polymer Requirement<br>None<br>Maintenance<br>1 hr/week: each unit is equipped with control system for fully automated operation. \$685–\$1370/yr for spare parts. |
|           | Experience with FS<br>No<br>Suitable for Large Volumes<br>Yes, systems range from 800–8,000 m³/day <sup>1</sup>                                                                                                                                                                                                                                                                           |

Source: Isle Consulting <sup>1</sup>Based on treatment of municipal wastewater with TSS ranging from 250–500 mg/l

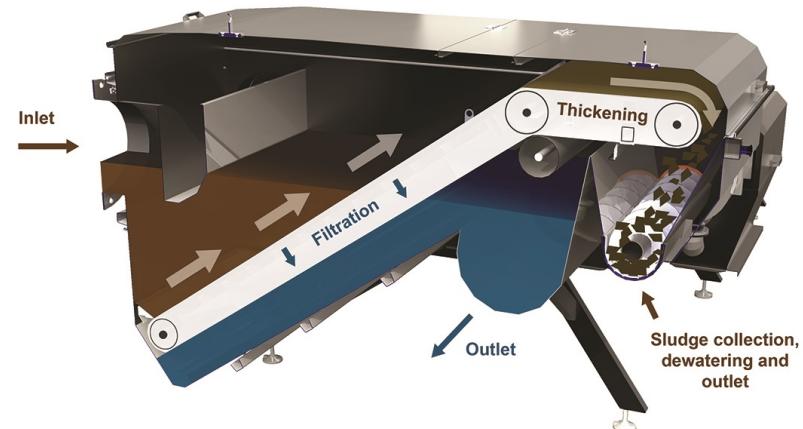



Figure: Salsnes Mechanical Filter—Source: [Salsnes Filter](http://Salsnes Filter)

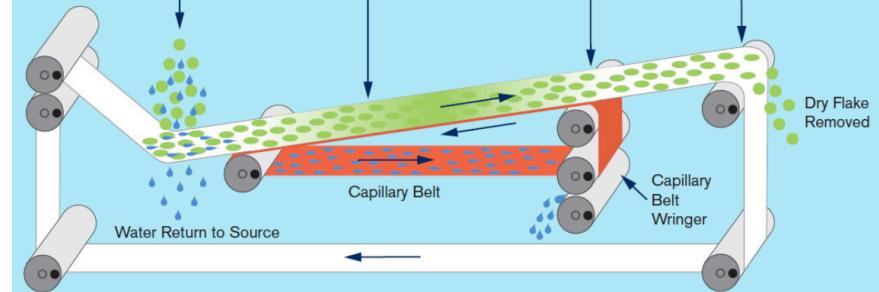
## Dewatering Technology: Solid Liquid Separation

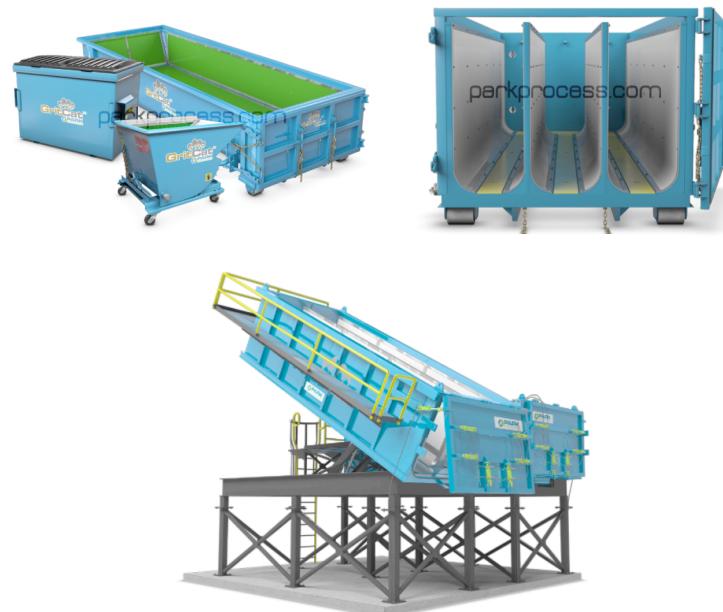
**Technology Description:** The Solid-Liquid-Separation (SLS) system is an innovative process for separating micro-solids from solutions, dramatically reducing energy consumption by using surface physics and capillary action. The system consists of two belts moving in opposite directions. The top belt carries the solution (allowing water to drain through the belt) and the capillary belt moving in the opposite direction passes directly underneath. The capillary belt is wetted, further helping water to draw through the top belt using liquid adhesion. Unlike the majority of filtering technologies that are meant only to remove particles from a liquid stream, the SLS is uniquely designed to harvest the particles. The SLS system currently comes in Lab and Pilot models, with the Industrial model under development.

| PARAMETER                                                                           |                            | PERFORMANCE                                                                                                                                        |
|-------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Status                     | Emerging                                                                                                                                           |
|    | Odors                      | Contained                                                                                                                                          |
|    | Batch or Continuous        | Continuous                                                                                                                                         |
|    | Expected Solids            | 10% to 20% solids or a paste material                                                                                                              |
|    | Footprint                  | Small: pilot occupies less than 1 m <sup>2</sup> (for up to 500 L/h; however, capacity is dependent TS content and other solution characteristics) |
|   | Capital Cost               | Moderate: Pilot Model system costs \$250,000                                                                                                       |
|                                                                                     | Electricity Usage          | 0.025 kWh/Kg dry weight                                                                                                                            |
|                                                                                     | Wash Water                 | None                                                                                                                                               |
|                                                                                     | Labor and Operation        | No Data                                                                                                                                            |
|                                                                                     | Polymer Requirement        | None                                                                                                                                               |
|                                                                                     | Maintenance                | Low maintenance is required, and the main consumable items within the system are the belts                                                         |
|  | Experience with FS         | No                                                                                                                                                 |
|                                                                                     | Suitable for Large Volumes | Unknown                                                                                                                                            |

Source: Isle Consulting

The SLS system is currently used for AVS' in-house algae dewatering needs but could potentially be adapted to dewater sludge with additional investment.





Figure: SLS Process Diagram—Source: Algaeventures Systems

## Dewatering Technology: Box Dewatering

**Technology Description:** Park Process manufacturers a portfolio of dewatering boxes that are containerized and mobile. The boxes rely on gravity filtration through reusable plastic filter media. Specific product offerings include (1) the Sludge King; (2) the GritCat, designed to be used with gritty or sandy waste streams that typically do not require the use of a coagulant or flocculent for dewatering; (3) AquaCat, designed to be used with light gravity sludge and slurries made up of very fine particles that require the addition of a flocculent for effective; (4) GeoCat, designed to be used with sticky, slimy, slightly oily, non-uniform, non-specific, colloidal, or simply hard-to-dewater sludge where flocculation is not an option; and (5) the Big Tipper, which is a stationary, mounted unit. System performance is currently unknown.

| PARAMETER                                                                           | PERFORMANCE                |
|-------------------------------------------------------------------------------------|----------------------------|
|    | Status                     |
|    | Odors                      |
|    | Batch or Continuous        |
|    | Expected Solids            |
|    | Footprint                  |
|   | Capital Cost               |
|                                                                                     | Electricity Usage          |
|                                                                                     | Wash Water                 |
|                                                                                     | Labor and Operation        |
|                                                                                     | Polymer Requirement        |
|  | Maintenance                |
|  | Experience with FS         |
|                                                                                     | Suitable for Large Volumes |

Source: STeP secondary research, [Park Process](#)



Figures clockwise from top left: GritCat, Sludge King, Big Tipper  
Source: [Park Process](#)



## Dewatering Technology: Geotextile Bags

**Technology Description:** Geotubes® (Tencate) and Sedi—Filters (DRM) are geotextile tubes that comprise high-strength polypropylene fabric. The tube is pumped full of sludge, and the fabric retains fine-grain material while allowing effluent water to permeate through the tube wall. As the water is drained from the tube, additional sludge can be added. Once filled with dried solids, the material is removed, but the geotextile material cannot be reused. Drying can take 5–7 weeks to achieve 20% TS and 3–4 months to achieve 35%–40% TS. A significant footprint is required and the technology is unlikely to be compatible with a mobile dewatering scheme.

| PARAMETER |                            | PERFORMANCE                                                                                            |
|-----------|----------------------------|--------------------------------------------------------------------------------------------------------|
|           | Status                     | Established                                                                                            |
|           | Odors                      | Contained                                                                                              |
|           | Batch or Continuous        | Batch                                                                                                  |
|           | Expected Solids            | High: 20%+ (depends on residence time)                                                                 |
|           | Footprint                  | Medium: ~0.5 acre of bags, plus work areas                                                             |
|           | Capital Cost               | \$20–\$37.50 / linear ft. for bags; additional cost for site development and pumps                     |
|           | Electricity Usage          | Unknown: limited to electricity for pumping                                                            |
|           | Wash Water                 | None                                                                                                   |
|           | Labor and Operation        | High: continual bag replacement plus full-time operators and electricity for pumping equipment         |
|           | Polymer Requirement        | Polymer required, but of unknown amount                                                                |
|           | Maintenance                | Low/None: sight maintenance only                                                                       |
|           | Experience with FS         | Yes, although at much lower throughputs                                                                |
|           | Suitable for Large Volumes | No, one expert noted, “one would not use Geotubes® for such large volumes” (e.g., more than 500m³/day) |



Figure: Filled Geobags®—Source: GeoFabrics.co

Source: Intellectual Ventures, 2017; STeP: Primary research with technology vendors; Isle Consulting

# Dewatering Technology: Drying Beds

**Technology Description:** Drying beds are a simple, low-tech means of dewatering sludge that function well in arid regions. Many types of drying beds require no energy, but all require large footprints and have very long residence times. There are many different types of drying bed technologies, such as mechanical freeze-thaw, auger-assisted, vacuum-assisted, and quick-dry filter beds. Each of these can achieve shorter residence time than traditional beds, but they usually require the addition of polymers or additional energy. All drying-bed technologies require significant land use.

| PARAMETER | PERFORMANCE                |                                                                                      |
|-----------|----------------------------|--------------------------------------------------------------------------------------|
|           | Status                     | Established                                                                          |
|           | Odors                      | Not Contained                                                                        |
|           | Batch or Continuous        | Batch                                                                                |
|           | Expected Solids            | Variable (higher TS = larger footprint)                                              |
|           | Footprint                  | Less than 1 acre for low TS outputs; very large for TS content more than 20%         |
|           | Capital Cost               | Low for ~20% TS; high for higher TS outputs. \$80–\$90 per m <sup>2</sup> installed. |
|           | Electricity Usage          | None                                                                                 |
|           | Wash Water                 | None                                                                                 |
|           | Labor and Operation        | Moderate: multiple full-time operators and equipment for emptying beds               |
|           | Polymer Requirement        | Optional (increase solids capture rates)                                             |
|           | Maintenance                | Low: sight maintenance only                                                          |
|           | Experience with FS         | Yes                                                                                  |
|           | Suitable for large volumes | Yes, although significant land required due to long residence times                  |

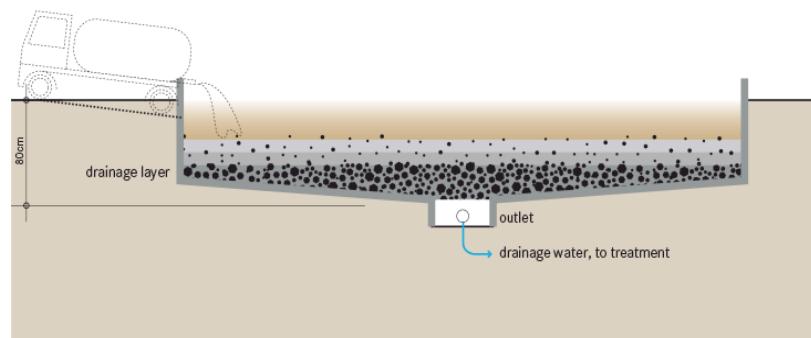
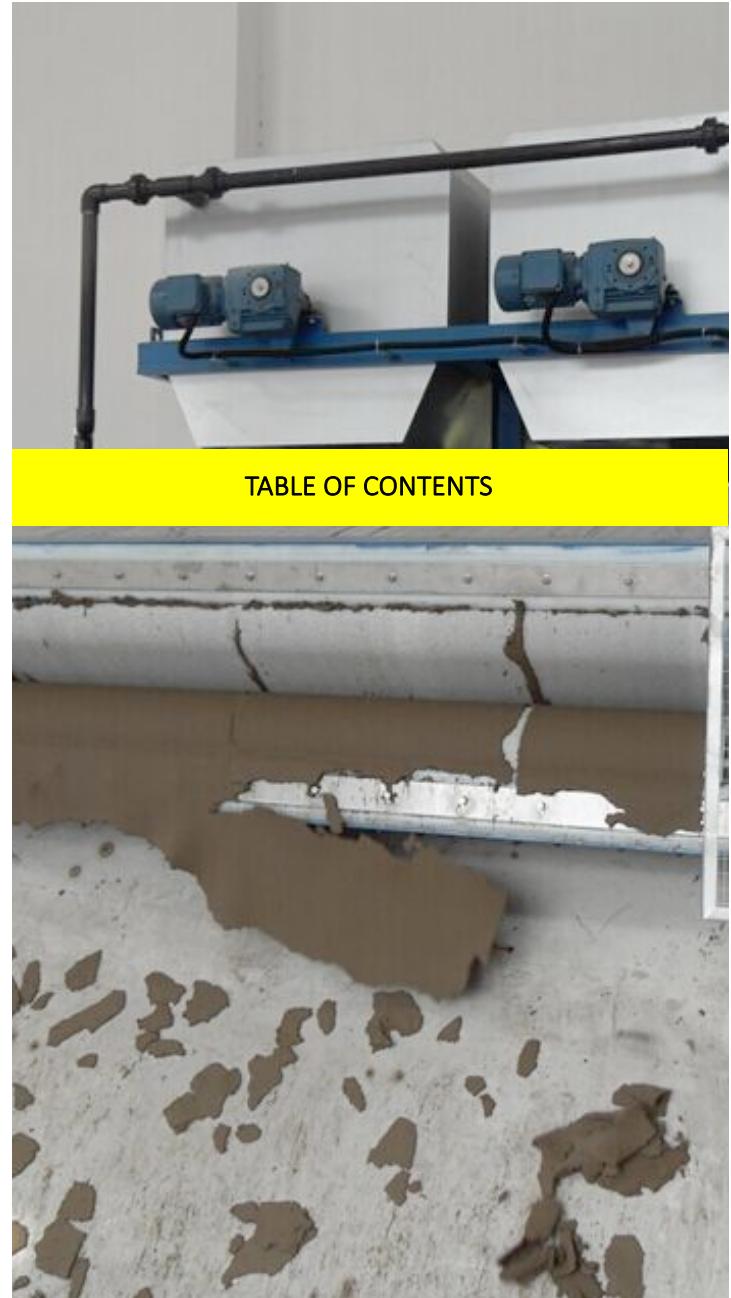




Figure: Unplanted Drying Bed—Source: TILLEY et al. (2014)

Source: STeP: Primary research with technology vendors. TILLEY, E.; ULRICH, L.; LUETHI, C.; REYMOND, P.; SCHERTENLEIB, R.; ZURBRUEGG, C. (2014): *Compendium of Sanitation Systems and Technologies (Arabic)*. 2nd Revised Edition. Duebendorf, Switzerland: Swiss Federal Institute of Aquatic Science and Technology (Eawag).



## TABLE OF CONTENTS

Overview

Technology Overview

Thickening Technologies

Dewatering Technologies

**Thermal Drying Technologies**

## Thermal Drying Technology: STC Thermal Drying

**Technology Description:** The STC thermal drying system uses low temperatures to dry mechanically dewatered sludges from 20% TS to between 75% and 92% TS. The first stage consists of a sludge extrusion system that produces strings of dewatered sludge. As the sludge travels along two consecutive belts, a fan system generates circular hot dry air movement at 65°–80°C. The sludge then passes through a crushing mill to produce homogenous pellets. The energy needed to heat the sludge and evaporate the water is recovered from the condensation process, maximizing the use of residual heat.

| PARAMETER                                                                           | PERFORMANCE                |
|-------------------------------------------------------------------------------------|----------------------------|
|    | Status                     |
|    | Odors                      |
|    | Batch or Continuous        |
|    | Expected Solids            |
|    | Footprint                  |
|    | Capital Cost               |
|   | Electricity Usage          |
|  | Water                      |
|  | Labor and Operation        |
|  | Polymer Requirement        |
|  | Maintenance                |
|  | Experience with FS         |
|  | Suitable for Large Volumes |

Source: Isle Consulting

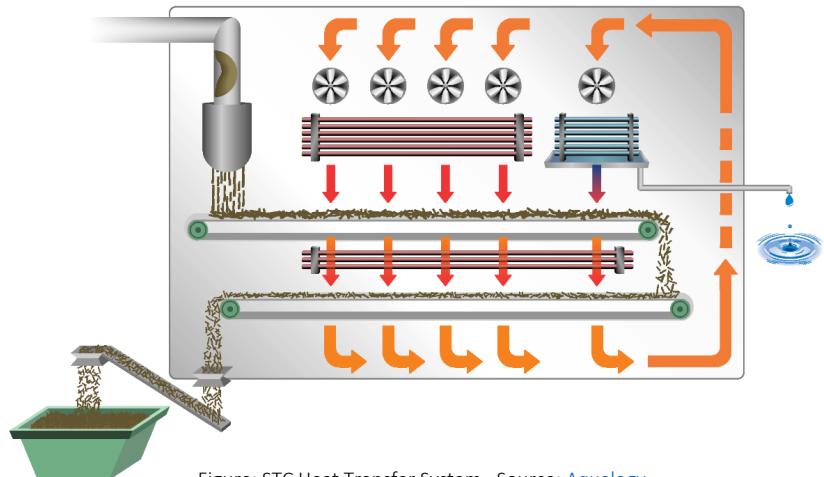



Figure: STC Heat Transfer System—Source: [Aqualogy](#)

# Thermal Drying Technology: LaDePa

**Technology Description:** In this process, sludge is pelletized using a screw extruder and processed by a combination of infrared and convective drying. The final product is dried, pasteurized pellets that are safe to handle, with minimum exposure to pathogen risk. They can potentially be used in agriculture or as a biofuel. In a study conducted by the Pollution Control Group at UKZN, researchers found that pellets had characteristics for reuse; they have similar nutrient content to manure and compost and similar calorific value to wood. Radiation intensity and the source height largely affected the final product; thus, these two parameters need to be adjusted and optimized to achieve an appropriate product property for different applications. The system achieves complete inactivation of helminth eggs and pasteurization of fecal coliforms.

| PARAMETER                                                                           | PERFORMANCE                                                                                                                        |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
|    | Status                                                                                                                             |
|    | Contained                                                                                                                          |
|    | Batch or Continuous                                                                                                                |
|    | Expected Solids<br>Target for full scale unit = 80%                                                                                |
|    | Footprint<br>Small: system is containerized; less than 50m <sup>2</sup>                                                            |
|   | Capital Cost<br>Unknown                                                                                                            |
|                                                                                     | Electricity Usage<br>210 KW engine required                                                                                        |
|                                                                                     | Water<br>Unknown                                                                                                                   |
|                                                                                     | Labor and Operation<br>Two operators required, plus 15 liters/hr of diesel                                                         |
|                                                                                     | Polymer Requirement<br>None                                                                                                        |
|                                                                                     | Maintenance<br>Unknown                                                                                                             |
|  | Experience with FS<br>Yes                                                                                                          |
|                                                                                     | Suitable for Large<br>Volumes<br>Unlikely; current capacity is 2,500 kg/day at 70%<br>TS, but units could be installed in parallel |

The Tongaat Wastewater Treatment Plant (WWTP) is home to the first full-scale LaDePa system. Additional units are reportedly being commissioned for other nearby WWTPs (Source: UKZN)

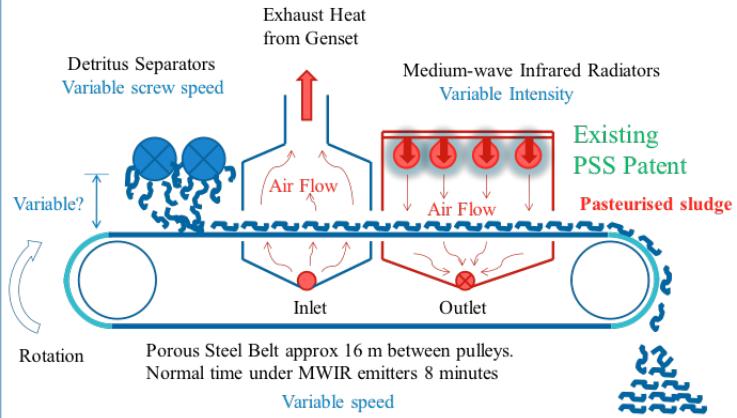



Figure: LaDePa Process – Source: [UKZN](#)

Source: 'LaDePa' process for the Drying and Pasteurisation of Faecal Sludge from VIP latrines by the means of IR radiation. Septien, S.\*, Singh, A., Mirara, S.W., Teba, L., Velkushanova, K., Buckley, C. Pollution Research Group, University of KwaZulu-Natal, Durban 4041, South Africa; STeP secondary research.