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Artificial neural networks: applications in the drinking

water sector

G. O’Reilly, C. C. Bezuidenhout and J. J. Bezuidenhout
ABSTRACT
Artificial neural networks (ANNs) could be used in effective drinking water quality management.

This review provides an overview about the history of ANNs and their applications and shortcomings

in the drinking water sector. From the papers reviewed, it was found that ANNs might be useful

modelling tools due to their successful application in areas such as pipes/infrastructure, membrane

filtration, coagulation dosage, disinfection residuals, water quality, etc. The most popular ANNs

applied were feed-forward networks, especially Multi-layer Perceptrons (MLPs). It was also noted

that over the past decade (2006–2016), ANNs have been increasingly applied in the drinking water

sector. This, however, is not the case for South Africa where the application of ANNs in distribution

systems is little to non-existent. Future research should be directed towards the application of ANNs

in South African distribution systems and to develop these models into decision-making tools that

water purification facilities could implement.
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INTRODUCTION
Supplying adequate and safe drinking water to communities

is currently one of the most important challenges that water

purification facilities in developing and developed countries

face (Badejo et al. ; Gray & Vawda ). To ensure

treatment processes are efficient, knowledge of certain con-

taminants in the water is very important to ensure they are

correctly removed (Meng et al. ). Most of the water treat-

ment plants use purification technologies developed

decades ago (Trussel ). Traditional water purification

methods include flocculation, sedimentation, sand filtration

and chlorination (Rigobello et al. ). Even though these

purification methods may be effective, deterioration of

source water quality may require advanced treatment

methods to ensure that the water is effectively purified

(van der Hoek et al. ; Ang et al. ; Meng et al.

). Advanced treatment methods usually include
membrane filtration, reverse osmosis (RO), ozonation, acti-

vated carbon and advanced oxidation (van der Hoek et al.

; Meng et al. ). However, advanced treatment tech-

nologies are costly (Houtman ), which means poor

quality raw water is thus more expensive to treat (Adgar

et al. ; Ang et al. ).

To ensure safe drinking water is produced, the

implementation of an effective water quality management

program is important, but should not only be compliance

driven. For compliance to water quality standards, such as

those prescribed by the World Health Organization

(WHO), United States Environmental Protection Agency

(EPA) and the South African National Standards (SANS

241:2015), the levels of specific parameters are determined.

Analysing a large number of variables in aquatic systems can

be complex which makes the monitoring of water quality
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challenging (Ranković et al. ; Antanasijevic et al. ;

Chen & Liu ), particularly for small water supply auth-

orities. Typical monthly monitoring of water quality

parameters may also lead to missing values in the data set

(Tabari & Talaee ). In areas where pollution episodes

regularly occur, preventative methods, such as automatic

monitoring, is an option (Iglesias et al. ). However, auto-

matic monitoring could also be costly and time consuming,

particularly when the pollution events are sporadic (Iglesias

et al. ). Thus, qualitative and quantitative decisions

based on real data are a challenge for environmental engin-

eers monitoring water quality (Lermontov et al. ; Tabari

& Talaee ). Water quality modelling is thus a valuable

tool to ensure optimum water quality management (Antana-

sijevic et al. ; Vieira et al. ).

ANNs are modelling approaches that could be used in

predicting the impacts of deteriorating water quality on

drinking water purification processes. This could then be

used to identify critical parameters as well as steps in the

purification processes to be monitored or to be addressed.

Whenever there are drastic changes in the water quality,

water purification facilities usually rely on past experience

or extra bench-scale testing to resolve the problems (Veera-

paneni et al. ). However, ANNs can be a useful tool for

managing certain aspects of the water treatment operation

(Veerapaneni et al. ). This is due to the fact that

ANNs have the ability to produce predictions in systems

where information on particular interrelationships is

inadequate (Veerapaneni et al. ). Hidden relationships

in historical data can be revealed by using ANNs, which

assists in the forecasting of water quality (Najah et al. ).

These approaches (ANNs) are not new to the water

sector where they have been applied as modelling and fore-

casting tools (Wu et al. ). They have found applications

in water engineering, environmental sciences and ecological

sciences since the 1990s (Palani et al. ; Najah et al.

). Advantages that ANNs bring to water quality model-

ling include: (i) model building does not require a physics-

based algorithm and this makes the modelling approach

faster and more flexible; (ii) non-linear relationships can

be handled properly and without any effort (Tabari &

Talaee ); and (iii) user experiences and knowledge can

be incorporated in construction of a model (Zhang & Stan-

ley ). The aim of this review is to give an overview on the
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principles of ANNs, the application of ANNs in the water

sector, the current scenario with regard to drinking water

and future prospects.
SEARCH APPROACH

Research for this review article was done using six data-

bases: Google Scholar, Science Direct, EbscoHost,

Emerald Insight Journals, SAePublications and Web of

Science. Searches were sorted according to relevance and

only articles relevant to drinking water and distribution sys-

tems were used.
PRINCIPLES OF ANNS

Artificial neural networks are computational techniques that

mimic some operational features of the human brain

(Haykin ; Vicente et al. ). ANNs are not pro-

grammed like conventional computer programs, but they

have mechanisms which can learn certain data or patterns

(Sarkar & Pandey ). Data in ANNs are connected to

each other by weights parallel to synapses (Seth ). Train-

ing of the ANN is done by adjusting these connections

through a learning algorithm (Seth ). ANN modelling

usually consists of the following steps: data collection, data

analysis and training of the neural network (Antanasijevic

et al. ). ANNs can identify intricate nonlinear relation-

ships between input and output data sets (Antanasijevic

et al. ; Najah et al. ). There are various types of arti-

ficial neural network available, but the most commonly

used are: Multi-layer Perceptrons (MLPs), Radial Basis

Function (RBF), General Regression Neural Network

(GRNN), Cascade Forward Networks (CFN) and Koho-

nen’s self-organizing maps (SOM) (Farmaki et al. ; Wu

et al. ).

MLPs are the most commonly used feed-forward neural

networks (Piotrowski et al. ; Tabari & Talaee ). The

architecture of a typical feed-forward network (Figure 1)

contains an input layer, a hidden layer and an output layer

(Piotrowski et al. ; Salami Shahid & Ehteshami ).

The neurons in one layer are connected to the next layer,

but the neurons of the same layer are not connected to



Figure 1 | Architecture of a feed-forward network (adapted from Najah et al. 2013).
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each other (Najah et al. ). The back-propagation training

algorithm is used most commonly with MLPs (Vicente et al.

). During training of the model, actual and target output

values are compared. By using the back-propagation algor-

ithm, errors resulting from the comparison are propagated

backwards through the network, adjusting the weight

values and the errors are minimized (Abdulkadir et al.

). A feed-forward network trained with the back-propa-

gation algorithm can be referred to as a Back Propagation

Neural Network (BPNN) (AL-Allaf ). Since the intro-

duction of the feed-forward ANN, research into the

application of ANNs has thrived (Maier & Dandy ).

The Radial Basis Function is similar to the MLP neural

network consisting of three layers: an input layer, a hidden

layer (known as the kernel) and an output layer (Hannan

et al. ). Just like MLPs, each layer is connected to the

next layer, but with the RBF, the neurons in the hidden

and output layer are interconnected to each other by weights

(Sharma et al. ; Farmaki et al. ). The GRNN is a

variation of the RBF network (May et al. ; Hannan

et al. ). Unlike networks using the back-propagation

algorithm, GRNN does not need a repetitive training pro-

cedure (Hannan et al. ). It estimates random functions

between input and output neurons directly from the training

data (Hannan et al. ).

Cascade Forward Networks (Figure 2) are similar to

feed-forward networks, but each layer is connected to the
Figure 2 | Architecture of a Cascade Forward Network (adapted from Al-Allaf 2012).
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successive layers by means of a weight connection (Goyal

& Goyal ; Al-Allaf ). In other words, not only is

layer 1 connected to layer 2 and layer 2 connected to layer

3, but layer 1 is also connected to layer 3 by means of a

weight connection (Goyal & Goyal ; Al-Allaf ).

The back-propagation algorithm can also be used to

update the weights of the layers (Chayjan ; Goyal &

Goyal ). The Kohonen self-organizing map (Figure 3)

consists of only an input layer and a Kohonen layer

(Bowden et al. ; Farmaki et al. ). Each input element

is connected to all the other neurons of the Kohonen layer

(Farmaki et al. ). These networks have the unsupervised

ability to learn and organise data without being given associ-

ated output values for the input data, hence the term ‘self-

organizing’ (Mukherjee ; Farmaki et al. ).

A neuro-fuzzy network is a combination of artificial

neural networks and fuzzy logic (Rani & Moreira ).

Fuzzy logic is a representation of knowledge (obtained

from data analysis or expert knowledge) that is based on

reasoning that is approximate rather than predicated logic

(Christodoulou & Deligianni ). For example, a set of

objects or a scenario can be characterized by being true or

false. If ‘true or false’ are given values of ‘1 and 0’, fuzzy

logic allows grades of characterization assigned to each

object ranging between the values of 0 and 1, basically

referred to as ‘degrees of truth’ (Zadeh ; Christodoulou
Figure 3 | Architecture of Kohonen’s self-organizing map (adapted from Bowden et al.

2005).
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& Deligianni ). One of the most popular neuro-fuzzy

methods is the Adaptive Network-based Fuzzy Inference

System (ANFIS) (Rani & Moreira ).
APPLICATION OF ANNS IN THE DRINKING WATER
SECTOR

Since the late 1980s into the 1990s, ANNs have been

applied in drinking water distribution system management

to predict pipe pressure/leakage (Bargiela & Hainsworth

; Vairavamoorthy & Lumbers ), scheduling of boos-

ter disinfection (Boccelli et al. ) and coagulation/

flocculation (Zhang & Stanley ). During the early 21st

century ANNs became more popular and were applied to

various applications such as membrane filtration (Cabassud

et al. ), predicting disinfection residuals (Gibbs et al.

; Legube et al. ), chemical dosing (Valentin &

Denœux ) and disinfection by-products (DBPs) (Milot

et al. ).

However, during the period from 2006–2017, the appli-

cation of ANNs in the drinking water sector has increased

about four times compared to the previous decade.

Researchers applied ANNs in fields such as the prediction

of water quality parameters, municipal water production/

consumption, contamination events and operational costs.

Some of the studies from 2006–2017 are summarized in

Table 1.
PIPES/INFRASTRUCTURE

As seen in Table 1, the most popular area of interest was the

prediction of pipes and infrastructure problems at water

purification facilities. Several authors used ANNs to predict

pipe leakages (Table 1). Pressure in a water distribution net-

work may play a role in aggravating leakage (Makaya &

Hensel ). This parameter (pressure) can be measured

by sensors, but sensors cannot be placed at every node

which means leaks are not always detected (Ridolfi et al.

). Measurements and data analysis of sensor monitoring

as well as other leakage detection methods may be time and

cost consuming (Wachla et al. ). Therefore, ANNs could

be used to predict pipe pressure, which may reduce water
om http://iwaponline.com/ws/article-pdf/18/6/1869/1107828/ws018061869.pdf
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leakage. Mounce & Machell (); Nazif et al. ();

Ridolfi et al. () and Makaya & Hensel () used

MLP neural networks to detect leakages, whereas Ho

et al. () used RBF and Wachla et al. () used

ANFIS (Table 1). Results of these studies indicated that

ANNs were successfully used to detect pipe leakages.

The study by Nazif et al. () concluded that imple-

menting the ANN model to optimize tank water levels can

reduce leakage annually by 30%. Ridolfi et al. () used

ANNs to simulate water pressure at every node in the distri-

bution system. The model is useful to determine which

pressure monitoring sensors can be omitted from the distri-

bution system without any loss of information. A study by

Ho et al. () included earthquake data as a major input

parameter to predict pipe breakage events and pipeline leak-

age problems (Table 1). LuoDong Township in Taiwan is

frequently affected by earthquakes and was therefore

chosen as the study site. It was noted that the inclusion of

earthquake data yielded a higher prediction performance.

The study concluded that the implementation of the model

will not only address leakage problems, but also the labour

requirement and costs involved in pipe replacement could

be reduced.

Pipe failure may lead to financial loss due to repairs and

maintenance being carried out (Jafar et al. ). Traditional

statistical methods have been used to determine pipe fail-

ures, but the main disadvantage of these methods are that

they do not usually take all the parameters that may have

an influence on pipe failure into account (Tabesh et al.

). To overcome this challenge, Tabesh et al. ();

Christodoulou & Deligianni (); Jafar et al. () and

Al-Barqawi & Zayed () used ANNs to predict pipe fail-

ures (Table 1). Tabesh et al. () used MLP and ANFIS

neural networks, whereas Christodoulou & Deligianni

() used a neuro-fuzzy network and Jafar et al. ()

and Al-Barqawi & Zayed () used BPNNs. In all these

studies, ANNs were successfully applied to predict pipe fail-

ures, which may reduce financial losses. Tabesh et al. ()

also concluded that even though both the MLP and ANFIS

models were able to predict pipe failures successfully, the

MLP model slightly outperformed the ANFIS model.

Christodoulou & Deligianni () not only used pipe par-

ameters as input variables, but also included traffic

parameters as well (Table 1). This was due to the study



Table 1 | Summary of applications of ANNs in the drinking water sector (2006–2017)

Authors ANN/Model type Predict/Model Input variables Study area

Pipes/infrastructure Mounce & Machell
()

MLP Detection of burst pipes Flow, pressure United Kingdom

Martínez et al.
()

Feed-forward Operational control settings Pump and valve settings, storage tank water
level & demands of district metering areas

Spain

Rao & Alvarruiz
()

Feed-forward Operational control settings Pump settings, valve settings, demands for the
various district-metering areas, storage tank
water levels

–

Rao & Salomons
()

Feed-forward Operational control settings Pumping power, pressures, flows, costs,
penalties

–

Salomons et al.
()

Feed-forward Operational control settings Pumping status, valve settings, storage levels &
demands of district metering areas

Israel

Al-Barqawi & Zayed
()

BPNN Performance of municipal
water mains

Pipe length, size, age, type of material, depth,
slope & type of sewer

Canada

Tabesh et al. () MLP & ANFIS Pipe failure and mechanical
reliability

Pipe length, diameter, age, installation depth &
hydraulic pressure

Iran

Christodoulou &
Deligianni ()

Neuro-fuzzy Performance of pipes and
failure analysis

Pipe parameters: previous breaks, length,
materials & diameter
Traffic parameters: traffic load, pipe’s
proximity to a highway, underground railway
& roadway or block intersection

New York City
(USA) &
Limassol
(Cyprus)

Ho et al. () RBF Pipeline replacement and
leakage

Pipe diameter, material & seismic factor
(earthquakes)

China

Jafar et al. () BPNN Model the failure of the pipes Historical failure, hydraulic pressure,
characteristics, location of pipes & soil type

France

Nazif et al. () MLP Pipe pressure Elevation of nodes, storage tank levels &
demand at each node

Iran

Farokhzad et al.
()

MLP Faults in centrifugal water
pump

Mean, standard deviation, sample variance,
kurtosis, skewness, root mean square, crest
factor, slippage & fourth, fifth and sixth
central moment

Iran

Ridolfi et al. () Three layered
feed-forward
(MLP)

Pressure distribution Water pressure Italy

Makaya & Hensel
()

MLP Flow dynamics to detect
leakage

Flow logging data Zimbabwe

Wachla et al. () ANFIS Leakage detection Water flow rates Poland
Kamiński Kamiński
& Mizerski ()

MLP Tool for renovation decisions
in water supply

Pipe diameter, material, age, failure rate, forces
affecting the pipeline

Poland

Coagulation/
flocculation
dosage

Wu & Lo () MLP PAC Turbidity, temperature, colour, pH & coagulant
dosage

Taiwan

Gholikandi et al.
()

BPNN PAC Influent turbidity, poly aluminium chloride
(PAC) dosage & coagulant types

Iran
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Table 1 | continued

Authors ANN/Model type Predict/Model Input variables Study area

Heddam et al. () RBF, GRNN Aluminium sulphate Turbidity, EC, pH, temperature, DO &
ultraviolet absorption

Algeria

Dharman et al.
()

Feed-forward PAC Plant flow, raw water alkalinity, TOC, pH, total
hardness, turbidity, iron, fluorides, hardness
(calcium), temperature, polymer FeCl2, flow at
lock 10, pH adjustment, disinfectant (pre
ammonia) & coagulant polymers

Kentucky, USA

Heddam et al. () ANFIS Aluminium sulphate Turbidity, EC, pH, DO, temperature &
ultraviolet absorption

Algeria

Naidoo & van der
Walt ()

Feed-forward Polymeric coagulant Turbidity, pH, alkalinity & colour South Africa

León-Luque et al.
()

Not mentioned
in article

Aluminium sulphate Turbidity, pH, EC, temperature, alkalinity &
colour

Colombia

Filtration efficacy Chen & Kim () RBF, BPNN Membrane filtration: predict
permeate flux decline

Particle size, solution pH, transmembrane
pressure, elapsed time & ionic strength

Hawaii

Curcio et al. () Feed-forward Membrane filtration: model
permeate flux decay

Operating time, sampling time & inlet flow rate Italy

Griffiths & Andrews
()

MLP Granular media filtration:
predict post-filtration
particle counts and settled
water turbidity

Temperature, pH, filter flow rate, filter head
loss, filter run time, settled water turbidity &
pre-chlorination dosage

Canada

Kabsch-Korbutowicz
& Kutylowska
()

MLP Membrane filtration: predict
turbidity retention
coefficient during
ultrafiltration

Feed water turbidity, turbidity in the tank, pH,
temperature in the tank, transmembrane
pressure & permeate flux

Germany

Tashaouie et al.
()

MLP Performance of pressure filters Turbidity, filtration rate & pressure Iran

Madaeni et al. () MLP Performance of RO plant Time, conductivity, transmembrane pressure &
flow rate

Iran

Corbatón-Báguena
et al. ()

Feed-forward Membrane filtration: permeate
flux decline

Transmembrane pressure, cross-flow velocity,
operating time, flux normalization & fouling
indicator

Spain

Municipal water
demand

Adamowski () MLP Daily water demand Water demand, temperature, rainfall data Canada
Firat et al. () GRNN, RBF,

Feed-forward
Monthly water use Average monthly water bill, population, number

of households, gross national product,
temperature, rainfall, humidity & inflation
rate

Turkey

Yurdusev & Firat
()

ANFIS Monthly water use Average monthly water bill, population, number
of households, gross national product,
temperature, rainfall, humidity & inflation
rate

Turkey

Adamowski &
Karapataki ()

MLP Weekly water demand Water demand, temperature, rainfall data Cyprus
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Firat et al. () GRNN, CCNN,
Feed-forward

Monthly water consumption
time series

Historical water consumption data Turkey

Ajbar & Ali () MLP Monthly & annual water
demand

City population, housing density, personal
income, maximum monthly temperature &
number of monthly visitors

Saudi Arabia

Disinfection
residuals

Bowden et al. () GRNN Residual chlorine Flow, turbidity, pH, temperature & chlorine Australia
Gibbs et al. () MLP, GRNN &

SOM
Residual chlorine Water temperature, flow, chlorine

concentration, dissolved organic carbon
(DOC), ultraviolet absorbance (UV254) & time
of measurement

Australia

May et al. () GRNN Residual chlorine Distribution plant 1: Chlorine at different nodes,
tank level, pump flow rate & pipe flow rate
Distribution plant 2: Free chlorine, pH,
turbidity, tank level, outlet flow &
temperature

Australia

Soyupak et al. () MLP Residual chlorine pH, EC, turbidity, water flow rates, temperature
& free residual chlorine

Turkey

Wu et al. () GRNN Residual chlorine and free
ammonia levels

Chlorine & free ammonia Australia

Cordoba et al. () MLP Residual chlorine Temperature, pH, turbidity, flow, initial chlorine
& free chlorine

Czech Republic

Water quality Mustonen et al.
()

SOM Water quality changes Particle measurement & EC Finland

Vicente et al. () MLP Nitrate, manganese, sodium
and potassium

pH & conductivity Portugal

Juntunen et al. () SOM Various physico-chemical
parameters

Well water level & flow, lake flow, lake surface
level, total inflow, solvent water, lime feed,
KMnO4 dose, Al dose, CO2 feed, temperature
& flow
Raw water: turbidity, pH, alkalinity, EC,
COD, iron, manganese & aluminium
Treated water: pH, alkalinity, EC, free
chlorine, COD, aluminium, iron, manganese
& calcium

Finland

Rak () MLP Turbidity Raw water turbidity, water flow, water retention
level, daily rainfall & reservoir temperature

Poland

Gaya et al. () Feed-forward Turbidity Influent parameters: Free CO2, calcium,
suspended solids, hardness, chloride,
conductivity, TDS, pH, turbidity

Nigeria

DBPs Kulkarni & Chellam
()

BPNN THM, haloacetic acids (HAA),
total organic halides (TOX)

UV254, contact time, temperature, pH, TOC,
bromium & chlorine dose

USA

Ye et al. () BPNN THM, HAA Residence time, water temperature, pH, UV254,
TOC, bromium concentration & residual free
chlorine

China

(continued)
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Table 1 | continued

Authors ANN/Model type Predict/Model Input variables Study area

Singh & Gupta
()

Feed-forward,
RBF

THM pH, temperature, contact time, Br concentration
& dissolved organic carbon normalized
chlorine dose (Cl2/DOC)

India

Organic matter
removal

Bieroza et al. () SOM, BPNN – Organic matter fluorescence data United Kingdom
Bieroza et al. () SOM, BPNN – Organic matter fluorescence data United Kingdom

Contamination event Perelman et al.
()

BPNN – EC, pH, temperature, turbidity, total chlorine &
TOC

USA (CANARY
database)

Arad et al. () BPNN – EC, pH, temperature, turbidity, total chlorine &
TOC

Israel/USA
(CANARY
database)

Organic & inorganic
pollutants

Cauchi et al. () Feed-forward Anthracene, naphthalene,
phenanthrene, cadmium,
lead & copper

Anthracene, phenanthrene, naphthalene,
cadmium, lead & copper

United Kingdom

Residual aluminium Tomperi et al. () MLP – Raw water temperature, colour, pH, potassium
permanganate (KMnO4) & Poly-Aluminium
Chloride/Potassium permanganate ratio
(PAC/KMnO4)

Finland

Cost of treatment
plant

Marzouk & Elkadi
()

MLP Construction cost Soil type, clarifier type & land property Egypt

Performance
efficiency of
treatment plant

Saha et al. () Not mentioned
in article

Most important parameter of a
water treatment plant

Amount of intake water, time of treatment,
discharge rate, amount of output water,
efficiency of clariflocculator, filter bed,
chlorination unit & channel efficiency

India

ANFIS: Adaptive Network-based Fuzzy Inference System; BPNN: Back Propagation Neural Network; CCNN: Cascade Correlation Neural Network; DBP: Disinfection By-Product; GRNN: General Regression Neural Network; MLP:

Multi-layer Perceptron; RBF: Radial Basis Function; RO: Reverse Osmosis; SOM: Self-organizing Map; THM: Trihalomethane.
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areas being subjected to heavy traffic. The use of the neuro-

fuzzy network made it possible for the authors to establish a

repair-or-replace rule and to determine to which areas pri-

ority should be given. Inspection of existing water mains is

costly and time-consuming. Therefore, Al-Barqawi &

Zayed () developed their model into a user friendly,

web-based condition rating tool which will benefit munici-

pal engineers, consultants and contractors.

Martínez et al. () and Salomons et al. () used

ANNs to optimize operational control settings (Table 1).

These two studies formed part of a Potable Water Distri-

bution Management (POWADIMA) research project.

Previous studies by Rao & Alvarruiz () and Rao &

Salomons () indicated that it was possible to form a

near-optimal control process for a small, hypothetical water

distribution network by using ANNs (Table 1). The next

step was to apply the methodology from that study to a real

network. Hence, the first of the two case studies was per-

formed by Salomons et al. () and included data from

the Haifa-A distribution network located on Mount Carmel

in Israel (Table 1). The second case study was performed

byMartínez et al. () and included the Valencia water dis-

tribution network in Spain (Table 1). Haifa-A is smaller than

the Valencia distribution network and due to its geographic

convenience and relationship with the Municipal Depart-

ment of Water, Sewage and Drainage, it was chosen to be

the first of the two case studies. Results of both studies indi-

cated that ANNs were useful tools to optimize operational

control settings, which could reduce annual operating costs

by around 25% for Haifa-A and 17% for Valencia.

Centrifugal pumps play a significant role in the pro-

duction process and early detection of faults may help to

prevent system shutdowns, human fatalities and material

damage (Farokhzad et al. ). Vibration signals are often

used in fault diagnosis systems of rotating machinery. How-

ever, human expertise to convert vibration data into

maintenance information is sometimes unavailable

(Farokhzad et al. ). Therefore, Farokhzad et al. ()

applied a MLP network to predict faults in centrifugal

water pumps by using vibration condition monitoring. The

study concluded that the ANN was able to predict faults,

based on vibration differences, with 100% accuracy.

Kamiński et al. () used a feed-forward MLP network

as a decision making tool for renovation needs of a water
://iwaponline.com/ws/article-pdf/18/6/1869/1107828/ws018061869.pdf
supply system in Poland. Failure of distribution pipes

contributes to half of all failures in a water supply system

(Kamiński et al. ). Therefore, to avoid breakdowns, the

pipes need to be kept in good condition. The study indicated

that, should expert human advice be absent, artificial neural

networks could be successfully implemented to aid in the

formation of renovation plans. This will ensure that the

water purification plant is maintained and can operate

efficiently.
COAGULATION/FLOCCULATION DOSAGE

The application of ANNs in the area of coagulation manage-

ment during water purification has increased. The required

coagulation dosage is usually determined by using tra-

ditional jar tests. However, jar tests can be time

consuming and water samples have to be taken regularly,

relying on manual intervention. If the quality of the raw

water changes, operators have to perform a new jar test

(Lamrini et al. ). In earlier studies, aluminium sulphate

was the main coagulant for which the dosage was predicted,

but over the past decade, poly aluminium chloride (PAC)

has also proven to be popular (Table 1). Feed-forward net-

works remained the ANN of choice in these studies, but

other ANNs were also explored. Heddam et al. () com-

pared RBF and GRNN for predicting aluminium sulphate

dosing at a drinking water treatment plant in Boudouaou,

Algeria. Results indicated that the GRNN consistently out-

performed the RBF network. The study concluded that

GRNN is an effective tool for modelling coagulant dosage

and can be a timesaving option when compared to the

usual jar tests.

ANNs have the advantage of being efficient in adapting

and learning, but have the negative aspect of the ‘black box’.

Fuzzy logic, on the other hand, is not efficient in learning,

but has the advantage of approximate reasoning (Heddam

et al. ). ANFIS combines the advantages of these two

methods making it a very efficient modelling tool. For this

reason, Heddam et al. () performed a study where

aluminium sulphate was predicted, but they used ANFIS

as the modelling tool. The same water treatment plant and

input variables were used as in the 2011 study (Heddam

et al. ) (Table 1). It was found that ANFIS was able to
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predict the coagulant dosage successfully and the authors

suggested that ANFIS might also be used instead of jar

tests due to its quick responsive tools, low cost and applica-

bility in a real-time process.

Wu & Lo () and Dharman et al. () used feed-for-

ward networks to predict optimal PAC dosage, whereas

Gholikandi et al. () used a BPNN (Table 1). Results of

the studies indicated that the various ANNs were able to

predict PAC dosage levels accurately. Wu & Lo () also

concluded that the prediction model is useful when infor-

mation on influent water quality is not provided. Dharman

et al. () noted that the ANN model outperformed the

multiple linear regression (MLR) model and provides a

quicker response to changing influent data. Therefore,

time-consuming jar tests should be used only to crosscheck

the validity of ANN predictions during periodic re-training

of the model.
FILTRATION EFFICACY

During the early 21st century, ANNs were used to predict

the efficacy of membrane filtration in water purification

facilities. Over the past decade, studies in this area contin-

ued, but the performance of granular media filtration and

pressure filters have also been included (Table 1). Feed-

forward networks proved to be the most popular ANN to

predict membrane fouling (Table 1). Membrane fouling

may lead to increased energy, operational and maintenance

costs (Gao et al. ). Therefore, Curcio et al. () and

Corbatón-Báguena et al. () used feed-forward networks

to predict permeate flux decay which proved to be success-

ful. Chen & Kim (), however, applied RBF and BPNN

models. In their study, a comparison was made between

these two ANNs and between the ANNs and a multiple

regression method. Results indicated that the RBF neural

network outperformed the BPNN and multiple regression

models and was able to predict permeate flux with a limited

number of training points.

In the studies by Griffiths & Andrews () and

Tashaouie et al. (), both used MLP to determine the per-

formance of granular media filtration and pressure filtration,

respectively (Table 1). Even though the type of filters used

varied, results of both studies indicated that ANNs were
om http://iwaponline.com/ws/article-pdf/18/6/1869/1107828/ws018061869.pdf
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able to successfully predict the efficacy of the filters. The

ANN models established by Griffiths & Andrews (),

were implemented into an online optimization application

and installed at the Elgin Area water purification facility in

Canada to monitor and optimize filtration conditions. In

the study by Kabsch-Korbutowicz & Kutylowska () a

MLP was used to determine the turbidity retention coeffi-

cient after an integrated coagulation/ultrafiltration process

(Table 1). Results indicated that the ANNwas able to predict

the turbidity retention coefficient successfully and that trans-

membrane pressure played a major role in the prediction

model. The authors suggested that the created model can

be used for forecasting quality parameters of permeate in

hybrid processes, but the conditions of the membrane pro-

cesses and input variables should be similar.

The operating conditions of RO are very important to

ensure efficient performance of other processes such as

membrane filtration (Madaeni et al. ). Madaeni &

et al. () used a MLP network to determine the perform-

ance of a RO plant by predicting process performance

degradation (Table 1). The study concluded that the ANN

was able to accurately predict long-term performance degra-

dation, which is useful for RO process control. Determining

the efficacy of filtration is important, because membrane

fouling or ineffective filtration may lead to deterioration in

the produced water quality (Chen & Kim ; Griffiths &

Andrews ).
MUNICIPAL WATER DEMAND

One of the areas where the application of ANNs has

increased is the prediction of municipal water demand.

Globally, source water has become stressed due to factors

such as climate change, population growth and increased

water consumption (Adamowski & Karapataki ). For

planning and management of water resources, it is impor-

tant to know what the future needs for drinking water may

be (Ajbar & Ali ). Various authors have used ANNs to

predict short- and long-term water demands (Table 1).

Adamowski () used a MLP network to predict daily

water demand in the Ottawa West Center pressure zone in

Canada. Summer water demand levels in this region

indicated an increase from 67.8 ML/day in 1993 to
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109.3 ML/day in 2002, which was an indication of the varia-

bility in the water demand. For this reason, and the fact that

research into daily water prediction was limited, the authors

were motivated to use an ANN to develop a prediction

model. Results indicated that the ANN was able to predict

daily water demand and outperformed the MLR model.

The study also concluded that the daily water demand corre-

lated better with rainfall occurrence rather than rainfall

levels. The latter statement was later challenged by Ada-

mowski & Karapataki (). Their challenge was based

on a study by Bougadis et al. () which arrived at a differ-

ent conclusion. Adamowski & Karapataki () compared

different MLP networks with a MLR model to predict

weekly water demand for two regions in Cyprus (Table 1).

Results of the study concurred with those of Adamowski

().

Firat and colleagues applied various ANN models for

the prediction of monthly water demand during 2009 and

2010 for the metropolitan area of Izmir, Turkey (Table 1).

In the study by Firat et al. (), GRNN, RBF and feed-for-

ward neural networks were compared. This study was

followed by a study by Yurdusev & Firat () where simi-

lar input variables were used, but the ANFIS network was

applied (Table 1). The studies concluded that the GRNN

and ANFIS model with three input variables (monthly

water bill, population, monthly average temperature) gave

the best results for forecasting monthly water consumption.

From these studies, Firat et al. () identified the need to

compare a GRNN, a Cascade Correlation Neural Network

(CCNN) and feed-forward neural networks for modelling

monthly water consumption time series (Table 1). Various

combinations of historical monthly water consumption

values were used as input data. Results indicated that the

CCNN outperformed the other models and was able to suc-

cessfully forecast monthly water consumption time series.

More recently, Ajbar & Ali () predicted monthly and

annual water demand for Mecca city, Saudi Arabia

(Table 1). Saudi Arabia is an arid country, which depends

on costly desalination plants to satisfy water demands.

With a large number of tourists visiting Mecca city every

year and a lack of effective water management policies,

the authors saw the importance to predict the future water

demand. The MLP model was able to predict monthly and

annual water demands successfully. This may be a useful
://iwaponline.com/ws/article-pdf/18/6/1869/1107828/ws018061869.pdf
tool for optimal operation of urban water systems. However,

the authors stated that municipal data might be influenced

by unforeseen leaks, changing policies and social habits.
DISINFECTION RESIDUALS

Applications of ANNs to determine residual chlorine levels

have also increased during the past decade, especially in

Australia (Table 1). In many Australian studies, the GRNN

was the preferred ANN. Bowden et al. () used a

GRNN to forecast chlorine residuals in the Myponga distri-

bution system in South Australia. Results indicated that the

GRNN model was able to forecast chlorine levels very accu-

rately for up to 72 hours in advance. Their study also

concluded that the GRNN outperforms the MLR model.

Based on these results, May et al. () and Wu et al.

() used GRNNs in their studies as well (Table 1). Even

though the main focus of the study by May et al. ()

was the improvement of the methodology in developing

ANN models, the authors also found the GRNN to be suc-

cessful in predicting residual chlorine levels.

In the study of Gibbs et al. (), a comparison

between a MLP, a GRNN and a SOM was made for the pre-

diction of residual chlorine levels in the Hope Valley

distribution system, South Australia. Results of this study,

however, found the MLP model to consistently outperform

the other models. Soyupak et al. () and Cordoba et al.

() also used MLPs in their studies (Table 1) and found

that they was able to predict residual chlorine levels success-

fully, but Cordoba et al. () concluded that the model

from their study can only be used to predict chlorine

decay for that specific study area.

Some distribution systems use chloramines as a disinfec-

tant, which may cause free ammonia levels in the water.

Nitrifying bacteria can use the free ammonia as a nutrient

source which may cause nitrate levels in the water to

increase and have various health effects in humans (Wu

et al. ). Therefore, Wu et al. () used a GRNN not

only to predict residual chlorine levels, but free ammonia

levels as well (Table 1). Results indicated that the GRNN

was able to predict chlorine levels, but due to noisy and inac-

curate ammonia data, the model performed poorly for the

prediction of free ammonia. The authors suggested accurate
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free ammonia analysers are required to obtain accurate data

for the development of a successful ANN model.
WATER QUALITY

Over the past decade, interest in the prediction of water

quality parameters has increased. Online sensors are able

to measure various water quality parameters continuously.

However, this means large amounts of data with different

time measurements are accumulated which makes pinpoint-

ing abrupt changes in water quality challenging (Mustonen

et al. ). Therefore, Mustonen et al. () used a SOM

to evaluate water quality changes of online data due to bio-

film detaching in a pilot drinking water distribution system

(Table 1). Results indicated the SOM was able to separate

sudden changes in the data from normal data. The authors

suggested their research could be used to develop alert sys-

tems or prediction models for controlling water quality.

Data obtained during a water treatment process may be

complex due to the non-linear relationships of all the vari-

ables (Juntunen et al. ). Hence, Juntunen et al. ()

also used a SOM to model water quality in a treatment pro-

cess (Table 1). The study concluded that the SOM was able

to comprehensively indicate important characteristics of

large data sets. This can be useful to determine the most

essential states of water treatment systems, to predict the

performance of the process and to use it as a graphical moni-

toring tool (Juntunen et al. ). In the study by Vicente

et al. (), the authors used a MLP network to predict

nitrate, manganese, sodium and potassium (measured less

frequently) using only pH and conductivity (measured

more frequently) as input variables (Table 1). Results indi-

cated that the MLP model successfully predicted the four

parameters with conductivity being the most important

input variable.

Turbidity is one of the basic parameters for assessing

water quality. During rainfall seasons or spring thawing,

water levels may rise and increase turbidity levels. The pre-

diction of turbidity allows operators to optimize treatment

methods in advance. Rak () and Gaya et al. () used

neural networks to predict turbidity in a treatment plant

(Table 1). Rak () used a MLP to predict turbidity

during the treatment process. Results of the study indicated
om http://iwaponline.com/ws/article-pdf/18/6/1869/1107828/ws018061869.pdf
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that the ANN was able to predict turbidity levels success-

fully. The study also concluded that the model could be

useful to predict other parameters, such as pH and colour.

Gaya et al. () used a Hammerstein-Weiner model and

a neural network to predict turbidity in a water treatment

plant. The study concluded that the feed-forward neural net-

work outperformed the Hammerstein-Weiner model. The

neural network was able to predict turbidity accurately

and had a Mean Absolute Percent Error (MAPE) of

12.82%, whereas the Hammerstein-Weiner model had a

MAPE of �45.17%. Even though both these studies pre-

dicted turbidity, different input parameters were used

(Table 1).
DISINFECTION BY-PRODUCTS

DBPs may form during the disinfection process and may

pose a health risk to consumers. In the studies by Kulkarni

& Chellam () and Ye et al. (), BPNNs were used to

predict various DBPs (Table 1). These studies had similar

input variables and results for both studies indicated that

ANNs were able to predict DBPs successfully. In the study

of Singh & Gupta (), however, two different ANNs

were compared with support vector machine (SVM) and

gene expression programming (GEP) models to predict

THMs (Table 1). Even though all the models were able to

predict THMs, the study concluded that the SVM slightly

outperformed the ANN and GEP models. It was also

found that pH followed by contact time had the highest

effect on THM formation. Nevertheless, ANNs were useful

tools to predict DBP levels and may assist drinking water

facilities during design and operation decisions to meet the

required DBP standards (Kulkarni & Chellam ).
ORGANIC MATTER REMOVAL

Even though research into the removal of DBPs has been

carried out, another contributing factor to the formation of

DBPs is organic matter. This is due to chlorine reacting

with organic matter present in the water which could lead

to the formation of THMs (Bieroza et al. ). Usually

organic matter is removed during treatment processes such
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as coagulation, flocculation, clarification, filtration and gran-

ular activated carbon processes. However, these processes

may sometimes only reduce the level of organic matter.

Methods for quantification of organic matter are laborious

(Bieroza et al. ). Therefore, Bieroza et al. (; )

used ANNs to predict the levels of organic matter removal

by using fluorescence data (Table 1).

The study during 2011 provided the first insight for using

different data mining techniques, where advanced multiway

analysis (parallel factor analysis (PARAFAC), principal com-

ponent analysis (PCA) and partial least squares (PLS)) and

ANN approaches (BPNN and SOM) were compared

(Bieroza et al. ). Results indicated little difference

between advanced and conventional peak-picking methods.

In a follow up study during 2012, the authors used the same

data, but added the stepwise regression (SR) calibration

algorithm (Bieroza et al. ). Results were similar than

the previous study, indicating that PLS and BPNN models

are both useful to predict organic matter removal. However,

the study also indicated that, unlike the peak-picking

methods, the SOM model enables advanced interpretation

of fluorescence data.
CONTAMINATION EVENTS

ANNs have also been applied for the prediction of contami-

nation events. Perelman et al. () applied a BPNN

network to predict possible contaminants in a water distri-

bution system, based on online data (Table 1). An event

detection algorithm using Bayesian analysis was established

to detect abnormal behaviour of water quality parameters

when exceeding a fixed threshold value. The algorithm

was able to numerically and graphically indicate the possi-

bility of a quality fault based on single and multiple

measured water quality time series. The authors, however,

stated that the model’s performance needed improvement

and a dynamic threshold method should be analysed. Arad

et al. () aimed to improve the study by Perelman and col-

leagues. Even though the same type of ANN and input

variables were used (Table 1), Arad et al. () included

online and offline data and implemented the dynamic

threshold method by utilizing a genetic algorithm (GA),

whereafter Bayesian analysis was used to detect
://iwaponline.com/ws/article-pdf/18/6/1869/1107828/ws018061869.pdf
contamination event probability. The study concluded that

with appropriate preparation, the method may be

implemented at any water distribution system and may

also provide statistical and visual indications of contaminant

events. It was also noted that the dynamic threshold method

was superior to the fixed threshold method.
ORGANIC AND INORGANIC POLLUTANTS

In the study by Cauchi et al. (), three polynuclear aro-

matic hydrocarbons and three heavy metals were

quantified and predicted using a feed-forward neural net-

work (Table 1). These parameters were selected due to

their use in industrial processes and correlation with indus-

trial sites. Their presence in water is of great concern as they

have various health effects (Cauchi et al. ). When a water

sample is measured with an analytical instrument, it is poss-

ible for pollutants with similar properties to have

overlapping peaks, which makes it difficult to distinguish

between them. To overcome this problem, Cauchi and col-

leagues applied a feed-forward ANN. Results indicated

that the ANN was able to accurately quantify and predict

these pollutants simultaneously.
RESIDUAL ALUMINIUM, COST AND PERFORMANCE
EFFICIENCY OF A WATER TREATMENT PLANT

MLP networks have also been applied to predict residual

aluminium levels, to determine the construction cost as

well as the performance efficiency of water treatment

plants (Table 1). Water treatment plants can use aluminium

salts as a coagulation chemical. High levels of residual alu-

minium may have several health effects (World Health

Organization ). Tomperi et al. () compared MLR

and MLP models for the prediction of residual aluminium

(Table 1). Even though both models were able to predict

residual aluminium levels fairly accurately, the MLR

model outperformed the MLP model. It was also concluded

that raw water temperature, KMnO4 and PAC/KMnO4-ratio

had the highest correlation with residual aluminium. The

authors suggested the models could be used to create an
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early-warning system to give additional information to pro-

cess operators.

With construction of a new water treatment plant, pre-

liminary information on the costs is not always available.

In Egypt, stakeholders often need to estimate construction

costs which leads to high estimation variability (Marzouk

& Elkadi ). Therefore, Marzouk & Elkadi () used

a MLP network to model construction costs (Table 1). Var-

ious models were developed and the model with the lowest

MAPE was chosen. In this case, the best model had a MAPE

value of 21.18%, which is considered reasonable for cost

estimation. The study concluded that the ANN was able to

successfully predict the cost estimation, which may reduce

the resources and time spent on the estimation process.

The authors also suggested that detailed estimates could be

compared by using this model as a benchmark.

Poor water quality and water shortages are two major

challenges that India is continually facing. The optimization

of water treatment processes and the prediction of water

quality plays an important role in ensuring good quality

water is supplied to consumers (Saha et al. ). Therefore,

Saha et al. () used a Non-structural Fuzzy Decision Sup-

port System (NSFDSS) as well as a neural network to

determine the performance efficiency of a water treatment

plant (Table 1). A NSFDSS is a multi-criteria decision

making method (MCDM) which determines the compara-

tive weight between parameters. In this study, the aim was

not to compare the NSFDSS with the neural network, but

rather to use the neural network to determine the index

weights by training the model after which the model

output was predicted. Results indicated that the ANN was

able to successfully predict the model output. The study con-

cluded that the efficiency of the clariflocculator was the

most significant parameter.
APPLICATION OF ANNS IN THE WATER SECTOR:
SCENARIO IN SOUTH AFRICA

In South Africa, the application of ANNs in the water sector

is very limited, especially in the drinking water sector.

Studies pertaining to environmental water include the pre-

diction of: streamflow (Ilunga & Stephenson ;

Katambara & Ndiritu ; Kagoda et al. ; Van Vliet
om http://iwaponline.com/ws/article-pdf/18/6/1869/1107828/ws018061869.pdf
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et al. ; Onyari & Ilunga ; Oyebode et al. ); reser-

voir capacity (Adeloye & De Munari ; Adeloye );

rainfall data (Hughes et al. ; Nkuna & Odiyo );

river-runoff (Steynor et al. ); water demand (Msiza

et al. ) and water temperature (Van Vliet et al. ).

Studies relevant to drinking water only include the predic-

tion of chemical dosing which was performed by Naidoo

& van der Walt (). In their study, a feed-forward net-

work was used to determine the chemical dosing in order

to improve budgeting, accuracy and reliability of the distri-

bution plant (Table 1). This was a case study that was

undertaken by the water company, Rand Water, in South

Africa. Results indicated that the ANN was able to correctly

predict the chemical dosing levels for lime, polymer and

chlorine, even during periods where raw water quality

spikes in turbidity, pH, alkalinity and colour levels were

experienced. Limited ANN studies highlight the research

gap regarding the application of ANNs in South African

water purification facilities.
CONCLUSION

The limitations of end product testing are becoming more

evident in the water sector around the world (Okeyo et al.

). Where deterioration in available raw water quality

takes place, it is often difficult to identify which step in the

water purification step is not working up to standard

(Okeyo et al. ). The cost of advanced treatment may be

unaffordable to some water purification facilities (Brookes

et al. ). Modelling and future projections, on the other

hand, may not only help to improve water quality, but may

also help to determine which other treatment options will

be worth the investment (Brookes et al. ). Modelling

techniques are increasingly playing important roles when

it comes to water management decisions (Scholten et al.

; Salami Shahid & Ehteshami ).

This review indicates that ANNs are efficient forecasting

tools in the water sector. From the literature, it was

evident that the most popular neural network was MLP.

However, it was also observed that ANNs were mainly

used as prediction tools or studies were performed in

order to compare or improve modelling techniques. None

of the studies developed these models to be a
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decision-making tool, except Al-Barqawi & Zayed ()

with the development of a web-based condition rating tool,

and Griffiths & Andrews () with the development of a

software package to monitor filtration conditions. It was

also evident that the applications of ANNs in the water

sector of South Africa are limited. With the current drought

as well as pollution, the quality of environmental water in

South Africa is deteriorating. It may thus be to the advan-

tage of drinking water production facilities to use

statistical approaches to ensure that safe drinking water of

good potable quality is produced. In addition, based on

international examples, there are opportunities for employ-

ing ANNs as a tool in decision-making.
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