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ABSTRACT
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This review provides an overview about the history of ANNs and their applications and shortcomings
in the drinking water sector. From the papers reviewed, it was found that ANNs might be useful
modelling tools due to their successful application in areas such as pipes/infrastructure, membrane
filtration, coagulation dosage, disinfection residuals, water quality, etc. The most popular ANNs
applied were feed-forward networks, especially Multi-layer Perceptrons (MLPs). It was also noted
that over the past decade (2006-2016), ANNs have been increasingly applied in the drinking water
sector. This, however, is not the case for South Africa where the application of ANNs in distribution
systems is little to non-existent. Future research should be directed towards the application of ANNs
in South African distribution systems and to develop these models into decision-making tools that
water purification facilities could implement.
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INTRODUCTION

Supplying adequate and safe drinking water to communities
is currently one of the most important challenges that water
purification facilities in developing and developed countries
face (Badejo ef al. 2015; Gray & Vawda 2016). To ensure
treatment processes are efficient, knowledge of certain con-
taminants in the water is very important to ensure they are
correctly removed (Meng ef al. 2015). Most of the water treat-
ment plants use purification technologies developed
decades ago (Trussel 2005). Traditional water purification
methods include flocculation, sedimentation, sand filtration
and chlorination (Rigobello et al. 2013). Even though these
purification methods may be effective, deterioration of
source water quality may require advanced treatment
methods to ensure that the water is effectively purified
(van der Hoek et al. 2014; Ang et al. 2015; Meng et al.
2015). Advanced treatment methods wusually include
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membrane filtration, reverse osmosis (RO), ozonation, acti-
vated carbon and advanced oxidation (van der Hoek ef al.
2014; Meng et al. 2015). However, advanced treatment tech-
nologies are costly (Houtman 2010), which means poor
quality raw water is thus more expensive to treat (Adgar
et al. 2000; Ang et al. 2015).

To ensure safe drinking water is produced, the
implementation of an effective water quality management
program is important, but should not only be compliance
driven. For compliance to water quality standards, such as
those prescribed by the World Health Organization
(WHO), United States Environmental Protection Agency
(EPA) and the South African National Standards (SANS
241:2015), the levels of specific parameters are determined.
Analysing a large number of variables in aquatic systems can
be complex which makes the monitoring of water quality


mailto:carlos.bezuidenhout@nwu.ac.za
https://crossmark.crossref.org/dialog/?doi=10.2166/ws.2018.016&domain=pdf&date_stamp=2018-01-31

1870  G. O'Reilly et al. | ANNSs: applications in the drinking water sector

Water Science & Technology: Water Supply | 18.6 | 2018

challenging (Rankovi€ et al. 2010; Antanasijevic et al. 2013;
Chen & Liu 2014), particularly for small water supply auth-
orities. Typical monthly monitoring of water quality
parameters may also lead to missing values in the data set
(Tabari & Talaee 2015). In areas where pollution episodes
regularly occur, preventative methods, such as automatic
monitoring, is an option (Iglesias ef al. 2014). However, auto-
matic monitoring could also be costly and time consuming,
particularly when the pollution events are sporadic (Iglesias
et al. 2014). Thus, qualitative and quantitative decisions
based on real data are a challenge for environmental engin-
eers monitoring water quality (Lermontov et al. 2009; Tabari
& Talaee 2015). Water quality modelling is thus a valuable
tool to ensure optimum water quality management (Antana-
sijevic et al. 2013; Vieira et al. 2013).

ANNSs are modelling approaches that could be used in
predicting the impacts of deteriorating water quality on
drinking water purification processes. This could then be
used to identify critical parameters as well as steps in the
purification processes to be monitored or to be addressed.
Whenever there are drastic changes in the water quality,
water purification facilities usually rely on past experience
or extra bench-scale testing to resolve the problems (Veera-
paneni et al. 2010). However, ANNSs can be a useful tool for
managing certain aspects of the water treatment operation
(Veerapaneni et al. 2010). This is due to the fact that
ANNSs have the ability to produce predictions in systems
where information on particular interrelationships is
inadequate (Veerapaneni et al. 2010). Hidden relationships
in historical data can be revealed by using ANNs, which
assists in the forecasting of water quality (Najah ef al. 2013).

These approaches (ANNs) are not new to the water
sector where they have been applied as modelling and fore-
casting tools (Wu ef al. 2014). They have found applications
in water engineering, environmental sciences and ecological
sciences since the 1990s (Palani ef al. 2008; Najah et al.
2013). Advantages that ANNs bring to water quality model-
ling include: (i) model building does not require a physics-
based algorithm and this makes the modelling approach
faster and more flexible; (ii) non-linear relationships can
be handled properly and without any effort (Tabari &
Talaee 2015); and (iii) user experiences and knowledge can
be incorporated in construction of a model (Zhang & Stan-
ley 1997). The aim of this review is to give an overview on the
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principles of ANNSs, the application of ANNs in the water
sector, the current scenario with regard to drinking water
and future prospects.

SEARCH APPROACH

Research for this review article was done using six data-
bases: Google Scholar, Science Direct, EbscoHost,
Emerald Insight Journals, SAePublications and Web of
Science. Searches were sorted according to relevance and
only articles relevant to drinking water and distribution sys-
tems were used.

PRINCIPLES OF ANNS

Artificial neural networks are computational techniques that
mimic some operational features of the human brain
(Haykin 2009; Vicente et al. 2012). ANNs are not pro-
grammed like conventional computer programs, but they
have mechanisms which can learn certain data or patterns
(Sarkar & Pandey 2015). Data in ANNs are connected to
each other by weights parallel to synapses (Seth 2015). Train-
ing of the ANN is done by adjusting these connections
through a learning algorithm (Seth 2015). ANN modelling
usually consists of the following steps: data collection, data
analysis and training of the neural network (Antanasijevic
et al. 2013). ANNSs can identify intricate nonlinear relation-
ships between input and output data sets (Antanasijevic
et al. 2013; Najah et al. 2013). There are various types of arti-
ficial neural network available, but the most commonly
used are: Multi-layer Perceptrons (MLPs), Radial Basis
Function (RBF), General Regression Neural Network
(GRNN), Cascade Forward Networks (CFN) and Koho-
nen’s self-organizing maps (SOM) (Farmaki et al. 2013; Wu
et al. 2014).

MLPs are the most commonly used feed-forward neural
networks (Piotrowski et al. 2015; Tabari & Talaee 2015). The
architecture of a typical feed-forward network (Figure 1)
contains an input layer, a hidden layer and an output layer
(Piotrowski et al. 2015; Salami Shahid & Ehteshami 2016).
The neurons in one layer are connected to the next layer,
but the neurons of the same layer are not connected to
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Figure 1 | Architecture of a feed-forward network (adapted from Najah et al. 2013).

each other (Najah et al. 2013). The back-propagation training
algorithm is used most commonly with MLPs (Vicente ef al.
2012). During training of the model, actual and target output
values are compared. By using the back-propagation algor-
ithm, errors resulting from the comparison are propagated
backwards through the network, adjusting the weight
values and the errors are minimized (Abdulkadir et al.
2012). A feed-forward network trained with the back-propa-
gation algorithm can be referred to as a Back Propagation
Neural Network (BPNN) (AL-Allaf 2012). Since the intro-
duction of the feed-forward ANN, research into the
application of ANNs has thrived (Maier & Dandy 2000).

The Radial Basis Function is similar to the MLP neural
network consisting of three layers: an input layer, a hidden
layer (known as the kernel) and an output layer (Hannan
et al. 2010). Just like MLPs, each layer is connected to the
next layer, but with the RBF, the neurons in the hidden
and output layer are interconnected to each other by weights
(Sharma et al. 2003; Farmaki et al. 2010). The GRNN is a
variation of the RBF network (May et al. 2008; Hannan
et al. 2010). Unlike networks using the back-propagation
algorithm, GRNN does not need a repetitive training pro-
cedure (Hannan et al. 2010). It estimates random functions
between input and output neurons directly from the training
data (Hannan et al. 2010).

Cascade Forward Networks (Figure 2) are similar to
feed-forward networks, but each layer is connected to the
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Figure 2 | Architecture of a Cascade Forward Network (adapted from Al-Allaf 2012).
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successive layers by means of a weight connection (Goyal
& Goyal 2011; Al-Allaf 2012). In other words, not only is
layer 1 connected to layer 2 and layer 2 connected to layer
3, but layer 1 is also connected to layer 3 by means of a
weight connection (Goyal & Goyal 2011; Al-Allaf 2012).
The back-propagation algorithm can also be used to
update the weights of the layers (Chayjan 2010; Goyal &
Goyal 2011). The Kohonen self-organizing map (Figure 3)
consists of only an input layer and a Kohonen layer
(Bowden et al. 2005; Farmaki et al. 2013). Each input element
is connected to all the other neurons of the Kohonen layer
(Farmaki et al. 2013). These networks have the unsupervised
ability to learn and organise data without being given associ-
ated output values for the input data, hence the term ‘self-
organizing’ (Mukherjee 1997; Farmaki et al. 2013).

A neuro-fuzzy network is a combination of artificial
neural networks and fuzzy logic (Rani & Moreira 2010).
Fuzzy logic is a representation of knowledge (obtained
from data analysis or expert knowledge) that is based on
reasoning that is approximate rather than predicated logic
(Christodoulou & Deligianni 2010). For example, a set of
objects or a scenario can be characterized by being true or
false. If ‘true or false’ are given values of ‘1 and 0’, fuzzy
logic allows grades of characterization assigned to each
object ranging between the values of 0 and 1, basically
referred to as ‘degrees of truth’ (Zadeh 1965; Christodoulou

Kohonen layer

1 ]

Inputs

Figure 3 | Architecture of Kohonen’s self-organizing map (adapted from Bowden et al.
2005).
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& Deligianni 2010). One of the most popular neuro-fuzzy
methods is the Adaptive Network-based Fuzzy Inference
System (ANFIS) (Rani & Moreira 2010).

APPLICATION OF ANNS IN THE DRINKING WATER
SECTOR

Since the late 1980s into the 1990s, ANNs have been
applied in drinking water distribution system management
to predict pipe pressure/leakage (Bargiela & Hainsworth
1989; Vairavamoorthy & Lumbers 1998), scheduling of boos-
ter disinfection (Boccelli et al. 1998) and coagulation/
flocculation (Zhang & Stanley 1999). During the early 21st
century ANNs became more popular and were applied to
various applications such as membrane filtration (Cabassud
et al. 2002), predicting disinfection residuals (Gibbs et al.
2003; Legube et al. 2004), chemical dosing (Valentin &
Denceux 2001) and disinfection by-products (DBPs) (Milot
et al. 2002).

However, during the period from 2006-2017, the appli-
cation of ANNs in the drinking water sector has increased
about four times compared to the previous decade.
Researchers applied ANNs in fields such as the prediction
of water quality parameters, municipal water production/
consumption, contamination events and operational costs.
Some of the studies from 2006-2017 are summarized in
Table 1.

PIPES/INFRASTRUCTURE

As seen in Table 1, the most popular area of interest was the
prediction of pipes and infrastructure problems at water
purification facilities. Several authors used ANNSs to predict
pipe leakages (Table 1). Pressure in a water distribution net-
work may play a role in aggravating leakage (Makaya &
Hensel 2015). This parameter (pressure) can be measured
by sensors, but sensors cannot be placed at every node
which means leaks are not always detected (Ridolfi et al.
2014). Measurements and data analysis of sensor monitoring
as well as other leakage detection methods may be time and
cost consuming (Wachla et al. 2015). Therefore, ANNs could
be used to predict pipe pressure, which may reduce water
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leakage. Mounce & Machell (2006); Nazif et al. (2010);
Ridolfi et al. (2014) and Makaya & Hensel (2015) used
MLP neural networks to detect leakages, whereas Ho
et al. (2010) used RBF and Wachla et al. (2015) used
ANFIS (Table 1). Results of these studies indicated that
ANNs were successfully used to detect pipe leakages.

The study by Nazif et al. (2010) concluded that imple-
menting the ANN model to optimize tank water levels can
reduce leakage annually by 30%. Ridolfi et al. (2014) used
ANN:s to simulate water pressure at every node in the distri-
bution system. The model is useful to determine which
pressure monitoring sensors can be omitted from the distri-
bution system without any loss of information. A study by
Ho et al. (2010) included earthquake data as a major input
parameter to predict pipe breakage events and pipeline leak-
age problems (Table 1). LuoDong Township in Taiwan is
frequently affected by earthquakes and was therefore
chosen as the study site. It was noted that the inclusion of
earthquake data yielded a higher prediction performance.
The study concluded that the implementation of the model
will not only address leakage problems, but also the labour
requirement and costs involved in pipe replacement could
be reduced.

Pipe failure may lead to financial loss due to repairs and
maintenance being carried out (Jafar et al. 2010). Traditional
statistical methods have been used to determine pipe fail-
ures, but the main disadvantage of these methods are that
they do not usually take all the parameters that may have
an influence on pipe failure into account (Tabesh et al
2009). To overcome this challenge, Tabesh et al. (2009);
Christodoulou & Deligianni (2010); Jafar et al. (2010) and
Al-Barqawi & Zayed (2008) used ANNs to predict pipe fail-
ures (Table 1). Tabesh et al. (2009) used MLP and ANFIS
neural networks, whereas Christodoulou & Deligianni
(2010) used a neuro-fuzzy network and Jafar et al. (2010)
and Al-Barqawi & Zayed (2008) used BPNNSs. In all these
studies, ANNs were successfully applied to predict pipe fail-
ures, which may reduce financial losses. Tabesh ef al. (2009)
also concluded that even though both the MLP and ANFIS
models were able to predict pipe failures successfully, the
MLP model slightly outperformed the ANFIS model.
Christodoulou & Deligianni (2010) not only used pipe par-
ameters as input variables, but also included traffic
parameters as well (Table 1). This was due to the study



Table 1 | Summary of applications of ANNs in the drinking water sector (2006-2017)

Authors

ANN/Model type

Predict/Model

Input variables

Study area
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Pipes/infrastructure =~ Mounce & Machell ~MLP Detection of burst pipes Flow, pressure United Kingdom
(2006)
Martinez et al. Feed-forward Operational control settings Pump and valve settings, storage tank water Spain
(2007) level & demands of district metering areas
Rao & Alvarruiz Feed-forward Operational control settings Pump settings, valve settings, demands for the -
(2007) various district-metering areas, storage tank
water levels
Rao & Salomons Feed-forward Operational control settings Pumping power, pressures, flows, costs, -
(2007) penalties
Salomons et al. Feed-forward Operational control settings Pumping status, valve settings, storage levels & Israel
(2007) demands of district metering areas
Al-Barqawi & Zayed BPNN Performance of municipal Pipe length, size, age, type of material, depth, Canada
(2008) water mains slope & type of sewer
Tabesh ef al. (2009) MLP & ANFIS  Pipe failure and mechanical Pipe length, diameter, age, installation depth &  Iran
reliability hydraulic pressure
Christodoulou & Neuro-fuzzy Performance of pipes and Pipe parameters: previous breaks, length, New York City
Deligianni (2010) failure analysis materials & diameter (USA) &
Traffic parameters: traffic load, pipe’s Limassol
proximity to a highway, underground railway (Cyprus)
& roadway or block intersection
Ho et al. (2010) RBF Pipeline replacement and Pipe diameter, material & seismic factor China
leakage (earthquakes)
Jafar et al. (2010) BPNN Model the failure of the pipes  Historical failure, hydraulic pressure, France
characteristics, location of pipes & soil type
Nazif et al. (2010) MLP Pipe pressure Elevation of nodes, storage tank levels & Iran
demand at each node
Farokhzad et al. MLP Faults in centrifugal water Mean, standard deviation, sample variance, Iran
(2012) pump kurtosis, skewness, root mean square, crest
factor, slippage & fourth, fifth and sixth
central moment
Ridolfi et al. (2014) Three layered Pressure distribution Water pressure Italy
feed-forward
(MLP)
Makaya & Hensel MLP Flow dynamics to detect Flow logging data Zimbabwe
(2015) leakage
Wachla et al. (2015  ANFIS Leakage detection Water flow rates Poland
Kaminski Kaminski MLP Tool for renovation decisions Pipe diameter, material, age, failure rate, forces Poland
& Mizerski (2017) in water supply affecting the pipeline
Coagulation/ Wu & Lo (2010) MLP PAC Turbidity, temperature, colour, pH & coagulant  Taiwan
flocculation dosage
dosage Gholikandi et al. BPNN PAC Influent turbidity, poly aluminium chloride Iran
(2om) (PAC) dosage & coagulant types
(continued)
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Table 1 | continued

Authors

ANN/Model type

Predict/Model

Input variables

study area

Filtration efficacy

Municipal water
demand

Heddam et al. (2011)

Dharman ef al.
(2012)

Heddam et al. (2012)

Naidoo & van der

Walt (2013)

Ledn-Luque et al.

(2016)

Chen & Kim (2006)
Curcio et al. (2006)

Griffiths & Andrews

(20m)

Kabsch-Korbutowicz

& Kutylowska
(201)

Tashaouie ef al.
(2012)

Madaeni ef al. (2015)

Corbatén-Baguena

et al. (2016)

Adamowski (2008)

Firat et al. (2009)

Yurdusev & Firat

(2009)

Adamowski &

Karapataki (2010)

RBF, GRNN

Feed-forward

ANFIS
Feed-forward

Not mentioned
in article

RBF, BPNN
Feed-forward

MLP

MLP

MLP
MLP

Feed-forward

MLP
GRNN, RBF,
Feed-forward

ANFIS

MLP
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Aluminium sulphate

PAC

Aluminium sulphate
Polymeric coagulant

Aluminium sulphate

Membrane filtration: predict
permeate flux decline

Membrane filtration: model
permeate flux decay

Granular media filtration:
predict post-filtration
particle counts and settled
water turbidity

Membrane filtration: predict
turbidity retention
coefficient during
ultrafiltration

Performance of pressure filters

Performance of RO plant

Membrane filtration: permeate

flux decline

Daily water demand
Monthly water use

Monthly water use

Weekly water demand

Turbidity, EC, pH, temperature, DO &
ultraviolet absorption

Plant flow, raw water alkalinity, TOC, pH, total
hardness, turbidity, iron, fluorides, hardness
(calcium), temperature, polymer FeCl,, flow at
lock 10, pH adjustment, disinfectant (pre
ammonia) & coagulant polymers

Turbidity, EC, pH, DO, temperature &
ultraviolet absorption

Turbidity, pH, alkalinity & colour

Turbidity, pH, EC, temperature, alkalinity &
colour

Particle size, solution pH, transmembrane
pressure, elapsed time & ionic strength
Operating time, sampling time & inlet flow rate

Temperature, pH, filter flow rate, filter head
loss, filter run time, settled water turbidity &
pre-chlorination dosage

Feed water turbidity, turbidity in the tank, pH,
temperature in the tank, transmembrane
pressure & permeate flux

Turbidity, filtration rate & pressure

Time, conductivity, transmembrane pressure &
flow rate

Transmembrane pressure, cross-flow velocity,
operating time, flux normalization & fouling
indicator

Water demand, temperature, rainfall data

Average monthly water bill, population, number
of households, gross national product,
temperature, rainfall, humidity & inflation
rate

Average monthly water bill, population, number
of households, gross national product,
temperature, rainfall, humidity & inflation
rate

Water demand, temperature, rainfall data

Algeria

Kentucky, USA

Algeria
South Africa

Colombia

Hawaii
Italy

Canada

Germany

Iran

Iran

Spain

Canada
Turkey

Turkey

Cyprus
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Firat et al. (2010) GRNN, CCNN, Monthly water consumption Historical water consumption data Turkey
Feed-forward time series
Ajbar & Ali (2015) MLP Monthly & annual water City population, housing density, personal Saudi Arabia
demand income, maximum monthly temperature &
number of monthly visitors
Disinfection Bowden et al. (2006) GRNN Residual chlorine Flow, turbidity, pH, temperature & chlorine Australia
residuals Gibbs et al. (2006) MLP, GRNN & Residual chlorine Water temperature, flow, chlorine Australia
SOM concentration, dissolved organic carbon
(DOC), ultraviolet absorbance (UV,s54) & time
of measurement
May et al. (2008) GRNN Residual chlorine Distribution plant 1: Chlorine at different nodes, Australia
tank level, pump flow rate & pipe flow rate
Distribution plant 2: Free chlorine, pH,
turbidity, tank level, outlet flow &
temperature
Soyupak et al. (2or1)  MLP Residual chlorine pH, EC, turbidity, water flow rates, temperature =~ Turkey
& free residual chlorine
Wau et al. (201) GRNN Residual chlorine and free Chlorine & free ammonia Australia
ammonia levels
Cordoba et al. (2014) MLP Residual chlorine Temperature, pH, turbidity, flow, initial chlorine = Czech Republic
& free chlorine
Water quality Mustonen et al. SOM Water quality changes Particle measurement & EC Finland
(2008)
Vicente et al. (2012)  MLP Nitrate, manganese, sodium pH & conductivity Portugal
and potassium
Juntunen et al. (2013) SOM Various physico-chemical Well water level & flow, lake flow, lake surface ~ Finland
parameters level, total inflow, solvent water, lime feed,
KMnO, dose, Al dose, CO, feed, temperature
& flow
Raw water: turbidity, pH, alkalinity, EC,
COD, iron, manganese & aluminium
Treated water: pH, alkalinity, EC, free
chlorine, COD, aluminium, iron, manganese
& calcium
Rak (2013) MLP Turbidity Raw water turbidity, water flow, water retention =~ Poland
level, daily rainfall & reservoir temperature
Gaya et al. (2017) Feed-forward Turbidity Influent parameters: Free CO,, calcium, Nigeria
suspended solids, hardness, chloride,
conductivity, TDS, pH, turbidity
DBPs Kulkarni & Chellam BPNN THM, haloacetic acids (HAA), UVas,, contact time, temperature, pH, TOC, USA
(2010) total organic halides (TOX) bromium & chlorine dose
Ye et al. (2011) BPNN THM, HAA Residence time, water temperature, pH, UVasy4, China
TOC, bromium concentration & residual free
chlorine
(continued)
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Table 1 | continued

Authors

ANN/Model type

Predict/Model

Input variables

Study area

Organic matter
removal

Contamination event

Organic & inorganic
pollutants

Residual aluminium

Cost of treatment
plant

Performance
efficiency of
treatment plant

Singh & Gupta
(2012)

Bieroza et al. (2011)
Bieroza et al. (2012)

Perelman et al.
(2012)
Arad et al. (2013)

Cauchi et al. (2011)

Tomperi et al. (2013)

Marzouk & Elkadi
(2016)

Saha et al. (2017)

Feed-forward,
RBF

SOM, BPNN

SOM, BPNN
BPNN

BPNN

Feed-forward

MLP

MLP

Not mentioned
in article

THM

Anthracene, naphthalene,
phenanthrene, cadmium,
lead & copper

Construction cost

Most important parameter of a
water treatment plant

pH, temperature, contact time, Br concentration
& dissolved organic carbon normalized
chlorine dose (Cl,/DOC)

Organic matter fluorescence data
Organic matter fluorescence data

EC, pH, temperature, turbidity, total chlorine &
TOC

EC, pH, temperature, turbidity, total chlorine &
TOC

Anthracene, phenanthrene, naphthalene,
cadmium, lead & copper

Raw water temperature, colour, pH, potassium
permanganate (KMnO,) & Poly-Aluminium
Chloride/Potassium permanganate ratio
(PAC/KMnOy)

Soil type, clarifier type & land property

Amount of intake water, time of treatment,
discharge rate, amount of output water,
efficiency of clariflocculator, filter bed,
chlorination unit & channel efficiency

India

United Kingdom
United Kingdom

USA (CANARY
database)

Israel/USA
(CANARY
database)

United Kingdom

Finland

Egypt

India

9.8L
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ANFIS: Adaptive Network-based Fuzzy Inference System; BPNN: Back Propagation Neural Network; CCNN: Cascade Correlation Neural Network; DBP: Disinfection By-Product; GRNN: General Regression Neural Network; MLP:

Multi-layer Perceptron; RBF: Radial Basis Function; RO: Reverse Osmosis; SOM: Self-organizing Map; THM: Trihalomethane.
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areas being subjected to heavy traffic. The use of the neuro-
fuzzy network made it possible for the authors to establish a
repair-or-replace rule and to determine to which areas pri-
ority should be given. Inspection of existing water mains is
costly and time-consuming. Therefore, Al-Barqawi &
Zayed (2008) developed their model into a user friendly,
web-based condition rating tool which will benefit munici-
pal engineers, consultants and contractors.

Martinez et al. (2007) and Salomons et al. (2007) used
ANNSs to optimize operational control settings (Table 1).
These two studies formed part of a Potable Water Distri-
bution Management (POWADIMA) research project.
Previous studies by Rao & Alvarruiz (2007) and Rao &
Salomons (2007) indicated that it was possible to form a
near-optimal control process for a small, hypothetical water
distribution network by using ANNs (Table 1). The next
step was to apply the methodology from that study to a real
network. Hence, the first of the two case studies was per-
formed by Salomons et al. (2007) and included data from
the Haifa-A distribution network located on Mount Carmel
in Israel (Table 1). The second case study was performed
by Martinez et al. (2007) and included the Valencia water dis-
tribution network in Spain (Table 1). Haifa-A is smaller than
the Valencia distribution network and due to its geographic
convenience and relationship with the Municipal Depart-
ment of Water, Sewage and Drainage, it was chosen to be
the first of the two case studies. Results of both studies indi-
cated that ANNs were useful tools to optimize operational
control settings, which could reduce annual operating costs
by around 25% for Haifa-A and 17% for Valencia.

Centrifugal pumps play a significant role in the pro-
duction process and early detection of faults may help to
prevent system shutdowns, human fatalities and material
damage (Farokhzad et al. 2012). Vibration signals are often
used in fault diagnosis systems of rotating machinery. How-
ever, human expertise to convert vibration data into
maintenance information is sometimes unavailable
(Farokhzad et al. 2012). Therefore, Farokhzad et al. (2012)
applied a MLP network to predict faults in centrifugal
water pumps by using vibration condition monitoring. The
study concluded that the ANN was able to predict faults,
based on vibration differences, with 100% accuracy.

Kaminski et al. (2017) used a feed-forward MLP network
as a decision making tool for renovation needs of a water
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supply system in Poland. Failure of distribution pipes
contributes to half of all failures in a water supply system
(Kaminski et al. 2017). Therefore, to avoid breakdowns, the
pipes need to be kept in good condition. The study indicated
that, should expert human advice be absent, artificial neural
networks could be successfully implemented to aid in the
formation of renovation plans. This will ensure that the
water purification plant is maintained and can operate
efficiently.

COAGULATION/FLOCCULATION DOSAGE

The application of ANNSs in the area of coagulation manage-
ment during water purification has increased. The required
coagulation dosage is usually determined by using tra-
ditional jar tests. However, jar tests can be time
consuming and water samples have to be taken regularly,
relying on manual intervention. If the quality of the raw
water changes, operators have to perform a new jar test
(Lamrini et al. 2005). In earlier studies, aluminium sulphate
was the main coagulant for which the dosage was predicted,
but over the past decade, poly aluminium chloride (PAC)
has also proven to be popular (Table 1). Feed-forward net-
works remained the ANN of choice in these studies, but
other ANNs were also explored. Heddam ef al. (201) com-
pared RBF and GRNN for predicting aluminium sulphate
dosing at a drinking water treatment plant in Boudouaou,
Algeria. Results indicated that the GRNN consistently out-
performed the RBF network. The study concluded that
GRNN is an effective tool for modelling coagulant dosage
and can be a timesaving option when compared to the
usual jar tests.

ANNSs have the advantage of being efficient in adapting
and learning, but have the negative aspect of the ‘black box’.
Fuzzy logic, on the other hand, is not efficient in learning,
but has the advantage of approximate reasoning (Heddam
et al. 2012). ANFIS combines the advantages of these two
methods making it a very efficient modelling tool. For this
reason, Heddam et al. (2o12) performed a study where
aluminium sulphate was predicted, but they used ANFIS
as the modelling tool. The same water treatment plant and
input variables were used as in the 2011 study (Heddam
et al. 2om) (Table 1). It was found that ANFIS was able to
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predict the coagulant dosage successfully and the authors
suggested that ANFIS might also be used instead of jar
tests due to its quick responsive tools, low cost and applica-
bility in a real-time process.

Wu & Lo (2010) and Dharman et al. (2012) used feed-for-
ward networks to predict optimal PAC dosage, whereas
Gholikandi ef al. (2omr) used a BPNN (Table 1). Results of
the studies indicated that the various ANNs were able to
predict PAC dosage levels accurately. Wu & Lo (2010) also
concluded that the prediction model is useful when infor-
mation on influent water quality is not provided. Dharman
et al. (2012) noted that the ANN model outperformed the
multiple linear regression (MLR) model and provides a
quicker response to changing influent data. Therefore,
time-consuming jar tests should be used only to crosscheck
the validity of ANN predictions during periodic re-training
of the model.

FILTRATION EFFICACY

During the early 21st century, ANNs were used to predict
the efficacy of membrane filtration in water purification
facilities. Over the past decade, studies in this area contin-
ued, but the performance of granular media filtration and
pressure filters have also been included (Table 1). Feed-
forward networks proved to be the most popular ANN to
predict membrane fouling (Table 1). Membrane fouling
may lead to increased energy, operational and maintenance
costs (Gao et al. 20m). Therefore, Curcio et al. (2006) and
Corbatén-Baguena ef al. (2016) used feed-forward networks
to predict permeate flux decay which proved to be success-
ful. Chen & Kim (2006), however, applied RBF and BPNN
models. In their study, a comparison was made between
these two ANNs and between the ANNs and a multiple
regression method. Results indicated that the RBF neural
network outperformed the BPNN and multiple regression
models and was able to predict permeate flux with a limited
number of training points.

In the studies by Griffiths & Andrews (201) and
Tashaouie ef al. (2012), both used MLP to determine the per-
formance of granular media filtration and pressure filtration,
respectively (Table 1). Even though the type of filters used
varied, results of both studies indicated that ANNs were
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able to successfully predict the efficacy of the filters. The
ANN models established by Griffiths & Andrews (2011),
were implemented into an online optimization application
and installed at the Elgin Area water purification facility in
Canada to monitor and optimize filtration conditions. In
the study by Kabsch-Korbutowicz & Kutylowska (2011) a
MLP was used to determine the turbidity retention coeffi-
cient after an integrated coagulation/ultrafiltration process
(Table 1). Results indicated that the ANN was able to predict
the turbidity retention coefficient successfully and that trans-
membrane pressure played a major role in the prediction
model. The authors suggested that the created model can
be used for forecasting quality parameters of permeate in
hybrid processes, but the conditions of the membrane pro-
cesses and input variables should be similar.

The operating conditions of RO are very important to
ensure efficient performance of other processes such as
membrane filtration (Madaeni et al. 2015). Madaeni &
et al. (2015) used a MLP network to determine the perform-
ance of a RO plant by predicting process performance
degradation (Table 1). The study concluded that the ANN
was able to accurately predict long-term performance degra-
dation, which is useful for RO process control. Determining
the efficacy of filtration is important, because membrane
fouling or ineffective filtration may lead to deterioration in
the produced water quality (Chen & Kim 2006; Griffiths &
Andrews 2011).

MUNICIPAL WATER DEMAND

One of the areas where the application of ANNs has
increased is the prediction of municipal water demand.
Globally, source water has become stressed due to factors
such as climate change, population growth and increased
water consumption (Adamowski & Karapataki 2010). For
planning and management of water resources, it is impor-
tant to know what the future needs for drinking water may
be (Ajbar & Ali 2015). Various authors have used ANNs to
predict short- and long-term water demands (Table 1).
Adamowski (2008) used a MLP network to predict daily
water demand in the Ottawa West Center pressure zone in
Canada. Summer water demand levels in this region
indicated an increase from 67.8 ML/day in 1993 to
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109.3 ML/day in 2002, which was an indication of the varia-
bility in the water demand. For this reason, and the fact that
research into daily water prediction was limited, the authors
were motivated to use an ANN to develop a prediction
model. Results indicated that the ANN was able to predict
daily water demand and outperformed the MLR model.
The study also concluded that the daily water demand corre-
lated better with rainfall occurrence rather than rainfall
levels. The latter statement was later challenged by Ada-
mowski & Karapataki (2010). Their challenge was based
on a study by Bougadis ef al. (2005) which arrived at a differ-
ent conclusion. Adamowski & Karapataki (2010) compared
different MLP networks with a MLR model to predict
weekly water demand for two regions in Cyprus (Table 1).
Results of the study concurred with those of Adamowski
(2008).

Firat and colleagues applied various ANN models for
the prediction of monthly water demand during 2009 and
2010 for the metropolitan area of Izmir, Turkey (Table 1).
In the study by Firat et al. (2009), GRNN, RBF and feed-for-
ward neural networks were compared. This study was
followed by a study by Yurdusev & Firat (2009) where simi-
lar input variables were used, but the ANFIS network was
applied (Table 1). The studies concluded that the GRNN
and ANFIS model with three input variables (monthly
water bill, population, monthly average temperature) gave
the best results for forecasting monthly water consumption.
From these studies, Firat et al. (2010) identified the need to
compare a GRNN, a Cascade Correlation Neural Network
(CCNN) and feed-forward neural networks for modelling
monthly water consumption time series (Table 1). Various
combinations of historical monthly water consumption
values were used as input data. Results indicated that the
CCNN outperformed the other models and was able to suc-
cessfully forecast monthly water consumption time series.

More recently, Ajbar & Ali (2015) predicted monthly and
annual water demand for Mecca city, Saudi Arabia
(Table 1). Saudi Arabia is an arid country, which depends
on costly desalination plants to satisfy water demands.
With a large number of tourists visiting Mecca city every
year and a lack of effective water management policies,
the authors saw the importance to predict the future water
demand. The MLP model was able to predict monthly and
annual water demands successfully. This may be a useful
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tool for optimal operation of urban water systems. However,
the authors stated that municipal data might be influenced
by unforeseen leaks, changing policies and social habits.

DISINFECTION RESIDUALS

Applications of ANNs to determine residual chlorine levels
have also increased during the past decade, especially in
Australia (Table 1). In many Australian studies, the GRNN
was the preferred ANN. Bowden ef al. (2006) used a
GRNN to forecast chlorine residuals in the Myponga distri-
bution system in South Australia. Results indicated that the
GRNN model was able to forecast chlorine levels very accu-
rately for up to 72 hours in advance. Their study also
concluded that the GRNN outperforms the MLR model.
Based on these results, May et al. (2008) and Wu et al.
(20omr) used GRNNS in their studies as well (Table 1). Even
though the main focus of the study by May et al. (2008)
was the improvement of the methodology in developing
ANN models, the authors also found the GRNN to be suc-
cessful in predicting residual chlorine levels.

In the study of Gibbs et al. (2006), a comparison
between a MLP, a GRNN and a SOM was made for the pre-
diction of residual chlorine levels in the Hope Valley
distribution system, South Australia. Results of this study,
however, found the MLP model to consistently outperform
the other models. Soyupak et al. (2o11) and Cordoba et al.
(2014) also used MLPs in their studies (Table 1) and found
that they was able to predict residual chlorine levels success-
fully, but Cordoba et al. (2014) concluded that the model
from their study can only be used to predict chlorine
decay for that specific study area.

Some distribution systems use chloramines as a disinfec-
tant, which may cause free ammonia levels in the water.
Nitrifying bacteria can use the free ammonia as a nutrient
source which may cause nitrate levels in the water to
increase and have various health effects in humans (Wu
et al. 2om). Therefore, Wu et al. (2om) used a GRNN not
only to predict residual chlorine levels, but free ammonia
levels as well (Table 1). Results indicated that the GRNN
was able to predict chlorine levels, but due to noisy and inac-
curate ammonia data, the model performed poorly for the
prediction of free ammonia. The authors suggested accurate
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free ammonia analysers are required to obtain accurate data
for the development of a successful ANN model.

WATER QUALITY

Over the past decade, interest in the prediction of water
quality parameters has increased. Online sensors are able
to measure various water quality parameters continuously.
However, this means large amounts of data with different
time measurements are accumulated which makes pinpoint-
ing abrupt changes in water quality challenging (Mustonen
et al. 2008). Therefore, Mustonen ef al. (2008) used a SOM
to evaluate water quality changes of online data due to bio-
film detaching in a pilot drinking water distribution system
(Table 1). Results indicated the SOM was able to separate
sudden changes in the data from normal data. The authors
suggested their research could be used to develop alert sys-
tems or prediction models for controlling water quality.

Data obtained during a water treatment process may be
complex due to the non-linear relationships of all the vari-
ables (Juntunen et al. 2013). Hence, Juntunen ef al. (2013)
also used a SOM to model water quality in a treatment pro-
cess (Table 1). The study concluded that the SOM was able
to comprehensively indicate important characteristics of
large data sets. This can be useful to determine the most
essential states of water treatment systems, to predict the
performance of the process and to use it as a graphical moni-
toring tool (Juntunen et al. 2013). In the study by Vicente
et al. (2012), the authors used a MLP network to predict
nitrate, manganese, sodium and potassium (measured less
frequently) using only pH and conductivity (measured
more frequently) as input variables (Table 1). Results indi-
cated that the MLP model successfully predicted the four
parameters with conductivity being the most important
input variable.

Turbidity is one of the basic parameters for assessing
water quality. During rainfall seasons or spring thawing,
water levels may rise and increase turbidity levels. The pre-
diction of turbidity allows operators to optimize treatment
methods in advance. Rak (2013) and Gaya et al. (2017) used
neural networks to predict turbidity in a treatment plant
(Table 1). Rak (2013) used a MLP to predict turbidity
during the treatment process. Results of the study indicated
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that the ANN was able to predict turbidity levels success-
fully. The study also concluded that the model could be
useful to predict other parameters, such as pH and colour.
Gaya et al. (2017) used a Hammerstein-Weiner model and
a neural network to predict turbidity in a water treatment
plant. The study concluded that the feed-forward neural net-
work outperformed the Hammerstein-Weiner model. The
neural network was able to predict turbidity accurately
and had a Mean Absolute Percent Error (MAPE) of
12.82%, whereas the Hammerstein-Weiner model had a
MAPE of —45.17%. Even though both these studies pre-
dicted turbidity, different input parameters were used
(Table 1).

DISINFECTION BY-PRODUCTS

DBPs may form during the disinfection process and may
pose a health risk to consumers. In the studies by Kulkarni
& Chellam (2010) and Ye ef al. (201r), BPNNs were used to
predict various DBPs (Table 1). These studies had similar
input variables and results for both studies indicated that
ANNSs were able to predict DBPs successfully. In the study
of Singh & Gupta (2012), however, two different ANNs
were compared with support vector machine (SVM) and
gene expression programming (GEP) models to predict
THMs (Table 1). Even though all the models were able to
predict THMs, the study concluded that the SVM slightly
outperformed the ANN and GEP models. It was also
found that pH followed by contact time had the highest
effect on THM formation. Nevertheless, ANNs were useful
tools to predict DBP levels and may assist drinking water
facilities during design and operation decisions to meet the
required DBP standards (Kulkarni & Chellam 2010).

ORGANIC MATTER REMOVAL

Even though research into the removal of DBPs has been
carried out, another contributing factor to the formation of
DBPs is organic matter. This is due to chlorine reacting
with organic matter present in the water which could lead
to the formation of THMs (Bieroza et al. 2012). Usually
organic matter is removed during treatment processes such



1881 G. O'Reilly et al. | ANNs: applications in the drinking water sector

Water Science & Technology: Water Supply | 18.6 | 2018

as coagulation, flocculation, clarification, filtration and gran-
ular activated carbon processes. However, these processes
may sometimes only reduce the level of organic matter.
Methods for quantification of organic matter are laborious
(Bieroza et al. 2011). Therefore, Bieroza et al. (2011; 2012)
used ANNSs to predict the levels of organic matter removal
by using fluorescence data (Table 1).

The study during 2011 provided the first insight for using
different data mining techniques, where advanced multiway
analysis (parallel factor analysis (PARAFAC), principal com-
ponent analysis (PCA) and partial least squares (PLS)) and
ANN approaches (BPNN and SOM) were compared
(Bieroza et al. 20t). Results indicated little difference
between advanced and conventional peak-picking methods.
In a follow up study during 2012, the authors used the same
data, but added the stepwise regression (SR) calibration
algorithm (Bieroza et al. 2012). Results were similar than
the previous study, indicating that PLS and BPNN models
are both useful to predict organic matter removal. However,
the study also indicated that, unlike the peak-picking
methods, the SOM model enables advanced interpretation
of fluorescence data.

CONTAMINATION EVENTS

ANNs have also been applied for the prediction of contami-
nation events. Perelman et al. (2012) applied a BPNN
network to predict possible contaminants in a water distri-
bution system, based on online data (Table 1). An event
detection algorithm using Bayesian analysis was established
to detect abnormal behaviour of water quality parameters
when exceeding a fixed threshold value. The algorithm
was able to numerically and graphically indicate the possi-
bility of a quality fault based on single and multiple
measured water quality time series. The authors, however,
stated that the model’s performance needed improvement
and a dynamic threshold method should be analysed. Arad
et al. (2013) aimed to improve the study by Perelman and col-
leagues. Even though the same type of ANN and input
variables were used (Table 1), Arad et al. (2013) included
online and offline data and implemented the dynamic
threshold method by utilizing a genetic algorithm (GA),
whereafter Bayesian analysis was wused to detect
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contamination event probability. The study concluded that
with appropriate preparation, the method may be
implemented at any water distribution system and may
also provide statistical and visual indications of contaminant
events. It was also noted that the dynamic threshold method
was superior to the fixed threshold method.

ORGANIC AND INORGANIC POLLUTANTS

In the study by Cauchi ef al. (2om), three polynuclear aro-
matic hydrocarbons and three heavy metals were
quantified and predicted using a feed-forward neural net-
work (Table 1). These parameters were selected due to
their use in industrial processes and correlation with indus-
trial sites. Their presence in water is of great concern as they
have various health effects (Cauchi et al. 2011). When a water
sample is measured with an analytical instrument, it is poss-
ible for pollutants with similar properties to have
overlapping peaks, which makes it difficult to distinguish
between them. To overcome this problem, Cauchi and col-
leagues applied a feed-forward ANN. Results indicated
that the ANN was able to accurately quantify and predict
these pollutants simultaneously.

RESIDUAL ALUMINIUM, COST AND PERFORMANCE
EFFICIENCY OF A WATER TREATMENT PLANT

MLP networks have also been applied to predict residual
aluminium levels, to determine the construction cost as
well as the performance efficiency of water treatment
plants (Table 1). Water treatment plants can use aluminium
salts as a coagulation chemical. High levels of residual alu-
minium may have several health effects (World Health
Organization 2003). Tomperi et al. (2013) compared MLR
and MLP models for the prediction of residual aluminium
(Table 1). Even though both models were able to predict
residual aluminium levels fairly accurately, the MLR
model outperformed the MLP model. It was also concluded
that raw water temperature, KMnO, and PAC/KMnQ,-ratio
had the highest correlation with residual aluminium. The
authors suggested the models could be used to create an
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early-warning system to give additional information to pro-
cess operators.

With construction of a new water treatment plant, pre-
liminary information on the costs is not always available.
In Egypt, stakeholders often need to estimate construction
costs which leads to high estimation variability (Marzouk
& Elkadi 2016). Therefore, Marzouk & Elkadi (2016) used
a MLP network to model construction costs (Table 1). Var-
ious models were developed and the model with the lowest
MAPE was chosen. In this case, the best model had a MAPE
value of 21.18%, which is considered reasonable for cost
estimation. The study concluded that the ANN was able to
successfully predict the cost estimation, which may reduce
the resources and time spent on the estimation process.
The authors also suggested that detailed estimates could be
compared by using this model as a benchmark.

Poor water quality and water shortages are two major
challenges that India is continually facing. The optimization
of water treatment processes and the prediction of water
quality plays an important role in ensuring good quality
water is supplied to consumers (Saha et al. 2017). Therefore,
Saha et al. (2017) used a Non-structural Fuzzy Decision Sup-
port System (NSFDSS) as well as a neural network to
determine the performance efficiency of a water treatment
plant (Table 1). A NSFDSS is a multi-criteria decision
making method (MCDM) which determines the compara-
tive weight between parameters. In this study, the aim was
not to compare the NSFDSS with the neural network, but
rather to use the neural network to determine the index
weights by training the model after which the model
output was predicted. Results indicated that the ANN was
able to successfully predict the model output. The study con-
cluded that the efficiency of the clariflocculator was the
most significant parameter.

APPLICATION OF ANNS IN THE WATER SECTOR:
SCENARIO IN SOUTH AFRICA

In South Africa, the application of ANNs in the water sector
is very limited, especially in the drinking water sector.
Studies pertaining to environmental water include the pre-
streamflow

diction of: (Ilunga & Stephenson 2005;

Katambara & Ndiritu 2009; Kagoda et al. 2010; Van Vliet
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et al. 2012; Onyari & Ilunga 2013; Oyebode et al. 2015); reser-
voir capacity (Adeloye & De Munari 2006; Adeloye 2009);
rainfall data (Hughes et al. 2006; Nkuna & Odiyo 2011);
river-runoff (Steynor et al. 2009); water demand (Msiza
et al. 2007) and water temperature (Van Vliet ef al. 2012).
Studies relevant to drinking water only include the predic-
tion of chemical dosing which was performed by Naidoo
& van der Walt (2013). In their study, a feed-forward net-
work was used to determine the chemical dosing in order
to improve budgeting, accuracy and reliability of the distri-
bution plant (Table 1). This was a case study that was
undertaken by the water company, Rand Water, in South
Africa. Results indicated that the ANN was able to correctly
predict the chemical dosing levels for lime, polymer and
chlorine, even during periods where raw water quality
spikes in turbidity, pH, alkalinity and colour levels were
experienced. Limited ANN studies highlight the research
gap regarding the application of ANNs in South African
water purification facilities.

CONCLUSION

The limitations of end product testing are becoming more
evident in the water sector around the world (Okeyo et al.
201). Where deterioration in available raw water quality
takes place, it is often difficult to identify which step in the
water purification step is not working up to standard
(Okeyo et al. 20m). The cost of advanced treatment may be
unaffordable to some water purification facilities (Brookes
et al. 2014). Modelling and future projections, on the other
hand, may not only help to improve water quality, but may
also help to determine which other treatment options will
be worth the investment (Brookes et al. 2014). Modelling
techniques are increasingly playing important roles when
it comes to water management decisions (Scholten et al.
2007; Salami Shahid & Ehteshami 2016).

This review indicates that ANNSs are efficient forecasting
tools in the water sector. From the literature, it was
evident that the most popular neural network was MLP.
However, it was also observed that ANNs were mainly
used as prediction tools or studies were performed in
order to compare or improve modelling techniques. None
of the these models to be a

studies developed
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decision-making tool, except Al-Barqawi & Zayed (2008)
with the development of a web-based condition rating tool,
and Griffiths & Andrews (201r) with the development of a
software package to monitor filtration conditions. It was
also evident that the applications of ANNs in the water
sector of South Africa are limited. With the current drought
as well as pollution, the quality of environmental water in
South Africa is deteriorating. It may thus be to the advan-
tage of drinking water production facilities to use
statistical approaches to ensure that safe drinking water of
good potable quality is produced. In addition, based on
international examples, there are opportunities for employ-
ing ANNSs as a tool in decision-making.
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