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Keywords and Abbreviations
Additional water (could also be mentioned as I/I-water) - water that in some
way enters the wastewater system that does not belong there (rainwater for

example)

Deep learning - “Deep Learning is a machine learning technique that
constructs artificial neural networks to mimic the structure and function of
the human brain. In practice, deep learning, also known as deep structured
learning or hierarchical learning, uses a large number hidden layers -
typically more than 6 but often much higher - of nonlinear processing to
extract features from data and transform the data into different levels of

abstraction (representations).” [8]

I/l (Infiltration and Inflow) water - a collection of ways the additional water
enters the wastewater channel. Infiltration is water that enters the pipe
through cracks or otherwise broken pipes, while inflow mainly means

wrongly connected pipes.

MDPI - Multidisciplinary Digital Publishing Institute is a publisher of

academic papers through journals

Stormwater/drainage system - channels (system of pipes) that deal with water

from rain, snow, and meltwater from ice.

SWMM - Storm Water Management Model is an application that is used to

simulate and analyze water management systems

Wastewater system - wastewater channels that go to the sewage treatment

plant



1. Introduction

1.1 Background

What is considered to be the world’s first Internet of Things (IoT) device was
introduced in 1990 when John Romkey had created a toaster which could be
operated from a computer using TCP/IP networking and simple network
management protocol (SNMP) to access the management information base (MIB)
[1]. In 1999 “Internet of Things” term was brought to life for what is seen as the
first time, by Kevin Ashton who was working in supply chain optimization in
Procter and Gamble [2]. By 2003, 500 million devices were connected to the
internet, and further on what scientists mean is that the true birth of the Internet of
Things era is somewhere between 2008 to 2009 with the definition; “the time

where more devices were connected to the internet than humans alive” [3].

Though it is difficult to specify the exact number, the estimated number of

connected loT devices by 2021 is somewhere between 20 to 30 billion worldwide

[4]

Based on this, it cannot be seen as a coincidence that it is more and more common
in today's society to use loT to track and contain data in all kinds of areas. A
report made by the National League of Cities shows that over 66% of the cities in
the United States were investing in smart-city solutions in 2017 [5]. Some of the
most common smart-city priorities were public wifi-areas, intelligent traffic
signals, e-governance applications, and smart-meter utilities. The loT
implementations make it easier for governments to gather data and create statistics
from different sources. The gathered data is then often used to analyze different
occurrences and how certain impacts, scenarios, and anomalies can affect the
entirety. Though the heavy growth for the use of 10T devices not only in our
homes and our everyday-use items but in society all around us, an area where the
implementation of 10T devices is mostly still under development, prototyping, and

implementation is within the sewage management sector [14] [3]. Using sensors



in drainage systems can have many benefits including real-time monitoring of
water flow to quickly locate and find any potential leakages in the system and
benefits the safety of workers that otherwise need to physically enter sewages for
manual measurements. Sensors also provide more frequent data gathering that
makes it easier to continuously analyze the incoming data. This could also benefit
the optimization of the whole drainage system by being able to analyze statistics
to find anomalies and correlations in different occurrences. For example, being
able to find places where water levels in wastewater channels go up on days
where it rains could mean that there are leakages from the stormwater pipe into
the spill water pipe. A study conducted in Poland focused on stormwater entering
the wastewater system by analyzing the water entering the sewage treatment plant
of Nowy Targ as well as measuring the rainwater. The research showed that the
amount of stormwater in the sewage system was 14.2% of the total sewage water
on days where the rain was less than 5 millimeters, and 32.5% of the total sewage
water on days where it rained above 20 millimeters [6]. The municipality of
Stockholm decided in 2016 to rebuild the sewage treatment plant
“Henriksdalsreningsverk” to double the processing power to accommodate more
households to be connected. The rebuild of the treatment plant cost roughly $700
million (6 billion SEK). A report released by Stockholm Vatten och Avfall in
2020, showed that the amount of inflow and infiltration water in the municipality
of Stockholm is measured to be 40% of the total amount of water that is handled

by the treatment plants [7].



1.2 The Inflow and Infiltration Problem

Unwanted water entering the sewage pipes can be defined as inflow and
infiltration water. Inflow water is water that enters the sewage pipes through
misconnected junctions, for example where rainwater should instead be led to
drainage pipes. Infiltration water is instead water that through cracks enters the
sewage pipes. An example of this can be found in the attached figure 20 below.

nfiltration

Figure 20. Infiltration and Inflow [25].

This can be groundwater pressing on the pipes from underneath or water from
leaking drainage pipes as well as leaking drinkwater pipes. In figure 19 an
example is shown of how the drainage and sewage pipes are located in terms of

levels.
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Figure 19. Structure of drainage and sewer pipes [24].
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1.3 The Focus of the Study

The purpose of the experiment was to come up with an effective way on how to
analyze and find infiltration and inflow-water in data gathered from water-level-,
flow-, rainfall- and water supply sensors by using machine learning techniques to
process the already collected data from a specific area. The goal of the experiment

is then to simulate the predictions in SWMM.

The purpose of the literature review is to find the existing solutions for monitoring
and handling data analysis in sewage systems by comparing the most common

ones.

1.4 Problem Statement

By finding an effective and efficient way of monitoring sewage systems, leakages,
infiltrations and inflow, as well as misconnected pipes, can easily be localized and
dealt with. This will help optimize the sewer system’s capacity and lower the

amount of unnecessary I/l water the sewage treatment plants process.

1.5 Thesis Structure

1.5.1 Methodology Introduction
The thesis has been conducted using a literature review and by conducting a case

study. In the literature review part, the research team has searched for relevant
literature to answer the research question; “How do monitoring and data analysis
in sewage systems compare and which techniques are the most effective?”. This
result the team later used to base the case study on. The case study was conducted

using different machine learning algorithms to analyze sets of data.

1.5.2 Overall Structure
Different techniques have so far been implemented in water and sewer systems. In
this thesis, the authors of this thesis focused on finding infiltration and inflow to

wastewater channels. In the literature review, the most common ways of
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implementing a monitoring system for sewage pipes as well as different ways of
handling and interpreting the collected data are presented. The results from the
literature review are discussed and evaluated along with a conclusion of the data
found. In the experiment’s result part of the thesis, the research team has

presented the outcome of the data handling that has been done on data collected

from different sensors. The processed data is then examined in the discussion part

of the thesis and is concluded in the conclusion.
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2 Methodology

2.1 Literature Review Methodology

2.1.1 Data Collection
As many research papers were found that included parts of the topic of research,
the research team only chose to include the most distinctive resources compared

to the chosen topic.

2.1.2 Literature Review Research Question
How do monitoring and data analysis in sewage systems compare and which

techniques are the most effective?

2.1.3 Search Phrases

Optimize “wastewater system” loT monitoring, “wastewater system monitoring”,
“Real-time” monitoring “sewage system”, “Storm Water Management”, “machine
learning” sewage systems, “stormwater” in sewage systems, “Infiltration and

Inflow” wastewater, “I/I” machine learning.

2.2 Experiment Methodology

2.2.1 Study Area

Kristianstad which is located in the east part of Skane county in the most southern
part of Sweden, it has Sweden’s lowest point that is lower than two meters of the
sea level. This entails a higher pressure from the groundwater onto the wastewater
channels than what can be found in other regions as well as a bigger risk for
flooding from a rising sea level occurring from the continuous climate change.
Kristianstad municipality has as prevention matters, built embankments around
the city and is using pump stations to direct the water away from the worst risk
areas and infrastructure in the town. Kristianstad municipality has also during the
last years installed sensors around the town to monitor the situation by analyzing

the data which can affect both flooding along with higher tolls on to the
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wastewater channels. For this thesis project we had access to all the sensors within

Né&sby which is the northern area of Kristianstad shown in figure 1.

Figure 1. Map of Néasby [21].

2.2.3 Experiment Research Question
Which data analysis and machine learning techniques are best for detecting

leakages in wastewater systems?

14



2.2.4 Data Collection

In this study we had access to all the installed sensors within the Nasby region, the
information that we can obtain with these sensors are precipitation, groundwater
levels, and sewage water volumetric flow. All sensors are connected to a database
through a wireless network that can be visualized on the IoT data portal provided
to us by the municipality. The data can be retrieved through scripts to obtain both

historical data and real-time data.

In this study we used the historical data spanning from March the 5th to May the
5th to train our machine learning model, any time period which is within these
two dates will be referred to within the training data timespan and any time period
after May the 5th will be referred to after the training data time span. The decision
for using data from this time period is because of how recent the sensors were
installed therefore the data for previous years and months would be unavailable
due to how all rows must be filled for the machine learning algorithm to work.
When retrieving the data, it comes as different files for each sensor that we pulled
data from, to be able to use this data in our machine learning model we had to first
index all the values to the same timestamp intervals so that we have a matching
index for all the variables. How this was accomplished was because we retrieved
the water consumption from the municipality on a per hour basis, we will use this
as our index, we then rounded all the timestamps to the nearest hour and picked
the highest value for that timestamp. After processing the data in this fashion we
then combined all the files together using append on the Pandas dataframe and
the result is a CVS file with all values indexed in full rows as shown in figure 2.
The Python code that was used to accomplish this will be presented in the
appendix along with the code used for the rest of this experiment with a written

explanation.
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Timestamp Flow L/Sec er Level Adjusted Zeropoirit = Precipitation water Use Percent
2021-04-29 16:00:00 3.78 0 3.9

2021-04-29 17:00: : 0 53
5.9
6.6
6.6

53

2021-04-30 02:00:00

Figure 2. Shows how training data looks after we have processed the data.

In the table shown in figure 2, we can see that the first column represents
timestamps which we will be using as an index for our experiment, the second
column represents the flow of wastewater within the pipes which is measured by a
sensor within the sewage system and is able to measure how much wastewater
flows through the pipes in litres per second. The third column represents the water
level adjusted to a zeropoint, this zero point is located within the Netherlands and
was calibrated to this point by the company installing the groundwater sensors.
The fourth column represents the Precipitation of the area, how this is measured is
by using an automatic rain gauge that counts how many millimeters of rain is
collected every ten minutes, we then choose the highest value for that hour. The
last column in this figure is the average water usage over a 24 hour period in
percentages, therefore if we would add up the values over 24 hours it would be
100%.

2.2.4 Simple Linear Regression and Pearson’s Correlation

The strain on the sewage pipes and the sewage treatment plants comes from the
groundwater pushing on the pipes, rainwater infiltrating into the sewage system,
and the daily water usage of the region. To model these variables, we will first use
a simple linear regression model to see the relationships between the independent

variables and the dependent variable.
y=A+B(x) (1)
Equation one is for a simple linear regression model, with Y being the variable to

be calculated which would be the dependent variable, A is the constant or
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intercept, B is the coefficient or slope and X is the independent variable [23]. In
this study the Y value will be the volumetric flow of wastewater in the pipe and X
will be the groundwater level, precipitation, and daily water use. After we have
fed the data that we have collected from the sensors, a prognosis can be made to
compare to actual data.

_NYy)-Xx Xy
B = N Y(x2) -2 x)° 2)

A= Zy—lf xx (3)
To calculate the values of A and B the least-squares method is used and its
formulas are shown above, the first step is to calculate the coefficient or slope
which would be B, as can be seen in the formula, the first step would be for each
data point to calculate x?and xy, then we sum all of x, y, xy, and x2. We then
insert this into the first formula with N being the number of data points we are
calculating. The result of this equation is our B value for our line of regression.
We then use the B value that we have just calculated and the sum of y and x in the
next formula to calculate A or the constant of our line of regression. This gives us

both the A and B values for our simple linear regression model.

To further find the relationship between the variables we can use Pearson’s
correlation coefficient which is used to find, mathematically, how strong the

relationship between the variables is.

2.2.5 Pearson’s correlation coefficient

The research team has calculated a correlation between different values using
Pearson’s correlation coefficient equation. The equation takes two variables and
compares these two by drawing an imaginary line in between the values (as
accurately as possible) when put on a graph. The coefficient (r) calculated then
indicates how well these values “stick together”. The coefficient result will always

be somewhere from -1 to +1. The strength of the correlation is shown by how far
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away from the result being 0 is. If r > .5 the association is considered high, if .5 >
r > .3 the association is considered relatively high and if r < .3 the association is
considered low. When r is negative the result instead shows a negative correlation
in the same “strength scale” as presented above for positive r. That means that the
lower r is, the more “anti-correlated” the values are. If the result is 0, there is

simply no correlation between the values [22].

Below the equation is presented where x and y represent two different variables.
Variables in the equation with an i (for example x;) stands for the sample of the
variables and x represents the mean value of those.

= Y x-00i-y) 4)

@2y o

2.2.6 Multi-Linear Regression Machine Learning Model

We will use a multi-linear regression model to map the relationship between the
observed sewage pipe volumetric flow and the variables that we have taken into
account. If there is a relationship between precipitation, groundwater to the
volumetric flow rate this means that rainwater is infiltrating into the sewage

system somewhere before that pipe.
y=b+4+ayXxyg+a, Xx;+a,Xx,.. (5)

With the multi-linear regression model formula shown above, we can see how the
predictions are constructed. Y is the variable to be calculated, or the dependent
variable, which in this study is the volumetric flow of the sewage pipe in liters per
second. X represents the values of the different factors affecting the volumetric
flow, the independent variables. A is the model parameters, B being the constant,

and Ao onwards are the coefficient or weight that the variable holds.
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2.2.7 Creating and Training the Linear Regression Models

To calculate the simple and multi linear regression model we will use Python, a
high-level all-purpose programming language, and Python libraries Pandas which
was used to create and manipulate the sensor data into useable CSV files,
matplotlib.plot to visually represent the data, and finally statsmodel.API was used
to calculate the simple and multi-linear regression model and further used to

create the various prognosis and calculate predictions.

In this simple linear regression model, the variables we will use are the
groundwater level (measured from a zero point located in the Netherlands),
precipitation, and hourly water consumption pattern (which was provided to use
from the municipality) to calculate and predict the volumetric flow rate of sewage
water within a pipe after which we will analyze each variable and select which

ones to use on our multi-linear regression model.

The pipe which we have chosen to do our study on is located on the root of the
Nésby region sewage network and will allow us to be able to observe a larger
volumetric flow rate and a larger area of rainwater catchment to better observe the
effects of precipitation on the system. After we have successfully modeled this
larger root pipe we will also do an analysis of a smaller pipe that is located further
away from the root, this is to see how differently the variables affect each pipe.
The locations of where these sensors for these pipes are located can be found in

the figure 3.
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Figure 3. Map of Nasby sewage network superimposed over a map of Nésby, the
red mark is the location of the larger pipe and the green mark is the location of the

smaller pipe [21].

To train our model we will be using historical data of the area spanning two
months, first using the simple linear regression models we will create a 24-hour
prognosis inside of the training data time span for each variable, using the results
from this we will then construct a multi-linear regression model. Using the multi-
linear regression model we will then create a 24-hour prognosis inside of the
training data timespan using actual measurements from sensors and comparing
them to actual sensor data from that pipe. To further analyze the effects of the
different factors we will then create more models excluding one of the factors to
see how this affects the prediction and then compare it to the three-variable
model. We will then make a 24-hour prediction of the volumetric flow rate of the
sewage water outside of the training data’s timespan using real data and
comparing it to the sensor's actual data and do further analysis of what would

happen if we exclude one of the variables in the model.
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3 Literature Review Results

3.1 Literature Review Results Overview

In this chapter, two main techniques for collecting data within sewage channels
which are defined as the image processing technique and the sensor technique is
presented in section 3.2 and 3.3. In the related work section of 3.4, different ways
of analyzing data regarding inflow and infiltration as well as other studies
concerning the topic are presented. In section 3.5 a discussion based on the
findings of the literature review can be found and in section 3.6 a short conclusion

is presented.

3.2 The Image Processing Technique

Some monitoring techniques that have been deployed in sewage pipes are using a
camera and image recognition to detect anomalies which could be objects/items
that have in some way entered the pipes (flushed down items of clothes etc.) as
well as seeing differences in water flow [9]. By using this type of technique it is
possible via image analysis to calculate the flow rate based on water levels within
the pipes. This is done using direct visual inspection and recording, digital image
processing (DIP), and implemented machine learning, broadly known as deep
learning. Direct visual inspection and recording can be explained to be the actual
video recordings of the pipe flow. The image in this context often looks blurry, is
black and white, and difficult to process for the human eye. Digital image
processing (DIP) is then rendering and creates a threshold of the grayscale image.
This can be referred to as the creation of the binary map of the image. An image
in which the pixels are replaced by 0’s and 1’s to make it possible for a computer
to analyze the image based on the binary image. Based on the binary image two
boundary lines are created between the wastewater and the pipes. The purpose of
this is to find the water level of the pipe. Using deep learning, the program was
able to detect which part of the images is water and what is made up by pipe and

could thereby split the images into sections. With the sections created an
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imaginary circle had to be calculated into the segmented image to determine the
size of the pipe as well as inserting the intersection running horizontally through
the middle of the circle. Based on the point where the imaginary circle and the
boundary line met the water level was obtained. By obtaining the depth of the
water in the pipe the water flow rate could be calculated via the values; pipe-
width, water-level, roughness coefficiency (based on the material of the pipe), and
the length of the pipe. Another image processing setup was used in an experiment
conducted in Germany on open channels to measure flow rate. Infrared cameras
were set up in different locations along a river as well as an open channel [10].
The goal was to see how well the infrared camera could measure the water flow
rate. An Acoustic Doppler Current Profiler (ADCP) was being used as a control
measure to compare the results to the infrared cameras. The results of the
measures showed that the maximum deviation was 15% between the data that was
collected from the two different measurement techniques. The study concluded
that using infrared cameras to measure water flow is a very inexpensive way to
monitor wastewater. Another positive that was concluded was that no

measurement equipment was needed to touch the measured medium.

3.3 The Sensor Network Technique

This technique is based on using different sensors that send the data in real-time to
a database where it is stored. The different sensors in the system could be water-
level sensors in waste-water pipes, groundwater sensors, temperature sensors,
rain-level sensors to track any correlation between I/l and rainfall, and water-level
sensors in drainage systems [18]. The data from the water-level sensors in waste-
water pipes could be used to calculate the flow rate, the data from the groundwater
sensors could be used to calculate the movement of groundwater and potential 1/1
to the wastewater pipes, the data from temperature sensors could be used to show
the impact on drainage system during snowmelt, the data collected from rain-level
sensors could help track any correlation between 1/1 and rainfall and data collected

from water-level sensors in drainage systems could help simulate any potential
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future flooding [11]. In a study issued in MDPI of 2019, a wireless network
monitoring system was built up using ZigBee and 4G to transmit signals in-
between sensors and servers [19]. To analyze the incoming data, machine learning
algorithms were used to quickly detect any leakages in the monitored pipes. The
study concluded that the identification method the research team had built up
would work effectively in identifying water pipeline leakages. Another study
which was conducted in Lille, France, used hydraulic sensors to measure the
water flow in wastewater pipes [12]. The study conducted that the hydraulic
sensors gave reliant data with very little maintenance work. The study also
conducted the turbidity sensors continuously be objected to dirt from which the

sensors needed to be cleaned to function properly.

3.4 Related Work

One study conducted in Uppsala University explored if leaking drinking water
channels could have a significant impact on infiltration water in wastewater
channels. The study was conducted using different machine learning algorithms
which were simple linear regression and multiple linear regression analysis as
well as correlation analysis. The research concluded that the linear regression
analysis showed a positive correlation between Swedish municipalities' non-billed
water and infiltration water entering the wastewater channel significantly [13].

In Hong-Kong where heavy rainfalls can be considered a normal annual
happening, a research team conducted a study with the goal of implementing a
system to real-time monitor levels in drainage pipes. The experiment was
conducted using 10T devices using sensors and machine learning to analyse the
flowrate and water level data which was collected. The team concluded that of the
two machine learning algorithms used in the project, both Artificial Neural
Network (ANN) and cross-validation method showed great potential for

implementation in future monitoring systems [14].
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In Knivsta which is located between Uppsala and Stockholm in Sweden, the
population is quickly rising. More housing is in the time of writing being planned
for further development. This is something that would affect the drainage pipes
leading to Knivstaans river and a research team chose to conduct simulations on
how this may come to affect the area. The simulation was made using AutoCAD
and SWMM, and the methods for analysing the data were made using infiltration
methods and runoff-coefficients which are both included in SWMM [15].

A study issued in MDPI in August 2020 had the goal of comparing different Al-
based methods for analyzing inflow and infiltration in Sewer Subcatchments. The
two methods used in the project were Adaptive Neuro-Fuzzy Inference System
(ANFIS) and Multilayer Perceptron Neural Network (MLPNN) using the
variables time, rainfall, water consumption, and wastewater flow rate to predict
wastewater flow rate at the corresponding time in hours. The research team
concluded that both of the developed Al-methods showed the result that rainwater
had an instant impact on infiltration to the wastewater channels while the ANFIS
method overall showed a higher performance [17].

Though the main conception is that infiltration and inflow water affects the
wastewater channels negatively, a literature study was conducted on how
infiltration and inflow affect the wastewater channels as well as the positives and
negatives of this. The research found that the positives of having I/l in the
wastewater channels could be better drainage, easier to control the groundwater
levels, less odour and corrosion, higher velocities leads to better self-cleaning and
less pollutions in the happening of an overflow in the pipes. The negatives found
was; a larger energy consumption, more water makes a larger need for
maintenance, larger use of chemicals to “clean” more water, less capacity for
future connections, higher potential of flooding and blockages and more water
makes the pipes age quicker. The study concludes that though there are positives
to a small amount of I/l water, the overall negative effects must be seen as worse
[16].
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A study conducted on how to improve real-time SWMM flow forecasts using a
machine learning approach was issued in EGU in 2020. The approach was to first
calibrate an SWMM model using geospatial and hydro-meteorological data and a
genetic algorithm (GA). The data was then processed using an artificial neural
network to improve the real-time forecasts. The team concluded that some of the
GA calibrated data did not show acceptable results on it’s own and that using a
bias system which also processes the data using ANN will improve the result to an
acceptable level [20].

3.5 Literature Discussion

The result in summary from the different ways of monitoring wastewater channels
could be separated into “The image processing technique” and “The sensor
technique”. The obvious positive of using the image processing technique when
measuring flow rate is that none of the measurement equipment needs to touch the
measured water and therefore not interfere with the flow. However, the result of
the image processing technique in most of the cases showed, though it is vague,
miscalculated results up to 15%. Based on the fact that the infiltration and inflow
rates can be argued as “high” when being around 30% of the total amount of
water in the wastewater channel, a 15% miscalculation could be devastating for
the long-term measurement effect when trying to optimize the system. Other
drawbacks with image processing are the impact of dirt on the lens which could
affect the measurements and the need of having the infrared camera completely
steady at all times which could be problematic in a wastewater channel. The
positives of using “the sensor technique” is that it is standardized and does not
have to be calibrated based on the environment it is placed in which makes the
implementation very simple. This will affect an area where maybe up to a few
hundred measurement points will be implemented. Most of these types of sensors
also run on long-lasting batteries as the sensors collect raw data that is then sent
directly to a server. The sensors can because of this be placed in remote areas

without the need for electricity. A negative regarding the “sensor technique” is
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that material can affect the measurement as the sensors often interfere with the

corresponding water.

3.6 Conclusion

The related work shows that there are many different ways of both monitoring
(gathering data from) sewage networks as well as analyzing the collected data.
The academic review that has been conducted also shows that there is a lack of
fully implemented monitoring systems in drainage- and wastewater channels as
most of the experiments have been conducted on smaller scales for future
implementation and that there is much more to do in the field to help optimize

infiltration and inflow.

Image processing is something that is still being improved and looking at how
cheap the method could be implemented is something to consider in the future.
However, development is needed to make it a valid option for implementing in
hundreds of places in sewage pipes and it is a long way to go before being
considered more effective than a sensor system to measure flow rate through its

advantages.

There are different types of machine learning algorithms and Al methods that
have been tested and used in the data analysis to find infiltration and inflow water.
Most of the experiments found on algorithms to process data collected from
sewage systems had combined different algorithms in many cases using a
machine-learning algorithm to calibrate the data and then an Al-based method to
predict future outcomes. The studies presented in the literature review only using
machine learning algorithms showed however that the multiple linear regression
and the cross-validation method worked successfully and most efficiently based

on the algorithms tested in finding Infiltration and Inflow water.
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4. Experiment Result

4.1 Results Overview

Tables one and two contain the values used to create the prognosis and the values
of actual volumetric flow and predicted volumetric flow for the larger pipe using
all three variables in the model. Figures four to six show scatter diagrams with
their respective lines of regression, in the figure description is also the formula for
the line of regression and Pearson's correlation coefficient. Figures seven to nine
represent the 24-hour prognosis created using the simple linear regression model
and its comparison to the actual volumetric flow collected from the sensor.
Figures ten to eighteen contains the visual representation of our prediction using
the multi-linear regression models, we can observe from the figures that the model
has been able to predict the volumetric flow rate to a certain degree but to be able
to train a better model we have to further understand the effects of the
independent variables to the dependent variable.

All figures will be represented in the appendix while the figures included in the
results section will only include the significant figures. These figures will be
further compared and discussed within the discussion sections of the degree
project.
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4.2 Simple Linear Regression and Pearson’s
Correlation Coefficient

Figure 4. Rate of flow vs groundwater level.

Flow L/Sec vs Groundwater

Flow L/Sec vs Water Usage

1

2

3 4 5 6 7

Figure 6. Rate of flow vs water usage.

Flow L/Sec vs Precipitation

0.2 0.4 0.6 0.8 10

Figure four represents the relationship of rate of flow and groundwater, this

variable resulted in a very low Pearson's correlation coefficient at only 0.094

which is considered a very low to no correlation. Figure five is the relationship

Figure 5. Rate of flow vs precipitation.

between flow rate and precipitation which resulted in a low Pearson's correlation

coefficient of 0.202 which is considered a low correlation and finally figure six

represents the relationship between rate of flow and water usage which resulted in

a Pearson's correlation coefficient of 0.496 which would be considered relatively

high.
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Predicted Flow Using Groundwater Level vs Actual Flow Predicted Flow using Percipitation vs Actual Flow

9 — Predicted 9 — Predicted
— Actual — Actual
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Figure 7. Prognosis using groundwater level.  Figure 8. Prognosis using precipitation.

Predicted Flow using Water Usage vs Actual Flow

10 — Predicted
— Actual

0
14 15 16 17 18 19 20 21 22 23 00 01 02 03 04 05 06 07 08 09 10 11 12

Time

Figure 9. Prognosis using water usage.

Figures seven to nine are the predictions using the single independent variable ibn
our simple linear regression model, for figure seven the variable used was
groundwater, for figure eight precipitation was used and finally for figure nine
only the water usage was used to create the predictions. Using these models we
can now predict which multi-linear model will be best to use and compare them to

models using different variables.
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4.3 Multi-Linear Regression

Predicted Flow vs Actual Flow (using training data)
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Figure 10. prognosis using all three

variables.

Predicted Flow Using Precipitation and Drink Water vs Actual Flow (using training data)
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Figure 12. Prognosis using
precipitation and water usage.

Predicted Flow Using Ground Water and Drink Water vs Actual Flow (using training data)
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Figure 11. prognosis using

groundwater and water usage.
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Figure 13. Prognosis using

precipitation and groundwater.

Figures ten to thirteen represents the 24-hour prognosis made using our multi-

linear models to see which of our models are best at predicting the volumetric

flow rate of the wastewater within the sewage system; the values used to create

these predictions can be seen in table one within the appendix. The first figure,

figure ten, represents the prognosis made using all three variables which were

available. Figure eleven represents the prognosis using only the groundwater and

water usage as the independent variables. Figure twelve shows the prognosis

using only precipitation and water usage in our model and finally figure thirteen

represents the prognosis omitting the water usage variable.
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4.4 Discussion

Figure four presented in section 4.2 shows the groundwater compared to flow,
observing the graph and the Pearson’s correlation coefficient it can be argued that
ground would be an inefficient variable to use and will not add much to our
models due to the lack of relationship between the two variables. Figure five
shows the relationship between rain and flow, here a weak correlation between the
variables can be observed and shows that it would be a good variable to use
because even if the correlation is weak. Figure 6 shows the water usage
relationship to the flow. Here the correlation is much stronger than the other

variables and would be a very important variable for us to use in our final model.

Figures seven to nine are the predictions using the simple linear equation which
were calculated using the least squares method; these formulas can be observed in
the appendix. Figure seven shows the prediction using only groundwater, because
of the lack of movement in the predicted curve, it can further be argued that
groundwater would be a weak variable to be used in the final model. Figure eight
represents the prediction made using precipitation, it can be seen from how the
curve is able to predict the same peaks as the actual flow, that it would be a useful
variable in the final model if we wish to predict and finally figure 9 shows the
prediction using water usage as the variable, because it is able to predict the curve

of the line it can be argued that it is a vital variable in our final model.

In section 4.3 can see that the similarities between figures ten and twelve which
could indicate that groundwater is not needed in the model due to the lack of
change but this could be because the groundwater changes so little throughout the
day, for example in the time period of the predictions as seen in table one, the
groundwater changed by two centimeters and in our collected data the
groundwater changed by 25 centimeters throughout our training data. Figure
thirteen is the only graph which excludes the water usage variable, and as
predicted, is vital to the prediction of the flow and shows little resemblance to the

actual curve except for the peaks caused by rainfall. Figure eleven clearly
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demonstrates why even if there is a weak correlation between the variables it is
still important to include because of the missing peaks which are seen in every
other graph in both the predicted and actual curves.

With these results, a best model for analyzing inflow and leakages can now be
constructed which could be argued is the model represented by figure 10, which
represents the multi-linear regression model using all three variables. Though this
model does contain groundwater which is very weakly correlated to the
volumetric flow rate of the sewage water and therefore could be argued to be a
bad variable. The variable is still very vital because the groundwater, unlike the
precipitation which gradually increases the volumetric flow rate, would act more
as a on and off switch because once the groundwater level is above the pipes
which contains cracks it would not increase the rate of leak if the water continued
rising a few centimeters, therefore it would still be needed to track this variable to

be able to detect the inflow and infiltration of groundwater.

4.5 Limitations

The data analysis in the experiment part has been done on collected data from a
specific area where sensors are still being implemented. This means that data from
the area has not been collected for more than nine months. Though it is not the
point of the study, it should be mentioned that the outcome of the current
predictions presented in the thesis could be misleading due to the lack of historical
data to train the machine learning algorithms, such as how much the groundwater
might change throughout the whole year. Another limitation that occurred with
the data collected is the lack of some data such as water consumption, for this
study we used an average in percent of how much water was used over a twenty-
four hour period which helped us create a usable model for us to study but a
parameter that would have helped the model generate our prognosis much more
accurately would be to have the actual water usage in liters per second and to have

sensors similar to the others which would be able to relay real-time data.
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5. Conclusion

5.1 Conclusion of Experiment

From the literature review it was concluded that a multi-linear regression model
would be the best machine learning technique to use for our degree project
experiment. By using data collected from sensors placed in different parts
throughout the wastewater network it is possible using multi-linear regression to
model the different effects that the various factors have on the volumetric flow of
the wastewater pipe and in turn able to study the degree of infiltration and inflow
caused by these factors and identify where the infiltration may be located. If the
same process of training the data of the multi-linear regression model is used
across a large range of wastewater pipes, the location of the infiltration and inflow
can, in real-time, be located by following which models have the highest degree
of change when looking at the variables of precipitation and groundwater, this can

be done as future work for this study.

5.2 Future work

What more can be worked on in the future, related to this study, is to introduce
new variables that can further affect the volumetric flow rate, such as temperature
which can have a large effect on the infiltration and inflow of rainwater because if
the temperature is below zero, it can cause a delayed effect in the relationship
between precipitation and the volumetric flow of the pipe until temperatures have
risen above zero. Additionally, sensors can be installed to further gather data on
different variables such as the actual water usage in an area in liters per second,
this could have greatly improved the accuracy of our prognoses. An application
can also be built to help identify where areas may have high levels of infiltration
and inflow which can help notify workers to do maintenance on the pipes in the
section of the network to decrease the amount of rain and groundwater being
processed by the wastewater treatment plants helping decrease the cost of

maintaining the wastewater system and making it so the pipes carry less overall
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water increasing the lifespan and decrease upgrades costs to accommodate the

infiltration of rain and groundwater.
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Appendix

Figures and Tables

Table 1. Values used to predict the flow of water within the training data timespan
(prediction using all variables)

Time (Hours) | Water Precipitation | Groundwater | Actual Flow Predicted
Consumption (L/Sec) Flow (L/Sec)
14 3.9 0.0 3.78 5.36 5.09
15 3.9 0.0 3.78 5.30 5.09
16 5.3 0.0 3.78 5.55 5.50
17 59 0.0 3.78 6.01 5.68
18 6.6 0.0 3.78 6.12 5.89
19 6.6 0.0 3.78 6.06 5.89
20 54 0.1 3.78 7.82 5.99
21 4.6 0.3 3.78 7.22 6.71
22 4.6 0.1 3.78 6.63 5.77
23 2.6 0.2 3.78 7.05 5.65
00 1.3 0.1 3.78 5.96 4.79
01 0.7 0.1 3.78 5.49 4.61
02 0.7 0.0 3.78 4.54 414
03 0.7 0.0 3.78 4.05 4.13
04 0.7 0.0 3.77 4.29 4.13
05 3.3 0.0 3.77 4.32 4.89
06 7.3 0.0 3.77 4.09 6.08
07 7.3 0.0 3.77 4.76 6.08
08 5.9 0.0 3.77 5.55 5.65
09 5.3 0.0 3.76 5.10 5.47
10 4.6 0.0 3.76 5.38 5.26
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11 3.9 0.0 3.76 6.02 5.06
12 5.3 0.0 3.76 6.02 5.47
Table 2. Values used to predict wastewater flow after training data span
Time Water Precipitation Groundwater | Actual Flow Predicted
Consumption Flow
14 3.9 0.0 3.73 6.23 5.01
15 3.9 0.0 3.73 6.57 5.01
16 5.3 0.0 3.73 6.73 5.42
17 5.9 0.0 3.73 6.95 5.61
18 6.6 0.0 3.74 7.19 5.82
19 6.6 0.0 3.74 7.33 5.82
20 5.4 0.0 3.74 6.77 5.44
21 4.6 0.0 3.74 6.55 5.24
22 4.6 0.0 3.75 6.12 5.24
23 2.6 0.0 3.75 4.30 4.65
00 1.3 0.0 3.75 3.97 4.27
01 0.7 0.0 3.75 3.56 4.10
02 0.7 0.0 3.75 3.80 4.10
03 0.7 0.0 3.76 3.53 4.10
04 0.7 0.0 3.76 3.32 4.11
05 3.3 0.0 3.76 3.78 4.9
06 7.3 0.1 3.76 4.42 6.06
07 7.3 0.1 3.76 6.38 6.54
08 5.9 0.1 3.76 6.21 6.13
09 5.3 0.1 3.77 5.89 5.95
10 4.6 0.0 3.77 6.14 5.75
11 3.9 0.0 3.77 6.22 5.07
12 5.3 0.0 3.77 6.59 5.50
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Flow L/Sec vs Groundwater

Figure 4. Rate of flow vs groundwater level. Formula: Y = -1.37 + 1.74 X X

Pearson's correlation coefficient: 0.094

Flow L/Sec vs Precipitation

0.0 0.2 0.4 0.6 0.8 1.0

Figure 5. Rate of flow vs precipitation. Formula: Y =5.077 + 4.47 X X. Pearson's

correlation coefficient: 0.202

41



Flow L/Sec vs Water Usage

Figure 6. Rate of flow vs water usage. Formula: Y = 3.89 + 0.29 X X Pearson’s

correlation coefficient: 0.496

Predicted Flow Using Groundwater Level vs Actual Flow
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Figure 7. Prognosis using groundwater level.
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Predicted Flow using Percipitation vs Actual Flow
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Figure 8. Prognosis using precipitation.

Predicted Flow using Water Usage vs Actual Flow
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Figure 9. Prognosis using water usage.
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Predicted Flow vs Actual Flow {using training data)
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Figure 10. Predicted flow vs actual flow using all three variables within the

training data timespan.

Predicted Flow Using Ground Water and Drink Water vs Actual Flow (using training data)
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Figure 11. Predicted flow using ground water and water usage within training data

timespan.
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Predicted Flow Using Precipitation and Drink Water vs Actual Flow (using training data)
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Figure 12. Predicted flow using precipitation and water usage within training

model timespan

Predicted Flow Using Precipitation and Ground Water vs Actual Flow (using training data)
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Figure 13. Predicted flow using precipitation and groundwater within training

model timespan
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Predicted Flow vs Actual Flow
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Figure 14. Predicted flow vs actual flow using all three variables after the training

data timespan [21].

Predicted Flow Using Ground and Drink Water vs Actual Flow
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Figure 15. Predicted flow using groundwater and water usage after training data

timespan.
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Predicted Flow Using Precipitation and Drink Water vs Actual Flow
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Figure 16. Predicted flow using precipitation and water usage after training data

timespan

Predicted Flow Using Precipitation and Ground Water vs Actual Flow
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Figure 17. Predicted flow using precipitation and groundwater after training data

timespan
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Predicted Flow using Water Usage vs Actual Flow
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Figure 18. Predicted flow using all three variable on the smaller pipe location
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Source Code

Data Collection and Manipulation

, delimiter = ;")

flowround[ ' Timestamp pd.to_datetime(flowround[ "Tim mp*]).round('h")

flowround . to_csv("flowRound.csv", index = )

flow = pd.read_csv('f d.csv', index col=8)
flow = flow[~flow.index.duplicated(keep="first")]

13 . append|(jf Low[)

After retrieving the data in CSV files either programmatically or from the
loTportal provided, the files are first read and each timestamp rounded to the
nearest hour, this is then saved to a new CSV file without indexing and then read
again but now setting the index to the timestamp, we then keep only the highest
value in that timestamp. this is then appended to the array to later be saved to a

file. This is repeated for each variable collected.

pd.concat{li, axis = 1)

frame[~frame.index.duplicated(keep="first")]

.to csv("combined.csv"™)

The array with all the variables are transformed into a pandas dataframe and
checked and deleted any duplicates, keeping the highest value. This is then saved
to a CSV file.
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Simple Linear Regression and Pearson's Correlation Coefficient

im pd

df = pd.read_csv( ", np', parse_dates= ).dropna()

Firstly, we must import all the libraries to be used and then read the csv file
setting our index to timestamp and dropping any rows which are missing data
because this will cause our machine learning algorithms to fail.

simplelLinearRegression(independent):
print{"\n
¥ = df[[independent]]
b = x.values.reshape((-1,1))
x = pd.D

y = df[’

;TICIdE 1 = Lin

r_sq =
print(’

print( :', model.intercept_ )
print( ": . model.coef )

¥1 = np.array(df[independent](}

corr, _ = pearsonr( )

Here is the method used for the simple linear regression model, firstly we must
load all the variables to be used in the regression model which would be an
independent variable and the dependent variable being flow. We then fit these
variables to the linear regression model and then print the data we want to
retrieve. To calculate the Pearson’s correlation coefficient, we first have to
transform the independent dataframe to an array and then pass the variables to the

method provided from our libraries.
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Multi-Linear Regression and Predictions

multilinearRegression{independent):

print(™\n Multi Linear
df[independent]

y = df['Flow L/

x = sm.add_constant(x)

model = sm.OLS(y, x}).fit()
print_model = model.summary()
print(print_model)

For the multi-linear regression method, the variables first have to be defined and
then a constant is added to the independent variables, we then pass this through

our model provided by the imported libraries and then a summary can be printed.

predictions(independent):
print("\
x = df[independent]

print ( \n")

for i, 1, j, k in zip(waterlevel, Percipitation, waterUse, actualFlow):
print(regr.predict([[i, 1, j11))

This is the method used to create our predictions, the variables are first read and
passed to the method imported. this can then be used to print the intercepts and
coefficients for each independent variable, finally we can print our predictions
using the methods imported. it is important to uncomment according to which
variables are used for the prediction. if only one variable is used then it must be

o1



reshaped to be able to be used in the model. the values used for the prediction was

hard coded into the program.

predictions([ "'waterL

multil inearRegression([ ‘waterlLevel

simpleLinearRegression('Pre

This is an example of how these methods are used, only prediction methods must

be changed according to which independent variables are used.
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