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Due to the intrinsic complexity of wastewater treatment plant (WWTP) processes, it is always challenging to re-
spond promptly and appropriately to the dynamic process conditions in order to ensure the quality of the efflu-
ent, especially when operational cost is a major concern. Machine Learning (ML) methods have therefore been
used to model WWTP processes in order to avoid various shortcomings of conventional mechanistic models.
However, to the best of the authors' knowledge, no ML applications have focused on investigating how opera-
tional factors can affect effluent quality. Additionally, the time lags between process steps have always been
neglected, making it difficult to explain the relationships between operational factors and effluent quality. There-
fore, this paper presents a novel ML-based framework designed to improve effluent quality control inWWTPs by
clarifying the relationships between operational variables and effluent parameters. The framework consists of
Random Forest (RF)models, DeepNeural Network (DNN)models, Variable ImportanceMeasure (VIM) analyses,
and Partial Dependence Plot (PDP) analyses, and uses a novel approach to account for the impact of time lags be-
tween processes. Details of the framework are provided along with a demonstration of its practical applicability
based on a case study of the UmeåWWTP in Sweden involving a large number of samples (105763) representing
the full scale of the plant's operations. Two effluent parameters, Total Suspended Solids in effluent (TSSe) and
Phosphate in effluent (PO4e), and thirty-two operational variables are studied. RF models are developed, vali-
dated using DNN models as references, and shown to be suitable for VIM and PDP analyses. VIM identifies the
variables that most strongly influence TSSe and PO4e, while PDP elucidates their specific effects on TSSe and
PO4e. The major findings are: (1) Influent temperature is the most influential variable for both TSSe and PO4e,
but it affects them in different ways; (2) PO4e depends strongly on the TSS in aeration basins – higher TSS con-
centrations in aeration basins generally promote PO4 removal, but excess TSS can have negative effects; (3) In
general, the impact of TSS in aeration basins on TSSe and PO4e increases with the distances of the basin from
the merging outlet, so more attention should be paid to the TSS concentration in the third or fourth aeration
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Nomenclature

ANN Artificial Neural Network
ASM Activated Sludge Model
BOD Biological Oxygen Demand
CART Classification and Regression Tree
COD Chemical Oxygen Demand
DNN Deep Neural Network
DO Dissolved Oxygen
GAO Glycogen-Accumulating Organism
MDI Mean Decrease Impurity
ML Machine Learning
OOB Out-of-Bag
PAO Polyphosphate-Accumulating Org
PDP Partial Dependence Plot
PI Permutation Importance
PO4 Phosphate
R2 Coefficient of Determination
RF Random Forest
TS Total Solids
TSS Total Suspended Solids
VIM Variable Importance Measures
WWTP Wastewater Treatment Plant
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basins than the first and second ones; (4) Returning excessive amounts of sludge through the second return
sludge pipe should be avoided because of its adverse impact on TSSe removal. These results could support the de-
velopment of more advanced control strategies to increase control precision and reduce running costs in the
UmeåWWTP and other similarly configuredWWTPs. The framework could also be applied to other parameters
in WWTPs and industrial processes in general if sufficient high-resolution data are available.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
anism
1. Introduction

Wastewater treatment plants (WWTPs) are complex, nonlinear sys-
tems with high fluctuations in flow rate, pollutant load, chemical envi-
ronment, and hydraulic conditions. Due to these complexities and
uncertainties, modeling WWTP processes is challenging (Borzooei
et al., 2019; Rout et al., 2021; Vučić et al., 2021). Mechanistic models
such as Activated SludgeModels (ASMs) have been widely used to sim-
ulate WWTP processes and predict the behavior of certain variables
(Buaisha et al., 2020; Fenu et al., 2010; Nopens et al., 2009; Wu et al.,
2016). However, many simplifications and assumptions are needed to
make mechanistic models tractable and computable, so they have
many limitations. For example, ASMs are only valid in certain ranges
of temperature, pH and alkalinity (Gujer et al., 1995; Gujer et al.,
1999; Hauduc et al., 2011; Henze et al., 1987; Henze et al., 1999). In ad-
dition, coupling differentmechanisticmodels that simulate processes in
different units is difficult because of differences in approaches used to
calculate state variables — for example, Total Suspended Solids (TSS)
is calculated and incorporated differently in ASMs and second clarifier
models (Metcalf, 2013; Volcke et al., 2006). Other intrinsic shortcom-
ings of mechanistic models include inadequate handling of the time-
varying and highly nonlinear behaviors of processes affected by various
known and unknown factors, inability to comprehensively simulate
various processes, high costs, and poor generalization performance
(Cao and Yang, 2020; Guo et al., 2015; Liu et al., 2020; Shi and Xu,
2018; Singh et al., 2010; Verma et al., 2013). Machine Learning (ML)
models avoid many of these limitations because they are based solely
on extracting relationships between output and input data that enable
predictions and/or facilitate decisions (Müller and Guido, 2016). An
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important advantage of MLmodels is that they reflect real reaction/pro-
cess situations rather thanmechanisms formulated in advance based on
fundamental principles. Consequently, they are robust and comprehen-
sive, which is important because manymechanisms involved in waste-
water treatment remain unclear (Chan and Huang, 2003; Erdirencelebi
and Yalpir, 2011; Faruk, 2010; Lee et al., 2002; Nadiri et al., 2018). ML
modeling is therefore widely used as an alternative to mechanistic
modeling of WWTPs (Cao and Yang, 2020; Guo et al., 2015; Liu et al.,
2020; Shi and Xu, 2018; Singh et al., 2010; Verma et al., 2013).

However, there is a significant gap in the literature on ML modeling
of WWTPs: the vast majority of published studies have focused on pre-
diction or building soft sensors using nonlinear ML models without
interpreting themodels to obtain knowledge about how the studied tar-
gets can be influenced or controlled. This is true both for black-box
models (e.g., ANN-based approaches) and interpretable models such
as tree-based models (Corominas et al., 2018; Dürrenmatt and Gujer,
2012; Haimi et al., 2013; Meng et al., 2021; Newhart et al., 2019). One
can argue that ANN-based models are difficult to interpret because the
ANN structures or weights provide only minimal information about
the approximated functions (Guidotti et al., 2018; Rudin, 2019). How-
ever, tree-basedmodels are very interpretable because of their inherent
structure (Breiman, 2001; Chen and Guestrin, 2016; Ke et al., 2017). Re-
searchers should take advantage of this because knowledge about how
operational factors affect effluent quality is extremely valuable in engi-
neering scenarios to improve WWTP processes. In addition to their
greater interpretability, tree-based models are comparable to ANN-
based models in terms of the variation captured (often termed ‘accu-
racy/precision’ in prediction scenarios) (Ahmad et al., 2017;
Chowdhury et al., 2020; Kumari and Toshniwal, 2021; Liu et al., 2013).
This is important because capturing more variation increases the reli-
ability of model interpretation and analysis. Another major gap is that
models usually treat time lags between process steps in WWTP pro-
cesses with insufficient rigor or neglect it entirely. This could lead to
misleading or incorrect interpretation and analysis of model outputs,
which in turn could cause problems when attempting to control pro-
cesses based on cause-and-effect relationships identified through such
analyses and interpretations.

This study is therefore motivated by three key considerations. First,
as observed in a local WWTP, Umeå WWTP in Sweden, there is a clear
need for developing advanced control strategies that can be used to op-
timize the use of energy and chemicals inWWTPs without compromis-
ing on the effluent quality. The current approaches are inefficient
because they rely heavily on ‘trial and error’ for problem-solving. Sec-
ond, there is little information on the potential benefits of using ML
more extensively to understand and control processes inWWTPs rather
than simply to develop soft sensors or generate predictions. Finally,
there is no established way of handling time lags between process var-
iables even though these lags must be accounted for in order to reliably
and convincingly interpret the trained models.

To address these issues, a novel ML framework based on Random
Forest (RF) models (representative of tree-based models), Deep Neural
Network (DNN) models, Variable Importance Measure (VIM) analyses,
and Partial Dependence Plot (PDP) analyses was developed and used
to model WWTP processes and investigate how operational variables
influence effluent quality. This paper presents a detailed description of
the framework and demonstrates its applicability in engineering
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scenarios through a case study on the Umeå WWTP in Sweden involv-
ing a large amount of data (105,763 samples) representing the full
scale of the plant's operations.

2. Material and methods

2.1. Processes and data sources in Umeå WWTP

As shown in Fig. 1, Umeå WWTP is an activated sludge process-
basedWWTP. It is the biggestWWTP inUmeåmunicipality and receives
about 13,000,000m3 ofwastewater annually. This case study focused on
the wastewater treatment section, but some sludge flows (brown
pipes) were also considered because they are directly connected to
thewater treatment process. The first main treatment is aerated grit re-
moval, in which organic matter is flushed off dense solids that subse-
quently settle and are collected. The next treatment is coagulation (in
unit 10), during which a large fraction of the suspended matter coagu-
lates in the presence of FeCl3 and then flocculates before settling in a
sedimentation basin (unit 11). Most of the phosphorus is removed dur-
ing this process by chemical precipitationwith the coagulant FeCl3. Note
that the sole outlet discharging sludge to the sludge system in thiswater
process line is located in the sedimentation basin (unit 11). The water
then passes to the biodegradation section (units 12–14), where most
of the organic substances are degraded by microorganisms and most
of the organic content is removed. After the biodegradation units, the
water undergoes another coagulation process to remove residual
suspended matter, some impurities, and pathogens. Unit 19, a Cl2 con-
tact chamber, had been installed but was not used during the data col-
lection period of this case study.

Six kinds of online meters are installed at different points along the
treatment line: flow rate, TSS, pH, phosphate (PO4), temperature, and
total solids (TS)meters. Besides them, there aremultiple offlinemanual
samplers. In Fig. 1, the online meters are indicated by round symbols
while themanual samplers are indicated by the label PT. The full and ab-
breviated names of the online meters as well as their model numbers
and properties are listed in Table S1 of the Supplementary Material.
Only data from the onlinemeters were considered in this case study be-
cause they all recorded data at the same high resolution (1ms per sam-
ple), which substantially enhanced the reliability and robustness of the
analysis. However, the raw high-resolution data from each meter were
compressed by averaging over 10-minute periods to obtain time series
with temporal resolutions of 10min. This was done because the compo-
sition of the treated water does not usually changemuch over short pe-
riods of time and averaging in this way can alleviate the effect of
sampling noise.

The output data for model development and the subsequent analy-
ses were the quantities measured by two of the effluent variable meters
(TSSe and PO4e), while the input data were the data provided by all the
Fig. 1. Schematic depiction of process units a
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other online meters. The original data were embedded in multiple
matrices and were very messy, with missing values, bad data cells,
and unnecessary information. Therefore, the Python modules Numpy
(Oliphant, 2006) and Pandas (McKinney, 2010) were used to prepare
an organized ‘clean’ dataset for analysis. This dataset contained
105,861 samples (data points) with 34 variables, giving a matrix size
of 105,861 × 34. The samples were organized in time series with 10-
min intervals.

2.2. Time lag calculation

The wastewater treatment processes are dynamic and involve mul-
tiple flows of bothwater and sludge, so there are lags between the times
that water in the process streams reaches different meters. However,
the original data are in time series. Therefore, tomake theMLmodels in-
terpretable in terms of WWTP processes, the original time-series data
must be converted into batch-series data. The conversion process is il-
lustrated in Fig. 2, where T, V, B and d represent time points, variables,
batches and data values, respectively. In this simplified case, the four
data values (say, d11, d12, d13, and d14) associated with a given time
point (in this case, T1) in the left-hand time series dataset represent
the averaged values recorded by four different meters during the
same 10-min period. However, because water takes time to flow
through the WWTP and the meters are located in different parts of the
plant, the values recorded by each meter at any given time point will
represent different volumes or ‘batches’ of water. For example, if
water within the plant flows from V4 to V1, then a batch of water enter-
ing the plant will first reach V4 at a certain time point (say, T1), gener-
ating a data value (d14). Then, at some later time point (say, T2), it will
reach V3 and generate another data value (d23). It will flow further
through the plant until at some later time point (say, T4) it reaches V2
and generates a third data value (d42). Finally, it will reach V4 at a
time point later still (say, T5) and generate a fourth data value (d54).
We therefore convert the initial time series data into a batch series (as
shown on the right of Fig. 2) in which consecutive batches can be
thought of as volumes of water entering the WWTP in consecutive 10-
minute periods, and the data values for each batch correspond to the
meter readings of that batch as it moves through the treatment stages
of the WWTP. Note that only batches for which data on all variables
exist should be retained; in the example shown in Fig. 2, these are
batches B5–B7, which are highlighted with blue borders. The time lag
between two meters may be several multiples of 10 min, and the time
that it takes different batches to reach different meters will not be con-
stant because the flow rate fluctuates. Since theflow rate is a function of
time, the time lag between different meters is determined by integra-
tion. Specifically, as shown in Eq. (1), every integral between two adja-
cent time-points ai and bi (which are always 10 min apart) is summed
along the dimension of time t to determine how many integrals
nd monitoring probes at UmeåWWTP.



Fig. 2. Illustration of the transformation of time-series data into batch-series data.
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correspond to the distance in volume, VDAB, between two meters A and
B. In other words, the value of n in Eq. (1) must be computed to deter-
mine the time lag between pairs of meters in multiples of 10 min.

VDAB ≈
Xn
i¼1

Z bi

ai
f tð Þdt ð1Þ

It should be noted that two flow meters were used to calculate the
time lags before (FTbi) and after (FTai) the point where the flow from
the sludge system enters the water processing system.

2.3. Random Forest (RF)

As mentioned in the Introduction section, tree-based models
offer comparable performance to ANN models while also being
readily interpreted. That is to say, the importance of input variables
and their effects on the output can be extracted from a trained RF
model. RF is used in this work as a representative tree-based
modeling strategy because RF models have some major advantages
over alternative tree-based models; notably, they require
fewer hyperparameters for tuning, their performance is robust to
hyperparameter changes, and they are less likely to suffer from
overfitting (Breiman, 2001; Breiman, 2002; Chen and Guestrin,
2016; Fawagreh et al., 2014; Ke et al., 2017).

RF can be described as an ensemble method in which the final result
is obtained by aggregating (through averaging in the case of regression)
results frommultipleweak learners known as Classification and Regres-
sion Trees (CARTs) (Breiman, 2017). Eachweak learner (tree) is trained
on the bootstrap set, which is obtained by sampling with replacement
from the original training set. For trees, the input variables are used to
generate nodes. These variables are selected partially and randomly as
a subset in every split, then the variable contributing to the smallest
sum of impurity of two child nodes at a certain split point is chosen as
the split variable. This is done repeatedly until the trees don't need to
split anymore. The regression impurity of a particular node is defined
by Eqs. (2), (3) and (4),

Nm ¼ Xi∈Rmf gj j ð2Þ

ŷm ¼ 1
Nm

X
Xi∈Rm

yi ð3Þ
4

Im ¼ 1
Nm

X
Xi∈Rm

yi−ŷmð Þ2 ð4Þ

where Rm is the region of the node (which is indexed by m), Nm is the
number of the samples in Rm, yi is the response corresponding to Xi,
ŷm is the average of yi in Rm, and Im is the impurity of Rm.

Breiman proved that the out-of-bag (OOB) estimates based on
OOB data from bootstrapping offer almost identical performance to
that achieved using a test set of the same size as the training set for
error estimation (Breiman, 2001). Therefore, the OOB error was
used in this work as the optimization objective to select the optimal
three hyperparameters, ‘Tree number’, ‘Maximum variable subset’,
and ‘Minimum leaf size (number of samples at the nodes)’, by the
random search (Bergstra and Bengio, 2012) method. The ranges of
the hyperparameters for random search were predefined as: Tree
number [200, 800], Maximum variable subset at every split [2, 31],
and Minimum leaf size [2, 80].

2.4. Deep Neural Network (DNN)

Artificial Neural Network (ANN)models are used to validate the per-
formance of RF in this study because of their superb ability to model
complex information and generate accurate predictions (Oliveira et al.,
2019; Ozoegwu, 2019; Parisi et al., 2019; Shabanpour et al., 2017).
There are three kinds of layers in a typical feedforward ANN: the
input, hidden, and output layers, each of which consists of multiple
neurons (nodes). Usually, when there is more than one hidden layer, a
feedforward ANN can be called a Deep Neural Network (DNN)
(Sugiyama, 2019). The following equation shows how one neuron is
connected to the neurons in the previous layer, and how the informa-
tion from the input is fed forward.

xjþ1 ¼ f
X
i

wi; jþ1xi; j þ bjþ1

 !
ð5Þ

In Eq. (5), x is the neuron, j is the layer index, i is the neuron index in
layer j, w is the weight between two layers, b is the bias weight term,
and f (·) is the activation function.

It is worth noting that no activation function was applied between
the last hidden layer and the output layer because DNN was used for



1 Here, an R2 value larger than 0.85 was considered ‘good enough’. This is a subjective
criterion that only applies to this study.
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regression rather than classification in this work. Moreover, there was
only one neuron in the output layer.

Network training is performed using the backpropagation method
(Rojas, 1996). Based on the gradient descent of loss function, the
weights of the neurons can be updated backward from the output
layer according to Eq. (6), and the weights of biases can be updated in
the same fashion.

wþ
j; jþ1 ¼ wj; jþ1−ηojδ jþ1 ð6Þ

In Eq. (6), w+ is the updated weight over w, δj+1 is the derivative
(gradient) of the loss function with respect to the activation function
applied in the j + 1 layer, oj is the neuron in layer j, and η is the learning
rate, which determines by how much the weight is be adjusted.

2.5. Variable Importance Measure (VIM) analysis

The twomost common types of Variable ImportanceMeasure (VIM)
are the Permutation Importance (PI) and Mean Decrease Impurity
(MDI) measures (Breiman, 2001; Breiman, 2002). We used the MDI
measure for our RFmodels. MDIwas adopted for the following reasons:
MDI is more robust and computationally efficient than PI (Calle and
Urrea, 2011; Li et al., 2019); all the variables of the data in this study
are with continuous values, which means using MDI will not cause the
bias issue mentioned in the literature (Boulesteix et al., 2012; Strobl
et al., 2007).

MDI evaluates the importance of variable Xm by assessing the reduc-
tion in ‘impurity’ at the nodewhere the variable is used to split the input
data. If tL and tR are used to denote the two child nodes from the split of
node t (st), Nt is used to denote the number of samples at node t, andNtL
andNtR denote the numbers of samples in the left and right child nodes,
respectively, then the decrease in impurity can be calculated as:

ΔI st ; tð Þ ¼ I tð Þ−NtL

Nt
I tLð Þ−NtR

Nt
I tRð Þ ð7Þ

Here, I(·) is the impurity measure defined by Eqs. (2), (3) and (4) in
Section 2.3.

At every node there is a split using a certain unique variable, and all
the variables are used in the whole tree. Therefore, the MDI of a given
variable in an RF model can be defined by averaging all trees and
nodes where this variable is used to split. As shown in the following
equation, the importance of variable Xm can be calculated by summing
the weighted impurity reductions p(t)ΔI(st, t) at all nodes t where Xm

is used and then averaging the sum over all NT trees in the forest:

VI Xmð Þ ¼ 1
NT

X
T

X
t∈T:v stð Þ¼Xm

p tð ÞΔI st ; tð Þ ð8Þ

Here, p(t) is the proportionNT/N of samples reaching node t and v(st)
is the variable used in split st.

2.6. Partial Dependence Plots (PDPs)

After determining which variables are most important, their effects
on the outputmust be examined to improve understanding of processes
in the plant. This was done using Partial Dependence Plots (PDPs)
(Friedman, 2001).

The partial dependence function gxs
(·) is estimated by averaging the

output over all the samples and can be expressed using Eq. (9).

gxs xsð Þ ¼ 1
n

Xn
i¼1

g xs;X
ið Þ
c

� �
ð9Þ

Here, xs is the variable for which the partial dependence function is
plotted and Xc are the other variables used as inputs in the ML model:
5

g(·). xs and Xc together constitute the whole variable space X. i is the
index of training data samples and n is the number of training data sam-
ples. It can be seen that the partial dependence function marginalizes
the predicted output over all the variables in set C (Xc) to demonstrate
the correlation between the variable xs and the predicted outcome.
2.7. Study framework

The original data were cleaned and transformed into batch-series
data as described in Section 2.1. This reduced the number of samples
from 105,861 to 105,763. For both TSSe and PO4e, the data were ran-
domly divided into a training set containing 90% of the original data
and validation and test sets each containing 5% of the original data. In
the FR and DNN modeling, these datasets were subjected to the pro-
cesses shown in Fig. 3.

In the RF modeling, the training dataset were divided into bootstrap
and out-of-bag (OOB) datasets to train themodel within the predefined
hyperparameter space and to validate the trainedmodel, respectively. If
the optimal OOB score (the R2 value calculated from the observed and
predicted outputs in the OOB dataset) was not good enough,1 the
hyperparameter space was adjusted. If the optimal OOB score was
good enough, the corresponding model was used to predict the valida-
tion dataset to check for over-fitting and further refine the model's
hyperparameters if necessary. The model was then applied to a test
dataset to assess its generalization performance (ability to predict un-
known datasets). The RF model's performance was evaluated alone
and also compared to the DNN model's performance to determine
whether the RF model was suitable for further interpretation analyses.
If it was suitable, VIM was subsequently applied to the model to evalu-
ate the importance of each variable. The threemost important variables
were investigated, and PDPs were generated to display their influence
patterns on the output.

A non-interpretable DNN model was also generated to check
whether the RF model captured sufficient variance to support VIM-
and PDP-based interpretation. DNN modeling involved no division of
the trainingdataset but required that the dataset be standardized before
being used for model training. The validation and test sets were stan-
dardized as well. The validation dataset was used to prevent over-
fitting of the trained model, and the performance on the validation set
was calculated (in terms of R2 values) after every training epoch. If
therewere signs of overfitting (i.e., the prediction performance is signif-
icantly better on the training set than on the validation set, and the gap
remains or increases as the training proceeds), the trainingwas aborted.
If the best performance on the validation dataset was good enough and
did not vary greatly from the performance on the training dataset, the
model was accepted and its performance on the test dataset was evalu-
ated. Otherwise, the hyperparameters (e.g., numbers of hidden layers,
number of neurons in the hidden layers, activation function, and/or
size of mini-batches) were adjusted before the model went through
the training and validation procedures again until the satisfactory per-
formance was achieved on the validation set. This manual tuning pro-
cess for acquiring optimal hyperparameters is termed Grad Student
Descent (Gencoglu et al., 2019). The final performance on the test set
was used to evaluate RF's final performance.
3. Results and discussion

3.1. Model structure & performance

This section describes the final optimal configurations of the RF and
DNN models and their performance. TSSe_RF and PO4e_RF are used to
denote the RF models for TSSe and PO4e, respectively. TSSe_DNN and



Fig. 3. Flow chart of the study. After the data are cleaned and time lags among variables have been handled, the data are divided into training, validation, and test sets. The training set are
used to train the RF andDNNmodels, and the validation set are used to check if the trainedmodels are overfitted. If overfitting exists, the hyperparameters are adjusted, and themodels are
trained again. This procedure can be repeated until there is no evidence of overfitting. The test set are then used to evaluate the models' generalization performance. The RF model's
performance is evaluated alone and also compared to the DNN model's performance to determine whether the RF model is suitable for further interpretation analyses. If it is, VIM
analysis is performed to identify the most influential input variables for each output. PDP analysis is then performed to investigate the effects of those variables on the outputs.
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PO4e_DNN are used to denote the DNN models for TSSe and PO4e,
respectively.

As shown in Table 1, the optimal hyperparameter sets (specified in
the order Tree number, Maximum variable subset, Minimum leaf size)
were (253, 13, 3) for TSSe_RF and (583, 17, 5) for PO4e_RF.

The performances of these two RF models on the three datasets are
shown in Table 3. For TSSe_RF, the R2 values of prediction on the
training, validation, and test datasets are 0.934, 0.862, and 0.920, re-
spectively, while those for PO4e_RF are 0.905, 0.870, and 0.886, respec-
tively. Bothmodels thus capture over 90% of the variation in the training
dataset, and can predict a very high percentage of the variation in the
unknowndataset (92% for TSSe_RF and 88.6% for PO4e_RF). Bothmodels
Table 2
Optimal hyperparameters for DNN models.

Hidden layer
number

Neuron number in
1st hidden layer

Neuron number in
2nd hidden layer

Neuro
3rd h

TSSe_DNN 3 128 256 128
PO4e_DNN 3 256 128 128

Table 1
Optimal hyperparameters for RF models.

Tree number Maximum variable subset Minimum leaf size

TSSe_RF 253 13 3
PO4e_RF 583 17 5
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also achieve excellent generalization performance — they predict the
unknown dataset (test dataset) almost as well as the datasets used to
train and tune them (the training and validation dataset).

Optimal hyperparameters for both DNN models are shown in
Table 2. For TSSe_DNN, the optimal number of hidden layers is three,
with optimal neuron counts of 128, 256, and 128 for hidden layers
1–3, respectively. The weight initializer for each layer is the Glorot uni-
form initializer (Glorot and Bengio, 2010). For all the input and hidden
layers except the last hidden layer, the activation function is ReLU
(Agarap, 2018). The optimizer for the gradient descent operation is
Adadelta (Zeiler, 2012). The mini-batch size is 32. All the layers are
fully connected. PO4e_DNN has the same optimal hyperparameters ex-
cept for the numbers of neurons in the hidden layers, which are 256,
256, and 128.

The DNN models' performances on the three datasets are shown in
Table 3. For TSSe_DNN theR2 values of prediction on the training, valida-
tion, and test datasets are 0.935, 0.892, and 0.920, respectively. For
PO4e_DNN the R2 values are 0.904, 0.908, and 0.872, respectively. Both
TSSe_DNN and PO4e_DNN models capture over 90% of the variation in
the training dataset and can predict a very high percentage (92% for
n number in
idden layer

Activation
function

Optimizer Mini-batch
size

Weight initializer

ReLU Adadelta 32 Glorot uniform initializer
ReLU Adadelta 32 Glorot uniform initializer



Table 3
Model performances on the training, validation, and test sets (R2 values).

Training set Validation set Test set

TSSe_RF 0.934 0.862 0.920
TSSe_DNN 0.935 0.892 0.920
PO4_RF 0.905 0.870 0.886
PO4_DNN 0.904 0.908 0.872
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TSSe_DNN and 87.2% for PO4e_DNN) of the variation in the unknown
dataset. The results on the test dataset also show that both TSSe_DNN
and PO4e_DNN have excellent generalization performance.

In summary, both RF and DNNmodels predicted the training, valida-
tion, and test datasets extremely well and achieved excellent generali-
zation performance for TSSe and PO4e. Moreover, TSSe_RF and
TSSe_DNN had similar performances, PO4e_RF and PO4e_DNN had sim-
ilar performances aswell; PO4e_RF even showed slightly better general-
ization performance than PO4e_DNN. The trained RF models thus
captured the relationships between the operational variables and efflu-
ent parameters well and could be reliably used for further (VIM and
PDP) analysis.

3.2. VIM from RF

After acquiring the trained models, VIM analysis was used to evalu-
ate the importance of each variable in the models. Fig. 4 shows the re-
sults the of VIM analysis for both TSSe and PO4e. The variables were
categorized into three levels based on their VIM values — ‘significantly
important (cyan, [0.1, +∞))’, ‘important (orange, [0.05, 0.1))’, and
‘least important (green, [0, 0.05))’.

Fig. 4 shows that:

• According to the VIM values of the variables and the definition of im-
portance given above, the important variables for TSSe are TTin
(0.188), FTsr (0.091), TSSlr (0.091), TSSa3 (0.055), and FTab3 (0.052).
For PO4e, they are TTin (0.188), TSSa4 (0.1), TSSa3 (0.097), TSSlr
(0.089), TSSa2 (0.087), FTab4 (0.06), DOa4 (0.057), and FTgc (0.055).

• The VIM values of TTin, TSSlr, and TSSa3 are greater than 0.05 for both
TSSe and PO4e, indicating that these three variables are important
Fig. 4.Variable importance histograms for TSSe and PO4e. The subfigure titled ‘TSS’ is the histogr
into three levels based on their VIM values— ‘significantly important (cyan, [0.1, +∞))’, ‘impor
references to color in this figure legend, the reader is referred to the web version of this article
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for both TSSe and PO4e. Additionally, TTin is the most important vari-
able for both TSSe and PO4e, with a VIM value of 0.188 for both. The
importance of TTin is consistent with the widely accepted point that
temperature strongly affects both coagulation and the production of
microorganisms (Nolasco, 2008; Spellman, 2013). TSSlr is important
because of the chain that connects TSSlr and TSSe. The source of TSSlr
is the sedimented solids in the final sedimentation basin, and the
sedimented solids originate from the suspended solids and phosphate
from the water in the final sedimentation basin, which becomes the
effluent upon exiting the basin. TSSa3 represents the total suspended
solids in the aeration basins; its importance is thus consistent with
the principle that the amount of activated sludge in the aeration
basins significantly affects themetabolism and reproduction of organ-
isms that degrade organic substances or ingest phosphate (Federation
et al., 2006).

• For both TSSe and PO4e, the VIMvalues of TSSa1, TSSa2, TSSa3, and TSSa4
generally increase in that order, with the exception that TSSa4 has a
smaller VIM value than TSSa3 for TSSe. This pattern might result
from the layout of the aeration and biosedimentation basins: there
are four parallel ‘aeration basin + biosedimentation basin’ lines, and
the outflows from the four lines merge at one point to enter the
next unit, which is the coagulant mixing basin (unit 15). The merging
point aligns with the first ‘aeration basin + biosedimentation basin’
line (denoted by ‘a1’), and the distances between each line and the
merging point increase in the order a1 < a2 < a3 < a4, meaning
that the delays in reaching the merging point increase in the same
order. Therefore, the order of the VIM values can be interpreted to
mean that the portion merging later will have a larger impact on the
effluent quality, which reveals the intrinsic ‘increasingmarginal utility
(Kauder, 2015)’ among the four parallel lines.

• TSSa2, TSSa3, and TSSa4 have VIM values of 0.87, 0.97, and 0.1, respec-
tively, for PO4e, meaning they are important for PO4e. This indicates
that the effluent's PO4 concentration depends strongly on the TSS con-
centration of the aeration basins, which can be explained by the
established knowledge: (i) the TSS concentration in the aeration ba-
sins directly reflects the concentration of activated sludge and (ii)
the polyphosphate-accumulating organisms (PAOs) in activated
sludge play a key role in phosphate consumption (Wiesmann et al.,
2007).
am for TSSe and the one titled ‘PO4’ is the histogram for PO4e. The variables are categorized
tant (orange, [0.05, 0.1))’, and ‘least important (green, [0, 0.05))’. (For interpretation of the
.)
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3.3. PDP from RF

Centered PDPs (generated as described in Section 2.6) for the three
most important variables in themodels for TSSe and PO4e are presented
in Fig. 5. In this figure, the variable values are plotted on the x-axes and
the centered partial dependence values are plotted on the y-axes. The
purpose of centering is to highlight the change in the partial depen-
dence value as a variable changes from its minimum value to its maxi-
mum value. The light blue envelopes in the figure show the range
from the partial dependence value minus the standard deviation to
the partial dependence value plus standard deviation.

The following PDP interpretations for TSSe and PO4e are based on
discussions with engineers from Umeå WWTP, who understood the
Fig. 5. Centered PDPs of the three most important variables for TSSe (left panels— a, b, c) and
partial dependence values resulting from the variable values. The dark blue solid line is the
shown here instead of the original ones to highlight the variation resulting from the change
The light blue envelopes in the figures span the range from the partial dependence value mi
(For interpretation of the references to color in this figure legend, the reader is referred to the
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general mechanisms associated with the influence patterns but could
not predict with certainty the interactive responses of the target vari-
ables to specific changes in conditions. The PDP illustrations from this
case study provide potentially valuable insights into these responses,
and thus into optimal operational adjustments.

3.3.1. Interpretation of PDPs for TSSe
As shown in subfigure (a) of Fig. 5, TSSe decreases as TTin increases.

This suggests that raising the temperature, at least in the 6–16 °C
range, can enhance the removal of total suspended solids. It may be
that this is because raising the temperature within an appropriate
range can improve the physiological characteristics of microorganisms
(Adams et al., 2010; Garcia-Rios et al., 2016), increase microbial growth
PO4e (right panels— d, e, f): X axes indicate variable values, and Y axes indicate centered
line of centered partial dependence values. The centered partial dependence values are
of the variables' values. For clarity, the center line is indicated by an orange dashed line.
nus the standard deviation to the partial dependence value plus the standard deviation.
web version of this article.)
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rates (Rajeshwari et al., 2000; Spellman, 2013), boost microbial activity
(Rajeshwari et al., 2000; Young et al., 2017), improve the community
structure and species diversity of microorganisms (Chen et al., 2017),
enhance sludge settleability (Wilén et al., 2008; Yang and Li, 2009),
and promote coagulation and flocculation (Dayarathne et al., 2020).

Subfigure (b) of Fig. 5 indicates that changes in FTsr haveminimal ef-
fects on TSSewhen FTsr is in the range of 0–28m3/h. However,when FTsr
is between 28 and 33 m3/h, TSSe increases as the flow rate increases. At
FTsr above 33 m3/h TSSe remains constant. However, there are very few
data points in thisflow rate range, so the pattern at these high flow rates
is not very informative or conclusive. Nevertheless, this PDP clearly in-
dicates that once the flow rate in the second return sludge pipe reaches
a certain threshold, further increases reduce TSS removal. This can be
explained by the unique structure of the process units. The second re-
turn sludge pipe (No. 14 to No. 10) and the first return sludge pipe
(No. 14 to No. 12) both carry sedimented sludge from the secondary
sedimentation basin. If the amount of sludge returned through the sec-
ond return sludge pipe increases, the amount returned through the first
return sludge pipe decreases. Once FTsr reaches a certain value (gener-
ally 28 m3/h), the amount of activated sludge returned to the aeration
basin will be insufficient for biodegradation, increasing the concentra-
tion of untreated solids in downstream process units and the effluent.
Additionally, when FTsr exceeds this value, the first coagulant mixing
basin and the primary sedimentation basin will be overloaded with
suspended solids. The fraction of suspended solids not sedimented in
the primary sedimentation basin will therefore flow to the aeration
basin. However, this portion of sludge will have very limited biodegra-
dation capacity because many organisms in the returned sludge will
not survive passage through the anoxic units before the aeration basin
(Hussain and Bhattacharya, 2019), causing a greater solids load to be in-
troduced. This effectively doubles the negative effect of allowing FTsr to
rise above 28 m3/h.

Subfigure (c) of Fig. 5 shows that as TSSlr increases between 0 and
0.75 mg/L, TSSe also increases. However, the increase in TSSe levels off
at TSSlr values above 0.75 mg/L. TSSlr directly reflects the concentration
of sedimented solids in the final sedimentation basin, which originate
from the TSS in the water in the final sedimentation basin that will be-
come the effluent. TSSe will therefore inevitably be positively correlated
with TSSlr, which explains the pattern observed when TSSlr is below
0.75 mg/L. The change in pattern when TSSlr exceeds 0.75 mg/L may
occur becauseWWTP operators who see TSSe increasing beyond a spe-
cific value may act immediately to control it (e.g. by adding extra coag-
ulant into unit 15), thereby increasing the amount of TSS that settle in
the final sedimentation basin without increasing the TSS concentration
of the effluent.
3.3.2. Interpretation of PDPs for PO4e
As shown in subfigure (d) of Fig. 5, as TTin increases in the range

6–10.2 °C, PO4e decreases;with further increases in TTin, PO4e fluctuates
somewhat but is generally stable until an uptrend after 14.4 °C. Unlike
the pattern observed in subfigure (a) for TSSe, PO4e does not always
fall as the temperature rises. This may be because of competition for
substrates between glycogen-accumulating organisms (GAOs) and
polyphosphate-accumulating organisms (PAOs). PAOs have significant
positive effects on PO4 removal, but GAOs do not (Seviour et al.,
2003). Additionally, PAOs are psychrophilic but low temperatures hin-
der the metabolism of GAOs. Therefore, PAOs dominate at lower tem-
peratures but GAOs gain the upper hand at higher temperatures.
Accordingly, cultures enriched in PAOswere observed at 10 °C, whereas
cultures dominated by GAOs were observed at 15, 20, 30, and 35 °C
(Lopez-Vazquez et al., 2009). A separate study confirmed that tempera-
tures of 10 °C or less encourage PAOs' growth (Erdal et al., 2003). Thus,
the beneficial effects of high temperature discussed in Section 3.3.1 are
outweighed by the adverse effects of high temperatures on PAOs, lead-
ing to an overall reduction in PO4 removal as temperatures increase.
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As shown in subfigure (e) of Fig. 5, PO4e decreases as TSSa4 increases
between 0 and 1600 mg/L, but then increases more slowly as TSSa4 in-
creases beyond 1600 mg/L. Additionally, subfigure (f) of Fig. 5 shows
that PO4e decreases as TSSa3 increases in the range 0–1200 mg/L and
then levels off at TSSa3 values above 1200 mg/L. Both TSSa4 and TSSa3
are TSS concentrations in aeration basins. The decrease of PO4e as
these variables increase can be explained in two ways. First, higher
TSS concentrations in the aeration basins correspond to higher concen-
trations of activated sludge and thus larger populations of PAOs, which
are significant phosphate consumers (Wiesmann et al., 2007). Second,
higher concentrations of suspended solids make coagulation processes
more effective because they increase the frequency of interactions be-
tween colloids and precipitates (Bratby, 2016; Shewa and Dagnew,
2020). However, when colloids are overabundant in the water, much
of the added coagulant (FeCl3) will interact with the colloids without
reactingwith the dissolved phosphate and inducing chemical precipita-
tion (Bratby, 2016). This reduces the amount of phosphate removed by
settling, explaining the pattern observed for TSSa4 values above 1600
mg/L in subfigure (e) of Fig. 5.

However, higher concentrations of TSSa3 and TSSa4 (TSSa3 > 1200
mg/L, TSSa4 > 1600 mg/L) have different effects on PO4e — the PDP of
TSSa4 shows an uptrend, but not the PDP of TSSa3. In fact, the influence
of TSS concentrations in the four aeration basins on PO4e increases in the
order TSSa1 < TSSa2 < TSSa3 < TSSa4, according to the VIM plot shown in
Fig. 4. This is explained in Section 3.2— the contributions of tributaries fur-
ther from the merging points are inherently more heavily weighted.

3.4. Significance of the study

This study provides information on the operational variables that in-
fluence TSSe and PO4e, as well as their effects, which can help operators
understand the relationships between variables that interactively affect
the complex processes occurring in Umeå WWTP and similarly config-
ured WWTPs. In conjunction with traditional (chemical, biochemical,
and hydromechanical) analyses, these results could be used to more ef-
fectively and reliably determine whether current operational parame-
ters are appropriate or whether pre-emptive action is required to
prevent deterioration in effluent quality. For example, the results pre-
sented here indicate that if the flow rate of sludge in the second return
sludge pipe (FTsr) exceeds 28 m3/h, the operators may need to take ac-
tions such as distributing more sludge to the first return sludge pipe or
adding more coagulant to the first coagulant mixing basin. Without the
information provided by this study, unnecessary coagulant might be
added when the FTsr is below 28 m3/h, thereby wasting chemicals.
These results could thus enable the development ofmore advanced con-
trol strategies that could appreciably reduce running costs.

More broadly, this study explored the feasibility of usingML to com-
prehensively understand processes inWWTPs rather than to simply de-
velop soft sensors or generate predictions. A framework for this purpose
was developed and described at length, including details of all steps
from data pretreatment tomodel explanation. To ensure that the expla-
nations generated using this framework accurately reflect process prop-
erties, the time series data initially obtained from the various meters
within the WWTP were transformed into batch series data, and DNN
models were used to verify that the generated RF models capture suffi-
cient variance to support robust explanations. To enable deep interpre-
tation of the generated models, the framework incorporated both VIM
and PDP analyses. This framework could in principle be applied to any
other parameters of interest (and indeed to similar studies of processes
in other industries) given the availability of sufficient high-resolution
data, which is essential for robust and reliable analysis.

4. Conclusions

A ML framework based on RF, DNN, VIM, and PDP has been devel-
oped to model WWTP processes and investigate how plant operational
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variables influence effluent quality. The proposed ML framework ap-
pears to have the potential to improve effluent quality control strategies
inWWTPs, as demonstrated by a case study on UmeåWWTP involving
a large dataset (105,763 samples) representing the full scale of the
plant's operations. In the case study, RF models were constructed and
validated using DNN models, after which VIM and PDP analyses were
performed. VIM identified the variables that most strongly influence
the effluent parameters (here, TSSe and PO4e), while PDP elucidated
their specific effects on TSSe andPO4e. Themajor findings are as follows:

1) For TSSe, the influential variables are TTin, FTsr, TSSlr, TSSa3, and FTab3.
For PO4e, they are TTin, TSSa4, TSSa3, TSSlr, TSSa2, FTab4, DOa4, and FTgc.

2) Influent temperature is the most influential variable for both TSSe
and PO4e, but it affects them in different ways.

3) PO4e is highly dependent on the TSS in aeration basins. Increases in
the TSS concentration in aeration basins generally promote PO4 re-
moval but excessive TSS can have negative effects.

4) In general, TSS in aeration basins located further from the merging
outlet have greater impacts on TSSe and PO4e than TSS in more
nearby basins. Thus, more attention should be paid to the TSS con-
centrations of the third and fourth aeration basins than the first
and second basins.

5) Returning excessive amounts of sludge through the second return
sludge pipe should be avoided because of its adverse impact on TSSe.

These findings may facilitate development of more sophisticated
control strategies for WWTPs that could significantly increase control
precision and reduce running costs. The framework could also be ap-
plied to other effluent parameters if sufficiently abundant and high-
resolution data are available. Future work will focus on assessing more
algorithms and ML model interpretation systems to further improve
the framework and the reliability of the results it provides.
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