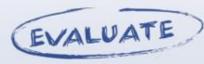
ANALYSIS



IMPLEMENTING

BASED THINKING IN ISO 9001 : 2015

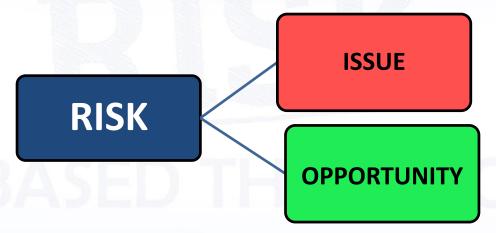
BY PRANEET SURTI

RISK-DEFINITION

ISO 9001:2015 defines risk as THE EFFECT OF UNCERTAINTY ON AN EXPECTED RESULT.

Or

an uncertain event or condition which if happens affects mission objective.


- An effect is a deviation from the expected it can be POSITIVE or NEGATIVE.
- Risk is about what could happen and what the effect of this happening might be.

Intensity of the Risk is based upon two parameters

- **Severity** (This is the Seriousness of the harm)
- Probability of Occurrence (This is the Probability that the harm will occur)

OUTCOMES OF RISK

- POSITIVE RISK (Opportunity)
- NEGATIVE RISK (Issue)

Opportunity can lead to adaptation of new practices, launching new products, opening new markets, addressing new customers, building partnerships, using new technology and other desirable and viable possibilities to address the organization's or its customer's needs.

WHAT IS RISK-BASED THINKING

- Risk-based thinking is something we all do automatically and often sub-consciously
- The concept of risk has always been implicit in ISO 9001, the 2015 revision makes it more explicit and builds it into the whole management system
- Risk-based thinking makes preventive action part of the routine
- Risk is often thought of only in the negative sense. Riskbased thinking can also help to identify opportunities.
 This can be considered to be the positive side of risk

WHAT IS RISK-BASED THINKING

PREVENTIVE ACTION

Clause 8.5.3

ISO 9001:2008

Organization shall take action to eliminate the causes of **POTENTIAL NONCONFORMITIES** in order to prevent their **OCCURRENCE**.

RISK APPROACH IN ISO 9001:2015 QUALITY MANAGEMENT SYSTEM

 Clause 4 (Context) the organization is required to DETERMINE THE RISKS WHICH MAY AFFECT THIS CONTEXT. The organization is also required to determine its QMS processes and to ADDRESS its risks and opportunities

Options to address risks can include avoiding risk, taking risk in order to pursue an opportunity, eliminating risk source, changing likelihood or consequences, sharing risk or retaining risk by informed decision

- Clause 5 (Leadership) top management are required to commit to ensuring Clause 4 is followed. Top management is required to
- PROMOTE AWARENESS OF RISK-BASED THINKING
 PLAN- DETERMINE AND ADDRESS RISKS AND OPPORTUNITIES

 Clause 6 (Planning) The organization is required to IDENTIFY RISKS AND OPPORTUNITIES RELATED TO QMS performance and TAKE APPROPRIATE ACTIONS to address them

 Clause 7 (Support) the organization is required to DETERMINE AND PROVIDE NECESSARY RESOURCES (risk is implicit whenever "suitable" or "appropriate" is mentioned)

- Clause 8 (Operation) the organization is required to manage its operational processes (risk is implicit whenever "suitable" or "appropriate" is mentioned) in design, development & processes . THE ORGANIZATION IS REQUIRED TO IMPLEMENT PROCESSES TO ADDRESS RISKS AND OPPORTUNITIES
 - INCLUDING ALL THE PROCESSES AS DEFINED IN THE SYSTEM
- Clause 9 (Performance evaluation) the organization is required to MONITOR, MEASURE, ANALYZE AND EVALUATE THE RISKS AND OPPORTUNITIES.

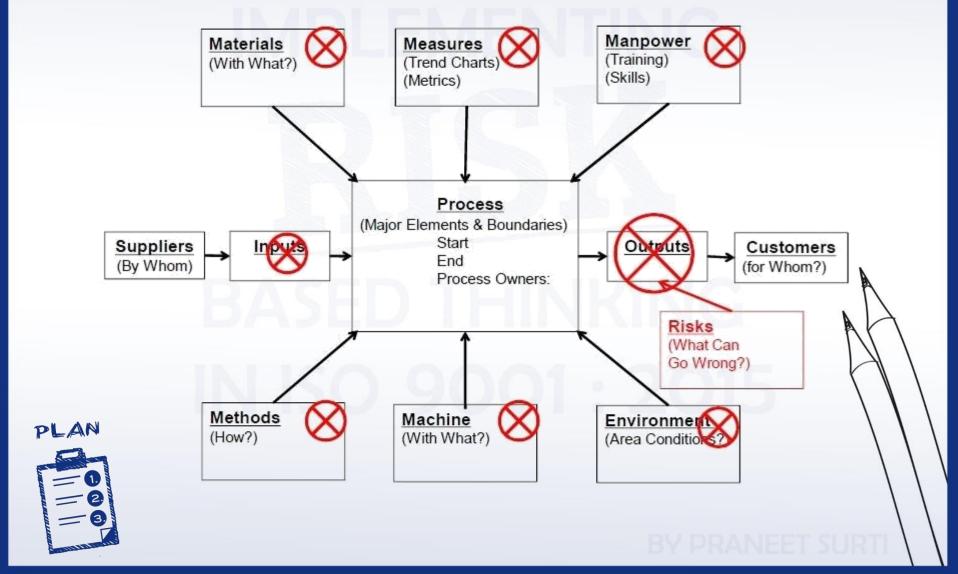
- Clause 10 (Improvement) the organization is required to correct, prevent or reduce undesired effects and improve the QMS and UPDATE RISKS AND OPPORTUNITIES.
 - CONSIDERING RISK AS A LIVE DOCUMENTED INFORMATION

RISK REQUIREMENTS AS PER ISO 9001:2015

- Create a R.B.T culture Clause 5.1.1
- Address Risks & Opportunities Clause 4.4.1
 Cover all segments for risk based thinking
 - Internal Issues (Strength & Weakness) Clause 6.1.1
 - External Issues (Opportunities & Threats) Clause 6.1.1
 - Political, Economic, Social & Technological Clause 6.1.1
 - Associated with Quality Policy Clause 6.1.1
 - Associated with Quality Objectives Clause 6.1.1
 - Associated with the Processes [Defects, Delays, Accidents, Waste, Mistakes, Design] Clause 5.1.1
 - Non Confirming End Product/ Service/Complaints Clause 5.1.2
 - Customer Satisfaction Clause 5.1.2
 - Other interested parties Clause 6.1.1
 - Change in the System

RISK REQUIREMENTS AS PER ISO 9001:2015

- Take actions to address risks Clause 6.1.2
- Monitor the Risk & Action Taken Clause 9.1.3
- Evaluate Effectiveness Clause 9.1.3
- Retain Documented Information Clause 9.1.1
- Update the record whenever required
 Clause 10.2.1
- Include risk as an agenda in MRM Clause 9.3.2



IDENTIFYING RISKS & OPPORTUNITIES

RISKS ASSOCIATED IN A SYSTEM

STRENGTHS- INTERNAL FACTOR

- What advantages does your organization have?
 - Infrastructure, Machines, Resources
 - Goodwill in Market
 - Less Competitors
 - Experienced
- What do you do better than anyone else?
- What do people in your market see as yes
 strengths?

WEAKNESS - INTERNAL FACTOR

What could you improve?

Past experience Suggestions Complaints OEIs & New

Past experience, Suggestions, Complaints, OFIs & New machinery / methods

What should you avoid?

Delays, Scrap, Waste, Defects, Repetitive Problems

 What are people in your market likely to see as weaknesses?

REVIEW

Analysis, surveys

 What generates the most customer dissatisfaction and complaints?

EXTERNAL FACTOR

PESTEL

Political, Economic, Social, Technological, Environmental & Legal

- POLITICAL FACTORS are basically how the government intervenes in the economy. Specifically, political factors have areas including tax policy, labor law, environmental law, trade restrictions, tariffs, and political stability.
- **ECONOMIC FACTORS** include economic growth, interest rates, exchange rates, and the inflation rate.
- **SOCIAL FACTORS** include the cultural aspects, Customs, Festivals, Lifestyle, Area, Locality
- TECHNOLOGICAL FACTORS include technological aspects like New Process Adaption, R&D activity, automation, technology incentives and the rate of technological change.
- **ENVIRONMENTAL FACTORS** include ecological and environmental aspects such as weather, climate, and climate change.
- **LEGAL FACTORS** include the statutory and regulatory compliances associated with the system

OPPORTUNITIES – EXTERNAL FACTOR

- Where can you apply your strengths?
- How are your customers and their needs changing?

- Launching New Products
- Addressing New Customers
- What interesting trends are you aware of?
 - Useful opportunities can come from such things
 - Changes in technology, adaptation of new practices and markets on both a broad and narrow scale.
 - Changes in government policy related to your field.
 - Changes in social patterns, population profiles, lifestyle changes, and so on.
 - Local events/ Festivals.

THREATS - EXTERNAL FACTOR

- What obstacles do you face?
- What are your competitors doing?
- Are quality standards or specifications for your job, products or services changing?
- Is changing technology threatening your position?
- Is new competition coming?
- Is new technology making your product obsolete?

ASSOCIATED RISKS WITHIN A MANUFACTURING INDUSTRY

- Associated with Vision of Company
- Associated with Scope
- Associated with Quality Policy & Objectives
- Associated with the Processes
 - HR

Dispatch/After Sales

Marketing

Dispatch

Purchase

- Security
- Production & Planning Logistics
- Quality

- Civil/ Canteen/Automobile
- Non Confirming End Product/ Service
- Customer Satisfaction

PLAN

ASSOCIATED RISKS WITHIN A MANUFACTURING INDUSTRY

RISK ANALYSIS TRAIL

1. OBJECTIVE SETTING

What are we trying to do? Understanding SCOPE, CONTEXT & ENVIRONMENT

2. RISK IDENTIFICATION

What uncertainties hinders/helps our objectives?

3. RISK ASSESSMENT

How do we prioritize them? What is acceptable & What is Not acceptable?

- Likelihood
- Severity

4. ADDRESSING THE RISK WITH AN ACTION PLAN

What should we do?

- how can we avoid or eliminate the risk? (preventive barriers)
- how can we mitigate the risk? (mitigative barriers)

5. EFFECTIVENESS

Did it worked?

6. CONTINUAL IMPROVEMENT

What changed? What did we learnt? Are there any similar risks?

PRA (Preliminary Risk Assessment) Basic Model

FMEA (Failure Mode Effects Analysis)

Technical Risk

PRA (PRELIMINARY RISK ASSESSMENT) RISK REGISTER

- Most easiest way to access risk
- Narrative PRA can apply to risk at change management

PRA (PRELIMINARY RISK ASSESSMENT) RISK REGISTER

- The risk register or risk log becomes essential as it records identified risks, their severity, probability of occurrence, and the actions steps to be taken.
- It can be a simple document, spreadsheet, or a database system, but the most effective format is a table.
- A table presents a great deal of information in just a few pages.

RISK REGISTER COMPONENTS

There is no standard list of components that should be included in the risk register. Some of the most widely used components are

- Dates: As the register is a living document, it is important to record the date that risks are identified or modified.
 Optional dates to include are the target and completion dates.
- Description of the Risk: A phrase that describes the risk
- Causes of Risk: Predictive cause of the risk to occur or happen

RISK REGISTER COMPONENTS

- Likelihood of Occurrence: Provides an assessment on how likely it is that this risk will occur.
- Severity of Effect: Provides an assessment of the impact that the occurrence of this risk would have on the project
- Countermeasures/ Additional Controls: Actions to be taken to prevent, reduce, or transfer the risk. This may include production of contingency plans.

RISK REGISTER COMPONENTS

- Owner: The individual responsible for ensuring that risks are appropriately engaged with countermeasures undertaken.
- Effectiveness / Status: Indicates whether this is a current risk or if risk can no longer arise and impact the project. Example classifications are: C-current or E-ended.

Other columns such as quantitative value can also be added if appropriate.

PRELIMINARY RISK ANALYSIS - TEMPLATE

	Date	Risk Description	Potential Causes	Harm/ Conseq uence		S	Risk Score [L x S] Likelihood x Severity	Possible Additional Controls	Owner	Effectiveness
					111111111111111111111111111111111111111	Alles at				
E										

Se	verity of Harm	Probability of Occurrence					
S-5	Catastrophic	O-5	Frequent				
S-4	Critical	0-4	Probable				
S-3	Serious	0-3	Occasional Remote				
S-2	Minor	0-2					
S-1	Negligible	0-1	Improbable				

HEAT DIAGRAM FOR RISK ASSESSMENT

SEVERITY

EVALUATE	Very Low	Low	Medium	High	Very High
Very High					
High				EXTREI	MELY
Medium		HIG	Н	HIG	Н
Low	MOD	ERATE			
Very Low					

LIKELIHOOD

FMEA

FAILURE MODE EFFECTS ANALYSIS

A modified model of the previously discussed model used in different segments of manufacturing and service industries

Widely used for

- Design
- Product
- Process
- System
- Equipment

FMEA - TEMPLATE

PROCESS FMEA									FORM NO. ISSUE NO. REV. NO.							
DRG	. REV. NO.	A	CUSTOMER			S	SUPPLIER CODE	MIT	ľ		VEHICLE	-	DOC. NO.			
PART NAME		PERFORATED INN			E	PART NO.					100		DATE (ORG.)			
ASSY. NAME							ASSY. NO.						REV. NO. DATE			
CFT		NA	ME OF TEAM			PRO	CESS RESPONSIE	BILITY		7		HEA	D PRODUCTION			
Ö.	PROCESS	DOTENTIAL FAILURE	DOTENTIAL EFFECT	C S L	POTENTIAL CAUSE (S)	O CURRENT PROCE	ESS CONTROLS D F		R	R	RESP/	ACTION RESULTS				
OPN.	FUNCTION REQUIREMENT	POTENTIAL FAILURE MODE	(S) OF FAILURE	E A V S	MECHANISM (S) OF FAILURE		PREVENTION	DETECTION	E T	P N	RECOMMENDED ACTIONS	TARGET DATE	ACTION TAKEN	S O E C V C	DET	RPN
4/6	TIG WELDING	Sheet not coincide in arc shape	a) Fitment not ok.		1.Variation in rollers height		Before each set up ensure for same rollers height.									
			b) Assembly problem	4	2. Length offset	4	Controlling of length offset in previous operation.	I st pc approval and Patrol inspection	4	64						
			c) Poor appearance		Component feeding Improper		Operator training.									
		Welding Missing	a) Weak welding b) Assembly problem		Improper welding parameters.		Before each set up ensure for welding parameters.	I st pc approval								
			c) Poor performance / Functional problem d) Poor appearance	4	4	4	and Patrol inspection	3	48							
		Pin Holes			I. Improper welding		Before each set up	I st pc approval								
		Pin Holes a) Weak welding b) Assembly problem		parameters.		ensure for welding parameters.										
			c) Poor performance / Functional problem	4	4	4		3	48							
			d) Poor appearance													
		Over Burning of component	a) Weak welding		Improper welding parameter		Before each set up ensure for welding									
		c) I	b) Assembly problem	4		. 4	parameters.	inspection	4	64						
			c) Poor performance / Functional problem			.										
			d) Poor appearance													
		Less Penetration	a) Weak welding	4	Improper welding parameter	5	Before each set up ensure for welding parameters.		4	80						

FMEA RATING CRITERIA - RPN

	Rating	Severity	Occurrence	Detection			
High	10	Hazardous without warning	Very high and almost inevitable	Cannot detect or detection with very low probability			
		Loss of primary function	High repeated failures	Remote or low chance of detection			
		Loss of secondary function	Moderate failures	Low detection probability			
		Minor defect	Occasional failures	Moderate detection probability			
Low	is	No effect	Failure unlikely	Almost certain detection			

RISK PRIORITY NUMBER:

The Risk Priority Number, or RPN, is a numeric assessment of risk assigned to a process, or steps in a process, as part of Failure Modes and Effects Analysis

RPN = Severity x Occurrence x Detection

BOW TIE METHOD

Just a glance at further Scope of Precise Risk Based
Assessment

KEY POINTS TO REMEMBER

- Risk Based Thinking = Proactive Preventative
 Action
- Risk is an input to Management Review
- Risk Based Thinking is everybody's business!
 - Risk Based Thinking is not just the responsibility of management
 - Risk Based Thinking must become an integral part of the organizational culture

KEY POINTS TO REMEMBER

- Risk Based Thinking has to be demonstrated during audits; a risk register is documented information that validates an organization has done Risk Based Thinking.
- Risk Based Thinking is an element in the continual improvement process that is focused on prevention
- Risk-based thinking ensures greater knowledge and preparedness

BENEFITS OF RISK BASED THINKING

- Builds a strong knowledge base
- Establishes a proactive culture of improvement
- Assures consistency of quality of goods or services
- Improves customer confidence and satisfaction

About the Trainer

Follow me on LinkedIn for more such contents on Quality, ISO, Operational Excellence, Lean & Six Sigma

Praneet Surti

LinkedIn: http://in.linkedin.com/in/praneetsurti

