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Abstract

Artificial intelligence (Al) has emerged as a powerful tool to resolve real-world problems and
has gained tremendous attention due to its applications in various fields. In recent years, Al
techniques have also been employed in water treatment and desalination to optimize the process
and to offer practical solutions to water pollution and water scarcity. Applications of Al is also
expected to reduce the operational expenditures of the water treatment process by decreasing the
cost and optimizing chemicals usage. This review summarizes various Al techniques and their
applications in water treatment with a focus on the adsorption of pollutants. Numerous Al
models have successfully predicted the performance of different adsorbents for the removal of
numerous pollutants from water. This review also highlighted some challenges and research gap
concerning applications of Al in water treatment. Despite several advantages offered by Al there
some limitations that hindered the widespread applications of these techniques in real water
treatment. The availability and selection of data, poor reproducibility, less evidence of
applications in real water treatment are some key challenges that need to be addressed.
Recommendations are made to ensure the successful applications of Al in future water-related
technologies. This review is beneficial for environmental researchers, engineers, students, and all

stakeholders in the water industry.

Keywords: Artificial intelligence; Water treatment; Adsorption; Machine learning; Water

pollution; Clean water



1. Introduction

Access to clean drinking water is the grand challenge of the modern era and a prime component
of the UN sustainable development goals (SDGs) [1]. On the other hand, water pollution caused
by rapid industrialization and population growth has emerged as a grand environmental
challenge in recent years [2,3]. Treatment and reuse of wastewater offer a unique opportunity to
address both these challenges. Tremendous progress has been made in the past few decades
towards the development of novel efficient, and cost-effective techniques for the removal of
various pollutants from wastewater [4-8]. The applications of various optimization and
modelling tools have also gained considerable attention in recent times for assessing
performance and improving efficiency.

Artificial intelligence (Al) is the core and well-known branch of computer science that deals with
building smart systems and resolves problems in a manner comparable to the human intelligence
system. The primary motive of Al applications to a system is to enhance computer functions that
are relevant to human knowledge, such as learning, problems solving, reasoning and perception
[9]. Al is a fast-growing field and having real-world applications in diverse fields such as
healthcare, smart cities and transportation, e-commerce, finance, and academia [10]. Al is further
classified into machine learning, deep learning and data analytics. These techniques are mainly
used for intelligent decision-making, blockchain, cloud computing, the internet of things and the
fourth industrial revolution (Industry 4.0) [11]. Al is booming mainly due to its unique features
to learn and adapt a system based on historical data and to make a decision. Al's significance is
rising incessantly with time due to the integration of Al-based systems with intelligence,

adaptability and intentionality in their proposed algorithms [12].



Al systems are applicable to almost all interdisciplinary fields, and they have played their
potential role in various applications for optimization, classification, regression, and forecasting.
Al tools are sometimes used in combination with experimental design techniques such as
response surface methodology (RSM) to further enhance the precision of optimal solution
prediction.

The application of Al is emerging in water treatment to overcome the complications of
traditional methods. In the current era, water industries are investing in artificial intelligence, and
according to market research, this investment is expected to reach $6.3 billion by 2030 [13].
Similarly, Al is expected to save 20 to 30 % of operational expenditures by decreasing the cost
and optimizing the usage of the chemical in water treatment [14]. The applications of Al in water
treatment have made the process easy due to its modest implementation, flexibility,
generalization, and design simplicity. The commonly used Al techniques in water treatment are
Recurrent Neural Network (RNN), Convoluted Neural Network (CNN), Decision Tree (DT),
Feed Forward Back-Propagation Neural Network (FFBPNN), and Adaptive Network Based
Fuzzy Inference System (ANFIS). The applications of several hybrid techniques such as ANN-
GA, MLP-ANN, ANN-PSO, PSO-GA, Back Propagation (BP)-ANN, Feed Forward Back
Propagation (FFBP-ANN), AND Support Vector Regression (SVR)-GA have also been studied
in water treatment. The availability of data is the main challenge in applications, as Al needs
sufficient historical data to predict future outcomes and offer improvement in the system.
Various studies demonstrated the successful applications of different Al tools for the modelling
and optimization of the water treatment process, such as pollutants removal from water [15,16].
However, still, various hurdles hinder the application of Al in water purification. This review

provides a critical analysis of different Al tools used for assessing the performance of the
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adsorption process employed for the removal of metals, dyes, organic compounds, nutrients,
pharmaceuticals, drugs, pesticides, and personal care products (PCPs) from the water. The input
variables that affect the process performance are also described, and the parameters that assess
the efficiency of Al models are also discussed. Finally, the significant challenges in the
widespread applications of Al in water treatment and recommendations for future research are

also provided.
2. Al techniques
The most commonly employed Al-based techniques for water treatment are shown in Fig. 1.

These techniques are extensively used to manage wastewater treatment operations, water reuse,

water-saving and cost reduction through prediction, diagnosis, assessment and simulation [16].
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Fig. 1. Classification of Al techniques

2.1.  k-Nearest Neighbor (k-NN)



k-NN is a simple machine learning technique used for regression and classification. k-NN save
all the existing data and perform classification on new data points on the basis of similarity [17].
For example, consider a classification problem having two categories W and Z, as shown in Fig.
2. If a new data point occurred, having a placement issue with W and Z category, the new data
point should be placed in a suitable category based on calculating Euclidean distance. Therefore,
the new point will be added to category Z that have the maximum number of neighbours. k-NN

is the most commonly used technique used for classification problem.
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Fig. 2. An example k-NN technique before and after a classification problem

2.2.  Decision Tree (DT)
DT technique is mainly used by Al experts for classification and regression problems. The core
purpose of DT is to generate a training model used for class prediction by including “learning
simple decision rules”. It follows a tree structure in which each tree has a node that represents the
attribute or feature of the data, the edge represents the probable answers to a problem, and the
leaf node denotes the real output or class label [18]. This technique is mostly favoured because

of its high accuracy and easy implementation. As depicted in Fig. 3, the process may result in



many possible solutions. In a DT technique, all features of a problem are considered from root to

leaf node in order to detect the optimal solution based on defined conditions.
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Fig. 3. DT architecture

2.3. Random Forest (RF)
RF is used for both classification and regression problems. Just like the forest, more decision
trees means that robust will be the RF. It creates DTs on data samples, and then make a
prediction on each DT and lastly, choose the optimal solution based on the voting mechanism
[19]. The benefit of using RF is that it decreases the overfitting of the DTs by averaging their
result. As shown in Fig. 4; the random samples from a given dataset are chosen, and a decision
tree is built for each sample. Then, the result of each decision tree is obtained. The next step is to
perform the voting process for each predicted result and decide the most voted predicted result as

a final result.
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Fig. 4. Typical architecture and working procedure of RF technique

2.4.  Artificial Neural Networks (ANNs)
ANN s are the statistical models that are built based on biological human brain neuron to perform
parallel and complex computations. It is used mainly for pattern recognition problems to execute
modelling and processing nonlinear relationships between the inputs and outputs in a parallel
manner. In ANNSs, the neuron represents a node, and the activation functions such as sigmoid and
hyperbolic are used to perform nonlinear computation [20]. ANNs includes weights between
neurons (nodes) that can be changed with respect to a machine learning algorithm by using a
suitable cost function to learn from the observed data in order to improve the model. ANNs
consists of many layers in which the first layer represents an input layer, the last layer represents
the output layer, and the layers present between the first and last layers are the hidden layers. An
increase in the number of hidden layers can build complex models that can be trained to improve
the performance of ANNs [21]. Fig. 5 shows a simple architecture of ANNSs, including the input
layer (a, b, c...n), two hidden layers (hidden layer 1 and 2), and the output layers (a, b.... n). The

subtypes of ANNs are discussed below.
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Fig. 5. A basic ANNs with four layers: an input layer, two hidden layers and an output layer

2.4.1. Fuzzy Neural Network (FNN)
FNN is an Al technique developed from the grouping of two fields, fuzzy logic and neural
network. FNN detects parameters of a fuzzy system, including fuzzy sets and fuzzy rules, by
manipulating the approximation techniques from neural networks. FNN is mainly used for
pattern recognition, regression and density estimation in a condition where no mathematical

model exists for a specified problem [22].

2.4.2. Convoluted Neural Network (CNN)

CNN is a commonly used class of ANNs that utilize the convolution as an alternative to general
matrix multiplication in at least one of their layers and generally known as the feed-forward
neural network (FFNN) [23]. CNN is mainly used for image/video recognition and classification,
financial time series and natural language processing. Three basic concepts that are used for
CNN are “local sparse connections amongst consecutive layers, weight sharing and pooling”

[24]. The first two concepts are used for reducing the number of training parameters, and pooling



is using for feature size reduction [25]. The typical architecture of CNN is presented in Fig. 6.
CNN is composed of two parts: the hidden layers (convolutional and pooling layers), responsible
for complex feature extraction, and the classification layers (fully connected and output layers),

which is responsible for giving the decision based on parameter learned from the previous layers.

S-S

Input Convolutional Pooling 1 Convolutional Pooling 2
Layer 1 Layer 2

Fig. 6. Basic CNN architecture

2.4.3. Deep Neural Network (DNN)

DNN includes multiple hidden layers along with input and output layers [23,26], as shown in
Fig. 7. DNN is commonly used for learning complex models and high dimensional data process
with the inclusion of more hidden layers and neurons. However, DNN needs additional
computing resources and upsurge training difficulties. As compared to other ANNs, DNN

provides the best performance if the datasets have enough data [27].

Hidden Hidden Hidden Hidden
Layer 1 Layer 2 Layer 3 Layer 4

Output Layer

Input Layer

Hidden Layers

Fig. 7. Common DNN with three input layers, four hidden layers, and two output layers
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2.4.4. Recurrent Neural Network (RNN)

RNN is like other ANNs except that it has an additional memory-state to the neurons to share the
same parameters. RNN is an FFNN in which the information is transferred from the input layer
to the output layer. It saves the output of a specific layer and connecting back to the input for the
purpose to predict the output. RNN uses their internal state (memory) to process sequences of
inputs with variable-length. The commonly used RNN is long short-term memory (LSTM) that
has three gates (the input, output and forger gate) to calculate the hidden state [28]. A simple
example of RNN is shown in Fig. 8, where nodes in various layers of the neural network are
compressed to create RNN of a single layer. The parameters in the proposed RNN are X, Y and

Z.

RNN
Hidden Layer
C
Input Layer
B X
Output Layer
Cc
B
:D z
B Cc
Y

Fig. 8. A typical RNN architecture

2.5. Support Vector Machine (SVM)
SVM is a renowned Al-based technique that is used for solving classification and regression
problems. It needs labelled training data for each category to identify the next step. The basic

concept of SVM is to map the input vector into a high dimensional feature space. The mapping is
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obtained through different kernel functions such as linear, polynomial and radial basis functions,
while the function selection is based on datasets [29]. The main purpose of SVM is to
differentiate the two classes in the feature space to increase the margin between classes by
drawing a hyperplane (as shown in Fig. 9). SVM is mainly used in pattern recognition problems.
For example, Fig. 9 represents the classification of SVM consisting of two classes linear
separable via hyperplane. Each class include one support-vector.

A Support Vectors
X1

- %% ¢ @
®

»
r

X2

Fig. 9. An example of SVM classification with a linear hyperplane

2.6. Self-Organizing Map (SOM)

SOM is the commonly used Al technique of ANN models. SOM consists of input and output
layers. The output layer is also called a feature map or map layer. SOM is mainly used for data
clustering and dimensionality reduction, as shown in Fig. 10. Weights are directly assigned to
the output layer, and every SOM is assigned a weight vector with a similar dimension as the
input space. Dimensionality reduction helps to reduce the input variables in a dataset because

more features create difficulty in predictive modelling and make it more challenging [30].

12
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Fig. 10. SOM dimensionality reduction

2.7. Genetic Algorithm (GA)

GA is a heuristic-based search algorithm that acts on a population of possible solutions similar to
the biological mechanism of population genetics and selection. It uses a recursive process to
achieve the best solution through multiple solutions. In GA, all the possible solutions are
encoded as a gene that consists of characters in the form of strings from some alphabets. The
new solutions are generated through mutation from the members of the present population, and
finally, via mating, two solutions are combined to form a new solution. This algorithm is mainly
used to search space for potential solutions and to find the best one by solving a problem [31].
2.8. Particle Swarm Optimization (PSO)

PSO is a commonly used Al-based technique for optimization problems due to its iteration
mechanism to improve the solution related to a given quality measure. In PSO, the particles are
moving around the search space by considering the velocity and position of the particle. In
search space, each particle movement is inclined towards the best-known position, and its
position and velocity are updated with time [32]. Every particle is searching for the best position

in the search space by changing the velocity according to the defined rule [33]. Table 1 depicts

13
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the overall defined techniques with their usage domain, advantages, and limitations for each

technique.
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Table 1. Commonly used Al techniques, their application, advantages and limitations

Al techniques | Applications Advantages Limitations
k-NN Regression, classification ) Distance function selection is flexible . Distance calculations make it
Ll Implementation is easy computationally expensive
= Memory intensive
DT Regression, classification . Easy to understand, and data . Having instability and overfitting
classification is simple
. Used for both continuous and discrete
data
. Capable of choosing the utmost
discriminatory feature
RF Regression, classification . Good for large scale datasets . Not suitable for imbalanced datasets
. Instability is low compared to DT = Having low training speed
- Lessen the overfitting of DT
ANN Regression, classification . Fast prediction = Computationally expensive, and it is
- Good for arbitrary function hard to interpret the trained models
approximation
L] Good for high dimensional datasets
SVM Pattern recognition, regression, u Good for high dimensional datasets = Hard to train due to large datasets and
classification L] Good for linear and nonlinear separable computationally expensive
datasets . Not suitable for noisier datasets because
of the overfitting problem
SOM Clustering . Good for high dimensional datasets . Computationally expensive in case of

Simple to understand due to its
mapping mechanism

large maps due to more training data

15




GA Clustering, regression, classification Provide more than one solution Difficult to implement
Deep domain knowledge is not required Computationally expensive and time-
Support multi-objective optimization consuming
Good for discrete and continuous Fitness function is not defined clearly
problems

PSO Clustering, regression, classification Simple to use Need a mathematical background for
Easy to implement evaluation
Strong to control parameters Difficult to define the initial design
Parallel computation parameters
Computational efficacy compared to
other heuristic optimization techniques

ANN
FNN Pattern recognition, regression, No need for a mathematical model Not able to learn
classification Easy to implement and interpret Theoretical knowledge is necessary
Computationally expensive

CNN Regression, classification, segmentation Good and accurate results Computationally expensive
Good speed because it works in parallel Complex architecture
Capable of extracting important
features

DNN Regression, classification Good towards nonlinear data Blackbox behavior
Fast prediction after training Computationally expensive
Work well with more data points Require more training data

RNN Regression, classification Good for time series prediction Require more data

Good for sequence prediction problems
Process inputs of any length can be
used

Training is difficult
Computationally expensive

16




2.9. AI hybrid techniques

Al hybrid techniques are a combination of more than one Al technique. Researchers have
already employed various hybrid techniques in different fields to get the combined advantages of
individual techniques. Fig. 11 shows four main techniques, GA, PSO, RNN and SVM, that are
commonly used in combination with other techniques to attain a more accurate result. Some of
the commonly employed hybrid techniques reported in the literature are GA- Multi Layer
Perceptron Artificial Neural Network (MLPANN), GA- Radial Basis Function Artificial Neural
Network (RBANN), GA- Feedforward Neural Network (FNN) , GA- Fuzzy Logic (FL), SVM-
Simulated Annealing (SA), SVM- Adaptive Simulated Annealing Genetic Algorithm (ASAGA),
ANN-Differential Evolution (DE), ANN-Genetic Algorithm Neural Network(GANN), PSO-
Wavelet Neural Network (WNN), and PSO-Elman Neural Network (ENN). Al hybrid techniques

have also gained enormous attention for applications in water treatment [15,16,22].

17
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Fig. 1. Al hybrid techniques

3. Applications of Al tools in water treatment

Various studies reported the applications of Al techniques for the modelling and optimization of
the water treatment process, such as pollutants removal from water. Tables 3-5 summarizes the
commonly used Al techniques employed for the adsorptive removal of metals, dyes, organic
compounds, nutrients, pharmaceuticals, drugs, pesticides, and PCPs from the water.

Al techniques were effective in establishing a relationship between variables in water treatment.

For example, in the adsorption of pollutants, the commonly used input variables are the initial

18



concentration of the pollutant, adsorbent dosage, time, pH, agitation rate and temperature, while
the output variable is mainly the removal efficiency (%) and the adsorption capacity [34]. The
results predicted from the models are validated using R? (coefficient of determination), MSE
(mean squared error), SSE (sum of squared error) and RMSE (root-mean-square error) values. In
most cases, the model results were in close agreement with the experimental results.

Some studies also predicted the simultaneous removal of multi-pollutants from the water with
the aid of Al [35]. These findings suggest the potential applications of Al in improving the
efficiency of real water treatment systems. Beside batch adsorption, Al techniques can also be

employed to predict the removal performance of the adsorbents in column studies [36,37].

3.1 Removal of dyes

Several studies reported the application of AI models to predict and validate the adsorption
performance of various adsorbents for the removal of dyes (Table 2). Most of the studies
reported the removal of a single dye; however, some researchers also studied the removal of
multiple dyes [38—41]. Likewise, tough simulated wastewater is used in most cases, some
researchers employed real textile wastewater to evaluate the performance of the adsorbent and
the model used. The R? values, in most cases, were greater than 0.99 that suggest the
applicability of Al in evaluating the performance of the adsorption process.

The removal of methyl orange (MO), crystal violet (CV), methylene blue (MB), sunset yellow
(SY), malachite green (MG), eosin yellow (EY), auramine O (AO), brilliant green (BG), eosin B
(EB), acid yellow 41 (AY41), and acid red 57 (AR57) using various adsorbents was successfully
modelled using the ANN, and the adsorption capacity was in close agreement with the

experimental values [38—47]. The ANN models were also useful to predict the adsorption

19



performance of the adsorbent for the simultaneous uptake of dyes in a binary and multi-dye

system [41,47-49].

3.2, Removal of heavy metals

The application of Al techniques for evaluating the removal of heavy metals using various
adsorbents is presented in Table 3. Although some researchers reported the simultaneous
adsorption of multiple metals from the aqueous phase, most of the studies are focused on single
metal adsorption [50,51]. The typical inputs variables were pH, adsorbent dosage, initial metal
concentration, contact time and temperature. In column studies, the effect of internal column
diameter, flow rate, bed depth of column was also evaluated in addition to the above parameters
[52].

The adsorption performance of different adsorbents for the removal of Cr(IIl), Cr(IV), Cu(lIl),
Pb(II), As(IIl), Zn(II), Cd(II), and Hg(Il) by different adsorbents was determined by the using
various Al tools, mainly ANN [53-61] Some studies also employed the Al tools to assess the
performance of adsorption for the simultaneous removal of multiple metals from aqueous phase
[62] 13]. Studies also evaluated the performance of various adsorbents for the removal of dyes in

a continuous system using Al tools [63].

3.3. Removal of organic compounds, nutrients, pharmaceuticals, drugs, pesticides, and
PCPs from the aqueous phase

Table 4 summarizes the applications of Al tools for the removal of organic compounds,

nutrients, pharmaceuticals, drugs, pesticides, and PCPs from the aqueous phase [64—68]. ANN

was the commonly used model to predict the performance evaluation of the adsorption of these

20



pollutants. A comparison of the experimental and modelling results suggested that the Al models
can safely predict the adsorption capacity or removal efficiency of the adsorbents. The
commonly studied organic compounds, nutrients, pharmaceuticals, drugs, pesticides, and PCPs
are cephalexin, chlorothalonil pesticide, heptachlor, triamterene, chlorophenol (CP),
paracetamol, phenol, and phosphate [64,65,67,69—73]. Besides batch experiments, the
performance of various column studies was also evaluated using Al tools [74].

The proposed ANN model for the adsorption of MB [75], metals (Pb(II) and Cu(II)) [77], and
phenol and 3-amino-phenol [76] is presented in Fig. 12 (a-c), while Fig. 12d represents the
hybrid architecture (ANN-DE) topology employed to assess zinc removal by activated carbon
[78]. The significant parameters that affect the removal process were used as input variables,
while the removal efficiency was the output.

The predicted data versus experimental results for training and testing data for the adsorption of
dyes is presented in Fig. 13 (a, b) [46]. It is evident from the experimental figure data used and
the predicted results obtained by the best ANN model are in close agreement. Likewise, Fig.

13¢ compares the predicted values generated by Box-Behnken design (BBD) and ANN the
models with the experimental values. It is clear that ANN is a more efficient model and

accurately estimated the experimental values [79].
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Fig. 12. Proposed ANN model for the adsorption of (a) MB. Reprinted with permission from
Ref. [75]. Copyright (2020), The Royal Society of Chemistry, (b) phenol and 3-amino-phenol.
Reprinted with permission from Ref. [76]. Copyright (2018), Elsevier B.V., (c) metals. Reprinted
with permission from Ref. [77]. Copyright (2016), Elsevier B.V., (d) architecture of ANN-DE
implementation topology. Reprinted with permission from Ref. [78]. Copyright (2018), Elsevier
B.V,,
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Fig. 13. A scatter plot of the ANN predicted versus experimental data of (a) BG, and (b) EB dyes

simultaneous removal. Reprinted with permission from Ref. [46]. Copyright (2015), Elsevier

B.V., (c) BBD and ANN predicted vs experimental data for Cu>* removal. Reprinted with
permission from Ref. [79]. Copyright (2018), Elsevier B.V.

3.4.

Applications of hybrid techniques for the removal of pollutants

Recently Al hybrid techniques have also emerged as efficient approaches and employed

extensively in water treatment for predicting the removal of various pollutants [80]. Similarly,

different Al hybrids and data analytics techniques have been used for water quality analysis,

process optimization, prediction, and autonomous decision making [81]. The AI hybrid
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techniques reported in the literature that are employed for the removal of pollutants are MLP-
ANN, ANN-GA, LS-SVM, RSM-GA, ANN-PSO, GANN, and ANN-DE, FFBP (Feed Forward
Back Propagation)-ANN, BP-ANN-PSO, and PSO-GA [70,82—-85] [86-91]. In general, hybrid
techniques were more effective in predicting process performance as compared to individual
techniques. However, still more research work needed to use the combination of different Al
techniques to predict and improve the performance of various water treatment process. Table 5
summarizes the applications of Al hybrid techniques for the removal of various pollutants from

the water.
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Table 2. Applications of Al for the adsorption of dyes from the aqueous phase

Dye Adsorbent Al technique used Input variables Output variable | Model Reference
validation/Performance
indicators

MO Chitosan/Al,O5/Fe;O4 core- ANN Time and initial Adsorption R2=0.998, MSE = 101.67 [38]

shell composite microsphere concentration of | capacity
MO
()% ANN Amount of Adsorption R?=0.9980, mean absolute | [39]
Magnetic activated carbon magnetic AC efficiency percentage error (MAPE)
(AC) (MAC), pH, =0.38%
initial dye
concentration,
time, and
temperature
MB Ultrasound-modified chitin ANN Initial Adsorption MSE < 0.0003 and R > [40]
(UM-chitin) concentration, capacity 0.9995
temperature
SY Nickel sulfide nanoparticle ANN Contact time, Adsorption R%2=0.99 [42]
loaded on AC adsorbent dosage, | capacity
initial dye MSE =0.0003
concentration,
and pH
MG Copper nanowires loaded on ANN, GA Contact time, Adsorption R%2=0.9658 [43]
AC adsorbent dosage, | capacity
initial dye MSE =0.0017
concentration,
and pH
SY AC prepared from ANN Initial dye Removal R?=10.9966 [44]
the wood of the orange tree concentration, efficiency
pH, adsorbent MSE = 0.0001
dosage,

temperature, and
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sonication time

ARS57 Mesoporous carbon-coated ANN pH, initial dye Removal R%=0.997, [45]
monolith concentration, efficiency
and contact time MSE = 0.9365-6.6529
EY, CV, AO, and ZnO-nanorods—AC (ZnO— ANN Dyes Adsorption MB: [47]
MB NR-AC) concentrations, capacity/Removal
sonication time, percentage R2=0.9853, MSE =
and amount of 0.000683
sorbent
EY:
R?=0.999730, MSE =
0.000014
CV:
R?=0.987920, MSE =
0.000656
AO:
R?=0.997093, MSE =
0.00011
Basic Blue 41 NiO-MnO, Nanocomposite ANN Adsorbent dosage | Adsorption R2=0.9977 (BB41) [48]
(BB41), Basic Red and initial dye capacity
18 (BR18), and concentration R2 = 0.9955 (BR18)
Basic Red 46
(BR46) R?=0.9989 (BR46)
Disulfine blue Ni doped ferric oxyhydroxide ANN, RSM Initial dye Adsorption CG: [49]
(DB), rhodamine FeO(OH) nanowires on AC (Ni concentration, capacity
B (RB) and doped FeO(OH)-NWs—-AC) sonication time,
Chrysoidine G adsorbent mass,
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(CG) and pH R?=10.9997, MSE = 0.0055
RB:
R?=0.9999, MSE = 0.0033
DB
R?=0. 9996, MSE = 0.0046
MB and CV Zinc(IT) oxide nanorods loaded | ANN, RSM Adsorbent Adsorption R2=10.9999 [92]
on AC (ZnO-NRs-AC) dosage, capacity
concentration, MSE=0.0753
and ultrasonic
time
Phenol red Gold and titanium dioxide ANN pH, dye Removal Au-NP-AC: [93]
nanoparticles loaded on AC concentration, efficiency
sorbent dosage R2=0.9994,
and contact time
MSE = 5.66e-05
TiO,-NP-AC:
R?=0.9729,
MSE = 0.0022
SY Zinc oxide nanorods loaded on | ANN Initial dye Removal R%=0.998, [94]
AC concentration, efficiency
pH, contact time, MSE = 0.0008
and adsorbent
amount
MB Activated spent tea (AST) ANN Time, adsorbent Adsorption R?=10.999 [95]
dosage, initial dye | efficiency

concentration,
temperature, and
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pH

Congo Red (CR) Fe,O; nanoparticles ANN Reaction Adsorption R2=0.991, MSE = 0.00235 | [96]
temperature, capacity
adsorbent dose,
initial dye
concentration,
and pH
(Y% ZnO-NR-AC ANN Sonication time, Adsorption R2=0.9815, MSE = [97]
adsorbent doses, capacity/Removal | 0.000014
pH, and initial efficiency
concentration
Basic Red (BR) Walnut husk (WH) ANN Temperature, Removal R?=0.9991, SSE = 0.2303 [98]
contact time, efficiency
initial dye
concentration,
adsorbent particle
size, and pH
Ethidium bromide | Natural pumice and iron-coated | ANN Contact time, pH, | Adsorption R?=0.9998, MSE = 0.005 [99]
(EtBr) pumice initial EtBr capacity/Removal
concentration, efficiency
and adsorbent
dose
Methyl violet 2B Soya bean waste ANN pH, dosage, Adsorption R%2=0.9946 [100]
contact time, capacity
initial dye
concentration,
temperature, and
ionic strength
SY Neodymium modified ordered ANN Adsorbent Removal R2=10.9832 [101]
mesoporous carbon dosage, reaction efficiency
time, and initial MSE =0.0012

concentration
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CV Activated carbon prepared from | ANN pH, solution Adsorption R%2=0.9950 [102]
Raphia hookeri seeds temperature, time, | capacity
and adsorbent RMSE =0.912
dosage
EY and MG Monoliths HKUST-1 MOF ANN Sonication time, Removal MG: [103]
pH, adsorbent efficiency R?= 0.9974
mass, and initial MSE=1.75 x 1073
dye concentration EY:
R?= 0.9963
MSE="743 x 1073
CG Copper sulfide nanoparticles RF Initial dye Adsorption R%2=0.9657 [104]
loaded on AC concentration, capacity
adsorbent MSE=0.0021

amount, and
sonication time
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Table 2. Applications of Al for the adsorption of heavy metals from the aqueous phase

Metal

Adsorbent

Al technique
used

Input variables

Output variable

Model
validation/Performance
indicators

Reference

Ni(IT) and Co(II)

Ultrasound-modified chitin (UM-
chitin)

ANN

Initial
concentration,
temperature

Adsorption
capacity

MSE < 0.0003 and R >
0.9995

[40]

Pb(II), Ni(II) and
Cu(II)

Date seed derived biochar

ANN

Temperature,
initial
concentration,
ionic strength,
solution pH, and
contact time

Adsorption
capacity

R2=0.9923, MSE = 1.21

[50]

Cd(I)

Immobilized Bacillus subtilis
beads

ANN

Mass of the
biosorbent,
column internal
diameter, flow
rate, bed depth and
influent
concentration of
metal ions

Removal
efficiency

R2=0.99

RMSE = 0.2289

[52]

Cu(ID)

Pumice

ANN

Contact time,
adsorbent dosage,
initial pH, and
temperature

Removal
efficiency

R?=0.999

RMSE =1.122 x 1073

[53]

Cr(1I)

Commercial Resins

ANN

pH, adsorbent
dosage, initial
metal
concentration,
contact time, and
temperature

Removal
efficiency

R2=0.99

MSE = 0.006162

[54]

Cr(VI)

Clay-based adsorbents

ANFIS (Adaptive
network based

Contact time,
temperature, metal

Removal
efficiency

Clay/Fe3O4

[55]
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fuzzy inference
system)

concentration, pH,
and adsorbent
dose

R2=10.9997

MSE= 1.288E-%

Cu(I) Gundelia tournefortii (GT) ANN Temperature, Biosorption R2=0.995 [56]
initial capacity
concentration, pH, MSE = 1.6868 x 107°
contact time, and
adsorbent dosage
Cu(Il) Sugar beet shreds ANN pH of the inlet Adsorption Sum of squared errors (SSer) | [57]
solution, initial capacity =7.8 x10*
concentration of
Cu(II) ions, and R?=0.9998
adsorbent dose
Pb(II) Carboxylate-functionalized ANN Contact time, Adsorption R?=0.9915 [58]
walnut shell (CFWS) adsorbent dosage, | efficiency
initial
concentration, and
pH
As(III) Bacillus thuringiensis strain WS3 | ANN Contact time, Adsorption R2=0.9959 [59]
As(IIT) capacity
concentration, MSE=0.3462
temperature, pH,
and adsorbent
dosage
Cd(n) Spirulina (Arthospira) Platensis, | ANN pH, agitation Removal R?=10.965 (Spirulina [60]
Spirulina (Arthospira) indica, speed, biosorbant | efficiency (Arthospira) maxima)
and Spirulina (Arthrospira) dosage, and initial
maxima concentration R2=10.967 (Spirulina
(Arthospira) platensis
R%2=0.9955 (Spirulina
(Arthospira) indica
Hg(II) Sargassum Bevanom algae ANN Sorbent dose, Removal R2=0.994 [61]
contact time, pH, efficiency

and initial
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concentration of

mercury
Cu(II), Zn(ID), Bone char ANN Initial metal Adsorption R2>0.96 [62]
Ni(IT) and Cd(IT) concentrations capacity
metals Modeling error = 8.01 to
45.8%
Zn(II) Pongamia oil cake (Pongamia ANN Batch: Removal Batch: [63]
pinnata) efficiency
Adsorbent dosage R =0.994
temperature, and
pH MSE = 0.02275
Continuous mode: Continuous mode:
Bed height, Zn(II) R=0.994
concentration, and
flowrate MSE =0.001216
Pb(II) and Cu(II) Nanocomposites of rice straw and | ANN Removal time, Removal Pb(II): [77]
Fe;0,4 nanoparticles initial ion efficiency
concentration, and R2=0.9905
adsorbent dosage
RMSE =0.95
Cu(ID):
R?=10.9632
RMSE=1.87
Cu(I) Pottery sludge ANN pH, initial Cu(II) Removal MSE = 0.06819 [79]
concentration, percentage
contact time, and
temperature
Cd(II) and Co(II) ZnO-NRs-AC ANN Adsorbent dosage, | Adsorption R%2=0.0.9999 [92]
dye capacity
concentrations, MSE= 0.0753

and ultrasonic
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time

Fe(1II)

Ignimbrite

ANN

Particle size, flow
rate, bed depth,
initial
concentration of
Fe(III), sorption
time, and pH

Adsorption
capacity

R2=0.980

RMSE= 0.65

[105]

Zn(1I), Cu(Il)

Bone char

ANN

Operating time,
bed length, feed
flow, feed
concentration,
ionic radius,
electronegativity,
and molecular
weight

Ct,i/CO,i of the
breakthrough
curve

R?2>0.99

Mean error = 0.98 to 174%

[106]

Pb(1l)

Deep eutectic solvents
functionalized CNTs

ANN

Initial Pb(IT)
concentration,
contact time,
adsorbent dosage,
and pH

Removal

efficiency

R?=10.9956

MSE = 1.66 x 1074

[107]

Pb(Il)

Copper oxide nanoparticle-loaded

AC (CuO-NP-AC)

ANN

Irradiation time,
amount of
adsorbent and
ultrasound, pH,
and Pb(II) ions
concentration

Removal
efficiency

R2=0.99970

MSE = 0.00098

[108]

Cr(VD)

NiO nanoparticles

ANN

pH, contact time,
amount of
adsorbent, and
initial Cr(VI)
concertation

Removal
efficiency

R2=0.93

[109]
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Co(II) and Ni(IT) Carboxymethyl chitosan-bounded | ANN Adsorbent mass, Adsorption Ni(I): [110]
Fe;04 nanoparticles initial capacity
concentration of R?2=0.9702
metal ions, contact
Co(II):
R%2=0.9673
MSE = 4.4664
Ni(Il), Pb(II), and | Itaconic acid grafted poly(vinyl) ANN Contact time, Removal R2=0.997 (Cd(II)), 0.998 [111]
Cd(II) alcohol encapsulated wood pulp biosorbent dose, efficiency (Pb(II)), and 0.995 (Ni(II))
(IA-g-PVA-en-WP) and metal
concentration MSE = 0.003479377
(Cd(II)), 0.003830969
(Pb(I)), and 0.002372617
(Ni(ID)
Pb(IT) Gundelia tournefortii ANN Contact time, Adsorption R>=0.998 [112]
biosorbent dosage, | capacity
initial pH, and MSE = 0.000867
temperature, and
initial Pb(I) ion MRE = 0.000501
concentration
As(Il) and As(V) | Botryococcus braunii ANN Initial arsenic Removal As(I1D): [113]
concentration, efficiency
contact time, R2=10.9998

inoculum size
(%v/v), and pH

MSE = 2.859E ~%
As(V):
R%2=0.9984

MSE = 1.697E - %
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Pb(ID) Coffee grounds ANN pH values Adsorption R%2=0.97 [114]
capacity
Cr(VI) Magnetic Calcium Ferrite ANN Contact time, Adsorption R2=0.984 [115]
nanoparticles (CaFe,0,) initial Cr(VI) ion capacity
concentration, MSE =0.00161
adsorbent dosage,
and pH
Zn(II) Hazelnut shell ANN Adsorbent dosage, | Adsorption R2=1 [116]
initial capacity
concentration, RMSE=0.0029
temperature,
contact time and
initial pH
Pb(1D) Rice wastes, hyacinth roots, neem | ANN Contact time, Removal MSE = 2.186620 [117]
leaves and coconut shells adsorbent dosages, | efficiency
initial Pb(II) ion R =0.985341
concentration, and
Initial pH
Cu(ID) Flax meal (0il extraction with ANN Solution pH, Biosorption R?=0.96, MSE=6.1 x 10* | [118]
supercritical CO,) biosorbent dosage, | efficiency
and metal ions
concentration
Cd(II) Rice straw ANN, ANFIS pH, initial Biosorption ANN [119]
concentration of efficiency
Cd(II), and R=0.99
biosorbent dose
MSE=92.43
Cr(V]) Cerium oxide polyaniline ANN Initial Removal R?=0.9943 [120]
composite (CeO,/PANI) concentration, percentage
adsorbent dose, MSE =0.012
contact time, pH,
and temperature RMSE =0.009
MAPE = 0.016

35




AARE =0.013

Arsenic(V) Adsorbents obtained from ANN pH and Removal R%2=0.9973 [121]
the Opuntia ficus indica biomass temperature efficiency
Modeling error (%) =2.54
Indium(I1T) AC, multiwalled carbon ANN, ANIFS Adsorbent type, Adsorption ANFIS: [122]
nanotubes (MWCNTs) contact time, and capacity
functionalized with OH adsorbent dosage R =10.9998,
(MWCNT-OH), and MWCNTs
functionalized with COOH RMSE = 48,373
(MWCNT-COOH)
ANN:
R=0.9831
MSE =0.0180
Cr(V]) Date palm fiber ANN Time, biosorbent Removal R%2=10.9983 [123]
dosage, initial efficiency
concentration of MSE = 6.82
Cr(VI), and initial
pH
Cu(II) Sawdust from Melia Azedarach ANN, ANFIS Adsorbent dosage, | Removal ANN: [124]
wood contact time, pH, efficiency
and initial Cu(IT) R2=0.98
concentration
MSE= 10.63
ANFIS:
R?2=0.99
MSE=0.707
Cr(III) Clay ANN Contact time, Removal R%2=0.9834 [125]
initial ion efficiency
concentration, MSE=0.0247

initial solution pH,
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and adsorbent
dosage

Pb(1I) Rice husks treated with nitric acid | ANN, feed Contact time, the Adsorption R%2~ 0.998 [126]
forward back- initial capacity
propagation concentration, and
neural network the utilized
(FFBPNN), biosorbent mass
Levenberg—
Marquardt (L-M)
Zn(1I) Rice husks digested with nitric ANN Initial Adsorption R2=0.9686 [127]
acid concentration, capacity
contact time and
temperature
Cd(n) Nano-magnetic walnut shell-rice | ANN Walnut shell-rice Sorption R?=0.9967 [128]
husk husk mixing ratio | efficiency
and magnetite
loading,
calcination time,
and calcination
temperature
Cu(I) Biochar derived from rambutan ANN, ANFIS Initial Cu(II) ion Adsorption ANFIS [129]
(Nephelium lappaceum) peel concentration, efficiency
biochar dosage, R?=0.9024
operating
temperature, and RMSE =3.29
contact time
Pb(IT) and Co(II) Rafsanjan pistachio shell (RPS) FFNN and pH, Initial Adsorption FFNN: [130]
genetic concentration of capacity
programming metal, biosorbent R%=0.9932 (Pb(II), and
(GP) dosage, and 0.9908 (Co(II))
temperature

RMSE = 1.1622 (Pb(I)),
RMSE = 1.1340 (Co(1I))
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Table 4. Applications of Al for the adsorption of organic compounds, pharmaceuticals, drugs, pesticides, and PCPs from the aqueous

phase
Pollutant Adsorbent Al technique Input variables Output Model Reference
used variable validation/Performance
indicators
Cephalexin Octenyl Succinic Anhydride ANFIS Temperature, initial Adsorption R%2=10.9999 [64]
(OSA) starch concentration of capacity
adsorbent, pH, and RMSE=3.9x 1073
contact time
Chlorothalonil pesticide | Activated carbon ANN pH, chlorothalonil Adsorption R?=0.982 [65]
concentration, contact | capacity
time, and adsorbent MSE=33.9
dosage
Bisphenol A (BPA), Cross-linked chitosan/zeolite | ANN pH and Removal BPA: [66]
carbamazepine (CBZ), micropollutants (MP) | efficiency
ketoprofen (KTF) and concentration R2=0.998
tonalide (TND)
MSE= 6.91
CBZ:
R?2=0.993
MSE= 12.89
KTF:
R?2=0.997
MSE= 8.20
TND:
R?=0.997
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MSE=10.62

Paracetamol Chemically modified orange | ANN Contact time, Adsorption MSE=5.8985 x 10704 [67]
peel temperature, and efficiency RMSE=0.0243
initial concentration R?=0.9958
Phosphate Nanoscale zero-valent iron ANN Reaction time, Removal R2=0.976 [68]
(nZVI) stirring rate, nZVI efficiency
dosage, initial PO,*- MSE=1.84
concentration, and pH
Heptachlor Fe/Cu nanoparticles ANN Adsorbent dose, pH, Removal R?>=0.9567 [69]
initial heptachlor efficiency
concentration, stirring MSE =21.0248
rate, and contact
time
Triamterene MWCNTs and single-walled | ANN Contact time, initial Adsorption R%2=10.980 [70]
carbon nanotubes (SWCNTSs) drug concentration, capacity/
amount of adsorbent, | Removal MSE= 0.002
and temperature efficiency
Chlorophenol (CP) Coconut shell carbon (CSC) | Radial basis Contact time, CP Removal RBFN: [71]
function concentration, efficiency
network temperature, and pH R?=0.96
(RBFN) and
multilayer MSE= 6.03
perceptron
network
(MLPN)
Phenol Scoria stone ANN Phenol concentration, | Removal R2=0.982686 [72]
contact time, and efficiency RMSE=2.464535
adsorbent dosage
Phosphate Lime-iron sludge ANN and Time, flow rate, and Breakthrough C/C,= [73]
ANFIS bed depth time and
Concentration | R?=0.9962 ( ANFIS)
ratio (C/C,)

R2=0.9968 ( ANN)
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Breakthrough times:
R2=1 ( ANFIS)
R?=1 ( ANN)
MSE:

0.0004 (ANN)

0.0001 (ANFIS)

Phenol Activated date palm biochar | ANN Time, mass of Residual R2=0.9880 [74]
adsorption bed, depth | concentration
of adsorption bed, of the effluent | RMSE= 0.0472
flow rate, and initial phenol and the
concentration breakthrough
C/C,
Ortho-cresol Activated date palm biochar | ANN Time, mass of Residual R%2=10.9886 [74]
adsorption bed, depth | concentration
of adsorption bed, of the effluent | RMSE= 0.0560
flow rate, and initial ortho-cresol
concentration and the
breakthrough
C/C,
Phenol and 3-amino- Composite iron nano- ANN Phenols Uptake Relative error =+0.35to | [76]
phenol adsorbent concentration, pH, effectiveness 3.0 for phenol and 0.35
contact time, to 3.5
temperature and the for p-amino-phenol
quantity of sorbent
Carbaryl Lemna major biomass ANN Initial concentration, | Adsorption R>=0.921 [131]
pH, biomass dose and | capacity
contact time
Nimesulide and AC ANN Contact time, Adsorption R2=0.9989 (imesulide) [132]
paracetamol adsorbent dose, capacity (paracetamol) (R? =

adsorbent particle
size, and initial
concentration

0.9985)
MSE = 0.0006
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Ranitidine Mung bean husk (MBH) ANN Adsorbent dose, pH, | Adsorption R?=10.9821 [133]
hydrochloride (RH) and agitation efficiency RMSE = 0.2292
Phenol and resorcinol AC, wood charcoal (WC) and | ANN pH, contact time, Removal Phenol: [134]
rice husk ash (RHA). initial concentrations | efficiency R2=0.96
of phenol and RMSE =2.4
resorcinol, and
amount of adsorbent Resorcinol:
R?=0.95
RMSE =4.5
Phenol AC ANN pH, contact time, Adsorption R%2=10.9998 [135]
temperature, initial capacity/ RMSE =0.2378
concentration of Removal
phenol, and amount efficiency
of adsorbent
Phenol Orange peel ash ANN Temperature, stirring | Uptake MSE = 0.0006 [136]
rate, contact time, efficiency
adsorbents dose, pH,
and initial
concentration
Benzene, toluene, ethyl | Iron nanoparticles ANN pH, temperature, Removal R2=0.97064 [137]
benzene and xylene adsorbent dose, initial | efficiency
(BTEX) BTEX mixture MSE: 0.080186
concentration, and
contact time
Phosphate Hydrated ferric oxide-based ANN Adsorbent dosage, Removal R2=0.9931 [138]
nanocomposite operating efficiency
temperature, sulfate MSE= 0.00105

concentration, and
initial pH
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Table 5. Applications of Al hybrid techniques for the adsorption of pollutants from the aqueous phase

Pollutant Adsorbent Al technique used Input variable Output variable Model validation/ | Reference
performance
indicators
AY41 and SY SnO, nanoparticle loaded (Principal component | Dye concentration, | Removal SY: [41]
activated carbon analysis) PCA- ANN | pH, adsorbent efficiency R? = 0.99
dosage, and contact '
time MSE =0.53
AY4l:
R2=0.98
MSE =0.79
BG and EB ZnS nanoparticles loaded AC Multi-layer ANN Contact time, Adsorption BG: [46]
(ML-ANN), RSM adsorbent dosage, | capacity R2 = 0.9589. MSE
BG concentration, =0.0021
EB concentration EB:
R?=0.9455, MSE
=0.0022
Metals (Cd, Al, | Chitosan and Chitosan- Multi-layer Adsorbent dosage, | Removal Chitosan: [51]
gg)’ Cu, Fe, and Montmorillonite perceptron ANN initial pH values, efficiency R2=0.9527
nanocomposite (MLP-ANN), radial | and contact time (MLPANN),
0.9643
basis function ANN (RBFANN)
(ANN-RBF), SOS
. C.M.
algorithm (ANN- Nanocomposite:
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SOS) R2=0.9257
(MLPANN),
0.9665
(RBFANN)

MG Chitosan/polyvinyl MLP-ANN pH, initial dye Removal R%2=0.9958 [81]
alcohol/zeolite imidazolate concentration, and efficiency RMSE =0.01822
frameworks membrane adsorbent dose
adsorbents (CPZ)

As(I1I) Cerium oxide GP (genetic Temperature, time, | Adsorption GP: [86]
tetraethylenepentamine programming), LS- concentration, pH capacity R?2=0.977
(CTEPA) SVM (least square and dose MSE =0.1068

support vector RMSE =0.0284
machine) MAPE (mean
absolute

percentage error)
= 0.0632
AARE (average
absolute relative

error) = 0.0004

LS-SVM:
R2=0.905
MSE =1.423
RMSE =0.112
MAPE = 0.200
AARE =0.002
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Cr(V]) Cupric oxide nanoparticles ANN-GA Initial Removal R2=0.99 [87]
(CuONPs) concentration, pH, percentage
adsorbent dose, and MSE =0.21
temperature
As(IIT) Zn-loaded pinecone biochar RSM-GA (response As(IIT) Adsorption R2=10.92-0.95 [88]
surface model— concentration, capacity RMSE = 0.28-
genetic algorithm) EtOH 0.25
concentration, and SEP (standard
pH error of
prediction) = 3.17-
2.80
Cu(I) Reduced graphene oxide- ANN-GA, ANN- Temperature, initial | Removal R%2=0.9997 [89]
supported nanoscale zero- PSO pH, initial efficiency
valent iron (nZVI/rGO) concentration and MSE = 0.00020
magnetic nanocomposites contact time
Cd(I) Natural waste materials (leaves | GA-ANN Number of sorbent, | Removal R= 0.97-0.99 [91]
of jackfruit, mango and rubber pH, adsorbent efficiency MSE = 0.98-
plants) dosage, time, and 12.16
initial
concentration
MB Zinc sulfide nanoparticles with | LS-SVM (least Sonication time, Adsorption ANN: [139]
AC (ZnS-NPs-AC) squares-support MB concentration, capacity
vector machine), adsorbent mass, Elz\/[:s(])g 9:93.40’006 5

ANN, GA

and pH
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Basic Red 18 CuO-NiO nanocomposite ANN, BP-ANN Dye concentration Removal R2=0.9904 (BR [140]
(BR 18) and . efficiency 18)
Basic Blue (backpropagation and adsorbent
41(BB 41) neural network) dosage R2=10.9964
((BB41)
Acid red 27 Polypyrrole/SrFe;,0;o/graphene | ANN-BA (bees- Contact time, Adsorption - [141]
oxide nanocomposite inspired algorithm) shaking rate, initial efficiency
MLP-ANN concentration, pH,
(multilayer and adsorbent
perceptron artificial dosage
neural networks)
MB Sulfur—nitrogen co-doped Dye concentration, | Removal R2=0.92 [142]
ANN-GA ;
Fe0; the light dose, pH, | efficiency
nanostructure surface
and dose of the
nanoparticle
MB Mesoporous rGO/Fe/Co ANN-PSO, ANN- Initial Adsorption Absolute error = [143]
nanohybrids GA concentration, capacity 0.52
contact time,
temperature, and
pH
CV Reduced-graphene-oxide- ANN-GA, ANN- Initial dye Removal R%=0.9998 (BP- [144]
supported bimetallic Fe/Ni : efficiency ANN)
nanoparticles (rGO/Fe/Ni) PSO, and BBD (Box | concentration, Absolute errors:
Behnken design) initial pH, contact 5.6 (ANN-GA)
. 3.5 (ANN-PSO)
time, and
temperature 12.4 (BBD)

45




Zn(II) Activated carbon derived from | Differential Initial solution Removal R?=10.995 [78]
palm oil kernel shell evolution (DEO) concentration, efficiency RMSE = 0.248
embedded neural pH, adsorbent
network (ANN-DE) | dosage, residence
time, temperature
Cd(r) Inactive and SVR-GA (Support pH, biomass Biosorption RZ2=0.919 [145]
living Trichoderma Vector dosage, efficiency MSE = 0.85
viride biomass Regression- genetic | metal
algorithm) concentration,
contact time and
temperature
Cr(VI) Activated carbon from Medlar SVR-GA pH, initial Removal R2=10.981 [146]
seed (Mespilus germanica) concentration efficiency
of Cr(VI),
adsorbent
dosage and contact
time
Cd(n) Biowaste materials, jackfruit, GA-ANN Adsorbent type, Adsorption R =0.997-0.999 [147]
efficiency

mango, and rubber leaves

bed height, flow
rate, time, and
influent

concentration

MSE = 1.470807-
4.238426
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4. Challenges and Prospects

Al tools have offered serval advantages over conventional mathematical modelling. It can be
used to predict the performance of various water treatment process and reduce the experimental
costs. However, still, there are some limitations that hindered the widespread applications of
these techniques in real water treatment.

The major drawback of Al tools such as ANNs is the poor reproducibility due to random weight
and bias that might result in a locally optimal solution [16,148]. The hybridization of various Al
tools can also be employed to predict pollutant removal efficiency during the adsorption process.
Deep learning and deep ANNs are good options for achieving high accuracy and prediction.
However, it requires a sufficient amount of data for experimental training, testing, finding the
local minima and overfitting.

The process performance predicted by Al tools may also deviate from the actual results under
certain circumstances. For example, a sudden change in operating parameters and water quality
may result in wrong prediction by Al tools. Efforts must be made to strengthen the prediction of
Al tools so that they can be employed under various circumstances and can accommodate sudden
fluctuation in the input variables. Based on the available literature, the AI tools have
demonstrated tremendous performance for modelling the batch adsorption process with a smaller
range of data. However, the applications of Al tools in practical wastewater treatment with a
wide range of data is yet to be explored.

Another major challenge relevant to Al-based water treatment is the availability and selection of
data. The water utilities are acquired to generate, collect, process, evaluate and analyze data by
creating datasets for system optimization and prediction. Special attention must be given to select

the training data for Al tools, an experimental design technique, as the random data selection is
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associated with certain drawbacks. However, the experimental design techniques (such as RSM)
usually require a large input dataset to create an accurate response.

The operational data from real water treatment plants can be used as input for Al models, and the
removal of pollutants can be predicted more accurately. Al technology could play a critical role
in sustainable wastewater treatment and can result in a significant reduction in operating cost in
addition to safeguarding the environment. Besides predicting the water treatment process
efficiency, Al tools can be used to integrate the whole process of water treatment starting from
water discharge, transportation, management of sludge, environmental impacts, economy and
policymaking. Data collection from the various water treatment process is necessary to apply Al
techniques in the water treatment domain successfully. However, special care should be taken
while collecting the data to keep data integrity. All the information, such as data sources,
location, process environment, and dataset ontology, should be listed while reporting the data.
This information will help researchers, students, and engineers to reuse the data in the various
experimental domain for future prediction.

Al provides an opportunity for the water industry to optimize and govern water monitoring and
management. The development of new Al-based algorithms is needed to address certain
problems in water treatment and management, such as water quality, leakage detection, and
water process optimization, to provide intelligent decisions. By applying hybrid Al techniques,
prediction accuracy can be enhanced that leads to a reduction in energy and operational cost.

A benchmark/framework should be developed to compare various Al-based stand-alone and
hybrid techniques in the field of water treatment and to suggest the best techniques for

applications in real treatment processes.
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5. Conclusion

Al has transformative potentials to revolutionize the wastewater treatment process. This review
summarized the major Al tools employed in water treatment for the uptake of various pollutants.

Numerous Al models (both single and hybrid) have successfully predicted the performance of
different adsorbents for the removal of dyes, metals, organic compounds, pharmaceuticals, drugs,
pesticides and PCPs from water. Despite several advantages offered by Al tools, there are still
some shortcoming that needs to be overcome to fully utilize the potential of Al tools in practical
water treatment applications. Selection of suitable data, applications of hybrid Al tools, and more
studies at the pilot plant level will be helpful to address these challenges. Regardless of these
hurdles, the current research progress suggests that Al tools have a bright future in water

treatment applications.
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Appendix:

List of abbreviations

SDGs: Sustainable Development Goals

PCPs: Personal Care Products

Al: Artificial Intelligence

ANN: Artificial Neural Network

DT: Decision Tree

MLP: Multi Layer Perceptron

BP: Back Propagation

ANFIS: Adaptive Network based Fuzzy Inference System
RSM: Response Surface Methodology

RBF: Radial Basis Function

CNN: Convoluted Neural Network

PSO: Particle Swarm Optimization

GA: Genetic Algorithm

RF: Random Forest

KNNs: k-Nearest Neighbor

SVM: Support Vector Machine

RNN: Recurrent Neural Network

SOM: Self-Organizing Map

FNN: Fuzzy Neural Network

DNN: Deep Neural Network

MLPANN: Multilayer Perceptron Artificial Neural Network
MLP: Multi Layer Perceptron

MLPN: Multilayer Perceptron Network

FFBP: Feed forward control

FFBP: Feed Forward Neural Network

RBFN: Radial Basis Function Network

GP: Genetic Programming

LM: Levenberg Marquarit

FFBPNN: Feed Forward Back Propagation Neural Network
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ANN-BA: Artificial Neural Network-Bees Inspired Algorithm

LS-SVM: Least Square-Support Vector Machine

GA-SVR: Genetic Algorithm-Support Vector Regression

GA-RSM: Genetic Algorithm-Response Surface Model

GA-MLPANN: Genetic Algorithm -Multi Layer Perceptron Artificial Neural Network
GA-RBANN: Genetic Algorithm -Radial Basis Function Artificial Neural Network
GA-FNN: Genetic Algorithm -Feedforward Neural Network

GA-FL: Genetic Algorithm -Fuzzy Logic

SVM-SA: Support Vector Machine-Simulated Annealing

SVM-ASAGA: Support Vector Machine-Adaptive Simulated Annealing Genetic Algorithm
ANN-DE: Artificial Neural Network-Differential Evolution

GANN: Genetic Algorithm Neural Network

PSO-WNN: Particle Swarm Optimization-Wavelet Neural Network

PSO-ENN: Particle Swarm Optimization-Elman Neural Network

PCA- ANN: Principal Component Analysis-Artificial Neural Network

R2: Coefficient of Determination)

MSE: Mean Squared Error

SSE: Sum of Squared Error

RMSE: Root-Mean-Square Error

MAPE: Mean Absolute Percentage Error

AARE: Average Absolute Relative Error

SEP: Standard Error of Prediction
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Highlights

e A comprehensive overview of Al applications in water treatment is presented.
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e The potential of Al in predicting the uptake of various pollutants are portrayed in detail.
e The major challenges in Al applications are accentuated.

e A roadmap for future research is suggested.
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