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Objectives

* Develop fundamental relations between commonly
encountered thermodynamic properties and express the
properties that cannot be measured directly in terms of
easily measurable properties.

« Develop the Maxwell relations, which form the basis for
many thermodynamic relations.

* Develop the Clapeyron equation and determine the
enthalpy of vaporization from P, v, and 7 measurements
alone.

* Develop general relations for ¢, ¢,, du, dh, and ds that

are valid for all pure substances.
 Discuss the Joule-Thomson coefficient.

« Develop a method of evaluating the AA, Au, and As of
real gases through the use of generalized enthalpy and
entropy departure charts.



A LITTLE MATH—PARTIAL
DERIVATIVES AND The state postulate: The state of

a simple, compressible substance
ASSOCIATED RELATIONS is completely specified by any two
flx)h independent, intensive properties.
All other properties at that state
can be expressed in terms of
those two properties.

z=2z(xy)

f(x+Ax) F=f)
f(x) df A fla+ A) — ()
— = lim — = lim
(_l,,\’ Ax—0 A\’ Ax—0 A\’

The derivative of a function A x)
with respect to xrepresents the
rate of change of Fwith x.

Slope

The derivative of a function at a
specified point represents the slope of
the function at that point.



Partial Differentials

The variation of Z(x, y) with x when
oz yis held constant is called the
(ﬁ) ‘ partial derivative of zwith respect
J to x, and it is expressed as

7 — lin Az — in Z(_k‘ + Ax, }‘) — :(_r. }‘)
o0x . B A:ll}]{} Ax . B A_!-n}(] Ax

The symbol 0 represents differential

changes, just like the symbol d.

They differ in that the symbol d

represents the fota/ differential

change of a function and reflects

y  the influence of all variables,
whereas 0 represents the partial
differential change due to the
variation of a single variable.

The changes indicated by dand o
- are identical for independent
Geometric representation of variables, but not for dependent
partial derivative (020x),. variables.




To obtain a relation for the total differential change in z(x, y) for simulta-
neous changes in x and y, consider a small portion of the surface z(x, v)
shown in Fig. 12-4. When the independent variables x and y change by Ax
and Ay, respectively, the dependent variable 7 changes by Az, which can be
expressed as

Az = z(x + Ax,y + Ay) — z(x,y)

Adding and subtracting z(x, y + Ay), we get

Az=z(x + Ax,y + Ay) — z(x,y + Ay) + z(x,y + Ay) — z(x, )
or Geometric
\ Z(x + Ax,y + Ay) — z(x, v + Ay) vt zZ(x,y + Ay) — z(x, y) A representation of
A7 = AX Ay . .
Ax Ay ' total derivative azfor
Taking the limits as Ax — 0 and Ay — 0 and using the definitions of partial a function Z(x, y).
derivatives, we obtain Z4
07 0z
dz = | - dx + | - dy
ax /, v/, z(x, ) Z(X/+ Ax, y + Ay)

total differential of a dependent variable
in terms of its partial derivatives with
respect to the independent variables. X

I y
X, y+ Ay

This is the fundamental relation for the 7\
]
|

x+ Ax, y

x+ Ax, y+ Ay




Partial Differential Relations

dz = M dx + Ndy
0z 0z
M = — and N = —
x / ay /.
( aM) 9’z ( ON ) 9’z
) = and |-~ | =_—
dy /.  0dxdy ox /,  dyox

The order of differentiation is immaterial for
properties since they are continuous point
functions and have exact differentials. Thus,

().~ ()
. ox /,

ady

Function: 7+ 2xy —3y*z2=0
2xy Jdz 2y
1) : — 5 h — (—') — 5 -
32— 1 oxly 3y
3y%7 -2 ] 3y° -1
Thus, ( &) = 1 :
' N

Demonstration of the
reciprocity relation for the
function z +2xy — 32z =0.

Reciprocity

relation
f’:) _ | Cydlic
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THE MAXWELL RELATIONS

The equations that relate the partial derivatives of properties P, v, 7, and s
of a simple compressible system to each other are called the Maxwel/
relations. They are obtained from the four Gibbs equations by exploiting the
exactness of the differentials of thermodynamic properties.

du=Tds — Pdv a
dh =Tds + vdP

= g:

du — Tds — sdT
—
dh — Tds — sdTl

da da

dg dg

oM
dz=Mdx + Ndy =—» ()

dy
(30). (%) (), -
v/, as ), \av/);
(5)
P J

JV (E!.\) B
- \as /p dP ) ;

Maxwell relations

(37),

u — Ts Helmholtz function

h — Ts Gibbs function

—sdl' — Pdv
—sdl + vdP

( ON )
dx /,

D
T/,

aV

Maxwell relations are extremely
valuable in thermodynamics
because they provide a means of
determining the change in entropy,
which cannot be measured directly,
by simply measuring the changes in
properties P, v, and 7.

These Maxwell relations are limited
to simple compressible systems.




Consider the third Maxwell relation, Eq. 12-18:

(7),-(32)
ol U_ v T

During a phase-change process, the pressure is the saturation pressure,
which depends on the temperature only and is independent of the specific
volume. That is, P, = f(T,). Therefore, the partial derivative (0P/0T ), can
be expressed as a total derivative (dP/dT ), which is the slope of the satu-
ration curve on a P-T diagram at a specified saturation state (Fig. 12-9).
This slope is independent of the specific volume, and thus it can be treated
as a constant during the integration of Eq. 12-18 between two saturation
states at the same temperature. For an isothermal liquid—vapor phase-change
process, for example, the integration yields

dP
S{E — 'S:f: (E) t(ug - Vf) (12—20)
or
(Q) _ % (12-21)
dl ) s Vg

During this process the pressure also remains constant. Therefore, from
Eq. 12-11,
JURRTI
dh=Tds +vdP~ — [ dh = [ Tds— hy, = Ts;,
‘f 7

Substituting this result into Eq. 12-21, we obtain

(£> _ (12-22)
dr sat N TVJ‘,& )

THE
CLAPEYRON
EQUATION



LIQUID

a]

sat

VAPOR

—) = const.

' ng,
(d_P> = - i Clapeyron
dT' ) o« TVg equation

The Clapeyron equation enables
us to determine the enthalpy of
vaporization /1, at a given
temperature by simply
measuring the slope of the
saturation curveona P-T
diagram and the specific volume
of saturated liquid and saturated
vapor at the given temperature.

T

The slope of the saturation curve
on a P-7diagram is constant at a
constant 7or P.

~Ny

()
({T sat .TV] 2

General form of the Clapeyron
equation when the subscripts 1
and 2 indicate the two phases.




The Clapeyron equation can be simplified for liquid—vapor and solid—
vapor phase changes by utilizing some approximations.

Atlow pressures VUV, == V, — V, =V,

&

Treating vapor V. = RT/P

as an ideal gas The Clapeyron—Clausius
L _ _ equation can be used to
Substituting thege equations into the et ermin St e
Clapeyron equation saturation pressure with
AP Ph,, temperature.
(d?")w T RT2 It can also be used in the

solid—vapor region by
replacing A, by A, (the
(dP) Ny ( dT) enthalpy of sublimation) of
sat sat

P R\ 72 the substance.

Integrating between two saturation states

In PZ ~ h'f‘;“’f L_ i Clapeyron_
p ). R\T T/, Clausiusequation
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GENERAL RELATIONS FOR du, dh, ds, ¢, AND c,

The state postulate established that the state of a simple
compressible system is completely specified by two independent,
intensive properties.

Therefore, we should be able to calculate all the properties of a
system such as internal energy, enthalpy, and entropy at any state
once two independent, intensive properties are available.

The calculation of these properties from measurable ones depends
on the availability of simple and accurate relations between the two
groups.

In this section we develop general relations for changes in internal
energy, enthalpy, and entropy in terms of pressure, specific volume,
temperature, and specific heats alone.

We also develop some general relations involving specific heats.

The relations developed will enable us to determine the changes in
these properties.

The property values at specified states can be determined only after
the selection of a reference state, the choice of which is quite

arbitrary.
11



Internal Energy Changes

We choose the internal energy to be a function of 7" and v; that is, u =
u(T, v) and take its total differential (Eq. 12-3):

Jdu Jdu
du = () dT + () dv
oT /, ov/r

Using the definition of ¢, we have

d
du = ¢, dT + (“) dv (12-25)
v /g
Now we choose the entropy to be a function of 7" and v; that is, s = s(7, V)
and take its total differential,

d d
ds = <S> T + <S> dv (12-26)
T/, v/
Substituting this into the 7' ds relation du = T'ds — P dv yields
ads ds
du = T() dl + [T() — P} dv (12-27)
oT /), AV
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Equating the coefficients of d7 and dv in Egs. 12-25 and 12-27 gives
(d) _
or), T
ou ds
() — T() — P (12-28)
v/ v/ r

Using the third Maxwell relation (Eq. 12-18), we get

ou oP
(), -(2). -
ov/r ol /],
Substituting this into Eq. 12-25, we obtain the desired relation for du:

P
du = c, dT + [T() — P} dv (12-29)
JaT /

The change in internal energy of a simple compressible system associated
with a change of state from (7, v,) to (75, V,) is determined by integration:

b )
Uy — Uy = c, dl + I\— | —P| dv
)T
T, v ¢ v

13



Enthalpy Changes

The general relation for dh is determined in exactly the same manner. This
time we choose the enthalpy to be a function of 7 and P, that is, h = h(T, P),
and take its total differential,

oh oh
dh=\—| dI+ | — | dP
aT ) » oP ) ;
Using the definition of ¢,, we have
Ih = c,dT + (ah) P (12-31)
( (,D 4 9P ; 4
Now we choose the entropy to be a function of 7 and P; that is, we take
s = s(T, P) and take its total differential,

as as
ds = () dT + () dP (12-32)
aT ) oP ) ;
Substituting this into the T ds relation dh = T ds + v dP gives
0s ds
dh = T(6> dT + {V + T(6> ] dP (12-33)
aT /) P ),

14



Equating the coefficients of dT and dP in Eqgs. 12-31 and 12-33, we obtain
() -
or), T
( oh ) ( k) )
— ) =v+T|— (12-34)
()P T (JP T
Using the fourth Maxwell relation (Eq. 12—19), we have
(ip), == 1(5)
oP), aT ) »
Substituting this into Eq. 12-31, we obtain the desired relation for dh:

Jdv
v — T(,—) }dP (12-35)
()T P

The change in enthalpy of a simple compressible system associated with a
change of state from (7, P,) to (T,, P,) is determined by integration:

- T, - P, :
- - AV,
hy — hy = ‘ ¢, dT + ‘ [v - T(f—) ](/P (12-36)
Jo p, ()T P

I

dh = ¢, dT +

In reality, one needs only to determine either u, — u, from Eq. 12-30 or
h, — h, tfrom Eq. 12-36, depending on which is more suitable to the data at
hand. The other can easily be determined by using the definition of enthalpy
h=u+ Pv

hy — hy = u, — u, + (P,v, — P,v,) (12-37)

15



Entropy Changes

The first relation is obtained by replacing the first partial derivative in the
total differential ds (Eq. 12-26) by Eq. 12-28 and the second partial deriva-
tive by the third Maxwell relation (Eq. 12—18), yielding

Cy oP
ds = 7 dT + ((')T)udu (12-38)
and
e, 2 9P
5, — 5 = ‘ o dT + ‘ (aT)VW (12-39)
T, v,

The second relation is obtained by replacing the first partial derivative in the
total differential of ds (Eq. 12-32) by Eq. 12-34, and the second partial
derivative by the fourth Maxwell relation (Eq. 12—-19), yielding

Cp Vv
ds = -2 4T — () AP (12-40)
T ()T P
and o p
¢, (9
5, — 5, = —7{ dT — ‘ ( :;) dP (12-41)
T, ’p, ‘ p

Either relation can be used to determine the entropy change. The proper
choice depends on the available data.

16



Specific Heats ¢, and c,

At low pressures gases behave as ideal gases, and their specific heats
essentially depend on temperature only. These specific heats are called zero
pressure, or ideal-gas, specific heats (denoted ¢, and c,,), and they are rel-
atively easier to determine. Thus it is desirable to have some general rela-
tions that enable us to calculate the specific heats at higher pressures (or
lower specific volumes) from a knowledge of ¢, or c¢,, and the P-v-T
behavior of the substance. Such relations are obtained by applying the test
of exactness (Eq. 12-5) on Egs. 12-38 and 12—40, which yields

() <o) o
o /), aT* ),
dJc, 9%V
(. ) = —T(, ) (12-43)
aP /), JaT =/ p

The deviation of ¢, from c,, with increasing pressure, for example, is deter-
mined by integrating Eq. 12—43 from zero pressure to any pressure P along
an isothermal path:

and

~ P .9

12

(¢, —cpo)r=—T ‘ ((‘;;) dP (12-44)
Y0 P
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Another desirable general relation involving specific heats is one that relates
the two specific heats ¢, and c,. The advantage of such a relation is obvious:
We will need to determine only one specific heat (usually ¢,) and calculate
the other one using that relation and the P-v-T data of the substance. We
start the development of such a relation by equating the two ds relations
(Egs. 12-38 and 12-40) and solving for dT:

ar = 1Py o TV,

c, = C, C, — Cy

Choosing T = T(v, P) and differentiating, we get

oT oT
dl'=\— ) dv+\— | dP
ov/p oP /,

Equating the coefficient of either dv or dP of the above two equations gives

the desired result:
IV JP
¢, — ¢, = T() () (12-45)
I oT p oT y

18



An alternative form of this relation is obtained by using the cyclic relation:

(f)P) (EJT) (av) | (EJP) (au) (EJP)
—_— e e = - —_— —_— = —_— e —_—
oT ) ,\ov /) p\dP ], aT / aT' ) p\ 0V / ¢

Substituting the result into Eq. 1245 gives

R AN (12-46)
v aT ) p\ov /)

This relation can be expressed in terms of two other thermodynamic proper-

ties called the volume expansivity £ and the isothermal compressibility «,
which are defined as (Fig. 12-10)

() o
B = v\adT /p

and
o I(W) 19.48
“ v\ aoP /; ( )

Substituting these two relations into Eq. 12—46, we obtain a third general

relation for ¢, — ¢

_vig*  Mayer

) 12-49
o relation ( )

19



. . _VIB" Mayer
e o  relation

L

Conclusions from Mayer relation:

1. The right hand side of the equation is
always greater than or equal to zero.

20°C
100 kPa
1 kg

21°C
100 kPa
1 kg

Therefore, we conclude that

5l :} 5l
c, = ¢,

2. The difference between c,and c,

approaches zero as the absolute
temperature approaches zero.

(er) A substance with a large

3. The two specific heats are identical for
truly incompressible substances since v
constant. The difference between the two
specific heats is very small and is usually
disregarded for substances that are nearly
incompressible, such as liquids and solids.

20°C
100 kPa
1 kg

21°C
100 kPa
1 kg

(b) A substance with a small

The volume expansivity (also called the coefficient of
volumetric expansion) is a measure of the change in
volume with temperature at constant pressure.

20



AIR

The internal energies and specific heats of ideal
gases and incompressible substances depend
on temperature only.



EXAMPLE 12-9 The Specific Heat Difference of an Ideal Gas

Show that ¢, — ¢, = R for an ideal gas.

Solution It is to be shown that the specific heat difference for an ideal gas
Is equal to Its gas constant.

Analysis This relation is easily proved by showing that the right-hand side
of Eq. 12-46 is equivalent to the gas constant R of the ideal gas:

(au)2<ap)
L= aym =0l = | —
oT /p\ oV /1

RT <8P) RT P
P:——) - ——2=—
v oV T Vv v

-
A, () -

Substituting,

Therefore,




THE JOULE-THOMSON COEFFICIENT

The temperature behavior of a fluid during a throttling (# = constant) process is
described by the Joule-Thomson coefficient
T4

(T
“=\ap ), Py, T, Py, T,
f (varied) (fixed)

<0 temperature increases
miry = 0 temperature remains constant

>0 temperature decreases
The Joule-Thomson coefficient

represents the slope of /# =constant
lines on a 7-Pdiagram.

T
T, = 20°C " T,{Z 20°C
P, =800 kPa P, =200 kPa
The temperature of a fluid may increase, P, ;*
decrease, or remain constant during a The development of an A =constant
throttling process. line on a P- T diagram.

23



TJL

Maximum inversion
temperature

Constant-enthalpy lines of a substance
on a 7-Pdiagram.

Wy

A throttling process proceeds along
a constant-enthalpy line in the
direction of decreasing pressure,
that is, from right to left.

Therefore, the temperature of a
fluid increases during a throttling
process that takes place on the
right-hand side of the inversion line.

However, the fluid temperature
decreases during a throttling
process that takes place on the left-
hand side of the inversion line.

It is clear from this diagram that a
cooling effect cannot be achieved
by throttling unless the fluid is
below its maximum inversion
temperature.

This presents a problem for
substances whose maximum
inversion temperature is well below

room temperature. o4



Next we would like to develop a general relation for the Joule-Thomson
coefficient in terms of the specific heats, pressure, specific volume, and
temperature. This is easily accomplished by modifying the generalized rela-

tion for enthalpy change (Eq. 12-35)
v— T(dv> } P
oT ) "¢

For an i = constant process we have dh = 0. Then this equation can be

rearranged to give
l { T(éw) } (aT) (12.52)
('.;” E)T P (')P h it

which is the desired relation. Thus, the Joule-Thomson coefficient can be
determined from a knowledge of the constant-pressure specific heat and the
P-v-T behavior of the substance. Of course, it is also possible to predict the
constant-pressure specific heat of a substance by using the Joule-Thomson
coefficient, which is relatively easy to determine, together with the P-v-T
data for the substance.

dh = c,dI" +

25



EXAMPLE 12-10 Joule-Thomson Coefficient of an Ideal Gas

Show that the Joule-Thomson coefficient of an ideal gas is zero.

Solution It is to be shown that w,; = O for an ideal gas.
Analysis For an ideal gas v = RT/P, and thus

(ﬂ) _R
oT)p P

Substituting this into Eq. 12-52 yields

— __l|:v _ T(d_\/) :| — __l|:v _ TB:| — —L(V _ V) =0
LS T ) p ¢, P ¢,

h = constant line

The temperature of

|

I

: constant during a
| throttling process

} since A = constant
|

|

. o — — — — — — —

» on a /-Pdiagram
/i P, P coincide.

an ideal gas remains

and 7 =constant lines

26



THE Ah, Au, AND As OF REAL GASES

Gases at low pressures behave as ideal gases and obey
the relation Pv = R7. The properties of ideal gases are
relatively easy to evaluate since the properties u, A, ¢,
and c, depend on temperature only.

At high pressures, however, gases deviate considerably
from ideal-gas behavior, and it becomes necessary to
account for this deviation.

In Chap. 3 we accounted for the deviation in properties P,
v, and 7 by either using more complex equations of state
or evaluating the compressibility factor Zfrom the
compressibility charts.

Now we extend the analysis to evaluate the changes in
the enthalpy, internal energy, and entropy of nonideal
(real) gases, using the general relations for du, dh, and
ds developed earlier.

27



Enthalpy Changes of Real Gases

The enthalpy of a real gas, in
general, depends on the pressure
as well as on the temperature.
Thus the enthalpy change of a real
gas during a process can be
evaluated from the general relation
for dh

T

hy —hy = | c,dT +

For an isothermal process d7 =0,
and the first term vanishes. For a
constant-pressure process, dP =0,
and the second term vanishes.

[ (P2 IV
e o122 |
“TJ "PJ ()T P

T )
Actual ™ QY D
process
path

75 -

T,

\ Alternative
process

/ e

s

An alternative process path to evaluate
the enthalpy changes of real gases.
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Using a superscript asterisk (*) to denote an ideal-gas state, we can express
the enthalpy change of a real gas during process 1-2 as

hy, — hy = (hy, — B%) + (b3 — n%) + (h§ — hy)

e v ak av
e [ Jo-r(2) ] are [[o-o(2)] e
Jpt T ) plr-=r, Jp, oT' ) pIr-1,

- T, - T,
s —h% = | ¢, dT+0= | c,(T)dT
T, T,
P v P v
im0+ [Tt ] e ["fo-r(2) ] ar
Jp, T ) plr=r, Jp, dT / plr-r,
- " T1
The difference between A and /4" is called the reta] .
enthalpy departure, and it represents the e RV
variation of the enthalpy of a gas with pressure at
T, |

a fixed temperature. The calculation of enthalpy
departure requires a knowledge of the P-\~T Tl
behavior of the gas. In the absence of such data,
we can use the relation Pv = ZR7, where Zis the
compressibility factor. Substituting, Alternative

i Process
oT ), P

"0

(h* — h)y = —RT?*




T = T.T, and P = PP,

E::: . E) . "PR «)Z Enthalpy
Ly = ( - = Iy ( ( ) d(In P) departure
RHYZ‘I‘ 0 ()TR P, f
: actor

The values of Z, are presented in graphical form as a function of Py
(reduced pressure) and 7, (reduced temperature) in the generalized
enthalpy departure chart.

Z, is used to determine the deviation of the enthalpy of a gas at a
given Pand 7 from the enthalpy of an ideal gas at the same 7.

hy —hy = (hy = h\)igea — RT(Z,, — Z,) Forareal gas

ideal U+t cr
during a
hf o hl — (hf o hl)idc&ll o RT{:[‘(ZI;: o Zhl) process 1-2

(h, —“/ttl)idenl from ideal gas tables
Internal Energy Changes of Real Gases
Using the definiton / = i + PV = it + ZR,T:

Uy — Uy = (EE — ) — R.(Z,T,— Z\T))

30



Entropy Changes of Real Gases

)dP
P

Using the approach in the figure

General relation for ds

I ¢

SQ_S]= T

During isothermal process

T *ﬂ(au
Iy Ip aoT

51)

(sp = 58)r = (sp = 55z + (55 = 5i)r

P v
() -
Jo ()T P

v = ZRT/IP v* = v.

ideal

-0

“P

§r — 8§ = (Sg - S‘;) + (-§;: - S;:) + (SE:: - ST:)

b (sE = sE) + (s -

oZr

(sp = $p)r =
‘0

P

P { (1 —PZ)R B RT(

JaT

v’
()
()T P

= RT/P

)

T &

Actual
I process path
T[ B

Alternative /
process path

An alternative process path to
evaluate the entropy changes of real
gases during process 1-2.

r
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T = T.T, and P = PP,

(5% — 5)rp Py 97 Entropy
/. = = , Z— 1+ Tl - d(In P) departure
R” Jy ()7}\; 2
factor

(5* — 5)rp Entropy departure

The values of Z_ are presented in graphical form as a function of P,
(reduced pressure) and 75 (reduced temperature) in the generalized
entropy departure chart.

Z,is used to determine the deviation of the entropy of a gas at a
given Pand 7 from the entropy of an ideal gas at the same Pand 7.

Sy =81 = (52 = 51)igea — R,(Z,, — Z;,) For areal gas
during a
S5 = 51 = (52 = S1)ideal — R(Z\-z - Z_\l) process 1-2

(83 = S1)idear from the ideal gas relations
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Summary

A little math—Partial derivatives and associated relations
v’ Partial differentials
v Partial differential relations

The Maxwell relations

The Clapeyron equation

General relations for du, dh, ds, c¢,and C,
v" Internal energy changes
v Enthalpy changes
v Entropy changes
v Specific heats ¢, and ¢,

The Joule-Thomson coefficient

The AA, A u, and A sof real gases
v Enthalpy changes of real gases
v" Internal energy changes of real gases
v' Entropy changes of real gases
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