
Heat Exchanger

CHE133

Engr. Conrado Monterola

Heat Exchanger

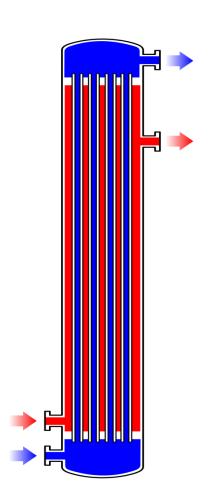
Types of flow arrangement

1. Parallel flow heat exchanger

2. Counter-flow heat exchanger

3. Cross-flow heat exchanger

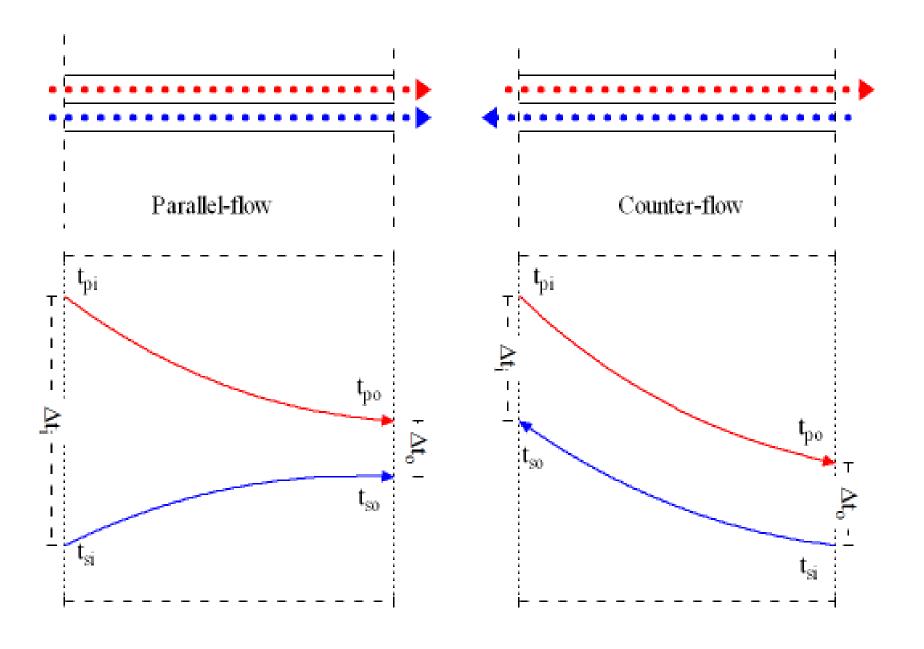
Parallel flow heat exchanger


- The two fluids enter the heat exchanger at the same end,
- and travel in parallel to one another to the other side.

Parallel flow heat exchanger

Parallel Flow

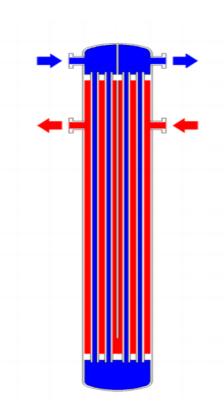
Single Pass tube side


Single Pass shell side

1-1 shell and tube heat exchanger

Counter-flow heat exchanger

- 1. The fluids enter the exchanger from opposite ends.
- 2. The counter current design is the most efficient,
- Because it can transfer the most heat due to the fact that the average temperature difference along any unit length is greater.



Counter-flow heat exchanger

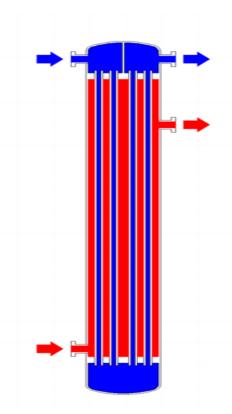
Countercurrent flow

Double Pass tube side

Double Pass shell side

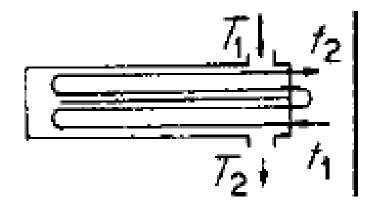
2-2 shell and tube heat exchanger

Cross-flow heat exchanger

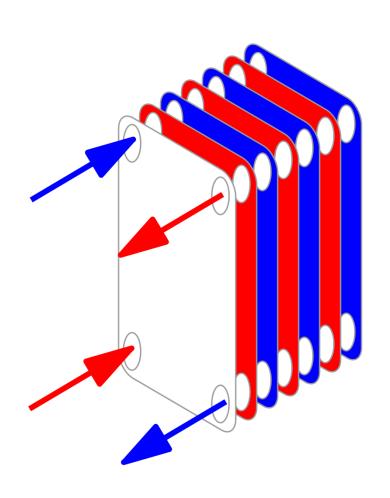

 the fluids travel roughly perpendicular to one another through the exchanger.

Cross-flow heat exchanger

Cross flow


Double Pass tube side

Single pass shell side


1-2 shell and tube heat exchanger

Seat work 1

- 1. How many tube pass?
- 2. How many shell pass?
- 3. This is a ___-shell and tube heat exchanger.
- 4. What is the flow arrangement?

Plate Heat exchanger

Plate Heat exchanger

Plate Heat exchanger

Fourier's Law (Heat Conduction)

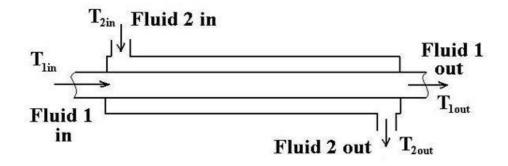
$$\frac{dq}{dA} = -k \frac{\partial T}{\partial n}$$

Where q is rate of heat transfer

A is area

T is temperature

k is thermal conductivity


n is distance measured normal to the surface or thickness.

Newton's Law (Heat Convection)

$$q = hA(T_h - T_c)$$

Where h is the heat transfer coefficient

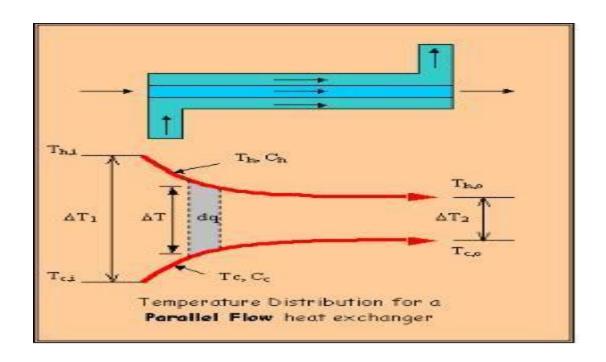
Double-pipe heat exchanger

Double Pipe Heat Exchanger Parallel Flow

Double-pipe heat exchanger

Double-pipe heat exchanger

Design equation for double pipe heat exchanger


$$q = U A \Delta T_{LMTD}$$

Where:

LMTD stands for log mean temperature difference.

ΔT_{LMTD}

$$\Delta T_{LMTD} = \frac{\Delta T_2 - \Delta T_1}{\ln (\Delta T_2 / \Delta T_1)}$$

Sample Problem 1

Approximate the double pipe heat exchanger tube area needed to heat coconut oil from 30°C to 70°C flowing at 100 kg/s. Assume that the overall heat transfer coefficient is 405 W/m2.°C. The heating water enters the heat exchanger in the other side of the heat exchanger (counter-current) at 100°C and exits at 80°C. Assume that coconut oil has a specific heat of 3.8 J/g°C. What are the "approach"? Calculate the heating and cooling range?

Sample problem 2

A heat exchanger is required to heat continuously 20 kg/s of coconut oil from 30°C to 80°C by means of 25 kg/s of hot water, inlet temperature of 90°C. Assuming a constant overall heat transfer coefficient of 2 kW/m²-K, calculate the total surface area required in a counterflow double pipe heat exchanger. Cpwater = 4.18kJ/kg-K Cpcoconutoil = 3.8 kJ/kg-K.

SEAT WORK 1

Approximate the heat exchanger tube area needed to heat coconut oil from 30°C to 70°C flowing at 100 kg/s. Assume that the overall heat transfer coefficient is 405 W/m².°C. The heating water enters the heat exchanger at the same side of the heat exchanger (parallel flow) at 100°C and exits at 80°C. Assume that coconut oil has a specific heat of 3.8 J/g°C.

Converting heat exchanger area to pipe/tube dimensions

- Calculate the area of 20 pcs of 1/2 in outer diameter with BWG gage 20 and 20 ft long.
- P11-42 Perry 8th ed
- Table 11-12

TABLE 11-12 Characterstics of Tubing (From Standards of the Tubular Exchanger Manufacturers Association, 8th Ed., 1999; 25 North Broadway, Tarrytown, N.Y.)

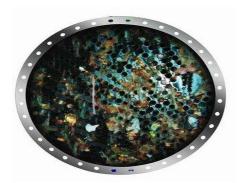
					T			T	T	T	T		T
Tube O.D., in.	B.W.G.	Thickness, in.	Internal area, in.²	Sq. ft. external surface per foot length	Sq. ft. internal surface per foot length	Weight per ft. length steel, lb°	Tube I.D., in.	Moment of inertia, in.4	Section modulus, in.3	Radius of gyration, in.	Constant	O.D. I.D.	Transverse metal area, in.3
1/4	22 24 26 27	0.028 0.022 0.018 0.016	0.0296 0.0333 0.0360 0.0373	0.0654 0.0654 0.0654 0.0654	0.0508 0.0539 0.0560 0.0571	0.066 0.054 0.045 0.040	0.194 0.206 0.214 0.218	0.00012 0.00010 0.00009 0.00008	0.00098 0.00083 0.00071 0.00065	0.0791 0.0810 0.0823 0.0829	46 52 56 58	1.289 1.214 1.168 1.147	0.0195 0.0158 0.0131 0.0118
3/8	18 20 22 24	0.049 0.035 0.028 0.022	0.0603 0.0731 0.0799 0.0860	0.0982 0.0982 0.0982 0.0982	0.0725 0.0798 0.0835 0.0867	0.171 0.127 0.104 0.083	0.277 0.305 0.319 0.331	0.00068 0.00055 0.00046 0.00038	0.0036 0.0029 0.0025 0.0020	0.1166 0.1208 0.1231 0.1250	94 114 125 134	1.354 1.230 1.176 1.133	0.0502 0.0374 0.0305 0.0244
1/2	16 18 20 22	0.065 0.049. 0.035 0.028	0.1075 0.1269 0.1452 0.1548	0.1309 0.1309 0.1309 0.1309	0.0969 0.1052 0.1126 0.1162	0.302 0.236 0.174 0.141	0.370 0.402 0.430 0.444	0.0021 0.0018 0.0014 0.0012	0.0086 0.0071 0.0056 0.0046	0.1555 0.1604 0.1649 0.1672	168 198 227 241	1.351 1.244 1.163 1.126	0.0888 0.0694 0.0511 0.0415
5/8	12 13 14 15 16 17 18 19 20	0.109 0.095 0.083 0.072 0.065 0.058 0.049 0.042 0.035	0.1301 0.1486 0.1655 0.1817 0.1924 0.2035 0.2181 0.2299 0.2419	0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636 0.1636	0.1066 0.1139 0.1202 0.1259 0.1296 0.1333 0.1380 0.1416 0.1453	0.601 0.538 0.481 0.426 0.389 0.352 0.302 0.262 0.221	0.407 0.435 0.459 0.481 0.495 0.509 0.527 0.541 0.555	0.0061 0.0057 0.0053 0.0049 0.0045 0.0042 0.0037 0.0033 0.0028	0.0197 0.0183 0.0170 0.0156 0.0145 0.0134 0.0119 0.0105 0.0091	0.1865 0.1904 0.1939 0.1972 0.1993 0.2015 0.2044 0.2067 0.2090	203 232 258 283 300 317 340 Tive 359 to F	1.536 1.437 1.362 1.299 1.263 1.228 at p. 186 1.155gs 1.126	0.177 0.158 0.141 0.125 0.114 0.103 0.065
3/4	10	0.134	0.1895	0.1963	0.1269	0.833	0.489	0.0120	0.0344	0.2000	285	1.556	0.250

Overall heat transfer coefficient(U_o)

$$\frac{1}{U_o} = \frac{D_o}{D_i h_i} + \frac{x_w D_0}{k_m D_L} + \frac{1}{h_o}$$

D_o is the outside diameter of the pipe

D_i is the inside diameter of the pipe


D₁ is the log mean of diameter

h_o is the heat transfer coefficient on the outside of the pipe

h_i is the heat transfer coefficient on the inside of the pipe

k_m is the thermal conductivity of the tube

x_w is the thickness of the tube

U and Fouling factors

$$\frac{1}{U_o} = \frac{D_o}{D_i h_i} + \frac{D_o}{D_i h_{di}} + \frac{x_w D_0}{k_m D_L} + \frac{1}{h_o} + \frac{1}{h_{do}}$$

 h_{di} and h_{do} are heat transfer coefficients for dirt and scales(fouling factors) inside and outside of tubes. Perry p.11-4

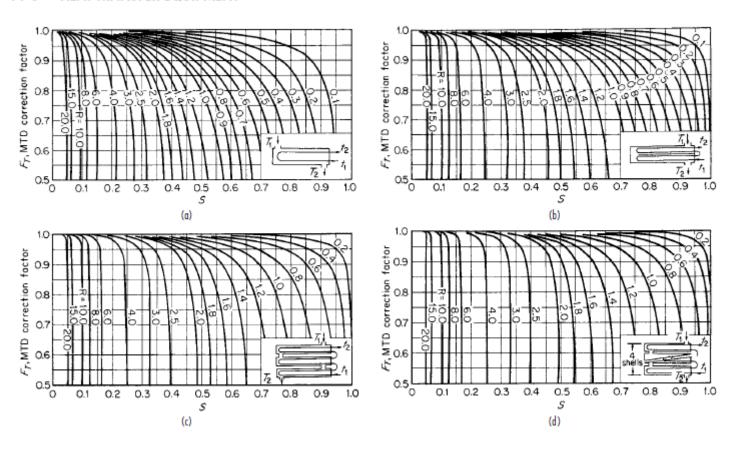
P.11-4 Perry 8th

$$U_o = \frac{1}{1/h_o + R_{do} + xA_o/k_w A_{wm} + (1/h_i + R_{di})A_o/A_i}$$
(11-2)

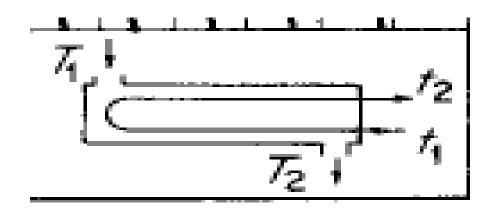
Example 11.1 (Mc Cabe 5th ed.)

Methanol is flowing in the inner pipe of a double-pipe exchanger is cooled with water flowing in the jacket. The inner pipe is made from 1/2-in BWG 20. The thermal conductivity of steel is 26 Btu/ft.h.°F. The heat transfer coefficient for methanol is 180 Btu/ft².h.°F and for water, 300 Btu/ft².h.°F.

What is the overall heat transfer coefficient based on the outside diameter of the pipe?

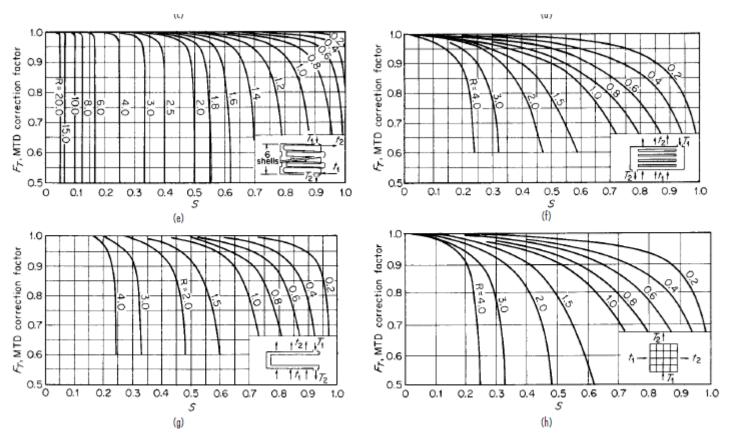

Seat Work 3

Methanol is flowing in the inner pipe of a double-pipe exchanger is cooled with water flowing in the jacket. The inner pipe is made from 1/2-in BWG gage 20 pipe. The thermal conductivity of steel is 26 Btu/ft.h.°F. The heat transfer coefficient for methanol is 180 Btu/ft².h.°F and for water, 300 Btu/ft².h.°F. The fouling factor inside and outside of the tube is 1000 Btu/ft².h.°F and 500 Btu/ft².h.°F respectively.


What is the overall heat transfer coefficient based on the outside diameter of the pipe?

Shell and Tube Heat Exchanger Calculations

11-6 HEAT-TRANSFER EQUIPMENT

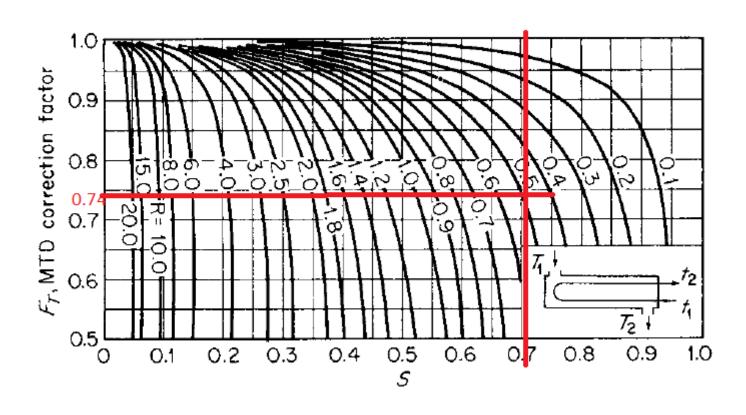


Shell and Tube Heat Exchanger Calculations

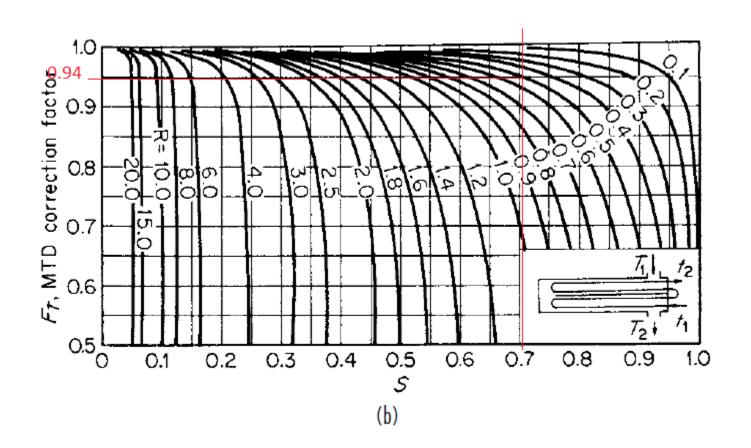
$$R = (T1 - T2)/(t2 - t1)$$
 and $S = (t2 - t1)/(T1 - t1)$.

Shell and Tube Heat Exchanger Calculations

FIG. 11-4 LMTD correction factors for heat exchangers. In all charts, $R = (T_1 - T_2)/(t_2 - t_1)$ and $S = (t_2 - t_1)/(T_1 - t_1)$. (a) One shell pass, two or more tube passes. (b) Two shell passes, four or more tube passes. (c) Three shell passes, six or more tube passes. (d) Four shell passes, eight or more tube passes. (e) Six shell passes, twelve or more tube passes. (f) Cross-flow, one shell pass, one or more parallel rows of tubes. (g) Cross-flow, two passes, two rows of tubes; for more than two passes, use $F_T = 1.0$. (h) Cross-flow, one shell pass, one tube pass, both fluids unmixed. (i) Cross-flow (drip type), two horizontal passes with U-bend connections.


Geankoplis 4.9.1

EXAMPLE 4.9-1. Temperature Correction Factor for a Heat Exchanger


- A 1-2 heat exchanger containing one shell pass and two tube passes heats 2.52 kg/s of water from 21.1 to 54.4°C by using hot water under pressure entering at 115.6 and leaving at 48.9°C. The outside surface area of the tubes in the exchanger is $A_0 = 9.30 \,\mathrm{m}^2$.
 - (a) Calculate the mean temperature difference ΔT_m in the exchanger and the overall heat-transfer coefficient U_o .
 - (b) For the same temperatures but using a 2-4 exchanger, what would be the ΔT_m ?

Geankoplis 4.9.1

R = (T1 - T2)/(t2 - t1) and S = (t2 - t1)/(T1 - t1).

Geankoplis 4.9.1

The log mean temperature difference using Eq. (4.9-4) is

$$\Delta T_{lm} = \frac{(115.6 - 54.4) - (48.9 - 21.1)}{\ln \left[(115.6 - 54.4) / (48.9 - 21.1) \right]} = 42.3 ^{\circ}\text{C} = 42.3 \text{ K}$$

Next substituting into Eqs. (4.9-2) and (4.9-3)

$$Z = \frac{T_{hi} - T_{ho}}{T_{co} - T_{ci}} = \frac{115.6 - 48.9}{54.4 - 21.1} = 2.00$$
 (4.9-2)

$$Y = \frac{T_{co} - T_{ci}}{T_{hi} - T_{ci}} = \frac{54.4 - 21.1}{115.6 - 21.1} = 0.352$$
 (4.9-3)

From Fig. 4.9-4a, $F_T = 0.74$. Then, by Eq. (4.9-6),

$$\Delta T_m = F_T \Delta T_{1m} = 0.74(42.3) = 31.3$$
°C = 31.3 K (4.9-6)

Rearranging Eq. (4.9-5) to solve for U_o and substituting the known values, we have

$$U_o = \frac{q}{A_o \Delta T_m} = \frac{348200}{(9.30)(31.3)} = 1196 \text{ W/m}^2 \cdot \text{K} (211 \text{ btu/h} \cdot \text{ft}^2 \cdot \text{°F})$$

For part (b), using a 2-4 exchanger and Fig. 4.9-4b, $F_T = 0.94$. Then,

$$\Delta T_m = F_T \Delta T_{lm} = 0.94(42.3) = 39.8$$
°C = 39.8 K

 $\Delta T_m = F_T \ \Delta T_{lm} = 0.94(42.3) = 39.8^{\circ}\text{C} = 39.8 \text{ K}$ Hence, in this case the 2-4 exchanger utilizes more of the available temperature driving force.

HEAT TRANSFER BY CONDUCTION

Fourier's Law
$$Q = -KA \frac{dT}{dx}$$

$$Q = \frac{\Delta T}{\frac{\Delta x}{\overline{K}\overline{A}}} = \frac{\Delta T}{\overline{R}}$$

HEAT TRANSFER BY CONDUCTION

- Evaluation of average area, \bar{A}
- a. For flat walls: $\bar{A} = A1 = A2$
- b. For cylindrical walls: $\overline{A} = 2\pi x_{ln} L$

where
$$x_{ln} = \frac{X1 - X2}{ln \frac{X1}{X2}}$$

MRII Problem #13: Flat Walls

A furnace wall is constructed of firebrick 6 in thick. The temperature of the inside of the wall is 1300F and the temperature of the outside wall is 175F. If the mean thermal conductivity under these conditions is 0.17 BTU/h.ft.F. What is the rate of heat loss through 10 sq. ft. of wall surface?

a. 5700 BTU/h

c. 3825 BTU/h

b. 1070 kcal/h

d. 2354 kcal/h

MRII Problem #9: Cylindrical Walls

A thick walled copper cylinder has an inside radius of 1 cm and an outside radius of 1.8 cm. The inner and outer surface temperatures are held at 305°C and 295°C respectively. Assume k = 371.9 W/m.K. Determine the heat loss per unit length.

a. 1 W b. 1 kW c. 10 W d. 40 kW

Heat Conduction through Resistance in Series

•
$$R_T = R_1 + R_2 \dots = \frac{\Delta X_1}{K_1 A_1} + \frac{\Delta X_2}{K_2 A_2} \dots$$

•
$$Q = \frac{\sum \Delta T}{R_T}$$

MRII Problem #17: Resistance in Series

An industrial furnace wall is constructed of 0.7 ft thick fireclay having k = 0.6 BTU/ h.ft.°F. This is covered on the outer surface with 0.1 ft thick layer of insulating material having k = 0.04 BTU/h.ft.°F. The innermost surface is at 1800°F and the outermost is 100°F. Calculate the steady heat transfer per square foot.

a. 464 BTU/h.ft²

c. 364 BTU/h.ft²

b. 258 BTU/h-ft²

d. 554 BTU/h.ft²

Seat Work

For a furnace constructed with 0.7 ft thick of fireclay having k = 0.6 BTU/h.ft.°F. The innermost surface is maintained at 1800°F while the outer surface of insulating material is maintained at 100°F. How thick must the insulator be to maintain a maximum allowable heat transfer rate of 300 BTU/h.ft²?

a. 0.30 ft b. 0.20 ft c. 0.10 ft d. 0.40 ft

E is the ratio of actual rate of heat transfer to maximum heat transfer rate if the heat exchanger has an infinite area.

Application: Most of the time only initial temperatures, heat exchanger area and overall heat transfer coefficient are given and the final temperatures are unknown, thus a technique must be develop to predict the final temperatures.

Oil flowing at a rate of 5.0 kg/s (Cp, mean = 2.09 kJ/kg.K) is cooled in a counterflow heat exchanger from 366.5 K to 344.3 K by 2.0 kg/s of water (Cp,mean = 4.18 kJ/kg.K) entering at 283 K. The overall heat-transfer coefficient Uo is 340 W/m².K. Calculate the number of transfer unit (NTU) and effectiveness of the exchanger. Assume F = 1. NTU is define as:

NTU = UoA/Cmin

$$\varepsilon = \frac{1 - \exp\left[-\frac{UA}{C_{\min}} \left(1 - \frac{C_{\min}}{C_{\max}}\right)\right]}{1 - \frac{C_{\min}}{C_{\max}} \exp\left[-\frac{UA}{C_{\min}} \left(1 - \frac{C_{\min}}{C_{\max}}\right)\right]}$$
(4.9-18)

Cmin and Cmax are heat capacities.

$$Q=E C_{min} (T_{Hi} - T_{Ci})$$

EXAMPLE 4.9-2. Effectiveness of Heat Exchanger

Water flowing at a rate of 0.667 kg/s enters a countercurrent heat exchanger at 308 K and is heated by an oil stream entering at 383 K at a rate of 2.85 kg/s ($c_p = 1.89 \text{ kJ/kg} \cdot \text{K}$). The overall $U = 300 \text{ W/m}^2 \cdot \text{K}$ and the area $A = 15.0 \text{ m}^2$. Calculate the heat-transfer rate and the exit water temperature.

Solution: Assuming that the exit water temperature is about 370 K, the c_p for water at an average temperature of (308 + 370)/2 = 339 K is 4.192 kJ/kg·K (Appendix A.2). Then, $(mc_p)_H = C_H = 2.85(1.89 \times 10^3) = 5387$ W/K and $(mc_p)_C = C_C = 0.667(4.192 \times 10^3) = 2796$ W/K = C_{\min} . Since C_C is the minimum, $C_{\min}/C_{\max} = 2796/5387 = 0.519$.

Using Eq. (4.9-19), NTU = UA/C_{min} = 300(15.0)/2796 = 1.607. Using Fig. (4.9-7a) for a counterflow exchanger, $\varepsilon = 0.71$. Substituting into Eq. (4.9-10),

$$q = \varepsilon C_{\min}(T_{Hi} - T_{Ci}) = 0.71(2796)(383 - 308) = 1.48900 \text{ W}$$

Using Eq. (4.9-7),

$$q = 148\,900 = 2796(T_{co} - 308)$$

Solving, $T_{Co} = 361.3 \text{ K}.$

Seat work

4.9-4. Outlet Temperature and Effectiveness of an Exchanger. Hot oil at a flow rate of 3.00 kg/s ($c_p = 1.92 \text{ kJ/kg} \cdot \text{K}$) enters an existing counterflow exchanger at 400 K and is cooled by water entering at 325 K (under pressure) and flowing at a rate of 0.70 kg/s. The overall $U = 350 \text{ W/m}^2 \cdot \text{K}$ and $A = 12.9 \text{ m}^2$. Calculate the heat-transfer rate and the exit oil temperature.

Evaluation of Heat transfer coefficient Dittus-Boelter equation

$$N_{Pr} = \frac{Cp\mu}{k}$$
 where Cp is specific heat

μ is viscosity

k is thermal conductivity

$$N_{Re} = \frac{\rho D v}{\mu}$$
 $N_{Nu} = \frac{hiD}{k}$

$$N_{Nu} = 0.023(N_{Re})^{0.8}(N_{Pr})^{0.3}$$
 for cooling or 0.4 for heating

Foust Example 15.3

A double-pipe heat exchanger is to be designed to cool benzene from 180°F to 100°F, under sufficient pressure to maintain the benzene in liquid phase. Water enters the annular space at 70°F and flows countercurrent to the benzene at a velocity of 5 ft/s. The inside pipe is sch. 40, 1 1/4 in steel pipe; The outside pipe is sch. 40, 2 in steel pipe. How long will the heat exchanger should be? The mass flow rate of benzene is 7500 lb/h. Assume delta T LMTD to be 51°F.

Friction factor in flow through channels of noncircular cross section

Hydraulic radius, r_H

$$r_H \equiv \frac{S}{L_p}$$

where S = cross-sectional area of channel $L_p = \text{perimeter}$ of channel in contact with fluid

Circular tube

Thus, for the special case of a circular tube, the hydraulic radius is

$$r_H = \frac{\pi D^2/4}{\pi D} = \frac{D}{4}$$

The equivalent diameter is $4r_H$, or simply, D.

Annulus between two concentric pipes

An important special case is the annulus between two concentric pipes. Here the hydraulic radius is

$$r_H = \frac{\pi D_o^2 / 4 - \pi D_i^2 / 4}{\pi D_i + \pi D_o} = \frac{D_o - D_i}{4}$$
 (5.55)

Reynolds number for noncircular cross section

$$h_{fs} = \frac{\tau_w}{\rho r_H} \Delta L = \frac{\Delta p_s}{\rho} = f \frac{\Delta L}{r_H} \frac{V^2}{2g_c}$$

$$N_{Re} = \frac{4r_H \bar{V} \rho}{\mu}$$

Sieder-Tate equation

$$N_{Nu} = 0.023(N_{Re})^{0.8}(N_{Pr})^{1/3} \Phi$$

Where
$$\phi = (\frac{\mu}{\mu_w})^{0.14}$$
 viscosity correction factor

Where μ_w is the viscosity at T_w

T_w is the wall temperature

Colburn equation

St Pr
$$^{2/3} = \frac{0.023 \, \Phi}{Re \, 0.2}$$

St is Stanton Number

$$St = h/CpG$$

G is mass velocity kg/m².s

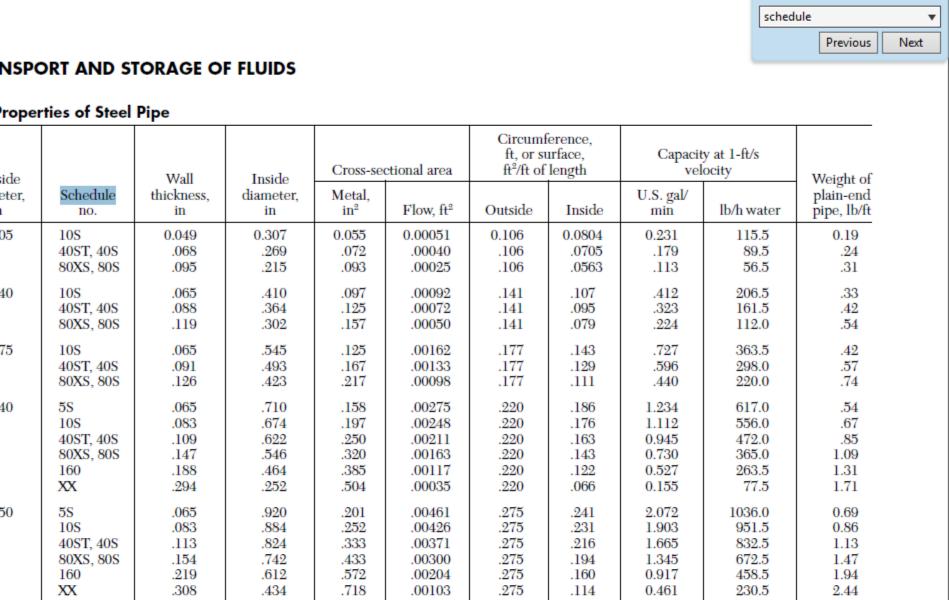
The Reynolds Analogy

 $f = 0.046 \text{ Re}^{-0.2} \text{ eqn. } 1$

From Colburn equation assuming Pr = 1.0 and

$$\phi = 1.0$$

 $St = 0.023 \text{ Re}^{-0.2} \text{ eqn. 2}$


Combining eqn 1 and eqn 2

$$St = h/cpG = f/2$$

MRII Reynolds Analogy Problem

Assuming Reynolds analogy applies, estimate the heat transfer coefficient in Btu/hr-ft2-F, for water flowing inside a 2.0 in ID smooth horizontal straight pipe at a velocity of 4 fps and an average temperature of 78F.

a.1790 b. 2000 c. 2910 d. 2240

rınd

0.87

1.40

1.68

2.17

2.84

3.66

50 5S1.185 15 .065.255.00768 .344.3103.449 172510S .1091.097 .413.00656 .344 .2872.946 1473 40ST, 40S .1331.049 .494.00600.344.2752.690 1345 .179.639 .2502.240 1120 80XS, 80S 0.957 .00499 .344.2500.815 .836 .213 1.625 812.5 160 .00362.344XX .157.3580.5991.076 .00196 .3440.878 439.0