Advanced Motor Management

"GE Multilin. . . The recognized leader in motor protection and control with the most complete line of motor protection solutions in the industry"

Modern Industrial Facility Requirements for Motor Protection Systems

> Protection

> Communication

> Control

> Inputs & Outputs

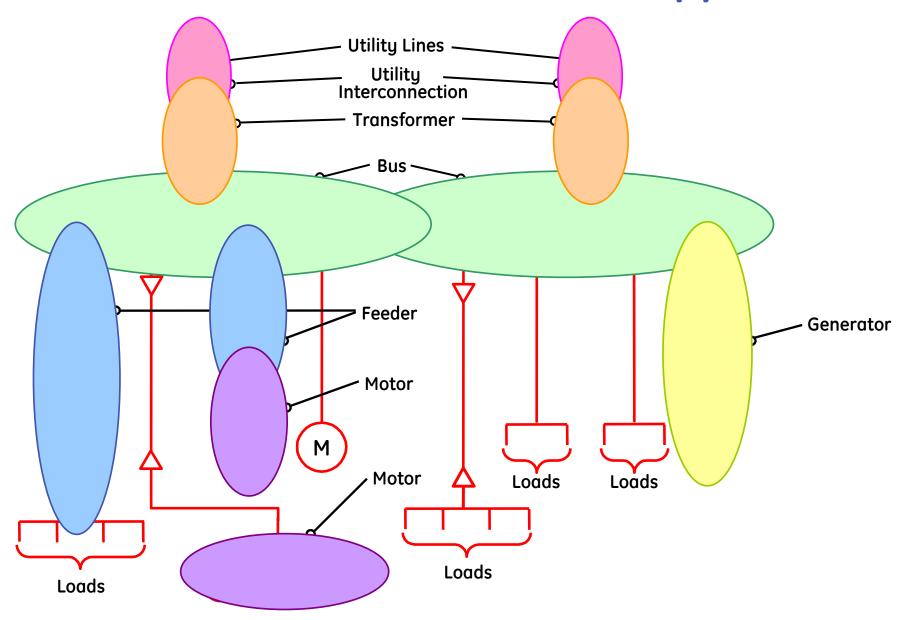
> Monitoring

> Ease of Use

> Metering

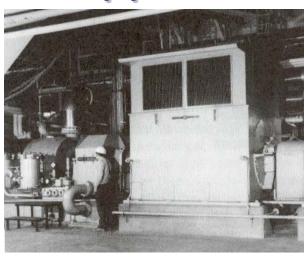
> Reliability

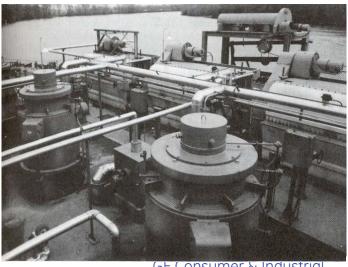
- 1) Save 1st Cost and Project Cost (\$\$\$)
- 2) Improve Protection (Asset Preservation & Safety)
- Improve Tools for Operations (Process Continuity)


Improving Industrial Motor Protection Systems

Explore How GE-Multilin Protection, Control and Software Solutions Can Help:

- > Improve Safety
- > Preserve Infrastructure
- > Diagnose Electrical Problems
- > Drive JIT/RCM Programs
- > Increase Dependability
 - Security, Reliability, Simplicity
- > Decrease Maintenance
- > Facilitate Standardization
- > Hasten Project Execution




Industrial Electrical Protection Applications

Various Industry Motor Applications

- Fans, Blowers
- Pumps, Compressors
- Grinders, Chippers
- Conveyors, Elevators
- Crushers, Mixers

GE Consumer & Industria

Multilin

What Fails? Per 1985 EPRI & IEEE Surveys

- •Bearings (40 50%)
- •Stator (25 35%)
- •Rotor (<10%)
- Other Failures

Motor Electrical Protection

- > Phase Fault
- > Ground Fault
- > Abnormal Operating Conditions
 - Voltage
 - Frequency
 - Voltage and current imbalance
 - Load loss
 - Jamming
 - Jogging
- > Thermal Overload
 - Process caused

Short Circuit - Overcurrent Elements

- Phase Overcurrent (50)
 - Used when contactor or breaker is rated for fault interruption
 - Not used for fused starters
- Residual Overcurrent (50N)
 - Sum of phase CT currents, used on solidly grounded motors

Short Circuit -Overcurrent Elements

- Ground Overcurrent (50N)
 - Frequently, ground fault current is limited by transformer neutral resistor, and a separate low-ratio CT is warranted for ground fault protection
 - Detect motor and cable ground faults using window CT with lower ratio for increased sensitivity

Abnormal Operating Conditions

- > Load-Loss (37)
 - Protection against pumps running dry, belt/linkage breakage
- > Load-Jam or Stall (39)
- > Starts/Hour, Time Between Starts (66) (antijogging protection)
- > Current Unbalance Element (46)
 - Negative sequence currents rapidly heat stator when running at rated speed

Abnormal Operating Conditions

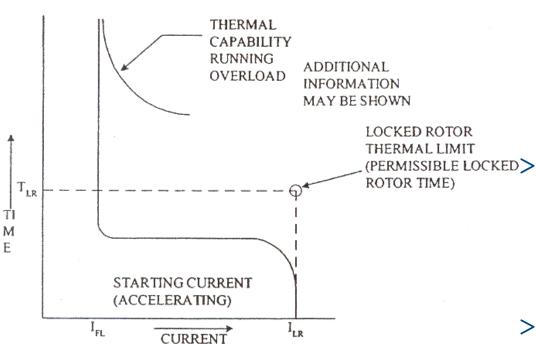
- Phase Reversal Protection (46 or 47)
- Anti-Backspin Protection

Abnormal Operating Conditions

- Undervoltage
- Overvoltage
- Underpower Element
- Power Factor Element
- Frequency Element

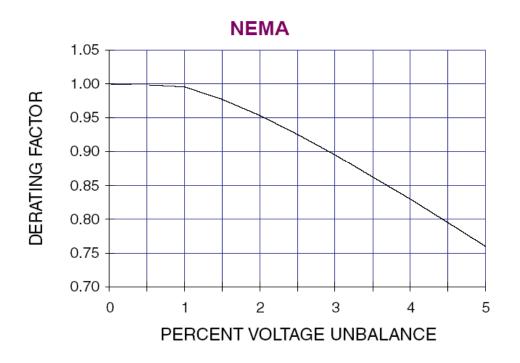
Motor Mechanical - Bearings

- > Lubricant issues
 - Grade, contaminants, availability
- > Mechanical
 - Excessive radial loading, axial loading
- > Rough surfaces
 - Fatigue, cracks, shaft currents
- > Vibration
 - Unbalanced phase currents and harmonics



RTD Uses

- Detect Winding Temperature
 - Bias Thermal Model
- Detect Bearing Temperature
 - Detect mechanical issues
- Detect Loss of Cooling Efficiency
 - Cooling system failure
 - High ambient temperature
- > Other process variable
 - Vibration


Thermal Modeling

- > Best way to prevent short in motor is to not overheat and degrade the insulation
 - Repeated overheating of motor insulation causes cumulative degradation
- > Both the stator and the rotor can be overheated

Current Imbalance Derates Thermal Capacity

- > Standing negative sequence (current imbalance) causes heating in both the stator and rotor
- Negative sequence current caused by voltage imbalance across load (motor)

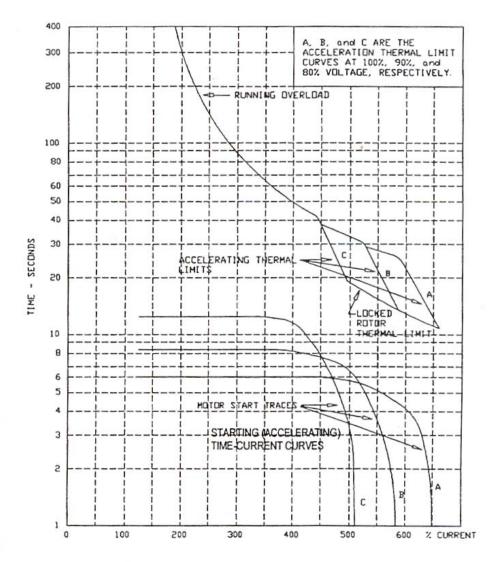


Figure 6 (b)—Typical time-current and thermal limit curves (adapted from IEEE Std 620-1996, Figure 1)

Effect of Voltage

- > Starting time sand current are voltage dependent
- > Lower voltage causes lower current and lower torque, therefore longer start times

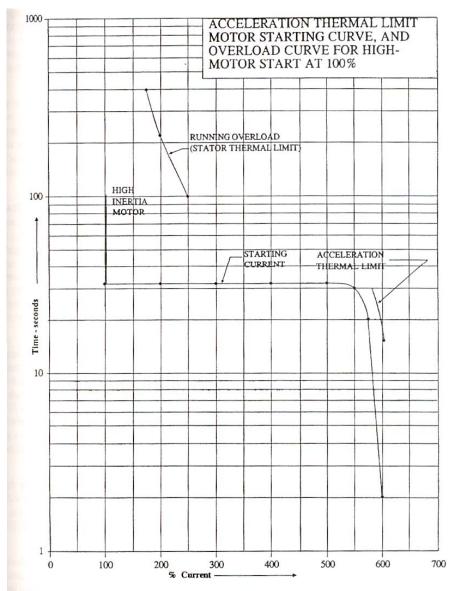
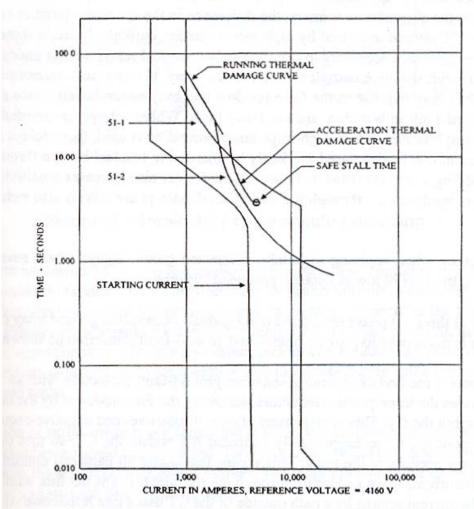



Figure 7—Typical time-current and thermal limit curves for high-inertia motor start

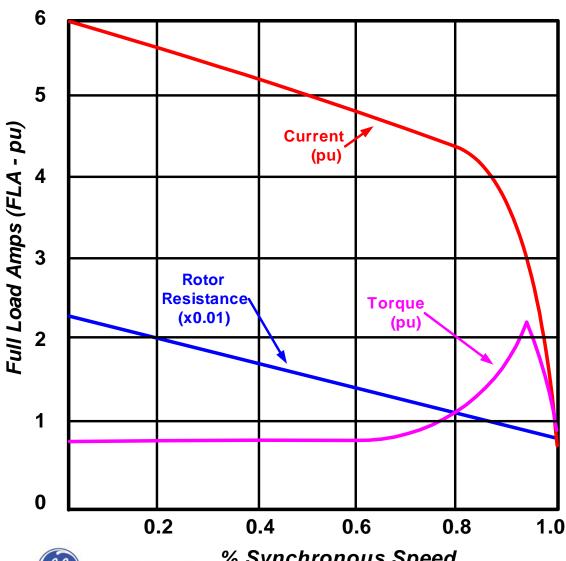
Effect of High Inertia

- > High inertial starts tend to use a lot of the thermal capacity available in a motor
- > Difficult to coordinate with single OC curve

OL Curve Fitting

- > Multiple OC curves
 may be used to
 attempt difficult
 coordination, but OC
 elements do not have
 thermal memory
- Thermal memory is needed for proper modeling with multiple starts

-Thermal damage protection utilizing two overcurrent relays with different pickups and timing characteristics


Rotor Heating on Start Up

The thermal capacity of the rotor cannot be measured directly, but is rather inferred from curves supplied by the motor manufacturing and monitoring of current and recent operating activity

Rotor Resistance & Current

- Rotor Resistance decreases as motor approaches full speed
- •The ratio is a 3:1 reduction
- •The phenomena is the result of the slip frequency and the skin effect of the current traveling through the rotor bar surface as the frequency increases

Heating Factors

- Positive and negative sequence currents contribute to heating during various operational modes of the motor
 - > Starting: Effect for I_1 and I_2 is 3X the measured current
 - > Running: Effect for I₁ is 1X, and the effect for I₂ is 5X the measured current
- These factors are derived from the rotor resistance and the positive and negative sequence slips
- These factors are taken into account when motor damage curves are developed by the motor manufacturer
 - > Rotor heating is severe at locked rotor conditions
 - > Locked rotor conditions can heat rotor at 108X running!
 - > Stator heating increases due to unbalanced voltage supply to the motor

Presentation Overview

- Key Benefits
- Applications
- Protection Features
- Additional & Special Features
- Inputs & Outputs
- Communications
- Reliability
- Connections
- User Interface

- Metering & Monitoring Features
- Event Log
- Reports
- Trending
- Waveform Capture
- Ordering Code
- Summary
- Going Forward

Key Benefits

- Unique protection features Comprehensive motor protection, control and Monitoring
- Most advanced thermal model Including multiple
 RTD inputs for stator thermal protection
- Advanced monitoring functions vibration, bearing temperature
- Best in class man machine interface (MMI) Large backlit display with 40 characters to view relay information and settings in direct sunlight, full numerical keypad, and setpoint navigation keys.

Key Benefits

- Minimize replacement time Draw-out construction
- Complete asset monitoring Temperature, Analog
 I/O, full metering including demand & energy
- Reduce troubleshooting time and maintenance
 costs Event reports, waveform capture, data logger
- Simplify testing Built in simulation features
- Filed upgradeable Through flash memory

Key Benefits

- Simplify testing Built in simulation features
- Cost effective Access to information Via Modbus RTU protocol, through standard RS232 & RS485 serial ports, and optional Modbus RTU over TCP/IP through embedded Ethernet Port to connect to 10MB Ethernet local or wide area networks.
- Long lasting life when exposed to chemically corrosive and humid environments with optional conformal coating

Use the 469 to protect Large Induction and Synchronous Motors

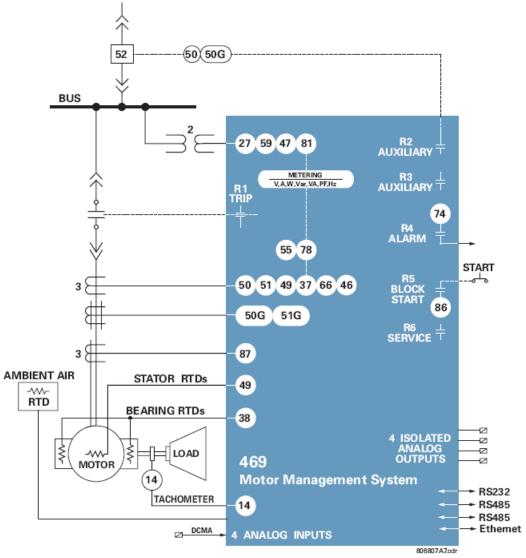
- Fans
- Pumps
- Compressors
- Milling
- Crushers
- Grinders
- Conveyers
- Shredders

- Extruders
- Chippers
- De-barkers
- Refiners
- Blowers
- Cranes
- Chillers

469 - Protection Features

- Thermal modeling of stator and rotor
- RTD (Resistive Thermal Device) and negative sequence feedback
- Overload protection (15 standard curves plus custom "FlexCurve™")

- Voltage dependent curve for rotor modeling during long acceleration
- Adapts for hot or cold starts
- Power factor with time delays

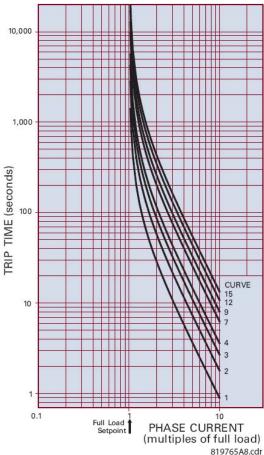

469 - Protection Features

- Differential
- Under & over, voltage & frequency
- Start protection including:
 - Locked rotor
 - Acceleration timer
 - Starts/hour
 - Time between starts
 - Start inhibit
 - Restart block

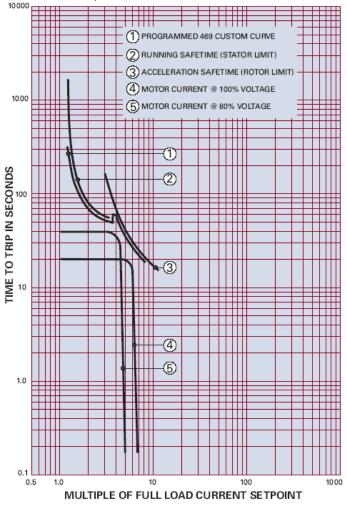
- Ground overcurrent
- Short circuit
- Unbalance
- Single phase/phase reversal
- Mechanical jam/rapid trip

469 Application – Function Diagram

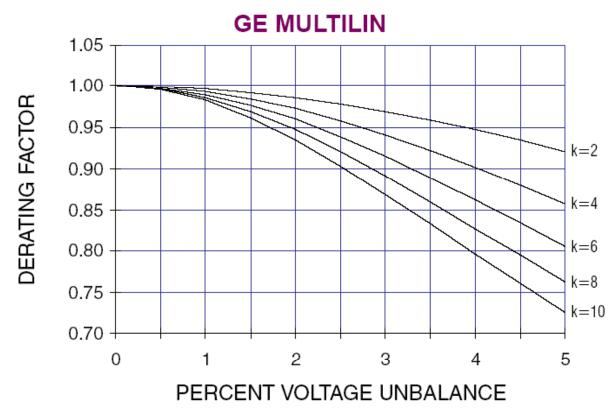
DEVICE	PROTECTION
14 19/48	Speed switch Reduced voltage start and incomplete sequence
27/59 32	Incomplete sequence Undervoltage/Overvoltage Reverse power Mechanical Jam Acceleration time Over Torque
37 38 46 47 49 50 50G/51G 51 55 66	Undercurrent/Underpower Bearing RTD Current Unbalance Phase Reversal Stator RTD Short circuit backup Ground overcurrent backup Overload Power factor Starts/hour and time between
81 86 87	starts Frequency Overload lockout Differential

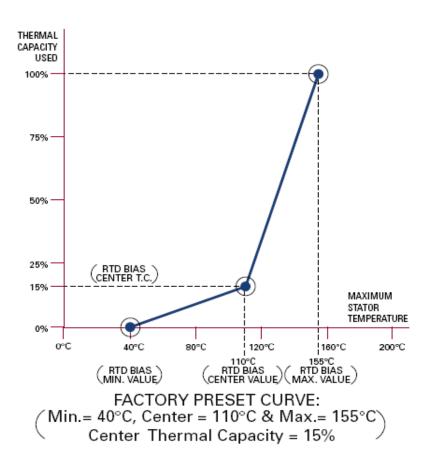


- Uses nameplate data to create thermal model
 - Starts per hour
 - Hot stall time
 - Cold stall time
- Can learn cooling time with RTD input
- FlexCurve for difficult coordination
- Emergency start override for thermal model


- 15 Standard Curves
- FlexCurve

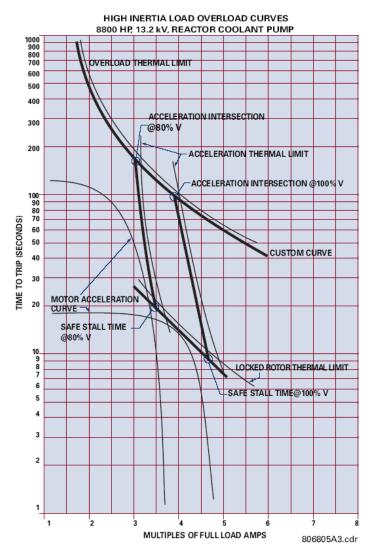
Fifteen standard overload curves.


Typical custom overload curve.


806803A5.cdr GE Consumer & Industrial Multilin

Negative sequence (current unbalance) biasing for improved protection against rotor damage

> K = 8 is NEMA derating



Stator temperature biasing for improved protection against stator damage when stator is hot

Voltage Dependant Thermal Protection

The voltage dependent overload curves are used in high inertia load applications, where motor acceleration time can actually exceed the safe stall time and motor thermal limits

During motor acceleration, the programmed thermal overload curve is dynamically adjusted with reference to the system voltage level. The selection of the overload curve type and the shape is based on motor thermal limit curves provided by motor vendor

Additional and Special Features

- Two speed motor protection.
- Load averaging filter for cyclic load applications.
- Reduced voltage starting supervision.
- Variable frequency filter allowing accurate sensing and calculation of the analog values in VFD applications.
- Analog input differential calculation for dual drives applications.
- Speed counter trip and alarm.
- Universal digital counter trip and alarm.
- Pulsing KWh and Kvarh output.
- Trip coil supervision.
- Drawout indicator, Setpoints Access and Test permit inputs.
- Undervoltage auto restart (additional element per special order).
- Experimental broken rotor bar detection system (additional element per special order).

469 – Inputs & Outputs

Inputs

- Universal Power Supply (ac/dc)
- 3 phase CTs & VTs
- Differential currents: 5 or 1 amp
- 4 analog channel inputs
- 9 selectable logic inputs

Outputs

- 5 electromechanical output relays, 10 amp continuous, 30 amp make & carry
- 4 Assignable analog outputs
- 1 fail-safe self-test

Communications

Protocols

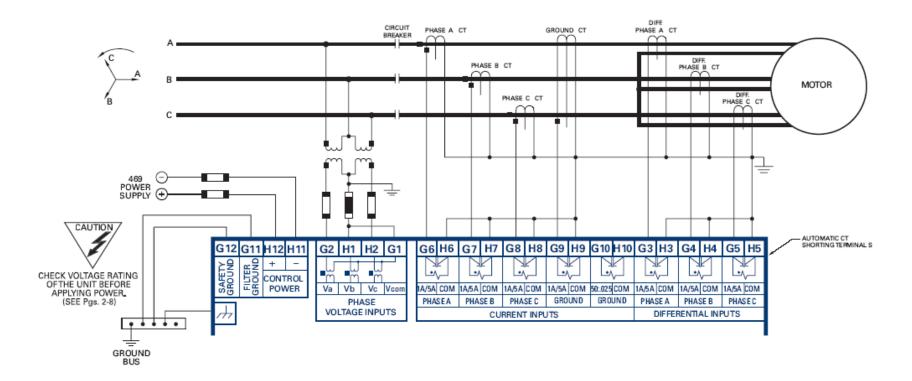
- Modbus®RTU over Serial RS232 or RS485 Ports
- Modbus®RTU over TCP/IP via Ethernet Port
- DeviceNet

Man Machine Interface

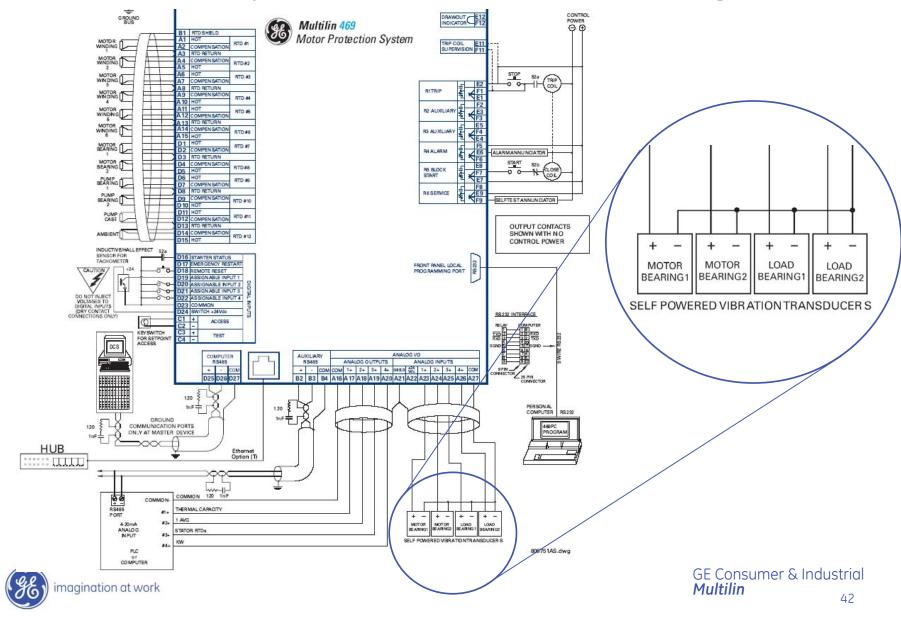
Windows based EnerVista 469 Setup Software allows access to:

- Actual Values
- Setpoints
- Status
- Event records
- Oscillography

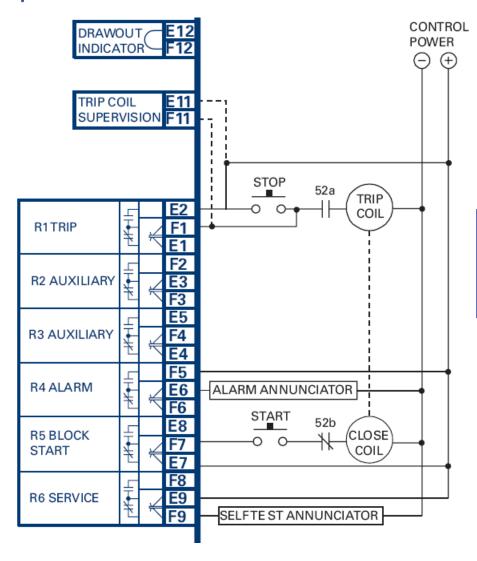
- Graphical trending
- Setpoint programming
- Setpoint files
- Download updated firmware to Flash memory


Reliability

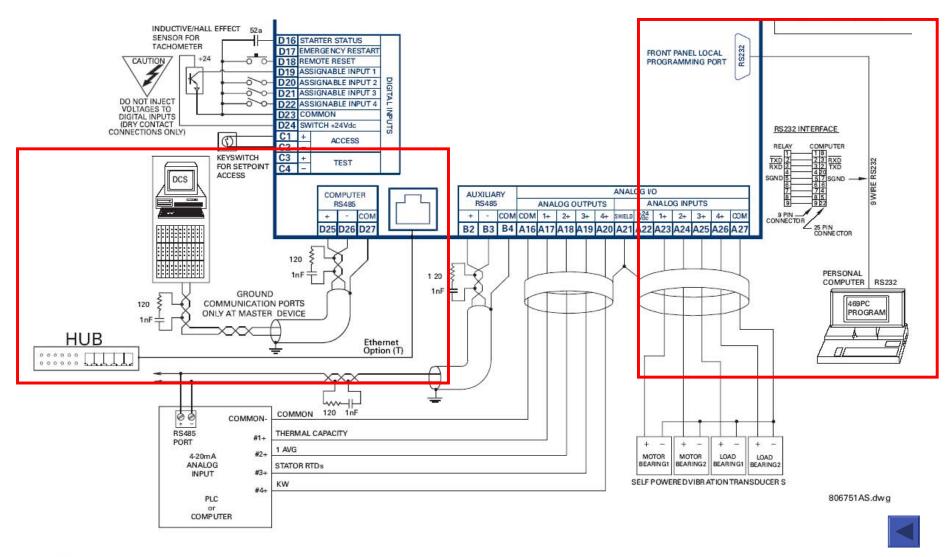
- Protected against corrosion when installed in chemically polluted environments through optional conformal coating
- Extensive IEC & ANSI Testing
- Complete Burn-in and testing on Relays
- Self Testing
- Draw out Case (no external hardware)
- Dust Tight Door with Seal Provision
- Heavy Duty Terminals
- ISO 9002 Certified



AC Sensing Connections



Power, Output, RTD & Monitoring


Outputs and Failsafe

OUTPUT CONTACTS SHOWN
WITH NO CONTROL POWER

Communications

GE Consumer & Industrial *Multilin*

User Interface

- EnerVista Setup Software (Windows Based)
- Flash Memory for Future Upgrades or industry modifications
- Fully Programmable keyboard with 40 character display and status indicators
- Fast and easy to use (set up program & manual)
- Draw out construction

User Interface

469 STATUS INDICATORS

- 469 status
- Motor status
- Output relays

NUMERIC KEYPAD

Numeric keys allow for simple entry of setpoint values. Control keys allow simple navigation through setpoint and actual value message structures. Help key provides context sensitive help messages

VALUE KEYS

Value Up, and Value Down keys to change setpoint values

LARGE DISPLAY

Forty character display for viewing setpoints and actual value messages. Diagnostic messages are displayed when there is a trip or alarm condition. Default messages are displayed after a period of inactivity.

CONTROL AND PROGRAMMING KEYS

Menu, Escape, Reset, Enter, Menu Up, and Menu Down keys for complete acess without a computer.

DRAWOUT HANDLE

With provision for a wire lead seal to prevent unauthorized removal

PROGRAM PORT INTERFACE

RS232 for connection to a computer, 9600 baud

469 - Metering & Monitoring Features

- Individual Voltages & Currents
- Real, Reactive & Apparent Power Demand
- Energy
- Running & Maximum Demand Levels
- Power Factor, Speed and Temperatures

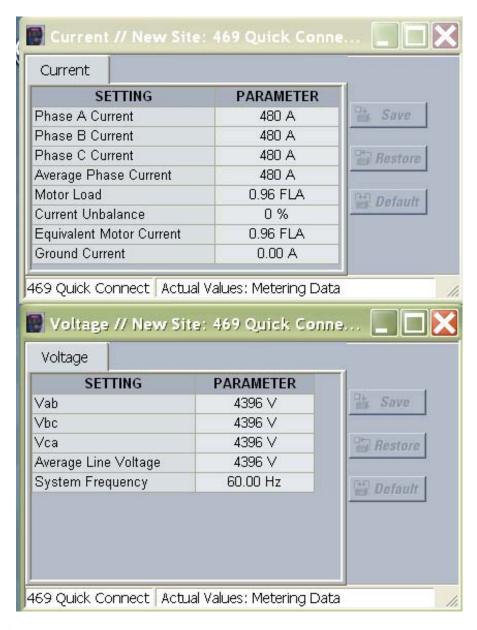
- Event Recorder (Last 256 Events)
- Trace Memory (128 Cycle Waveform Capture)
- Breaker Trip Coil Supervision
- Complete Self Checking (Including Drawout Indicator)
- Pressure, Vibration, Speed, and Temperatures via Analog Inputs (4 – 20 mA or 0 – 1 mA)

Monitoring

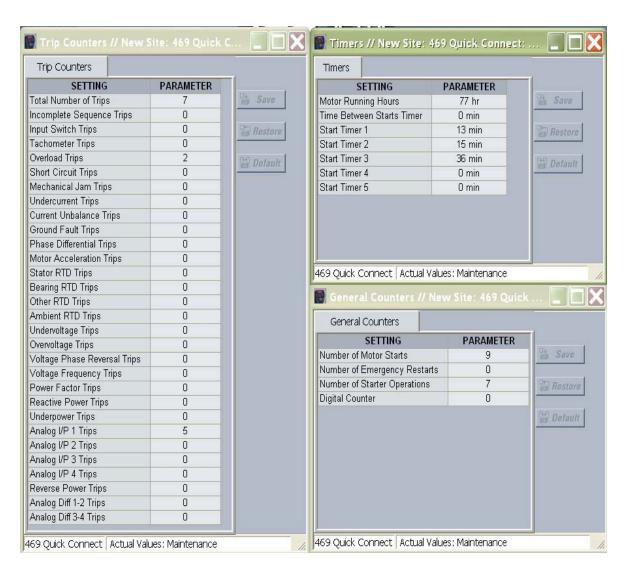
- Event Recorder (256 Events)
 - Allows concise record of fast events
 - Logs important power system parameters at time of event
 - Triggerable by faults, breaker state change, contact/status input change

Event Log

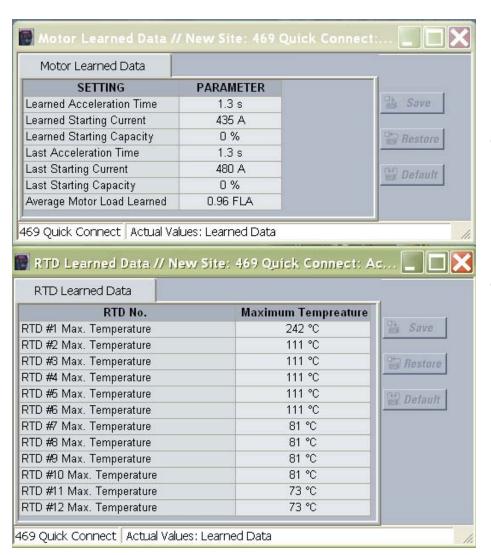
Event	Date	Time	Cause of Event	
1	01/17/2005	00:39:39.64	Motor Started	
2	01/17/2005	00:39:39.48	Simulation Started	
3	01/17/2005	00:35:34.63	Analog I/P 1 Trip	
4	01/17/2005	00:34:44.82	Analog I/P 1 Trip	
5	01/17/2005	00:33:08.92	Simulation Stopped	
6	01/17/2005	00:18:36.5	Motor Started	
7	01/17/2005	00:18:35.85	Simulation Started	
8	01/17/2005	00:16:54.91	Simulation Stopped	
9	01/17/2005	00:16:42.79	Motor Started	
10	01/17/2005	00:16:42.71	Simulation Started	
11	01/17/2005	00:14:56.9	Analog I/P 1 Trip	
12	01/17/2005	00:10:41.67	Analog I/P 1 Trip	
13	01/17/2005	00:09:30.86	Analog I/P 1 Trip	
14	01/16/2005	22:00:52.92	Cont. Power Applied	
15	01/16/2005	21:29:31.18	Control Power Lost	


- Select the Event you wish to examine in more detail
- Many power system parameters are recorded in each individual event log

Event Log

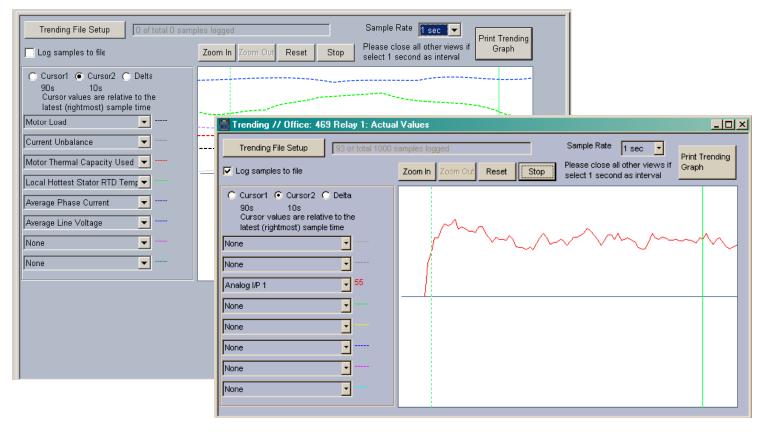

Event Parameter	Last Reset Date			
Motor Speed during Event	Value Low Speed (Sp		03/29/2004	
Event Tachometer RPM	0 RPM			
Event Phase A Current	_	T		
Event Phase B Current	480 A		Total Events	
Event Phase C Current		00		
Event Motor Load	0.96 FLA		93	
Event Current Unbalance	0 %			
Event Ground Current	0.00 A		Clear Events Save Events To view event data please click on event number	
Event Phase A Differential Current	0 A			
Event Phase B Differential Current	0 A			
Event Phase C Differential Current	0 A			
Event Hottest Stator RTD	0	d		
Event Temperature of Hottest Stator RT	-52 °C			
Event Hottest Bearing RTD	0			
Event Temperature of Hottest Bearing R	-52 °C	~	column in the	
	eventust			

Metering, Monitoring & Reporting


- Running Hours
- # of Trips by Type (summary)
- Time left for trip by overload start (cooling)
- Greasing interval
- Contactor inspection interval
- Pretrip values included in trip report

Reports

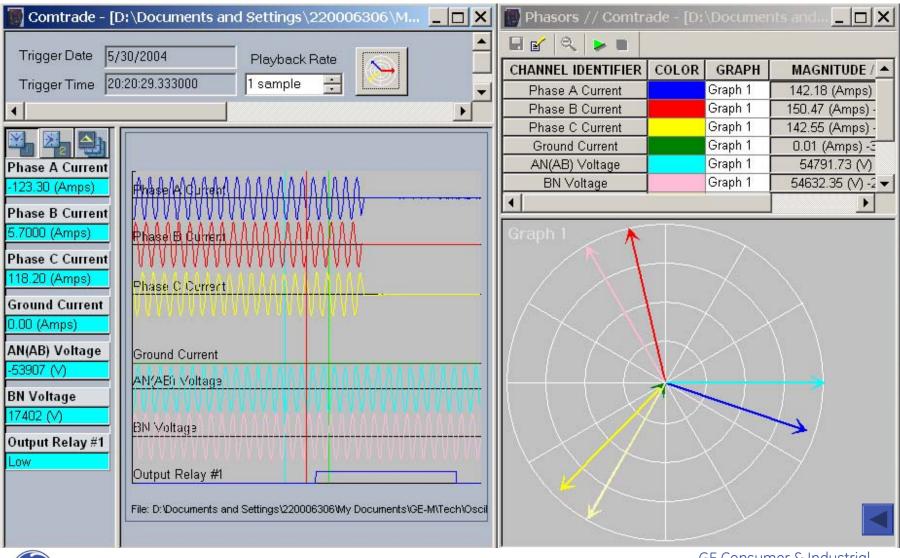
- Trip Counter
- Timers
- •General Counters


Learned Data

- Allows you to see average operating values
- Ability to make corrective action to plant electrical system or process based on statistics

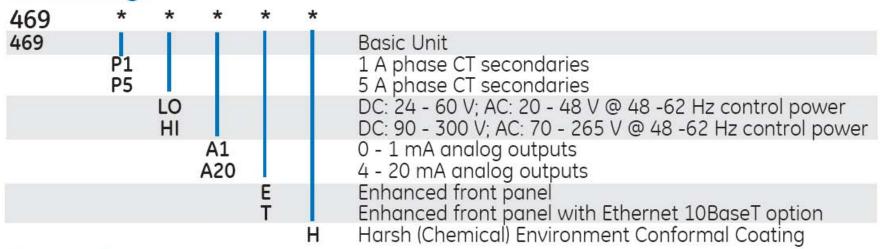
Trending

- Set up multiple parameters and time resolution to record starts, running cycles
- See degrading trends develop after alarms are asserted
- Opportunity to fix process or electrical system prior to trip



Monitoring

- Waveform Capture (Up to 128 Cycles)
 - Useful for forensic engineering as well as commissioning
 - Easy identification of fault types, evolving faults, restrikes, arcing, etc.
 - May be triggered by events or manually
 - Time tagging, vector diagrams
 - Automated fault playback is an advanced diagnostic tools



Waveform Capture

Ordering

Accessories

FnerVista: Included with each relay

DEMO: Metal carry case in which 469 unit may be mounted

19-1 PANEL: Single cutout 19" panel 19-2 PANEL: Dual cutout 19" panel

RS232 to RS485 converter box designed for harsh industrial environments SCI MODULE:

Phase CT: 50, 75, 100, 150, 200, 250, 300, 350, 400, 500, 600, 750, 1000

For sensitive ground detection on high resistance grounded systems HGF3, HGF5, HGF8:

> For shallow switchgear, reduces the depth of the relau 1 3/8" Collar:

by 1 3/8".

3" Collar: For shallow switchgear, reduces the depth of the relay by 3".

Dual mounting available with the 19-2 Panel IP54 Collar

NOTE: For dimensions see SR Family brochure.

469 Summary

- Comprehensive protection and control for large, medium voltage induction and synchronous motors
- User-friendly visual software for setting, monitoring, metering and single line diagrams
- Drawout construction for easy replacement
- Communications via RS232, RS485 and Ethernet ports
- Suitable for installations in chemically polluted environments

GE Multilin Inc.

215 Anderson Ave..

Markham, Ontario

Canada L6E 1B3

Web: www.GEindustrial.com/multilin

Tel: +1 905-294-6222

Fax: +1 905-201-2098

Email: gemultilin@ge.com

Going Forward

Create Motor Protection and Control Applications:

- Lessen Maintenance Costs
- Provide an Enhanced Degree of Standardization
- Improves Plant Performance
- Better Security & Reliability, Ease of Maintenance
- Integrates Easily for Retrofit and New Construction
- Provides More & Better Information to More Places
- Energy Management System, DCS, Process PLCs

Going Forward

We Hope This Discussion Will:

- Start Discussions on Applications
- Develop Applications that Provide Value
- Be the Springboard for to Make Your Electrical Processes More Reliable, Secure, Safe and Profitable

