

Nuclear Energy Development in the Middle East: Risks and Advantages

Definition of Middle East

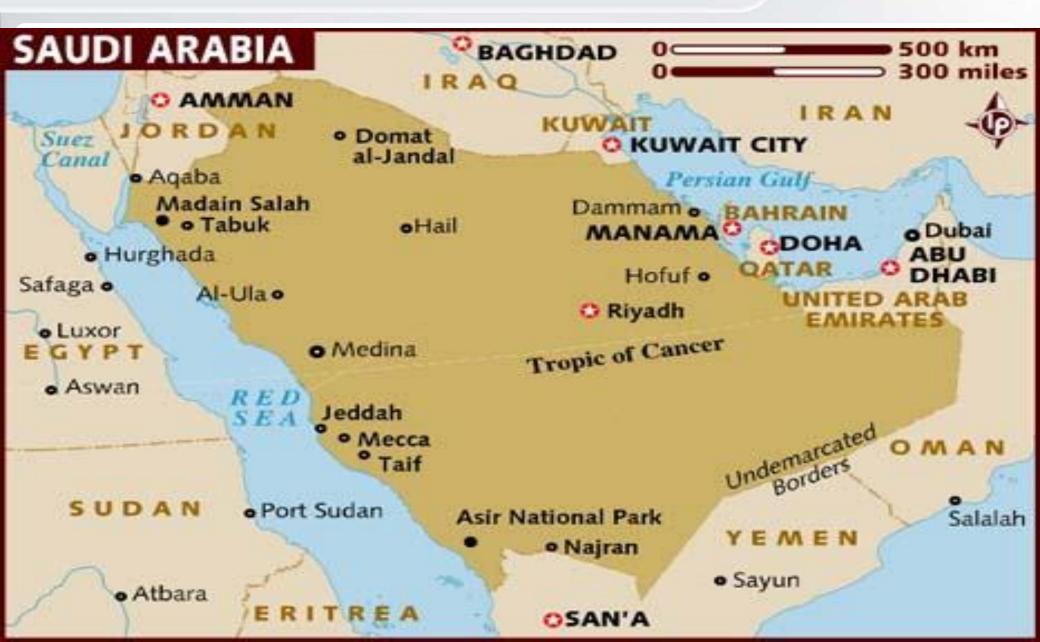
Outline

- Why do we care
 - **MENA** is the most rapidly emerging market for nuclear construction, \$30 bn for the next 10 years
- S Risks/Concerns
 - Proliferation and safety concerns
 - **SWorkforce development**
 - **SUnited Arab Emirates, UAE**
 - **\$Saudi Arabia**
 - **\$Egypt**
- Advantages
 - Second News News 1 Second News 2 Second News 2
 - **Solution** Nuclear Desalination

United Arab Emirates, UAE

United Arab Emirates, UAE

- In 2008 the UAE published a comprehensive national policy on nuclear energy in order to meet a more than doubling in energy demand by 2020
- It clearly states that UAE will forgo both enrichment and reprocessing
- They are planning to produce as much as one-third of their energy consumption by 2030
- on December 27, 2010 a consortium led by KEPCO beat rival French and US teams in a bid to supply the UAE with four APR 1400 nuclear reactors first of which will be come online in 2017
- Section Exercises Exercises Exercises Exercises Exercises Section 2012
 Section Exercises Exercis


United Arab Emirates, UAE

- International Advisory Board (IAB) headed by Hans Blix will oversee progress of the nation's nuclear energy plan and issue reports on potential improvements to the scheme
- Solution Nuclear Safety Review Board chaired by Dale Klein to review the safety and effectiveness of the construction, startup and operations of the nuclear program, with a core emphasis on nuclear safety
- Semirates Nuclear Energy Corporation (ENEC) is responsible for construction and operation of all plants
- Second Federal Authority for Nuclear Regulation (FANR) headed by William Travers
- Solution
 Department of Nuclear Engineering at Khalifa University of Science and Technology and Research (KUSTAR)
- Solution
 Solution
 Lots of students sent to US universities to get their BSc, MSc and PhD degrees to jump start the development process

Saudi Arabia

Saudi Arabia

- In April 2010 a royal decree said: "The development of atomic energy is essential to meet the Kingdom's growing requirements for energy to generate electricity, produce desalinated water and reduce reliance on depleting hydrocarbon resources."
- \$\oint{\text{9}}\$ 16 power plants are scheduled to be built till 2020 the first of which will become online in ten years
- Sign King Abdullah City for Atomic and Renewable Energy (KA-CARE) has been established and tasked with the research and application of nuclear technology and oversee all aspects of a nuclear power industry
- Sing Abdulaziz City for Science and Technology National science agency and a national lab

Egypt

Egypt

- Most advanced when it comes to human resources
- S Atomic Energy Authority
- Sometimes Nuclear Power Plants Authority
- **Solution** Safety Authority
- Solution
 Solution</p
- Se Has one old Russian 2MW research reactor and a newer 22 MW Argentinean research reactor
- \$\text{\$\text{\$\text{\$}}}\ Dabaa has been selected as the site for the next power plant 80's
- Senewed interest after the "January 25th Revolution"
- In preparation for its planned introduction of nuclear energy, Egypt has made a formal request to South Korea to train its nuclear engineers as part of the Korea International Cooperation Agency's support pro gram for developing countries

Nuclear Desalination

Nexus of Energy and Water

Water

- Abstraction
- Purification
- Distribution
- Utilization
- Disposal

Energy

- Fuel extraction and refining
- Electricity generation

Development

Synergies in Nuclear desalination are a catalyst for sustainable

development

Experience on Nuclear Desalination

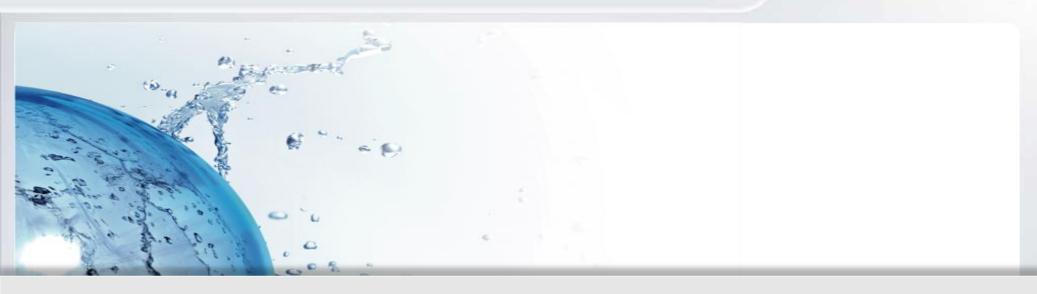
Plant name	Location	Gross power [MW(e)]	Water capacity [m³/d]	Reactor type/ Desal. process
Shevchenko	Aktau, Kazakhstan	150	80000 - 145000	FBR/MSF&MED
lkata-1,2	Ehime, Japan	566	2000	LWR/MSF
lkata-3	Ehime, Japan	890	2000	LWR/RO
Ohi-1,2	Fukui, Japan	2 x 1175	3900	LWR/MSF
Ohi-3,4	Fukui, Japan	1 x 1180	2600	LWR/RO
Genkai-4	Fukuoka, Japan	1180	1000	LWR/RO
Genkai-3,4	Fukuoka, Japan	2 x 1180	1000	LWR/MED
Takahama-3,4	Fukui, Japan	2 x 870	1000	LWR/RO
Diablo Canyon	San Luis Obispo, USA	2 x 1100	2180	LWR/RO
NDDP	Kalpakkam, India	2 x 170	1800	HWR/RO
Karachi	Karachi, Pakistan	175 Camm	issioned in 2010	MED

"I have a dream"...!!!

- **Solution** Build a Nuclear Self-Sustainable Special Free Zone (N3SFZ) at Masdar City powered by a nuclear reactor that:
 - Generates electricity for MI and surroundings
 - Produces potent water through Gulf water desalination
 - Generates hydrogen to fuel Abu Dhabi future hydrogen cars
 - And it will do all that with 3Z's Zero emission, Zero waste, and Zero proliferation

Nuclear Self-Sustainable Special Free Zone **Nuclear Desal** (N3SFZ) Seawater Inlet **Plant** Product Water **Hydrogen Production Plant Brine Outfall Nuclear Power Plant** Pump Steam/Hydrogen Chemical Pretreatment Steam/Hydrogen Mixture Pump Helium Exchanger Gas Turbine Filtration Oxygen RO Membrane Product water High-Temperature Recuperator Electrolysis Intercooler Energy Precooler Recovery Generator Exchanger Power for Electrolysis -Fresh Seawater Power to Grid -

N3SFZ Components


- S Reactor:
 - Produces net electric power of 100 MW_e for the grid
 - Advanced design; long refueling cycle which means no access to nuclear fuel (i.e. proliferation-resistant)
- **Solution Solution Solution**
 - \bullet Uses ~146 MW $_{\rm e}$ from reactor to produce hydrogen through High Temperature Electrolysis of Steam (HTES) fuel for 280,000 light vehicles
- Desalination Plant (DP)
 - ightharpoonup Uses ~76 MW $_{\rm e}$ from reactor to produce potent water through Hybrid Multi Stage Flash and Reverse Osmosis (MSF-RO) 182,400 m 3 /d

Conclusions

- Security concerns
- Solution Have taken steps to build educational infrastructure BSc, MSc and PhD
- Still missing technician pipeline
- Solution
 Need help when it comes to workforce development
 - Solution Solution Nuclear Education Consortium (NEC)
 - Section Education Section S
 - S Accreditation Policy and Procedures Committee (APPC)
 - Secilitated by bilateral agreements such as 123
- Solution
 Solution</p



THANK YOU

Q & A

