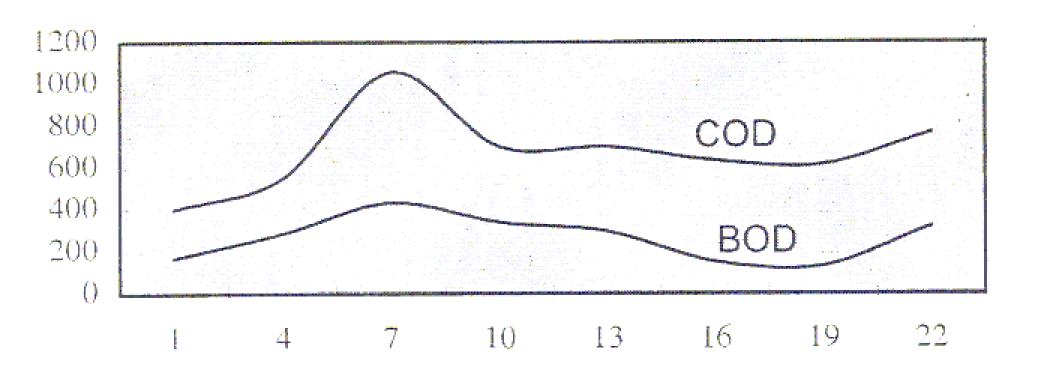
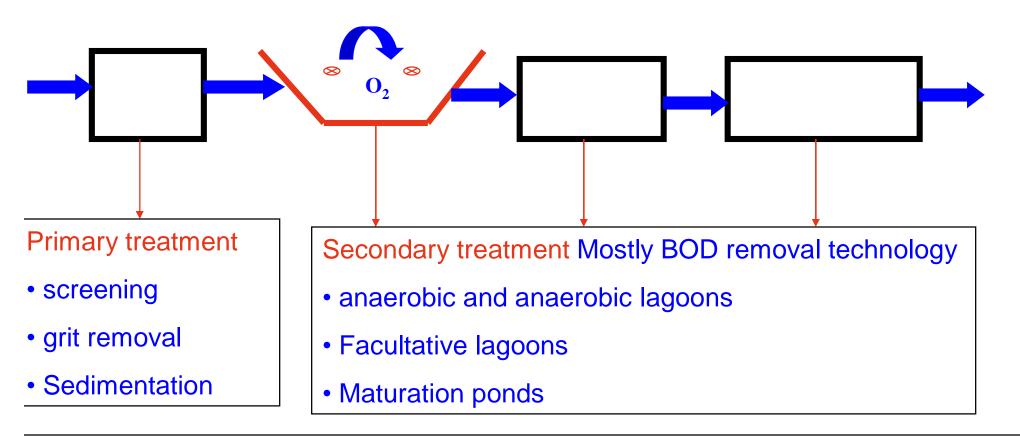

The Islamic University of Gaza- Civil Engineering Department Advanced Sanitary Engineering- ECIV 5325

Unit 6. The current wastewater treatment systems in Gaza Strip

Prepared by


Husam Al-Najar


Wastewater characteristics in Gaza Strip (PWA, 2003)

Parameter (mg/l)	Wastewater characteristics		
	North area	Gaza	Rafah
BOD	728	667	777
COD	1385	1306	1399
SS	663	617	540

BOD and COD concentration in the influent of Gaza Wastewater treatment plant with day time

Treatment Process in Gaza Strip

Anaerobic lagoon- Aerated lagoon- Facultative lagoon- Maturation pond

Anaerobic lagoon

Design Criteria:

- Depth 2.5 to 5m
- Hydraulic retention time 1-20 days
- Design Loading for BOD removals in anaerobic lagoon (Horan, 1990)

Design	Volumetric Loading (V _L)	BOD Removal
Temperature (°C)	(g BOD/m ³ /day)	(%)
< 10	100	40
10-20	20T-100	2T+20
> 20	300	60

$$Area = \frac{BOD influent * Flow}{V_L * Depth}$$

Aerobic lagoon

Design Criteria:

- Depth 2 to 5m
- the European standard is considered (>5KW/10³m³)
- Hydraulic retention time R = 3-5 days
- Considering the kinetic and rate of cell synthesis equation:

$$L_e = \frac{L_i}{(1 + K_T R)}$$

L_e and L_i are the effluent and influent BOD respectively.

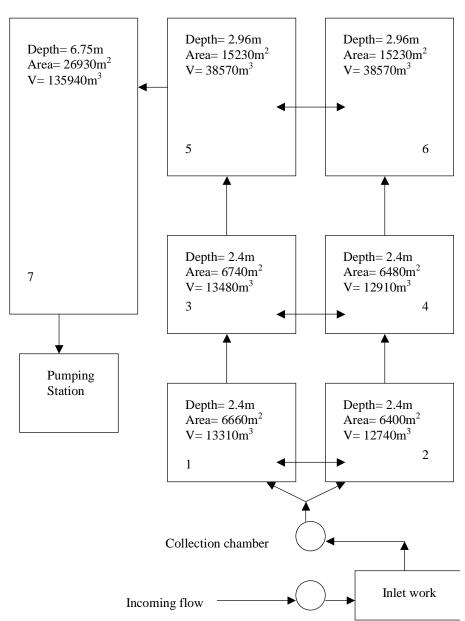
$$K_T$$
 reaction rate where $K_T = K_{20} O_T^{T-20}$ where $K_{20} = 1.4$ /day

Facultative lagoon

Design Criteria:

- Depth 1 to 2 m
- Hydraulic retention time 4-6 days
- The maximum allowable surface load for facultative lagoons

=11.2(1.054) F where F is the water Fahrenheit temperature.


For Example $14^{\circ C} = 1.8(14) + 32 = 57.2^{F}$

Maximum surface load= 11.2 (1.054) 57.2=227 kg/ha.d

• The efficiency of BOD removal λ_e =0.725 λ_s +10.75 where λ_e =BOD removal, (kg/ha.d)

Beitlahya wastewater Treatment Plant as example

- Influent BOD= 600 mg/l
- Average flow rate= 11500 m³/day.
- Temperatures are 14 and 23°C.
- Regular operation route.

Anaerobic lagoon

- The size of the anaerobic lagoon equals to 26000m³
- The hydraulic retention time equals 2.3 days.
- The BOD concentration in the influent ranges from 400 to 650 mg/l.
- For the assessment purposes BOD of 600 mg/l will be considered.
- Based on water temperature in winter 14°C and summer 23°C the treatment efficiency estimated to be 48 and 60% (Horan, 1991) respectively.
- The effluent from the anaerobic lagoons has 312 and 240 mg soluble BOD/I in winter and summer, respectively.

Aerated lagoons

- Two aerated lagoons with total volume 26300m³.
- The estimated retention time equals to 2.3 days
- The two aerated lagoons have eight floating aerators each rated at 11KW (15hp) in addition to 4 jet-mixing aerators. This provides sufficient aeration for the lagoon if the European standard is considered (>5KW/10³m³).
- Considering the kinetic and rate of cell synthesis equation:

$$L_e = L_i / (1 + K_T R)$$
 where

- The effluent from the aerobic treatment at wintertime equals 312/(1+0.67x2.3) = 123 mg BOD/I.
- While at summer time = 240/(1+0.69x2.3) = 50 mg BOD/I. considering the aeration system and complete mixing of 5KW/10³m³

Facultative lagoons

- The volume of the facultative lagoons equals to 84000 m³
- Retention time 7.3 days.
- Surface area 30500 m²
- BOD load=49x11500= 564 kg/day

BOD load /surface area=564x10000/30500= 185 kg/ha.d

The maximum allowable surface load for facultative lagoons =11.2(1.054) ^F.

At winter: $14^{\circ C} = 1.8(14) + 32 = 57.2^{F}$

Maximum surface load= 11.2 (1.054) 57.2=227 kg/ha.d

The actual surface load is less than the permissible load, therefore it is expected that the facultative lagoon is functioning as proposed.

The efficiency of BOD removal at the facultative lagoons could be calculated as the following:

 λ_e =0.725 λ_s +10.75 where λ_e =BOD removal, (kg/ha.d)

 $\lambda_e = 0.725 (185) + 10.75 = 145 \text{ kg/ha.d}$

Removal efficiency= 145/185= 78%

At winter temperature, the effluent BOD is estimated to be 123x0.22=27mg BOD/I

At summer temperature 23°C, this value reach to

50x 0.22=11mgBOD/I.

Wastewater Disposal/ Reuse

Palestinian Standards for irrigation and groundwater recharge


Parameter	Palestinian Standards		
	Irrigation	Recharge	
BOD (mg/l)	20-60	20	
TSS (mg/l)	30-90	30	
TDS (mg/l)	1500	1500	
EC (ms/cm)	_	_	
T-N (mg/l)	45	100	
Na (mg/l)	200	230	
Cl (mg/l)	500	600	
SAR	9	_	
B (mg/l)	0.7	1	
F. Coliform (MPN/100ml)	200-1000	200-1000	
Nematodes (ovum/l)	<1	<1	

The Guidelines for the use of effluent waste water quality in irrigation (Takashi, 1990)

Potential irrigation problem	unit		Degree of restriction		
		None	Slight to	Sever	
			moderate		
Salinity					
EC	ds/m	< 0.7	0.7-3	> 3.0	
TDS	mg/l	< 450	450-2000	> 2000	
Permeability					
SAR= 0-3 and EC =	ds/m	> 0.7	0.7-0.2	< 0.2	
3-6		> 1.2	1.2-0.3	< 0.3	
6-12		> 1.9	1.9-0.5	< 0.5	
12-20		> 2.9	2.9-1.3	< 1.3	
20-40		> 5.0	5.0-2.9	< 2.9	
Specific Ion toxicity					
Sodium					
Surface irrigation	SAR	< 3	3-9	> 9	
Sprinkler irrigation	mg/l	< 70	> 70		
Chloride					
Surface irrigation	mg/l	< 140	140-350	> 350	
Sprinkler irrigation	mg/l	< 100	> 100		
Miscellaneous effects					
pH		Normal range 6.5-8.4			
Residual chlorine (overhead	mg/l		-		
sprinkler only)		< 1.0	1-5	> 5.0	

Recommended microbiological quality guidelines for wastewater use in agriculture

Categor y	Reuse condition	Exposed group	Intestinal nematodes (arithemetic mean no. of eggs per litre)	Fecal coliform (geometric mean no. per 100 ml)
A	Irrigation of crops likely to be eaten uncooked, sports fields, public parks	Workers, consumers public	< 1	< 1000
В	Irrigation of cereal crops, industrial crops, fodder crops, pasture and tries	Workers	< 1	No standard recommended
С	Localize irrigation of crops in category B if exposure of workers and the public does not occur	None	Not applicable	Not applicable

The potential land for wastewater reuse