
Journal of Colloid and Interface Science 332 (2009) 258–264
Contents lists available at ScienceDirect

Journal of Colloid and Interface Science

www.elsevier.com/locate/jcis

Short Communication

Thermodynamic cycle analysis for capacitive deionization

P.M. Biesheuvel

Department of Environmental Technology, Wageningen University, Bomenweg 2, 6703 HD Wageningen, The Netherlands
Wetsus, Centre of Excellence for Sustainable Water Technology, Agora 1, 8900 CC Leeuwarden, The Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 September 2008
Accepted 1 December 2008
Available online 22 January 2009

Keywords:
Capacitive deionization
Desalination
Diffuse double layer theory
Thermodynamic cycle analysis

Capacitive deionization (CDI) is an ion removal technology based on temporarily storing ions in the
polarization layers of two oppositely positioned electrodes. Here we present a thermodynamic model
for the minimum work required for ion separation in the fully reversible case by describing the ionic
solution as an ideal gas of pointlike particles. The work input is fully utilized to decrease the entropy of
the outflowing streams compared to that of the inflow. Based on the Gouy–Chapman–Stern (GCS) model
for planar diffuse polarization layers—with and without including additional ion volume constraints in the
diffuse part of the double layer—we analyze the electric work input during charging and the work output
during discharging, for a reversible charging–discharging cycle. We present a graphical thermodynamic
cycle analysis for the reversible net work input during one full cycle of batchwise operation of CDI based
on the charge–voltage relations for different ionic strengths. For the GCS model, an analytical solution
is derived for the charge efficiency Λ, which is the number of salt molecules removed per electron
transferred from one electrode to the other. Only in the high voltage limit and for an infinite Stern layer
capacity does Λ approach unity.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction

When two electrodes are placed opposite to one another, and a
voltage difference is applied, diffuse polarization layers develop on
both electrodes. Taken together, the two polarization layers contain
an excess of salt ions over the ion concentration in bulk solu-
tion, and thus effectively part of the ions in the solution phase
is removed. The removal of ions according to this principle from
an (aqueous) stream flowing along the electrodes is called capac-
itive deionization (CDI) or electrosorption desalination [1–4]. The
topic is closely related to research in the field of electric double
layer (super-)capacitors [5–26]. Important in CDI is the creation of
a large surface area for ion storage, and therefore materials such as
porous activated carbon are often used (with internal surface areas
of the order of 103 m2/g) [5]. Ion adsorption can be continued un-
til the equilibrium structure of the polarization layer is formed and
the final capacity for ion storage is reached. In the discharge step,
the applied voltage is reduced (gradually, or by short-circuiting the
electronic path) resulting in a discharge of the ion storage capac-
ity, and a product stream concentrated in ions, after which a new
cycle can begin.

In this manuscript we discuss several thermodynamic and elec-
trostatic aspects of CDI. First we present a macroscopic thermo-
dynamic analysis of CDI to calculate the minimum work required
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to separate an ionic solution in a more dilute and a more con-
centrated stream. In this analysis we describe the ionic solution as
a perfect ideal gas of pointlike charges without volume, which is
also the common model underlying the Poisson–Boltzmann equa-
tion and the Gouy–Chapman (GC) model. Subsequently we analyze
several microscopic models for charging of the polarization lay-
ers to discuss the work in- and output during the ion removal
step (charging of the electrodes) and during the ion release step
(discharge of the electrodes). Here we will use the GC model,
the Gouy–Chapman–Stern (GCS) model, as well as a modified GCS
model which additionally includes ion volume effects in the dif-
fuse part of the double layer, using an off-lattice algorithm from
liquid-state theory (the Carnahan–Starling equation of state) which
is very exact in describing volume exclusion effects in hard-sphere
mixtures [27]. Only by using this final modification are unrealis-
tically high ion concentrations at the Stern plane avoided. In all
cases we take the electrode as perfectly conducting with the free
electrons directly located at the metal–solution interface. Thus we
will neglect the potential difference over the thin layer in the
metal (and slightly on the outside of it) where the free electrons
are located (the Thomas–Fermi layer), and do not consider the
electron overspill into the aqueous solution [5]. We will assume
that the two electrodes are perfectly non-Faradaic, i.e., no current
is assumed to flow via electrochemical reactions from the elec-
trodes into solution or vice versa. Also, we neglect the possibility
of direct chemical ion adsorption or desorption on the electrode
surface; i.e., the electrode is assumed to be uncharged when in
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contact with water and when the electron charge is zero. An ionic
charge only develops when an electron charge is applied, and is
due to the diffuse charge from the excess of counterions and the
depletion of co-ions. This diffuse layer charge is exactly compen-
sated for by the free electron charge residing at the electrode–
solution interface. A planar structure of the polarization layer is
assumed, and double layer overlap is neglected, which however
should be included in a more detailed model [5,23]. These dou-
ble layer models will be used in a thermodynamic cycle analysis
which shows the energy requirements (and losses) of the individ-
ual charging and discharging steps in CDI.

An important element in the cycle analysis is the charge effi-
ciency, Λ, which describes how many salt ions are removed for
each electron transferred from one electrode to the other, i.e., the
ratio of moles of ions removed from solution over the electrode
charge (divided by Faraday’s number). Because the electron surface
charge is compensated in the diffuse layer by both an adsorption of
counterions as well as a depletion of co-ions [3,6], the charge effi-
ciency Λ will always be below unity. At very low applied voltages
over the diffuse part of the double layer (Debye–Hückel limit), Λ

approaches zero because in that limit the diffuse charge is equally
due to counterion adsorption as to co-ion expulsion, and thus no
ions will be effectively removed from solution on applying a cell
voltage. Due to this effect high voltages are preferred for operation
in CDI, not just to obtain a high surface charge but also to obtain
a high charge efficiency Λ.

2. Overall thermodynamic model for capacitive deionization

In this section we describe the thermodynamics of separating
an ionic solution into two different solutions, one enriched in ions,
the other depleted partially from the ions (see Fig. 1) somewhat
similar to a treatment in Ref. [9]. The volume is conserved (the
solvent is incompressible) as well as the total number of ions.

Interestingly, this problem is thermodynamically completely
analogous to the situation of having a closed (say, cylindrical) ves-
sel filled with an ideal gas. From one end of the cylinder a piston is
pushed through up to a certain position, thereby compressing the
gas by a certain factor. The volume that is moved through and is
“left behind” does not become completely devoid of gas molecules
because the piston is assumed to be somewhat “leaky” during its
movement. This volume corresponds to the dilute (ion depleted)
product stream formed in CDI, while the compartment with com-
pressed gas corresponds to the product stream which is concen-
trated in ions. When the piston moves very slowly and without
friction from its starting point to the final location, the process is
reversible and the required work input is the absolute minimum,
corresponding to the entropy decrease of the system. Fig. 1 shows
that for the fully reversible case, without heat production due to
friction, the net work input W in − Wout is exactly balanced by the
entropy decrease of the outflowing streams relative to the entropy
of the inflowing stream.

We will quantitatively analyze the thermodynamics of ion re-
moval based on an inflowing stream with volume V 0 (note that
volume V can be considered as a volumetric flow rate as well),
containing one type of monovalent salt which is fully dissociated
into cations and anions. The concentration of ions c is the ionic
strength (half the total number density of ions). The aim is to sep-
arate this solution into a more concentrated solution “c”, and a
more dilute one, “d” (see Fig. 1). Because we will neglect all inter-
actions between the ions and thus describe the ion solution as an
ideal gas of point charges without volume, the only contribution to
the free energy is due to ideal entropy. By definition the entropy
of the two product solutions is lower than before (the two prod-
uct solutions will spontaneously mix when allowed to) and thus a
certain amount of work needs to be expended in any process to
Fig. 1. Schematic representation of thermodynamics in an ideal ion removal tech-
nology. The free energy of the product streams (right-hand side) is larger than that
of the inflowing stream (left), due to a decrease of the entropy TS. This difference
is exactly equal to the total reversible work input W in − Wout .

separate an ionic solution into a more dilute and a more concen-
trated fraction.

An overall ion number balance applies, which is given by
V 0 · c0 = V c · cc + Vd · cd , as well as a solution volume balance,
V 0 = V c + Vd . The minimum work that must be exerted on the
system under ideal reversible conditions is defined as W which is
equal to the difference of work input W in and work output Wout
(see Fig. 1); thus W = W in − Wout. The reversible work W also
equals the difference in entropy between the product streams “c”
and “d”, and the incoming stream “0”, given by

W = −TSout + TSin

= 2 · (V c · cc ln cc + Vd · cd ln cd − V 0 · c0 ln c0), (1)

where W and TS are expressed in units of kB T when ion con-
centrations are in numbers per volume (multiply by RT when
ion concentrations are expressed in mol/volume). The net work W
must be a positive number because the reverse process of mixing
two streams of unequal concentration is spontaneous.

We define α as the ratio of dilute stream volume over the initial
volume, α = Vd/V 0. Using α = (cc − c0)/(cc − cd), Eq. (1) simplifies
to

W

Vd
= 2 · c0

α
ln

c0 − α · cd

c0(1 − α)
− 2 · cd · ln

c0 − α · cd

cd(1 − α)
, (2)

which expresses W per unit volume of dilute product Vd as func-
tion of the initial ion concentration c0, the ion concentration of the
dilute stream, cd , and the volume ratio α. Thus if the concentra-
tion of ions in the inflow c0 is known (namely the ionic strength,
because we consider a 1:1 salt), as well as the separation factors α
and cd , the reversible work is immediately calculated from Eq. (2).
Fig. 2 gives calculation results for c0 = 25 mM as function of cd
and for various values of α, where we have multiplied with RT to
obtain W in J per unit volume. As expected, obtaining a certain
dilute product volume Vd , of a certain concentration cd , becomes
energetically cheaper the lower the α; thus when more of the in-
flowing stream is discarded and the less it is concentrated. When
α goes to unity, thus the product stream “c” becomes infinitely
concentrated, the required work goes to infinity.

Equation (2) can be compared with Eq. (B13) in Ref. [9] which
is given by w∗ = X f · Xb/(Xb − X f ) · ln(Xb/X f ), where w∗ is the
work per unit dilute product volume Vd , and Xi is the “average
mole fraction of total salts” in the feed “f” and the concentrated
solution, brine, “b”. The dilute product stream is assumed to be
completely ion free. In that limit (cd = 0), Eq. (2) simplifies to W =
−2 · c0 V 0 ln(1 −α), and if we identify 2 · c0 with X f ,2 · cc with Xb ,
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Fig. 2. Reversible work W per unit product volume to produce a dilute stream of
ionic strength cd from an ionic solution of ionic strength c0 = 25 mM, for various
values of the volume ratio α. The dashed line gives the “osmotic limit,” 2 · (c0 − cd).

and α with (Xb − X f )/Xb , then the two equations do turn out to
be exactly equal.

In the limit that α is close to zero the dilute stream “d” is very
small and the concentrated stream “c” has a concentration that is
only marginally above that of the inflowing stream. In that case,
Eq. (2) simplifies to

W

Vd
= 2 · (c0 − cd) − 2 · cd ln

c0

cd
. (3)

Here, the first term might be identified as a kind of osmotic
pressure difference between the inflowing and product stream.
However, Eq. (3) shows that an additional, negative term is re-
quired which depends on the ratio of the two ion concentrations.
Fig. 2 shows that the “osmotic term” 2 ·(c0 −cd) (dashed line) gives
the correct limit, either when all ions are to be removed (cd = 0)

or when no ions are removed (cd = c0), but in between, i.e., for
0 � cd � c0, the osmotic term significantly departs from the full
result given by Eq. (3), even for small departures of cd from zero
or from c0, with the required work much smaller than estimated
from the osmotic term only. The maximum absolute departure of
the osmotic term from the full result is found when cd = c0/e,
which is around cd ∼ 9.2 mM in the present calculation, where
the deviation is 2 · RT · cd; thus ∼22.8 kJ/m3. The maximum rela-
tive departure is found in the limit that cd → c0.

3. Electrostatic double layer models

Next we will discuss the models for the polarization layers
that will be used in the thermodynamic cycle analysis for charg-
ing and discharging. These models assume that the electrode is
ideally polarizable; i.e., Faradaic electrochemical reactions are not
considered. Also, chemical ion ad- or desorption at the inner or
outer Helmholtz planes is not considered either. We use a Gouy–
Chapman–Stern model for the double layers which we will sup-
plement with a submodel for ion size constraints according to the
Carnahan–Starling (CS) equation of state (as explained in more de-
tail in Ref. [27] where further references to the theoretical liquid-
state literature are provided). From this point onward we only
consider a 1:1 monovalent salt solution. In both models, the to-
tal cell voltage V cell is divided over the two double layers, and is
a summation of the Stern layer voltage V St and the diffuse layer
voltage Vd . Thus,

1

2
V cell = V dl = V St + Vd. (4)

According to the Gouy–Chapman (Poisson–Boltzmann) model,
the electric charge transferred is given by

σ = 4
c∞
κ

· sinh
1

2

Vd

V T
, (5)

where σ is a surface charge density in numbers per unit electrode
area, κ is the inverse of the Debye length, given by κ2 = 8πλB c∞ ,
where λB is the Bjerrum length (λB = 0.72 nm in water at room
temperature), c∞ is the ionic strength expressed in numbers per
volume, and V T = kB T /e is the thermal voltage which is 25.6 mV
at room temperature. Without a Stern layer, Vd = V dl and the re-
lation σ–V cell is directly obtained from Eqs. (4) and (5).

When a Stern layer is included, Eq. (5) must be supplemented
with Gauss’ law at the Stern plane, given by

CSt · V St = σ · e, (6)

where e is the electron charge and CSt is the Stern layer capacity.
The GCS model requires the simultaneous solution of Eqs. (4)–(6).

When we include volume effects using the CS model for ion
volumetric interactions, no analytical solution is available. Instead
we numerically solve the Poisson equation

d2 V

dx2
= − e

εrε0
(c+ − c−), (7)

where x is the place coordinate perpendicular to the interface, and
c+ and c− are the concentrations of cations and anions, respec-
tively. Equation (7) is solved together with chemical equilibrium
for both ion types,

ln ci + zi
e

kB T
V + μex = ln c∞ + μex∞, (8)

where zi is the charge sign (either +1 or −1), and μex is given by
the CS excess term

μex = φ
8 − 9φ + 3φ2

(1 − φ)3
, (9)

where φ is the total local ion volume, φ = v · (c+ + c−) with v the
ion volume, which is v = π/6 ·d3

ion with dion the hydrated ion size.
Finally we require boundary conditions, which are V = 0 far

away from the interface, and V = Vd at the Stern plane, together
with

dV

dx

∣∣∣∣
St

= − V St

dSt
. (10)

In this Gouy–Chapman–Stern–Carnahan–Starling (GCS-CS) mo-
del, all of the above equations, Eqs. (4)–(10) are self-consistently
solved to obtain the relation of σ vs V cell.

Fig. 3 shows calculation results for c∞ = 10 mM for all three
models which shows the well-known result that without a Stern
layer the surface charge in the GC model exponentially increases
with increasing voltage. This anomaly is due to the assumption of
point charges that can reach the electrode infinitely close and there
reach extremely high surface concentrations [28] (e.g., for a cell
voltage of 1 V, and thus a voltage difference of 0.5 V over one dif-
fuse layer, we have at the surface a counterion concentration which
is increased by a factor of exp(e/kB T · 0.5) ∼ 109, which implies at
room temperature and for c∞ = 10 mM a surface concentration
that is about 105 higher than that of the water molecules (55 M).

The GCS model is already much more realistic but still at
1 V cell potential and a Stern capacity of CSt = 2 F/m2 (and for
c∞ = 10 mM) we obtain unrealistically high ion concentrations at
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Fig. 3. Charge per unit electrode area as function of cell voltage for the GC, GCS,
and GCS-CS models (explained in the text) at c∞ = 10 mM, CSt = 2 F/m2, and a
hydrated ion diameter of dion = 0.7 nm.

the Stern plane, namely ∼1.5 times the value of bulk water (which
is 55 M). The resolution of this anomaly requires the inclusion of
ion volume constraints in the diffuse part of the double layer. One
option is to use the Stern–Bikerman–Freise model which includes
ion volume constraints based on a lattice approach (Poisson–Fermi
gas), which will limit the concentration at a chosen maximum
packing density [29–31]. Here, however, we use a more exact, and
off-lattice, expression for volume interactions in mixtures of hard
spheres, namely by using the Carnahan–Starling equation of state.
This implies that we implement in the ion chemical potential the
μex term given by Eq. (9). Now we obtain at the Stern plane con-
centrations that are much lower and more realistic; e.g., at a cell
voltage of 1 V the ion concentration remains below 3.5 M.

4. Charge efficiency

In this section we will analyze the charge efficiency, Λ, which
is the ratio between the amount of salt molecules removed from
solution and the amount of electronic charge transferred between
the electrodes. The charge efficiency Λ is always less than unity
because the diffuse charge is partially due to counterion adsorp-
tion from solution, and partially due to co-ion expulsion from the
polarization layers back into solution. Because of co-ion expulsion
from the diffuse layers there is no 1:1 correspondence between the
charge transferred and the amount of salt molecules removed. In
the GC and GCS models it is possible to derive an analytical so-
lution for Λ for an assumed planar structure of the polarization
layer without overlap of opposite double layers. For a planar iso-
lated diffuse layer, the Poisson–Boltzmann equation for the electric
potential profile results in (assuming a 1:1 salt)

y(x) = 4 · arctanh

(
exp(κx) · tanh

yd

4

)
, (11)

where yd is the nondimensional electrical potential at the Stern
plane relative to bulk solution (multiply y by the thermal voltage
V T to obtain the dimensional voltage V ). The electronic charge
that must be transferred from one electrode to the other is given
by Eq. (5).

To calculate the salt adsorption Γsalt (and thus Λ) we must
take account of the fact that the counterion adsorption on one
electrode “A” is partially negatively offset by the expulsion into
solution of the same ion from the other electrode “B.” The counte-
rion adsorption on electrode A is given by an integration over the
diffuse layer volume of ccounterion − c∞ , while the expulsion of the
same ion (on the other electrode B) equals the expulsion of the co-
ion from the diffuse layer at electrode A, given by an integration
of c∞ − cco-ion. Now with ccounterion · cco-ion = c2∞ , the difference
(ccounterion − c∞) − (c∞ − cco-ion) simplifies to 2 · c∞ · (cosh(y) − 1)

which then needs to be integrated over the coordinate x to give
the amount of salt removed per unit electrode area. Note that this
analysis assumes that we deal with a symmetric salt solution and
that we assume the two juxtaposed electrodes to be exactly the
same (i.e., surface area and Stern capacity are the same).

Thus, the excess salt adsorption (amount of salt molecules re-
moved from solution per unit electrode area), Γsalt, can then be
calculated as [32]

Γsalt = 2c∞
∞∫

0

{cosh y − 1}dx = 8c∞
κ

sinh2 yd

4
. (12)

With the charge efficiency Λ being equal to the ratio Γsalt/σ
we obtain from combining Eqs. (5) and (12) the simple relation

Λ = tanh
yd

4
, (13)

which interestingly predicts that Λ is independent of ionic
strength. Rewriting Eq. (13) slightly, we can calculate that for a
voltage difference between the two Stern planes of V ∗ , and with
a thermal voltage of V T ∼ 25 mV (room temperature), Λ is given
roughly by Λ = tanh(V ∗/200 mV). For example, for V ∗ = 200 mV
(corresponding to a total cell voltage of V cell = 240 mV at c∞ =
10 mM and CSt = 2 F/m2), the removal efficiency is Λ = 76%. At
V = 400 mV it increases to 96% and at 600 mV it reaches 99.5%.

In Fig. 4a we show the removal efficiency for the GCS model
for two values of the Stern capacity, namely CSt = 1 and 2 F/m2

as function of ionic strength. The ionic strength is of influence be-
cause of its effect—via Gauss’ law at the Stern plane, Eqs. (5) and
(6)—on the Stern layer voltage difference V St. Certainly at higher
ionic strength and lower Stern capacity, Λ deviates significantly
from unity.

In Fig. 4b we compare for CSt = 2 F/m2 predictions of the GCS
model with those of the GCS-CS model, which includes ion vol-
ume constraints in the diffuse part of the polarization layer. At
c∞ = 10 mM the predictions are similar in both models, though
there are still significant differences: e.g., at V cell = 1 V, Λ remains
5% away from 100% in the GCS-CS model, but only 2% in the GCS
model. For c∞ = 100 mM the additional deviation from Λ = 100%
when volume effects in the diffuse layer are included (namely in
the GCS-CS model) is even more significant, with at V cell = 1 V,
Λ = 83% in the GCS-CS model, while it is Λ = 94% in the GCS
model. For 1 mM salt the situation is rather different and unex-
pected, with first of all an almost exact fit between the two models
up to a cell voltage of ∼0.5 V. However, beyond V cell = 0.5 V a
very significant difference develops: whereas the charge efficiency
Λ steadily increases with increasing Λ in the GCS-model, in the
GCS-CS model the charge efficiency Λ goes down again beyond
V cell = 0.5 V, and significantly so, to reach a value of Λ = 88% at
V cell = 1 V, whereas at this point the charge efficiency is Λ = 99%
in the GCS model. At higher voltage Λ in the GCS-CS model in-
creases again.

5. Thermodynamic cycle analysis

Based on the relation between charge σ vs cell voltage V cell
it is possible to analyze the work that is exerted on the system
W for a single charging (ion removal) step, if the bulk solution
concentration is constant. Namely this is given by the integral∫ σfinal

0 V cell dσ times the electron charge e to give the reversible en-
ergy required for charging 1 nm2 of electrode surface in a constant
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(a) (b)

Fig. 4. The charge efficiency Λ: the number of salt molecules removed from solution per electron transferred as function of cell voltage, Stern capacity, and ionic strength.
(a) According to the GCS model. Only at a high Stern capacity, low ionic strength, and high cell voltage is the removal efficiency Λ close to unity. (b) According to the GCS
and GCS-CS models (ion size 0.7 nm, CSt = 2 F/m2).
ionic strength solution (see Eq. (7b) in Ref. [6]). In Fig. 3, this inte-
gral is represented by the area above one of the curves, bounded
by a horizontal line which describes σfinal. Interestingly, the more
that volume constraints are considered the higher is W to reach
the same value of σfinal. However, when charging continues until
a certain value of V cell is reached, then the situation is exactly re-
versed: going from the GC model to the GCS model the required
work is lower, and W is even lower for the GCS-CS model.

Now, when charging is no longer reversible (which can be
achieved by very slowly increasing the applied voltage), but occurs
irreversibly, namely by directly applying the final required voltage
V cell,final, the work input is given by the product of σfinal · V cell,final.
For the GCS model and for charging up to σfinal = 2 #/nm2, the
required work input for the irreversible process is an additional
∼55% higher than for the reversible process. For the GC model the
difference between reversible and irreversible is smaller, namely
an additional ∼30%, but for the most realistic GCS-CS model, the
difference between reversible and irreversible charging is ∼83%;
i.e., when we directly apply V cell,final = 1.15 V (which leads to
σfinal = 2 #/nm2) the work input will be 83% higher than when we
would gradually and slowly increase V cell from zero to V cell,final.

Next we will analyze a charging-plus-discharging cycle and find
out that this difference between reversible (minimum) work and
irreversible work increases further. First of all we must realize that
the thermodynamic work as derived from Fig. 3 assumes a con-
stant background ionic strength during deionization. However, in
reality we will gradually go from the initial to the final concentra-
tion during the process (during charging from c0 to cd , and during
discharging from cd—via c0—to cc). To analyze these effects we en-
vision a batchwise operation in which we first add the solution
volume that needs to be depleted from ions (Vd). When the de-
sired removal efficiency has been achieved (the ion concentration
has been reduced from c0 to cd), this volume is removed from the
cell and fresh solution of volume V c is added, into which the ions
adsorbed on the electrodes will gradually dissolve to generate the
concentrate of concentration cc . Thus, the work calculated on the
basis of Fig. 3 is not the work input during charging, but instead
a trace is followed of points σ vs V cell while the ionic strength
gradually varies from c0 to cd (see Fig. 5).

How do we calculate the exact trace that the process follows
during the charging–discharging process? Let us assume that we
start with a solution at c0 = 20 mM, which we aim to split in a
volume at cd = 10 mM and a volume at cc = 40 mM (see Fig. 5a)
(α = 2/3). To make a calculation we assume that we run the pro-
cess in a batch mode. First 2/3 liter of 20 mM solution is brought
in the cell which is charged such that the solution concentration
is reduced to 10 mM. Then this solution is removed from the cell
and 1/3 liter still at 20 mM is fed to the cell. In the discharge
step the ion concentration in this volume will increase to 40 mM.
Important is the realization that during the replacement of dilute
solution by fresh solution the salt adsorption must remain constant.
This means that in this replacement, or “switching,” step a trace is
followed which is not horizontal (which would be constant charge
σ ) or vertical (constant V cell), but instead is curved as shown in
Fig. 5 (upper right part of each cycle).

The enclosed area of the trace (“cycle”) is the net work that has
gone into the system and which has been transferred into a de-
crease of entropy of the two product streams. This is work which
is not recoverable, and which has inevitably gone into the making
of the product streams (i.e., the entropy of the ionic solution that
passed through the cell has decreased). On the microscale we can
say this net work input is due to the fact that on discharging the
ionic strength in the cell is higher than on charging, and that the
charge vs V cell curve is shifted upward at higher ionic strength.
From our macroscopic thermodynamic analysis we already knew a
priori that inevitably somewhere a difference had to develop be-
tween the work input during charging and the work recovery on
discharging.

Let us continue the detailed calculation. We will use a cell volt-
age of 1 V and assume a Stern capacity of CSt = 2 F/m2. We make
a calculation based on the GCS model (because the GCS-CS model
is very complicated to solve for a full cycle). First we solve the GCS
model to find that for the required ionic strength of the dilute flow
cd = 10 mM and the given cell voltage of 1 V the required elec-
trode area is 1227 m2 (for each electrode) and the surface charge
at the end of the charging step will be σI = 3.34 nm−2. The trace is
calculated from the GCS model supplemented with a salt balance
given by

σ · 1 · Λ · A = Vd · (c0 − c), (14)

Nav
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(a) (b)

Fig. 5. Charge density as function of voltage for the GCS model at different ionic strengths (thin lines, CSt = 2 F/m2). In bold the V –σ trajectory (thermodynamic cycle)
during an idealized batch deionization experiment. The enclosed area is the net work that must be performed in a purely reversible process.
where c is the bulk salt concentration which slowly decreases from
c0 to cd during the charging step, and which determines the time-
dependent value for the Debye length 1/κ , and in this way influ-
ences the charge–voltage relation of Eq. (5). From the analysis, the
reversible work on charging is calculated to be W I = 402.44 J (ob-
tained from

∫ σI
0 V cell dσ according to the charging trace in Fig. 5a,

and multiplied with the electron charge e and electrode area A).
The several phases of the thermodynamic cycle based on the bal-
ances (14)–(16) can only be analyzed numerically as during the
gradual change of the salt concentration c, both the charge σ
and the charge efficiency Λ change, which are coupled through
the GCS model, Eqs. (4)–(6) and (13), while the reversible energy
then follows from a numerical integration of V cell over σ . Note
that concentrations c in Eqs. (1)–(3) and (14)–(16) denote the ionic
strength of the solution in the CDI cell, which is denoted by c∞ in
Eqs. (5), (8), and (12).

Next we analyze the salt replacement “switching” step (upper
right part of the trace in Fig. 5), following the same procedure but
with the salt balance as closure equation,

Γsalt = σ · Λ, (15)

where Γsalt is constant (3.272 nm−2). In this step the additional
work is W II = 5.69 J, and we arrive after this step at V cell,II =
0.97 V and σII = 3.373 nm−2. Finally we analyze the discharge step
based on the balance

σ · 1

Nav
· Λ · A = V c · (cc − c), (16)

resulting in W III = −385.23 J. The difference W I + W II − W III is
given by W rev = 22.90 J. This result can be compared with the
thermodynamic calculation based on Eq. (2). As hoped for, exactly
the same result is obtained.

The advantage of the cycle analysis (which is much more com-
plicated than the thermodynamic calculation) is that we can an-
alyze the energy efficiency of a process that is not run fully
reversible, compared to the fully reversible case. For instance,
in a standard experiment we apply right from the start the fi-
nal voltage, which requires for the charging (ion removal) step a
work input of W irr,ch = 657.42 J. Assuming a reversible switch-
ing step (phase II) which costs W = 5.69 J and assuming no
useful work output during discharge (e.g., because the electric cir-
cuit is short-circuited, or the electric current simply runs through
a resistance producing heat), the total irreversible work input is
W irr = 663.11 J, and the energy efficiency can be calculated as
η = 3.5%. Thus this analysis suggests that the irreversible process
in the way it is typically operated in the laboratory can be im-
proved in energy efficiency by a factor of almost 30 in this case.

In Fig. 5b we show results for a more extreme separation,
namely a separation of the 20 mM starting solution into a dilute
stream of 1 mM and a concentrate stream of 400 mM (α ∼ 0.95).
Here the total reversible work is W rev = 269 J, almost 12 times
as expensive as a separation in cd = 10 and cc = 40 mM. How-
ever, if we run this process in the irreversible fashion as discussed
above, the energy cost would be W irr = 1807 J, which is “only” ∼7
times higher than the energy requirement of the reversible pro-
cess (η = 15%). Thus, the more extreme the separation, the smaller
the difference between reversible and irreversible operation, and
the closer we are already to ideal operation (η = 1) when we di-
rectly apply the maximum voltage and do not recover work during
discharging.

The above calculation was based on the assumption that we
discharge the cell fully, down to a charge and cell voltage of zero.
However, in reality this is much too time-consuming and instead
we would already like to switch back from discharging to charg-
ing when the electrodes are not yet completely discharged. This
situation is analyzed in Fig. 6 where the final cell voltage is 1 V
in all cases, but we start the charging cycle not at 0 V, but at
0.3 and 0.65 V (black and red curves, respectively). With increas-
ing initial voltage we see that the enclosed area representing the
reversible work input decreases, which is exactly compensated by
the fact that we need proportionally more electrode surface area
(A ∼ 4000 m2 at a starting voltage of 0 V, ∼4600 m2 at 0.30 V,
and 10,600 m2 at 0.65 V), because the total minimal, reversible
work must obviously be independent of the details of how the
separation process is operated. However, the differences in energy
efficiency are large between processes operating at different initial
voltages. If we analyze the irreversible process as discussed above
(directly apply 1 V, reversible switching step, and no energy re-
covery during discharge) the efficiency η goes down from η = 15%
when the minimum voltage is 0 V (as in Fig. 5b), to η = 13% at
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Fig. 6. Thermodynamic cycle for capacitive deionization. Same as Fig. 5b but with
the charging step starting at a nonzero voltage.

0.3 V and to only η = 5.6% at 0.65 V. Clearly the higher the mini-
mum voltage the more important is a close-to-reversible design of
the CDI technology.

The present calculation scheme is based on ideal batchwise op-
eration of the CDI unit. In reality, however, operation goes in a con-
stant throughflow mode in which the ionic solution continuously
enters and leaves the unit, with the effluent ion concentration con-
tinuously changing in time. The thermodynamic and process anal-
ysis of CDI in such a throughflow model is much more complicated
than for the present calculation scheme based on ideal sequential
batchwise operation, and will be taken up in future work, extend-
ing on the theory as presented in the present work.

6. Conclusions

For noninteracting pointlike ions (ideal gas behavior), expres-
sions were derived for the reversible thermodynamic work re-
quired to separate an ionic solution into a more dilute and a
more concentrated flow. The required work is fully utilized to de-
crease the entropy of the system and increases with increasing the
amount of dilute volume to be produced from the starting solution.
Several electrostatic double layer models are analyzed to describe
ion removal using capacitive deionization (CDI). To keep the ion
concentration at the Stern plane at realistic values of several M,
ion volume constraints in the diffuse part of the double layer must
be implemented, besides the Stern layer capacity. Analysis of a
full charging–discharging thermodynamic cycle using the Gouy–
Chapman–Stern model and assuming an ideal batchwise operation
of CDI gives exactly the same reversible work as a macroscopic
thermodynamic calculation. The charge efficiency, Λ, which is the
number of salt molecules removed for each electron transferred
from one electrode to the other, only approaches unity for high
cell voltage, a high Stern layer capacity, and a low ionic strength.
Unexpectedly, in the most realistic model, which also includes ion
volume effects in the diffuse part of the polarization layer, Λ does
not monotonically increase with cell voltage, but reaches a maxi-
mum value after which it again significantly decreases.
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