Performance Evaluation of the Hydrotech Belt Filter in Intensive Recirculating Aquaculture Systems

James M. Ebeling, Ph.D.
Research Engineer
Aquaculture Systems
Technology

Carla F. Welsh
Research Associate
The Conservation Fund
Freshwater Institute

Kata L. Rishel
Research Assistant
The Conservation Fund
Freshwater Institute

Introduction

Problem: TSS in Aquaculture Discharged Effluent

- EPA: Best Management Practices (BMP)
- NPDES permits: state or regional NPDES permits
- Concentration of suspended solids
- Reduce quantity of discharge water
- Minimize storage volume

Hydrotech Belt Filter (Water Management Technologies)

Belt Filter System, Hydrotech Model HBF537-1H

Influent: 600 - 1400 mg/L

Effluent: 15% Solids

Objectives

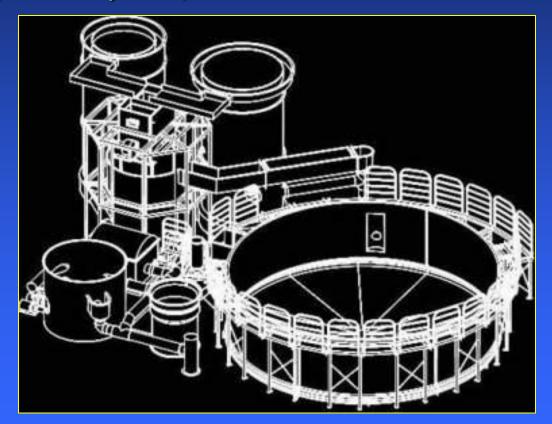
- Summary of the current waste treatment systems
- Coagulation/Flocculation
- Performance evaluation of Hydrotech Belt filter

Freshwater Institute Intensive Recirculating Aquaculture Production Systems

- Partial-Reuse Fingerling System
- Recirculating Growout System

Partial-Reuse Fingerling System

Partial-reuse system:


- NH₃-N controlled by pH
- pH controlled by CO₂
- 1500 lpm recirc
- bottom drain flow is discharged from system
- 12-15% of water flow
- sidewall flow is reused after microscreen filtration
- 45-50 kg feed/day

Recirculating Growout System

Fully-recirculating system

- 4 8% make-up rate on a flow basis (0.5-1.0 day HRT)
- 4,800 lpm recir. water flow
- 150 m³ culture volume
- 7% through bottom drain
- 93% through side drain
- 200 kg/day feed

Current Aquaculture Waste Management

Polishing Microscreen Filter Model RFM 4848, Manufacturing, Ltd.

Backwash Water Sump

Current Aquaculture Waste Management

Current Aquaculture Waste Management

Pumping Settling Cones

Land Application / Composting

Aerobic Lagoon

BOD In: 6 mg/L BOD out 2 mg/L

Waste Management – Discharge Parameters

Parameter	Mean		
pH Temp Alkalinity Turbidity		7.43 19.4 292 Over range	
TP RP	(mg/L - P) (mg/L - P)	77.8 12.3	
	(mg/L) (mg/L)	1015 753	
TN TAN NO ₂ NO ₃	(mg/L - N) (mg/L - N)	77.8 14.8 0.43 38.8	
cBOD ₅	(mg/L)	548	

Objectives

- Summary of the current waste treatment systems
- Coagulation/Flocculation
- Performance evaluation of Hydrotech Belt filter

Coagulation/Flocculation

Coagulation

Process of decreasing or neutralizing the electric charge on suspended particles

Flocculation

Process of bringing together the microfloc particles to form large agglomerations by the binding action of flocculants

Suspended Solids Removal

Alum in wastewater yields the following reaction:

$$Al_2(SO_4)_3 - 14 H_2O + 3Ca(HCO_3)_2 \Leftrightarrow 3Ca SO_4 + 2Al(OH)_3 + 6CO_2 + 14H_2O$$

Insoluble aluminum hydroxide is a gelatinous floc

Ferric Chloride in wastewater yield the following reaction:

$$2\text{FeCl}_3 \bullet 6\text{H}_2\text{O} + 3\text{Ca}(\text{HCO}_3)_2 \Leftrightarrow 3\text{CaCl}_2 + 2\text{Fe}(\text{OH})_3 + 6\text{CO}_2 + 12\text{H}_2\text{O}$$

Insoluble ferric hydroxide is a gelatinous floc

Phosphorus Removal

Basic reaction:

$$Al^{+3} + H_nPO_4^{3-n} \Leftrightarrow AlPO_4 + nH^+$$

$$Fe^{+3} + H_nPO_4^{3-n} \Leftrightarrow FePO_4 + nH^+$$

Simplest form of reaction, bench-scale test required to establish actual removal rate

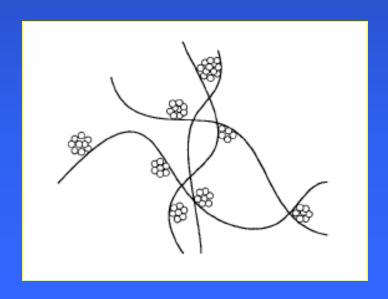
Coagulation/Flocculation Aids

Advantages:

High Molecular Weight Long-chain Polymers

- lower dosages requirements
- reduced sludge production
- easier storage and mixing
- MW and charge densities optimized "designer" aids
- no pH adjustment required
- polymers bridge many smaller particles
- improved floc resistance to shear forces

Polymers


Process Efficiency depends on:

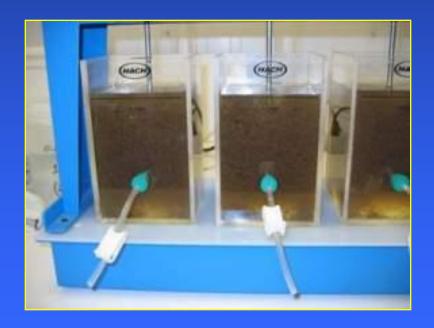
- polymer concentration
- polymer charge (anionic, cationic, and nonionic)
- polymer molecular weight and charge density
- raw wastewater characteristics (particle size, concentration, temperature, hardness, pH)
- physical parameters of the process (dosage, mixing energy, flocculation energy, duration)
- discharge water treatment levels required

How Polymers Work

• charge neutralization (low molecular weight polymers) neutralize negative charge on particle

bridging between particles (high molecular weight polymers)
 long loops and tail connect particles

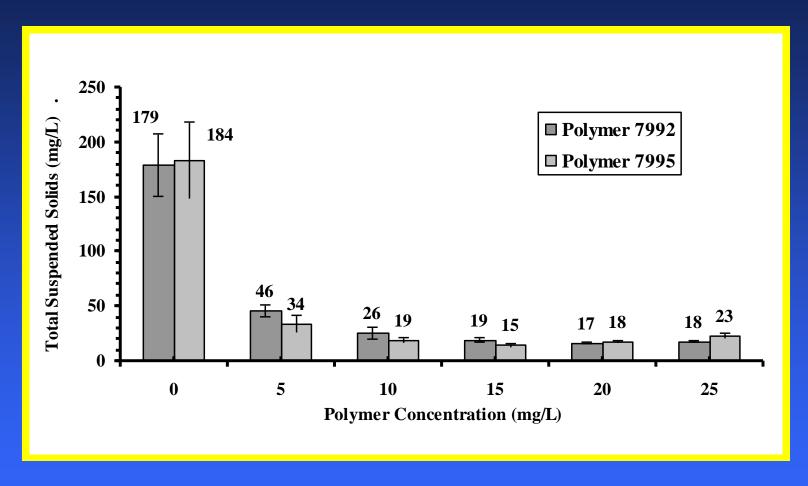
Polymer Evaluation

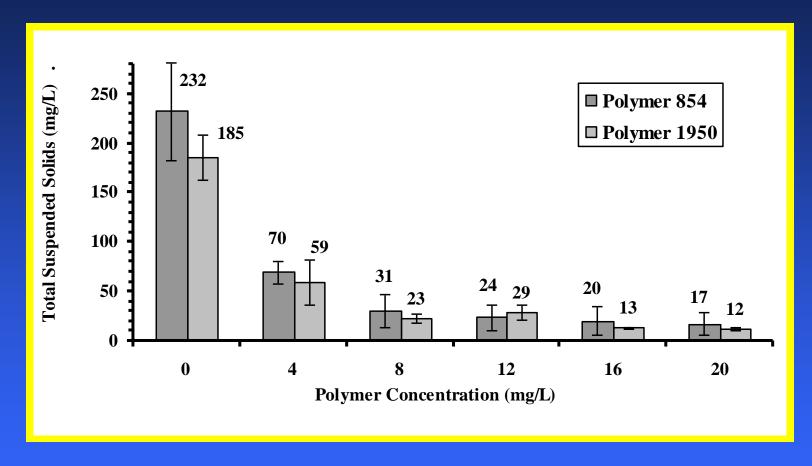

Similitude Studies with Jar Tests

- Jar Tests of coagulant and flocculant aids
 - Effect of mixing speed, (velocity gradient)
 - Effect of flocculation speed
 - Effect of coagulant type and dosage
 - Effect of flocculant (polymer) type and dosage

Jar Tests

Water Quality


- □ pH
- Turbidity
- RP (orthophosphate)
- Alkalinity
- TSS


Phipps and Bird Six-Paddle Stirrer with Illuminated Base

Similitude Results

Total Suspended Solids removed using very high degree of cationic charge, very low Molecular Weight Polymers

Similitude Results

Total Suspended Solids removed using high degree of cationic charge, very high molecular weight Polymers

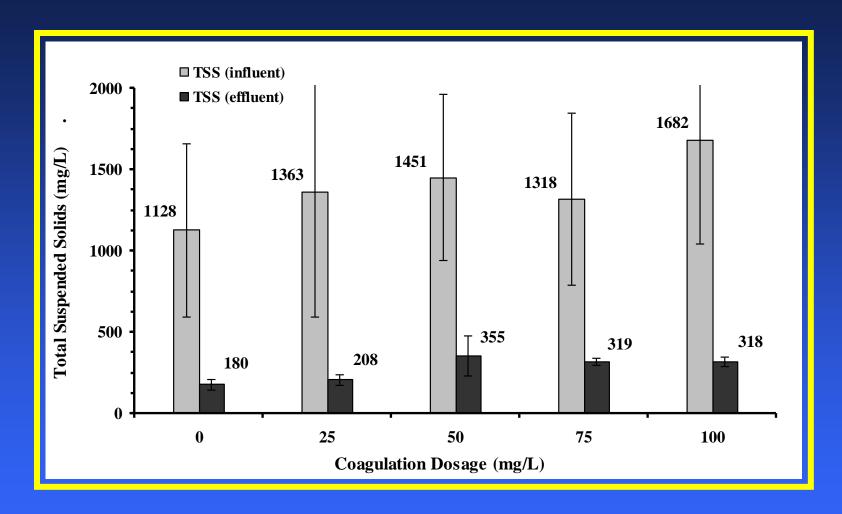
Objectives

- Summary of the current waste treatment systems
- Polymer Selection
- Performance evaluation of Hydrotech Belt filter

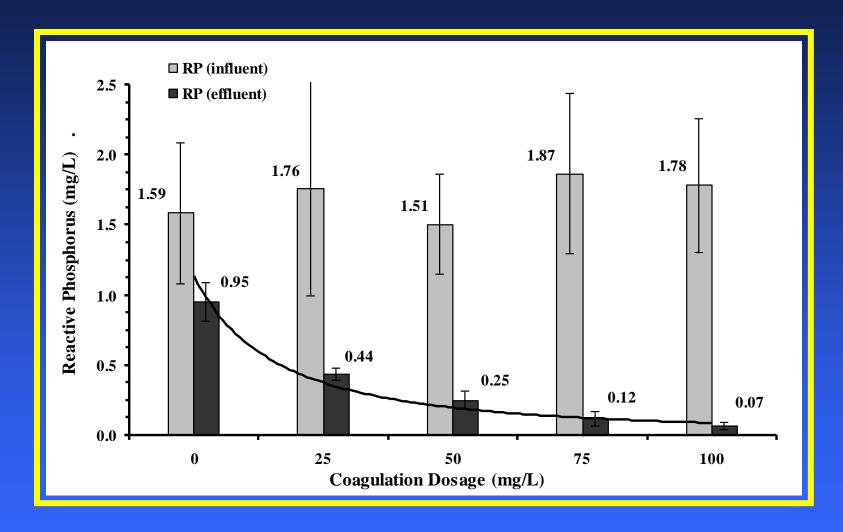
Hydrotech Belt Filter System

Coagulation/Flocculation Tank

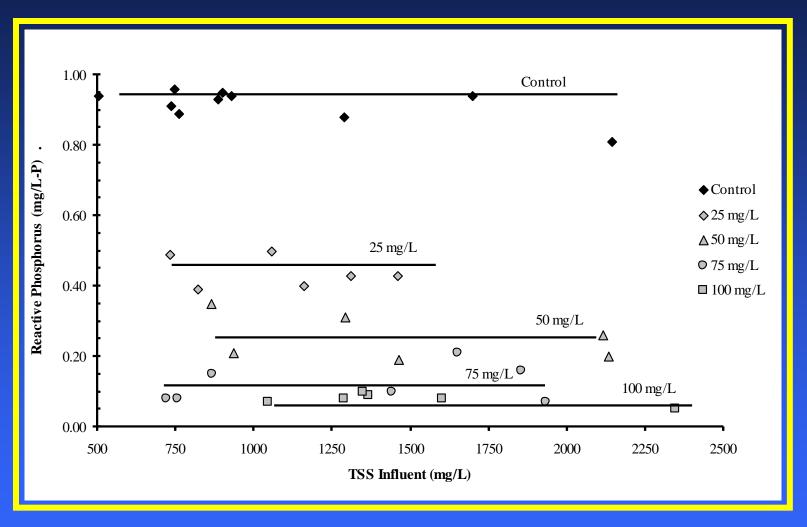
Belt Filter



Objectives

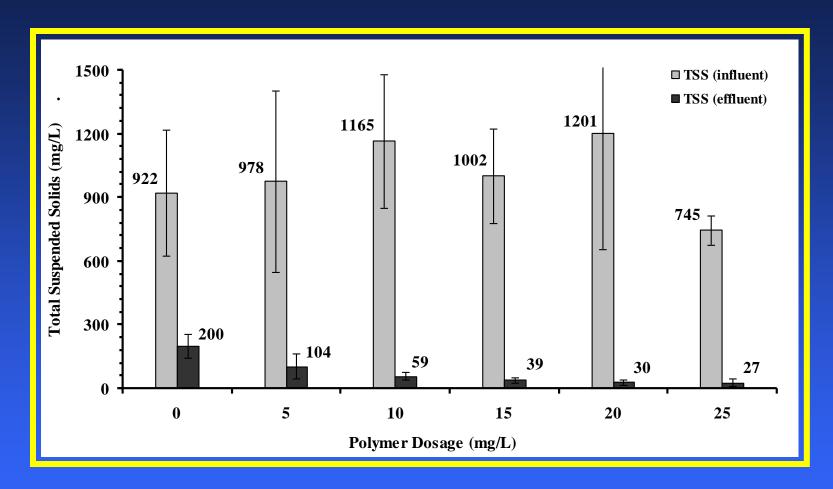

- Summary of the current waste treatment systems
- Polymer Selection
- Performance evaluation of Hydrotech Belt filter
 - Alum as Coagulation Aid
 - Polymer as Coagulation Aid
 - Alum and Polymer as Coagulation/Flocculation Aids

Alum

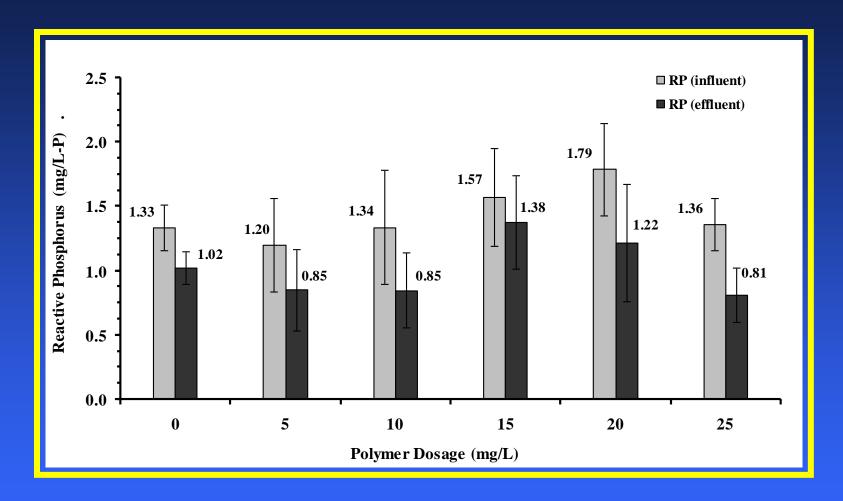

Alum		рН	Alkalinity	TSS (mg/L) RP (mg/L-P)	
Dosage			(mg/L)	Mean: StDev:	Mean StDev:
0 mg/L	Influent	7.37	286	1128 534	1.59 0.50
(11)	Effluent	7.39	287	180 33	0.95 0.14
	% Removal			82%	38%
25 mg/L	Influent	7.32	303	1363 768	1.76 0.77
(7)	Effluent	7.33	302	208 34	0.44 0.04
	% Removal		1%	83%	71%
50 mg/L	Influent	7.29	283	1451 509	1.51 0.36
(7)	Effluent	7.24	270	355 122	0.25 0.07
	% Removal		4%	75%	82%
75 mg/L	Influent	7.29	292	1318 527	1.87 0.57
(7)	Effluent	7.19	274	319 21	0.12 0.05
	% Removal		6%	72%	93%
100 mg/L	Influent	7.30	288	1682 635	1.78 0.48
(7)	Effluent	7.06	242	318 31	0.07 0.03
	% Removal		16%	79%	96%

Total suspended solids for the influent from the microscreen backwash sump and effluent from the belt filter as a function of alum dosage (mg/L).

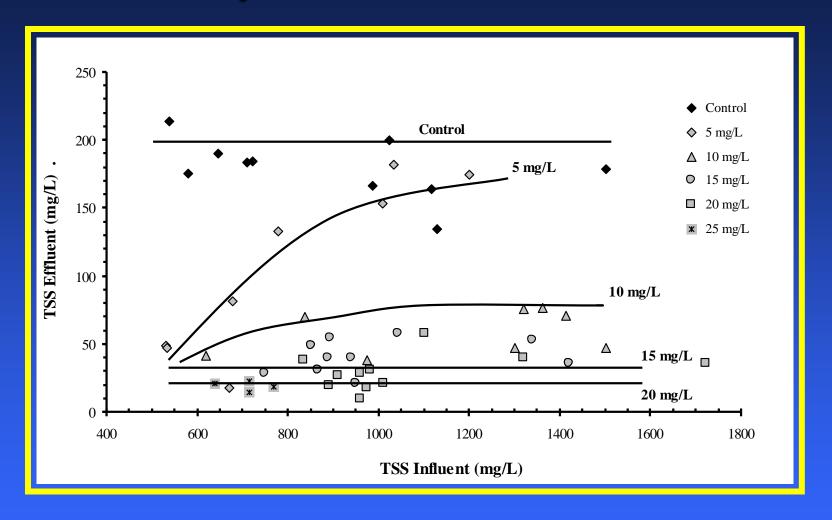
Reactive phosphorus for the influent from the microscreen backwash sump and effluent from the belt filter as a function of alum dosage (mg/L).


Reactive phosphorus for the effluent from the belt filter as a function of total suspended solids of the influent (mg/L).

Objectives

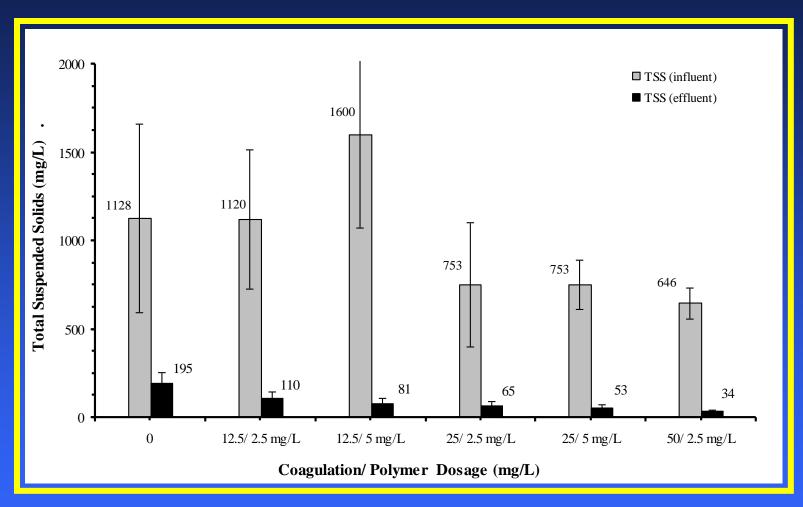

- Summary of the current waste treatment systems
- Polymer Selection
- Performance evaluation of Hydrotech Belt filter
 - Alum as Coagulation Aid
 - Polymer as Coagulation Aid
 - Alum and Polymer as Coagulation/Flocculation Aids

Polymer

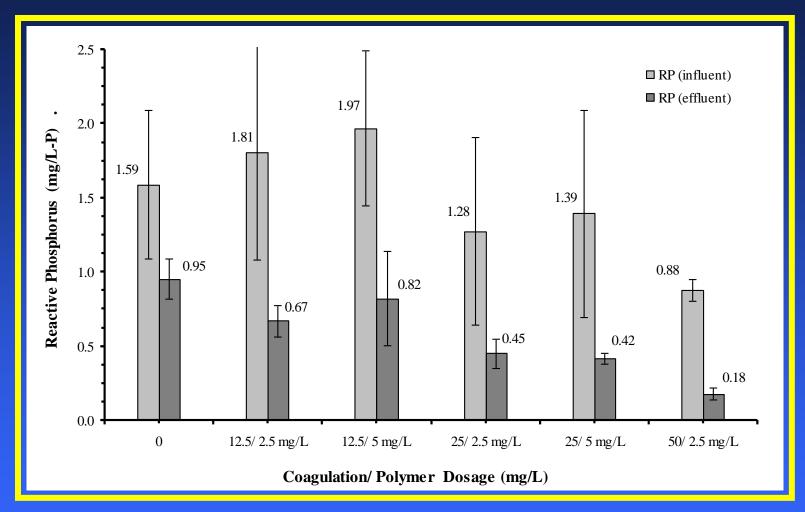

		рН	TSS (mg/L)		RP (mg/L-P)	
Polymer Dosage			Mean:	StDev:	Mean:	StDev:
0 mg/L	Influent	7.55	922	297	1.33	0.18
(12)	Effluent	7.62	200	55	1.02	0.13
	% Removal		76.1%		23%	
5 mg/L	Influent	7.52	978	428	1.20	0.36
(8)	Effluent	7.55	104	60	0.85	0.31
	% Removal		88.6%		26%	
10 mg/L	Influent	7.44	1165	316	1.34	0.44
(8)	Effluent	7.41	59	16	0.85	0.29
	% Removal		94.7%		41%	
15 mg/L	Influent	7.45	1002	223	1.57	0.38
(14)	Effluent	7.31	39	12	1.38	0.36
	% Removal		96.0%		14%	
20 mg/L	Influent	7.47	1201	548	1.79	0.36
(12)	Effluent	7.39	30	13	1.22	0.46
	% Removal		97.3%		32%	
25 mg/L	Influent	7.42	745	69	1.36	0.20
(8)	Effluent	7.31	27	17	0.81	0.21
	% Removal		96.3%		39%	

Total suspended solids for the influent from the microscreen backwash sump and effluent from the belt filter as a function of polymer dosage (mg/L).

Reactive phosphorus for the influent from the microscreen backwash sump and effluent from the belt filter as a function of polymer dosage (mg/L).


Impact of the influent TSS concentration on the effluent TSS from the belt filter as a function of polymer dosage (mg/L).

Objectives


- Summary of the current waste treatment systems
- Polymer Selection
- Performance evaluation of Hydrotech Belt filter
 - Alum as Coagulation Aid
 - Polymer as Coagulation Aid
 - Alum and Polymer as Coagulation/Flocculation Aids

Alum/ Polymer

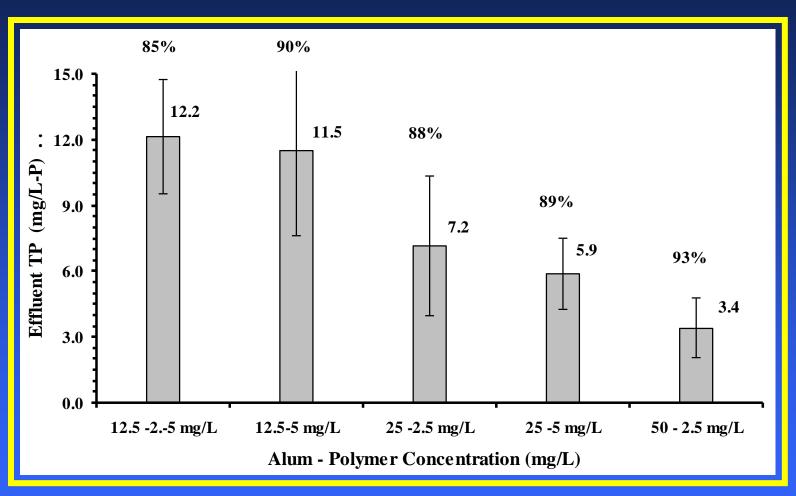
Alum/Polymer		рН	TSS (mg/L)		RP (mg/L-P)	
Dosage			Mean:	StDev:	Mean:	StDev:
0 mg/L /	Influent	7.37	1128	534	1.59	0.50
0 mg/L	Effluent	7.39	195	58	0.95	0.14
	% Removal		81%		38%	
12.5 mg/L /	Influent	7.23	1120	396	1.81	0.73
2.5 mg/L	Effluent	7.26	110	36	0.67	0.11
	% Removal		90%		59%	
12.5 mg/L /	Influent	7.26	1600	526	1.97	0.52
5 mg/L	Effluent	7.22	81	29	0.82	0.32
	% Removal		94%		55%	
25 mg/L/	Influent	7.34	753	352	1.28	0.63
2.5 mg/L	Effluent	7.27	65	28	0.45	0.10
	% Removal		91%		57%	
25 mg/L /	Influent	7.30	753	140	1.39	0.70
5 mg/L	Effluent	7.13	53	20	0.42	0.04
	% Removal		93%		65%	
50 mg/L /	Influent	7.38	646	87	0.88	0.07
2.5 mg/L	Effluent	7.14	34	11	0.18	0.04
	% Removal		95%		80%	

Total suspended solids for the influent from the microscreen backwash sump and effluent from the belt filter as a function of coagulant (alum) and polymer (Hychem CE 1950) dosage (mg/L).

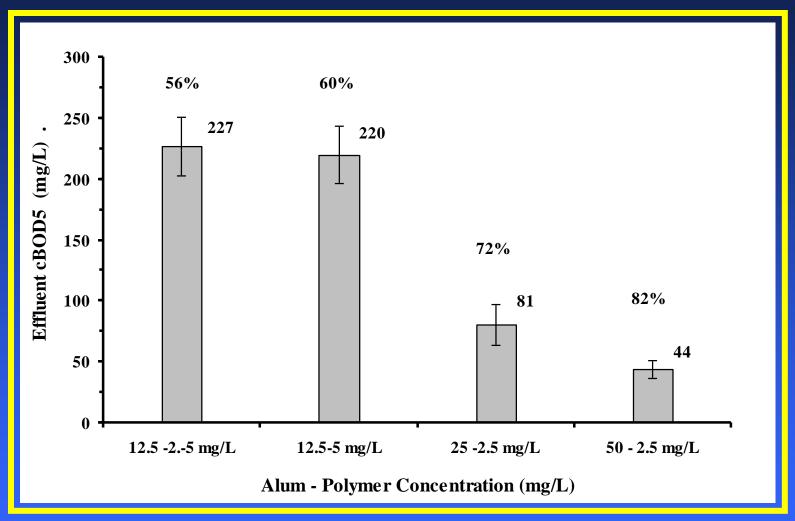
Reactive phosphorus for the influent from the microscreen backwash sump and effluent from the belt filter as a function of coagulant (alum) and polymer (Hychem CE 1950) dosage (mg/L).

Sludge

- Alum
 - $13.2\% \pm 1.1$
- Polymer
 - $11.6\% \pm 2.2$
- Alum/Polymer
 - $12.6\% \pm 1.4$



Secondary Objectives


- Other Water Quality Parameters
 - Total Phosphorus
 - Total Nitrogen
 - cBOD₅
 - COD

Other Water Quality Parameter

Alum/Polymer		TP (mg	g/L-P)	P) TN (mg/L-N)		cBOD ₅ (mg/L)		COD	
Dosage		Mean:	StDev:	Mean:	StDev:	Mean:	StDev:	Mean:	StDev:
12.5 mg/L /	Influent	95.1	39.9	49.1	20.6	498	89		
2.5 mg/L	Effluent	12.2	2.6	8.5	3.8	227	24		
	% Removal	85%		81%		56%			
12.5 mg/L /	Influent	124	54	95	9.3	549	42		
5 mg/L	Effluent	11.5	3.9	16.4	1.7	220	23		
	% Removal	90%		83%		60%			
25 mg/L /	Influent	705	46.4	36.2	19.8	359	214	758	162
2.5 mg/L	Effluent	4.7	1.1	4.7	1.1	81	17	112	14
	% Removal	83%		83%		72%		85%	
25 mg/L /	Influent	37	19.8	37	19.8			880	140
5 mg/L	Effluent	7.0	3.0	6.3	2.3			87	22
	% Removal	88%		83%				90%	
50 mg/L/	Influent	50.3	12.4	31.1	6.8	251	50	808	170
2.5 mg/L	Effluent	3.4	1.4	4.0	1.8	44	8	62	15
	% Removal	93%		87%		82%		92%	

Effluent Total Phosphorus from the belt filter and percent removal for the microscreen backwash wastewater as a function of coagulant (alum) and polymer (Hychem CE 1950) dosage.

Effluent cBOD₅ from the belt filter and percent removal for the microscreen backwash sump wastewater as a function of coagulant (alum) and polymer (Hychem CE 1950) dosage (mg/L).

Economics

Polymer	Cost of Polymers	Cost per kg	Cost per metric tonne of feed
LT 7991	\$247.50 / 450lb drum	\$1.21	\$7.26
LT 7992	\$148.50 / 450 lb drum	\$0.73	\$4.38
LT 7995	\$252.00/ 450 lb drum	\$1.23	\$7.38
CE 854	\$418.50/ 450 lb drum	\$2.05	\$13.08
CE 1950	\$418.50/ 450 lb drum	\$2.05	\$13.08

Unexpected Difficulties

Polymer induced foam at high dosage

Conclusions

- Alum:

96% of RP, 0.07 mg/L-P

Polymer:

96% of TSS, 30 mg/L

Alum/Polymers:

95% of TSS and 80% of RP

Sludge:

13% solids

- □ TP 93%,
- □ TN 87%,
- BOD₅ 82%,
- COD 92%

Future Research

- Continued evaluation of other potential coagulant aids, such as Acid Mine Drainage Sludge
- Evaluation of other polymer
- Increase belt porosity to improve Hydraulic Loading Rate
- Additional performance evaluation of belt filter systems in terms of several operating parameters, including flow rates and belt speed.

Acknowledgements

This work was supported by the United States Department of Agriculture, Agricultural Research Service under Cooperative Agreement number 59-1930-1-130.

Any opinions, findings, conclusions, or recommendations expressed in this presentation are those of the authors and do not necessarily reflect the view of the US Department of Agriculture.

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the authors or the USDA-ARS

Questions?

