Jar Testing Coagulation Dosage Water Treatment Plants

WQT 134
Aquatic Chemistry II

Determining ALUM Coagulation Rates

http://www.cee.vt.edu/ewr/environmental/teach/wtprimer/jartest/jartest.html

http://www.waterspecialists.biz/html/jar_test.html

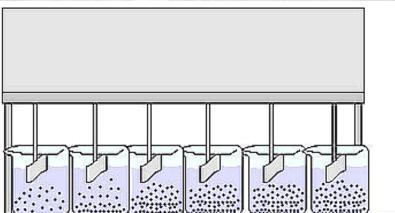
Week 8 Objectives

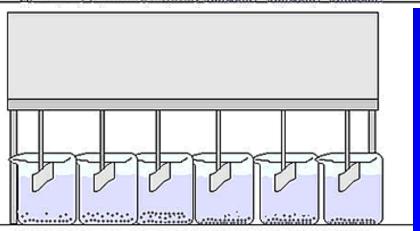
Reading assignment:

Tech Brief: Jar Testing

- Understand how to test pH, turbidity, and color on raw water sample
- Understand Jar Testing/Coagulation chemistry
- Understand the role of pH, alkalinity, turbidity, temperature on coagulation and flocculation application

Key Words


- Coagulation: adding and rapid mixing of chemicals to remove particles from water. (flash mixing)
- Flocculation: adding and slow mixing of chemicals and particles to create flocs that settle out of water.
- <u>Turbidity:</u> suspended, dissolved, and colloidal particles in pretreated water that need to be removed to optimize treatment efficiency.


Jar Testing Steps

- Fill the Phipps and Bird jar testing apparatus containers with 1000 ml of sample water.
- Label each Beaker #1 add 1 liter of water =control, Beaker #2 add 2 ml of alum=2 mg/L, Beaker #3 add 5 ml of alum=5 mg/L, Beaker #4 add 10 ml of alum=10 mg/L, Beaker #5 add 15 ml of alum=15 mg/L, Beaker #6 add 20 ml of alum=20 mg/L
- Add the coagulant to each container and stir at approximately 100 rpm for 1 minute (record condition of flocs during rapid mix coagulation).
- Reduce the stirring speed to 25 to 35 rpm and continue mixing for 15 to 20 minutes(record condition of flocs every 5 minutes on data sheet below).
- Determine which coagulant dosage has the best flocculation time and the most floc settled out.
- Test the turbidity of the water in each beaker using a turbidimeter (record value on data sheet).

Jar Testing Experimental Design

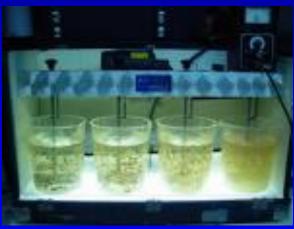
Add 1 liter of water Label each
Beaker #1 =control
Beaker #2 add 2 ml of alum=2 mg/L
Beaker #3 add 5 ml of alum=5 mg/L
Beaker #4 add 10 ml of alum=10 mg/L
Beaker #5 add 15 ml of alum=15 mg/L
Beaker #6 add 20 ml of alum=20 mg/L

Rapid mix 100 rpm for 1 min Record floc conditions

Slow mix 25 rpm for 15 min Record floc conditions every 5 min

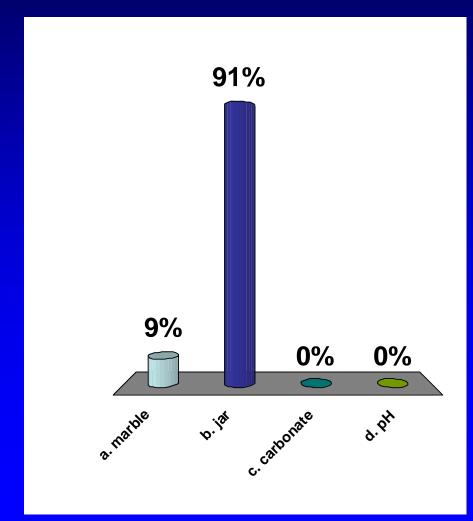
Let settle for 10 min

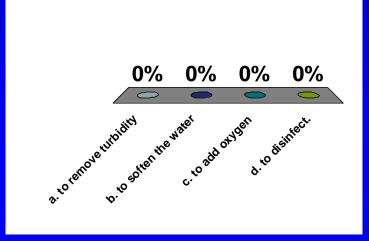
Determine optimal coagulant dosage.


Record Turbidity on optimal coagulant dose

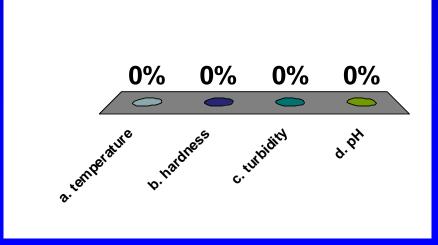
Jar Testing Results

- A hazy sample indicates poor coagulation.
- Properly coagulated water contains floc particles that are well-formed and dense, with the liquid between the particles clear.

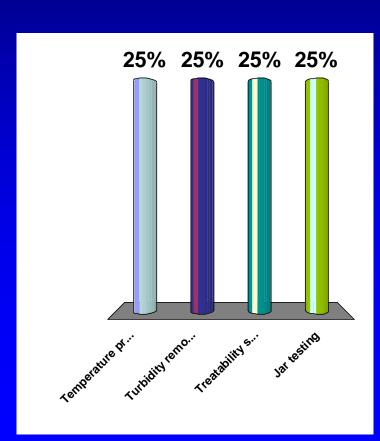



In determining the proper dosage of alum, the most useful test is the test:

- a. marble
- b. jar
 - c. carbonate
 - d. pH


Which of the following is the main purpose of the coagulation/flocculation process?

- a. to remove turbidity
 - b. to soften the water
 - c. to add oxygen
 - d. to disinfect.


The most important raw water constituent for a surface water plant is:

- a. temperature
- **b.** hardness
- ©c. turbidity
 - d. pH

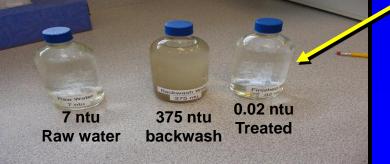
A laboratory procedure for evaluating coagulation, flocculation, and sedimentation is called what?

- 1. Temperature profile
- 2. Turbidity removal efficiency
- 3. Treatability study
- 4. Jar testing

Coagulation and Flocculation at Water Treatment Plants

"Ironically, it is easier to clean up dirty water than to make clean water cleaner. The reason is because particles must collide before they can stick together to make larger flocs. More particles means more collisions."

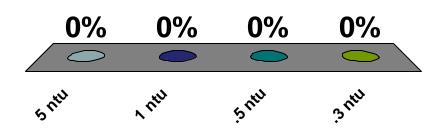
Turbidity

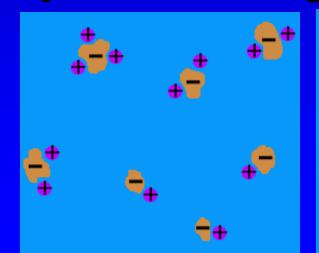

 Turbidity – particles (sand, silt, clay, bacteria, viruses) in the initial source water that need to be

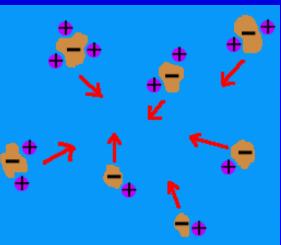
removed to improve treatment.

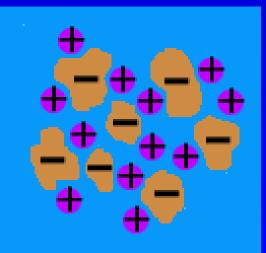
1. Suspended Solids

2. Colloidal Solids (~0.1 to 1 μm)


3. Dissolved Solids (<0.02 µm)


The turbidity of a water treatment plant effluent cannot be above?


- 1. 5 ntu
- 2. 1 ntu
- 3. .5 ntu
- 94. .3 ntu



Coagulation

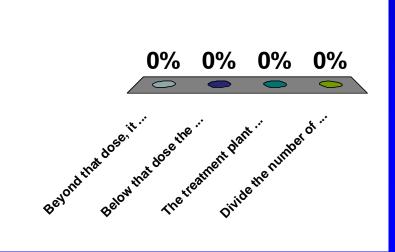
- Coagulants tend to be positively charged.
- Due to their positive charge, they are attracted to the negative particles in the water
- The combination of positive and negative charge results in a neutral, or lack, of charge
- •Van der Waal's forces refer to the tendency of particles in nature to attract each other weakly if they have no charge.

Water Treatment Coagulants

Particles in water are negative; coagulants usually positively charged.

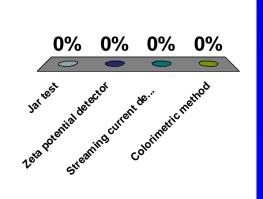
1. Alum- aluminum sulfate

2. Ferric chloride or ferrous sulfate



3. Polymers

What determines the optimum and most cost-effective amount of a coagulant to use?:



- 1. Beyond that dose, it takes a very large increase in the amount of chemical to produce a small increase in turbidity removal
- 2. Below that dose the coagulant results in poor settling
- 3. The treatment plant budget
- 4. Divide the number of gallons of water in the coagulation tank by the nephelometric turbidity unit reading to determine the dosage in mg/L.

Which is NOT a common method for determining optimum coagulant effectiveness?:

- 1. Jar test
- 2. Zeta potential detector
- 3. Streaming current detector
- **94.** Colorimetric method

Water Treatment Coagulant Alum

Alum- (aluminum sulfate)- particles suspended in natural, untreated water normally carry a negative electrical charge. These particles are attracted to the positive charges created by aluminum hydroxides. Dosage is generally around 25 mg/L.

- 1. Trivalent Al⁺³ charge attracts neg particles
- 2. Forms flocs of aluminum hydroxide (AIOH₃).
- 3. Impacted by mixing, alkalinity, turbidity and temp.
- 4. Ideal pH range 5.8-8.5

Alum CHEMISTRY

Alum- (aluminum sulfate)- made by dissolving aluminum hydroxide (bauxite or clay) in sulfuric acid $2AI(OH)_3 + 3H_2SO_4 + 10H_2O \rightarrow AI_2(SO_4)_3 \cdot 16H_2O$

When ALUM is dissolved in alkaline water, it undergoes hydrolysis (reacts with water) to produce a high surface area gelatinous precipitate of aluminum hydroxide, Al(OH)₃ (gibbsite) (Al(OH)₃ sticks the negatives.

When ALUM is reacted with water it hydrolyzes to form aluminum hydroxide and <u>dilute sulfuric</u> acid (lowers pH). -----Need alkalinity adjustment

Alum CHEMISTRY

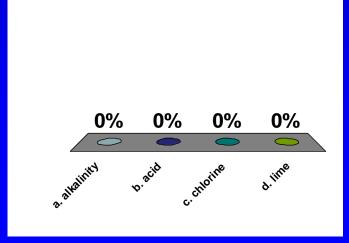
Alum- (aluminum sulfate)-

$$Al_2(SO_4)_3 \cdot 14H_2O \longrightarrow 2Al^{+3} + 3SO_4^{-2} + 14H_2O$$

2Al⁺³ + negatively charged colloids ← neutral surface charge

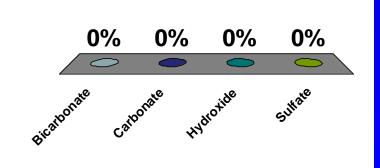
WHY IS ALKALINITY SO IMPORTANT??

$$2AI^{+3} + 6 HCO_3^{-1} \longrightarrow 2(AI(OH_3)_{(S)} + 6CO_2$$

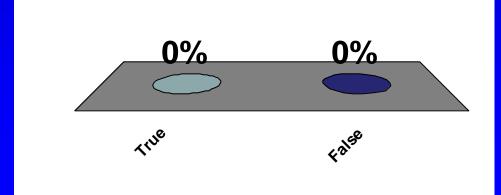

No bicarbonate (low alkalinity, low pH sulfuric acid!):

$$Al_2(SO_4)_3 \cdot 14H_2O \longrightarrow 2(Al(OH3)_{(S)} + 3H_2SO_4^{-2} + 14H_2O$$

Optimum pH: 5.5 to 6.5 Operating pH: 5 to 8


When alum is added to water, a floc is formed from the combination of alum and

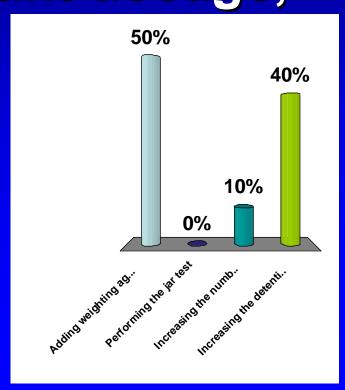
- a. alkalinity
 - b. acid
 - c. chlorine
 - d. lime


The precipitate formed by coagulation with alum is aluminum ____.

- 1. Bicarbonate
- 2. Carbonate
- 3. Hydroxide
 - 4. Sulfate

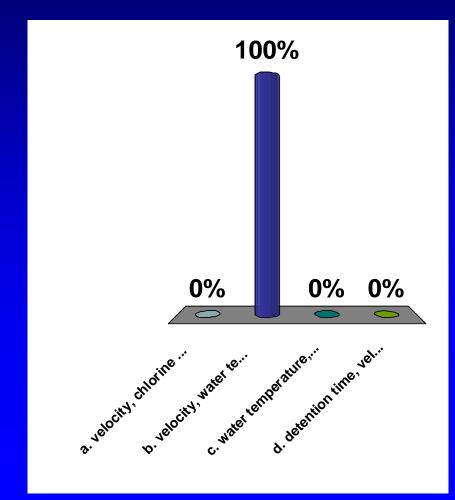
Adding Alum to water will cause the pH of the water to increase.

- 1. True
- **2.** False



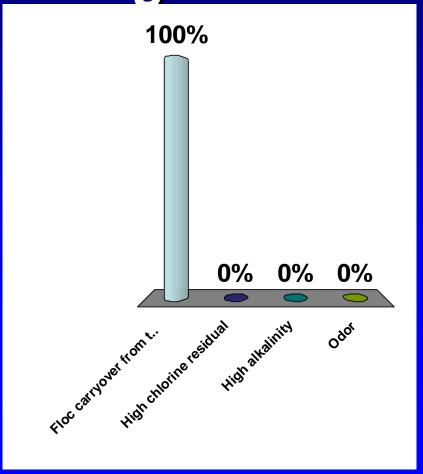
Alum comes in dry grade as a minimum of 17.5% pure product, in liquid form it is 49% pure or 8.23% by weight Al₂O₃?

- ©1. True
 - 2. False


Overcoming problems of coldwater floc can be corrected by operating the process at the best pH for that water temperature, increasing the coagulant dosage,

- 1. Adding weighting of: agents
 - 2. Performing the jar test
 - 3. Increasing the number and strength of floc particles
 - 4. Increasing the detention time for floc formation

Which of the following conditions most affect coagulation performance?

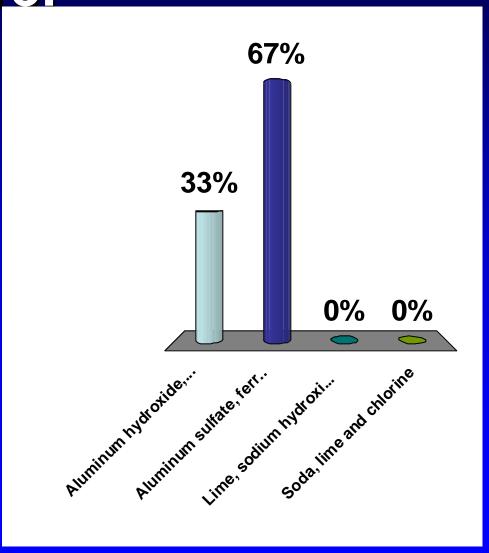

- a. velocity, chlorine dosage, detention time, and air temperature
- b. velocity, water temperature, detention time and coagulant dosage
- c. water temperature, detention time, air temperature, and chlorine dosage
- d. detention time, velocity, air temperature, and chlorine dosage

With the coming of winter, the water temperature drops. A likely operational problem at a filtration plant with coagulation

is:

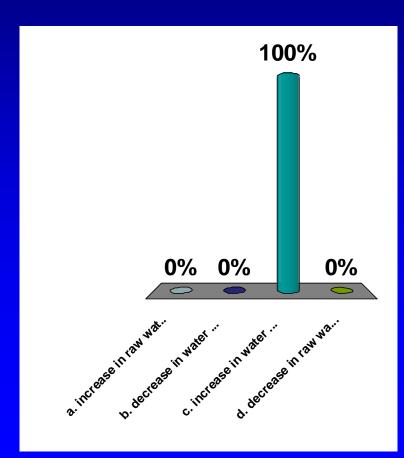
- 1. Floc carryover from the sedimentation system
 - 2. High chlorine residual
 - 3. High alkalinity
 - 4. Odor

Water Treatment Coagulant Aids


Activated silica (sodium silicate)- helps improve coagulation, decreases volume of coagulant necessary.

Typically is sodium silicate.

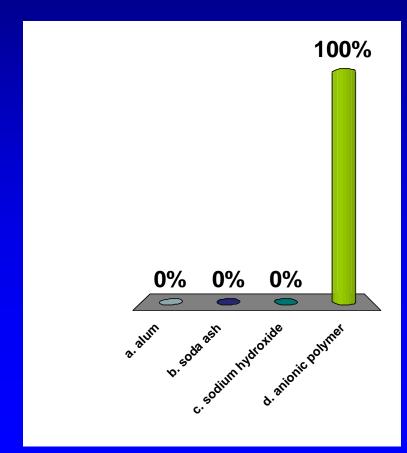
- 1. secondary coagulant
- 2. reduces primary coagulants needed
- 3. Sodium silicate are alkaline
- 4. widens pH range for coagulation
- 5. used at 7-11% of alum
- 6. Heavier denser floc that settles faster
- 7. Can be formed on site
- 8. Corrosion inhibitor (forms a surface coating)


The three most commonly used coagulants in water treatment are:

- 1. Aluminum hydroxide, lime and sodium hydroxide
- 2. Aluminum sulfate, ferric chloride, and ferrous sulfate
- 3. Lime, sodium hydroxide, and chlorine
- 4. Soda, lime and chlorine

Which of the following would most likely improve the coagulation/flocculation process?

- a. increase in raw water hardness
- b. decrease in water temperature
- c. increase in water temperature
 - d. decrease in raw water alkalinity


Water Treatment Coagulant Aids

Polyelectrolytes- are water-soluble organic polymers that are used as both primary coagulants and coagulant aids. Act as "bridges" between the alread formed particles:

- Anionic—ionize in solution to form negative sites along the polymer molecule.
- Cationic—ionize to form positive sites.
- Non-ionic—very slight ionization.
- effectiveness: particles type, turbidity present, and the turbulence (mixing) available during coagulation

Which one of the following chemicals would be most suitable as a filter aid?

- a. alum
- b. soda ash
- c. sodium hydroxide
- d. anionic polymer

Water Treatment Coagulant/pH

Alkalinity- Alkalinity is a measure of the buffering capacity of water. These buffering materials are primarily the bases bicarbonate (HCO₃-), and carbonate (CO₃²-), and occasionally hydroxide (OH-), borates, silicates, phosphates, ammonium, sulfides, and organic ligands.

Chemicals applied to raise alkalinity

- Lime—CaOH₂ accompanies alum or iron salt
- Sodium bicarbonate- NaHCO₃- raise alkalinity
- Soda Ash—Na₂CO₃ -raise alkalinity
- Caustic Soda—NaOH -raise alkalinity