

Technology Classification, Ranking and Prioritization Workshop

May 28, 2009

OTIS ENVIRONMENTAL CONSULTANTS

Agenda

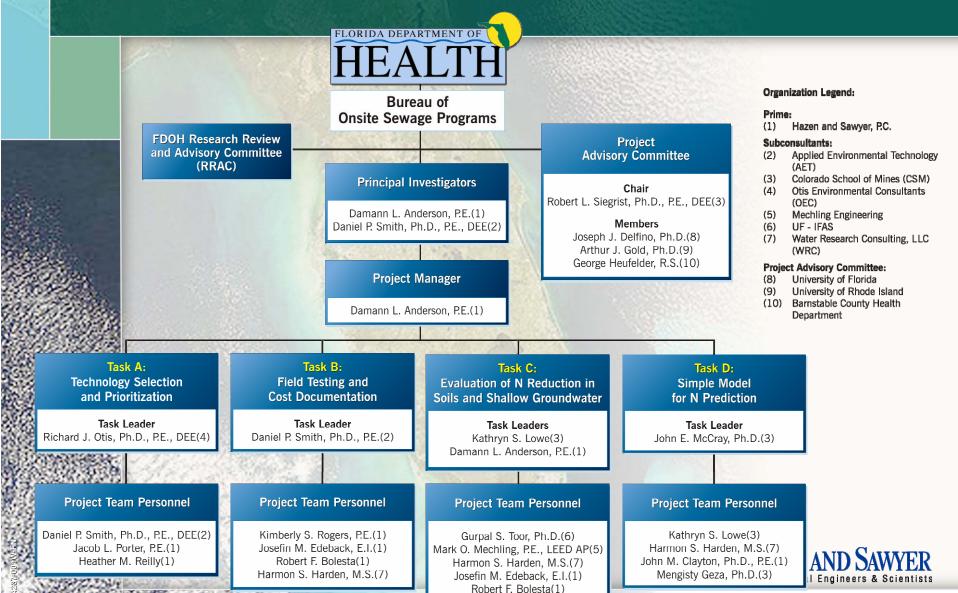
- Introduction and background
 - FOSNRS Study Overview
 - Task A This task
- Objectives
- Onsite Nitrogen Reduction Technology Classifications
 - Review of Wastewater Characteristics & Treatment
 - Nitrogen Cycle
- Onsite Nitrogen Reduction Systems Identified to Date
- Nitrogen Reduction Technology Evaluation Methods
- Nitrogen Reduction Technology Testing Priority
- Summary
- Next Steps

HAZENAND SAWYER
Environmental Engineers & Scientists

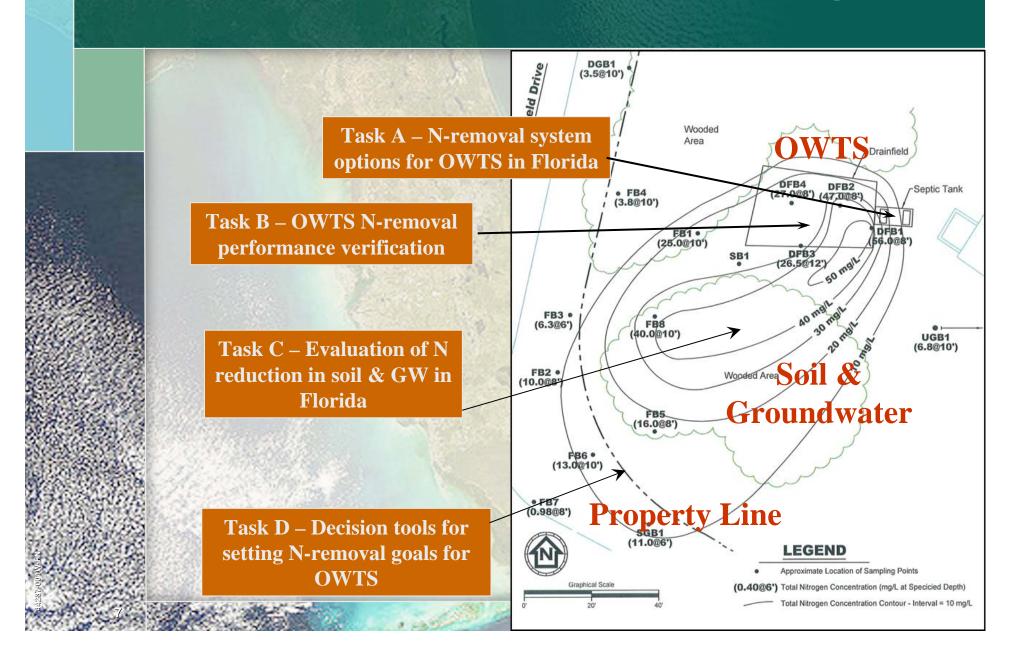
Introduction and Background

FOSNRS Study Background

- Quality of Florida's surface and groundwater resources are impacted by excess nitrogen
- Onsite sewage treatment and disposal systems (OSTDS) one source of nitrogen
- Laws of Florida, 2008-152, Specific Appropriation 1682 directed FDOH to conduct a study to further develop cost-effective nitrogen reduction strategies for OSTDS
- FDOH ITN No. DOH08-026 identified four primary tasks for the study; to be controlled by RRAC
- The 2008 Florida legislature appropriated \$900,000 for Phase I of a multi-year project



FOSNRS Study Overview


- Task A: Technology Evaluation for Field Testing: Review, Prioritization, and Development
- Task B: Field Testing of Technologies and Cost Documentation
- Task C: Evaluation of Nitrogen Reduction Provided by Soils and Shallow Groundwater
- Task D: Nitrogen Fate and Transport Modeling
- Task E: Project Management, Coordination and Meetings

Florida Onsite Sewage Nitrogen Reduction Strategies (FOSNRS) Project Team

How do tasks relate to N-removal strategies?

Focus of this workshop: Task A

- Task A Objectives
 - Evaluate and prioritize technologies for field testing and further development
- Task A Subtasks
 - 1. Perform literature review to evaluate available onsite nitrogen reduction technologies
 - 2. Develop technology classification scheme
 - 3. Formulate criteria for ranking of nitrogen reducing technologies
 - Rank and prioritize nitrogen reduction technologies for field testing
 - 5. Test facility design and implementation
 - Technology Development PNRS II

HAZENAND SAWYER
Environmental Engineers & Scientists

Workshop Objectives

Objectives

- Review the Project Team's proposed onsite nitrogen reduction technology classifications, evaluation criteria, criteria weighting, and ranking methodology.
- Develop consensus on the procedures which will be used to identify and prioritize the technology list for future field testing.

Review of Wastewater Treatment Fundamentals

Nitrogen Cycle and N Chemistry Review: Nitrogen Species

- Organic Nitrogen
- Ammonia NH₄

Total Kjeldahl Nitrogen (TKN)

- Nitrite NO₂
- Nitrate NO₃

Total Oxidized Nitrogen

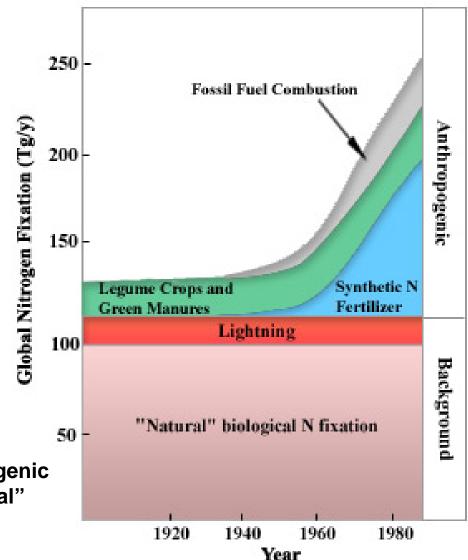
Onsite N Reduction Technology Classification Nitrogen Cycle and N Chemistry Review

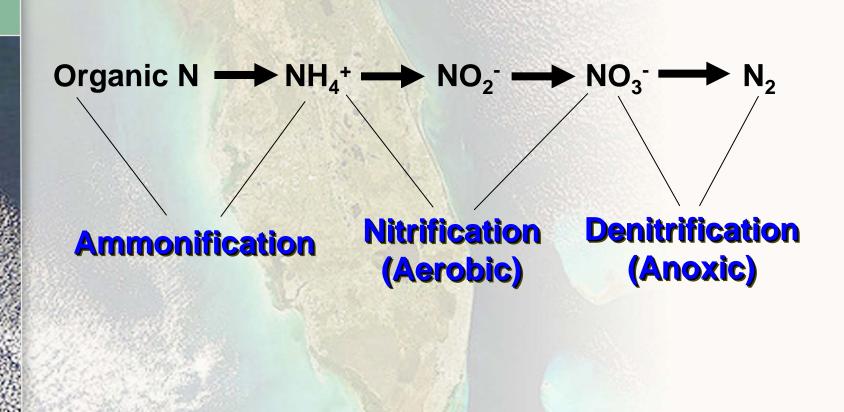
Nitrogen in the Wastewater:

- EPA estimates we discharge ~11.2 grams of nitrogen per person into WW each day
 - 70 80% as toilet wastes
 - 10 15% is food preparation
 - Household products

Onsite Wastewater Constituents (WERF, 2008)

	Raw Wastewater	Septic Tank Effluent
cBOD ₅	337	153
COD	905	324
TN (as N)	63	54
NH ₃ (as N)	47	36
TP (as P)	19	10
Alkalinity		503
TS	996	855
TSS	405	79
The state of the s	022	


All units in mg/L


Nitrogen Cycle and N Chemistry Review: Man's Impact on Global N

Anthropogenic Activities Impact

Recent increases in anthropogenic N fixation in relation to "natural" N fixation (Harrison 2003)

Biochemical Transformations

HAZEN AND SAWYER

Nitrogen Mineralization (Ammonification):

 Nitrogen incorporated into organic matter can be converted back into organic nitrogen by nitrogen mineralization (decomposition of dead organisms)

organic $N \longrightarrow NH_4^+$

- Ammonification converts the organic nitrogen back into ammonium
- Ammonification makes the nitrogen available for use by plants or for further transformation into nitrate (NO₃-) through nitrification

Nitrification:

- Nitrification is a biological process that converts ammonium into nitrate
- Chemoautotrophic bacteria use the energy released by conversion using inorganic rather than organic carbon compounds to sustain growth
 - Oxygen required
 - Sufficient alkalinity required
 - Sensitive to cold temperatures

$$NH_4^+ \longrightarrow NO_3^-$$

Nitrate produced (- charged) and in soils, not adsorbed but travels with the soil water until captured or taken up by plant roots
HAZEN AND SAWYER

Denitrification:

- Denitrification is a biological process that ultimately breaks nitrate down to nitrogen gas
- Process is used by facultative heterotrophic bacteria to obtain their energy for growth
- Under anoxic conditions, heterotrophs, which use organic carbon for energy, use the oxygen from the nitrate molecule to accept the electron received during the degradation of organic carbon

$$NO_3^- \longrightarrow NO_2^- \longrightarrow NO \longrightarrow N_2O \longrightarrow N_2$$

 Only nitrogen transformation that removes nitrogen from ecosystems

Wastewater Treatment: Biological N Removal

Biological Nitrogen Removal

Nitrification: conversion of ammonia to nitrate:

$$NH_4^+ + 2O_2 \implies 0.038 C_5H_7O_2N + 0.96 NO_3^- + 1.92 H^+$$

Denitrification: reduction of nitrate to N₂ gas:

Heterotrophic

$$\longrightarrow$$
 0.057 $C_5H_7O_2N + 0.44 N_2 + 2.27 H_20 + 0.71 CO_2$

Autotrophic

$$NO_3^- + S^0 + 0.22 CO_2 + 0.66 H_2O$$

$$\longrightarrow$$
 0.044 C₅H₇O₂N + SO₄⁻² + 0.48 N₂ + H⁺

Wastewater Treatment: Biological N Removal

Primary Treatment

Mineralization of organic N to TKN (mostly ammonia – NH₄)

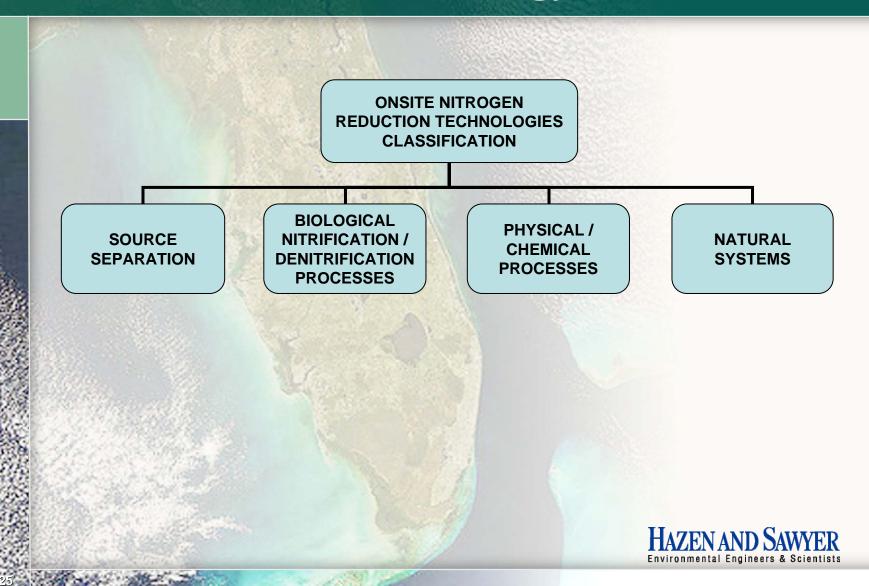
Dispersal

Nitrification

TKN (Ammonia and organic N) oxidized to nitrate (NO₃) by nitrifying bacteria, requires oxygen

Denitrification

Nitrate converted to N₂ in anoxic environment; requires supply of electron donor


Onsite Nitrogen Reduction Technology Classifications

Unit Process Basis for Technology Classifications

- Followed typical wastewater engineering evaluation
- Based on unit operations and processes
 - Physical, Chemical, and Biological processes
 - Source Separation was included due to high nitrogen content of toilet waste stream
 - Natural systems used to classify systems utilizing the assimilative capacity of the receiving environment

Onsite N Reduction Technology Classifications

Major Classification Examples

Source Separation

Urine separating toilets; waterless urinals, composting toilets

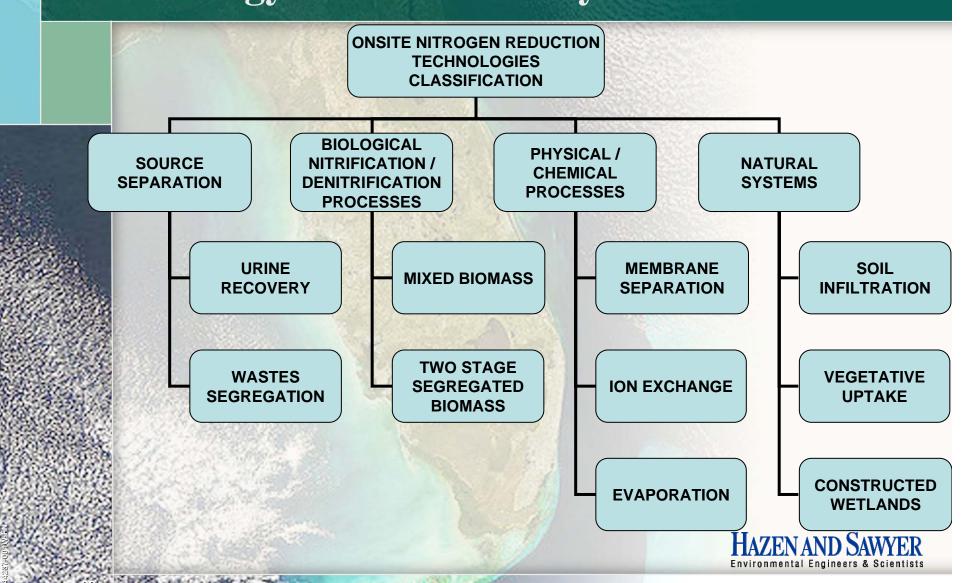
Biological Systems

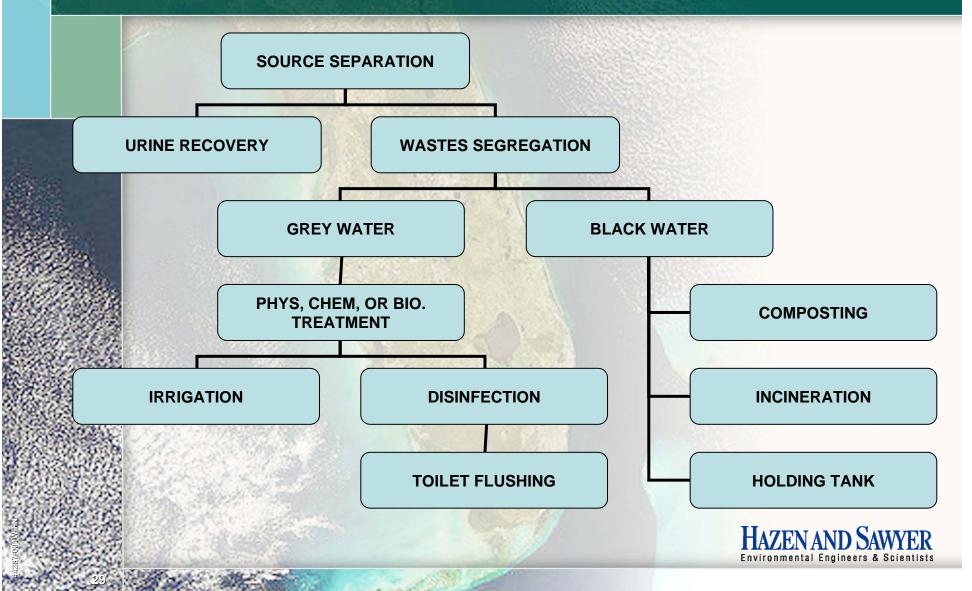
Suspended growth; submerged attached growth; attached growth biofilters

Physical/Chemical Systems

Chemical precipitation; adsorption; ion exchange

Natural Systems

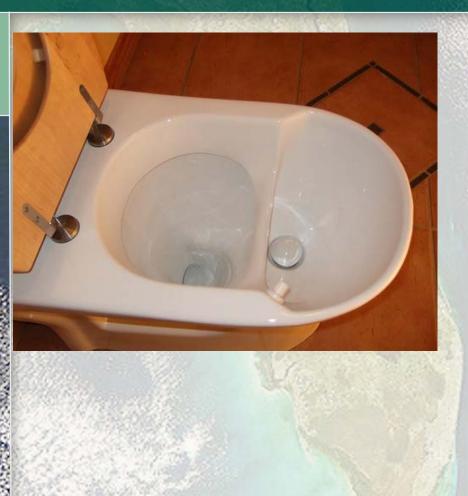

 Conventional and fill OWTS; landscape irrigation systems; constructed wetlands systems


Onsite N Reduction Technology Classification by Process

Technology Classification by Process

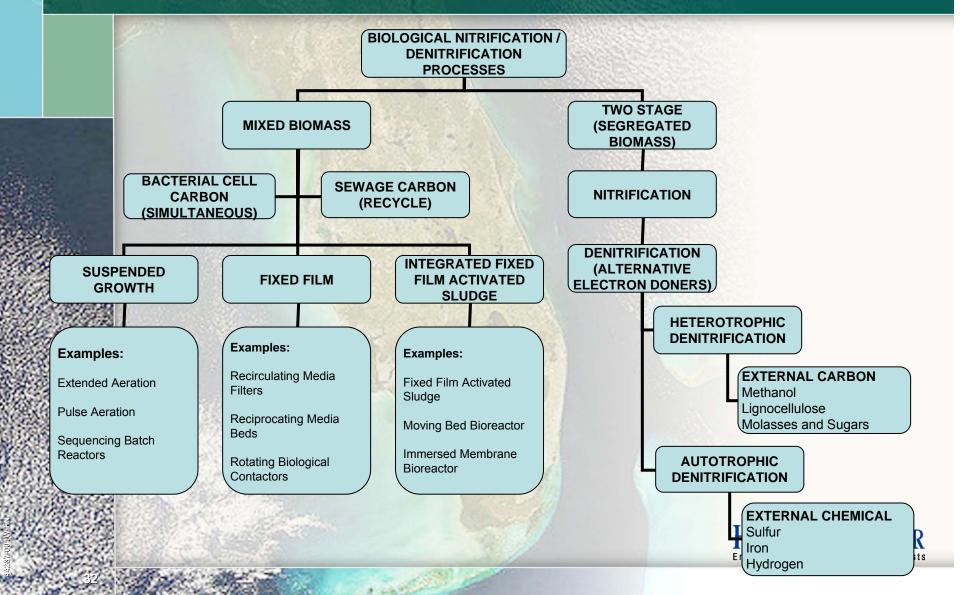
Onsite N Reduction Technology Classification Source Separation Processes

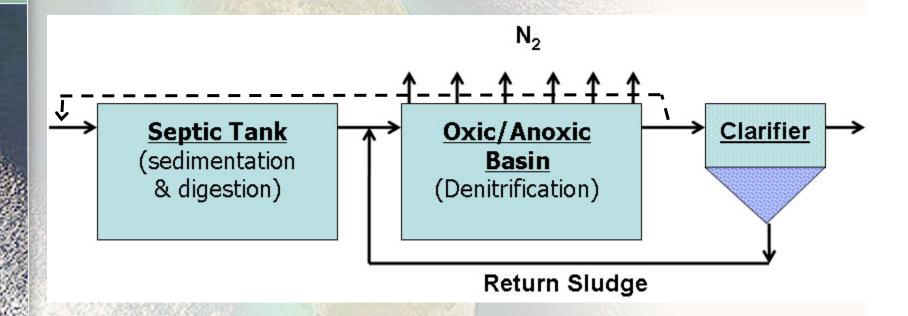
Onsite N Reduction Technology Classification Wastewater Characteristics


The domestic sewage from individual households can be divided into 4 individual wastestreams (A, B, C & D)

Source Designation	Wastestream	Daily Volume (gpcd)	Gram / person-day			
			CBOD ₅	TSS	Total N (as N)	Total P (as P)
A	Non-kitchen sinks, clothes washer, shower, bathtubs	32	11.4	5.2	0.8	0.2
В	Kitchen sinks, dishwasher, garbage grinder	10.3	35.1	38.5	1.7	0.3
С	Toilet: urine separated	17.5	12.5	80	1.1	0.4
D	Toilet: urine	0.6	4.2	0.1	10.9	1.2
Sum		60.4	63.2	124	14.5	2.0

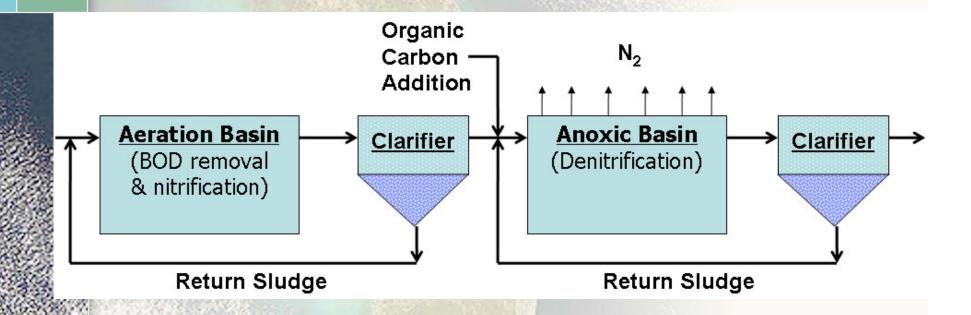
Source: Benetto et al. 2009; Makropoulos et al., 2008; Magid et al., 2006; Memon and Butler, 2006; Tchobanoglous, et al., 2003; EPA, 2002; Lens and Lettinga, 2001; Gunther, 2000; Mayer et al., 1999


Urine Separating Toilets

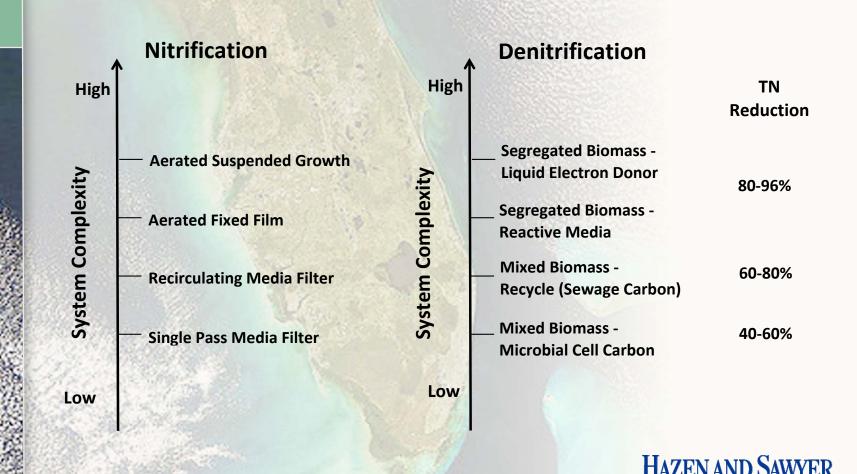


HAZENAND SAWYER
Environmental Engineers & Scientists

Onsite N Reduction Technology Classification Biological Treatment

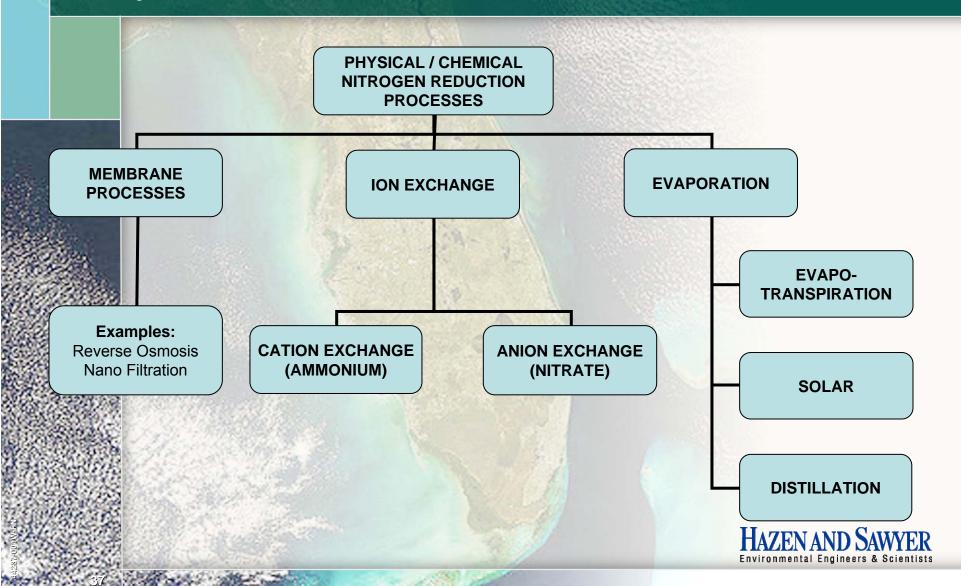


Mixed Biomass

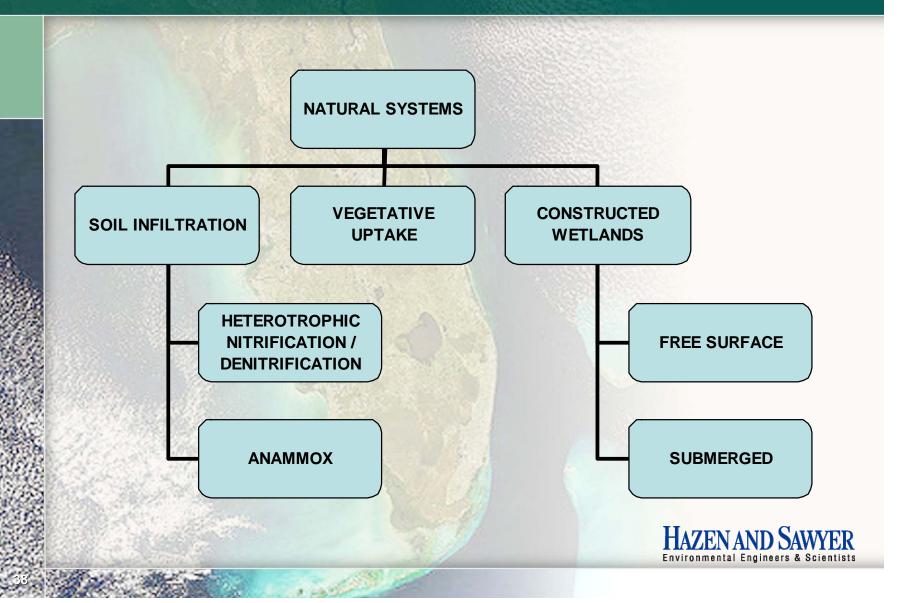


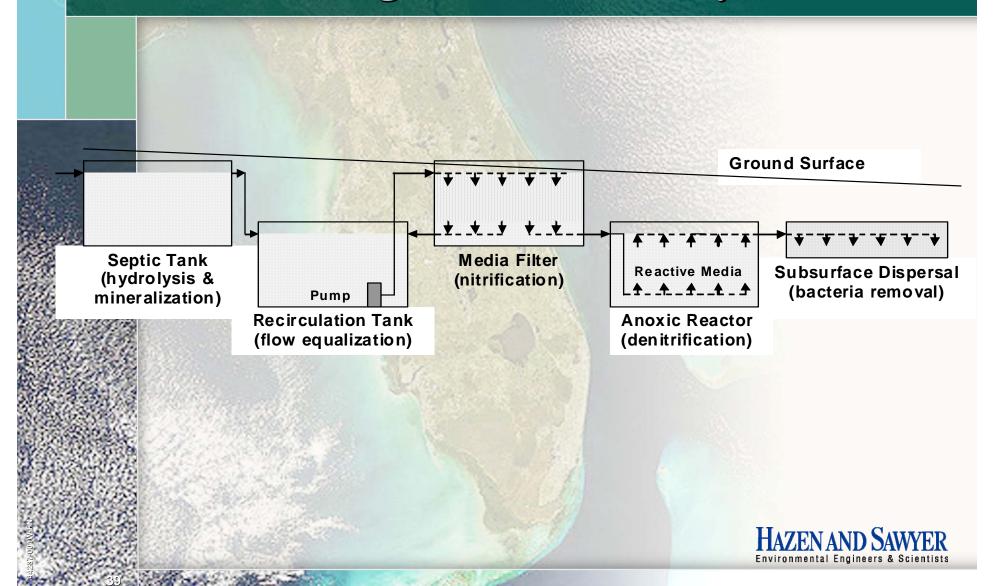
Two-Stage (Segregated Biomass)

Biological Nitrogen Reduction: System Complexity



Biological Nitrification Removal Processes


Process Simultaneous (Mixed Biomass)		Recycle (Mixed Biomass)	External Donor (Two Stage)	
Electron Donor	Organic carbon from bacterial cells	Organic carbon from influent wastewater	Cellulose, Sulfur, Iron, Other	
Typical Removal	40 - 60%	60 - 80%	70 – 96%	
Technologies	 Recirculating media filters w/o recycle Reciprocating media beds Extended aeration Pulse aeration Moving bed bioreactor Sequencing batch reactors Membrane bioreactor 	 Recirculating media filters with recycle Extended aeration with recycle Moving bed bioreactor Rotating Biological Contactors 	 Heterotrophic suspended growth Heterotrophic packed bed reactive media Autotrophic packed bed reactive media 	


Onsite N Reduction Technology Classification Physical / Chemical Processes

Onsite N Reduction Technology Classification Natural Systems

Passive two-stage denitrification system

Onsite N Reduction Technology Classification Nitrogen Reduction Technologies Matrix

						10	1000	MESTER E	Mary Charles			
	Description	Components	Daily Volume (gal)	Primary Treatment (septic tank)	Mixed Biomass Nitrification/ Denitrification	Two-Stage Nitrification/ Denitrification	Second Stage Denitrification Biofilter	Natural Systems	Aerobic Biological Treatment	Disinfection	Struvite Precipitation	Final Liquid Application
	Domestic wastewater	A+B+C+D	241									Irrigation or Soil Dispersal Indoor Reuse
												maoor Rease
	Domestic wastewater											Irrigation or Soil Dispersal
	minus urine	A+B+C	239									Indoor Reuse
												Irrigation or Soil Dispersal
	Blackwater	B+C+D	113									Indoor Reuse
į.	Black water minus urine	B+C	111									Irrigation or Soil Dispersal
												Irrigation or Soil Dispersal
	Greywater	Α	128									Indoor Reuse
2000	Urine	D	1.6									Concentrated nutrient solution for crop production

Onsite Nitrogen Reduction Systems Identified to Date

Onsite Nitrogen Reduction Studies/Tests/Systems Identified

How many are there? Many!

Biological	Biological (cont)	Biological (cont)	Biological (cont)	Biological (cont)
ABJ ICEAS	ABJ ICEAS AquaKlear		Ecoflow ST-650	Fine Gravel
Activated Carbon	Aquarobic	Black & Gold	EcoKasa	Five Star KR505
Advantex 20x	Ashco-A RSF III	Brooks	Eco-kleen	Glass (crushed)
Advantex ISF	Autotrophic Packed Bed	BTX Biotreater	Ecological systems	Glass (sintered)
Advantex RSF	Reactive Media	Cajun Aire	Eco-Pod	Glendon biofilter
Aerated Fixed Film	Bacterial Polyesters	Cardboard	EcoPure 300	Gravel
Aerated Suspended Growth	BEST 1	Clearwater	Eljen In-Drain	Heterotrophic Packed
Aerocell	Bi-A-Robi	Clearstream	Envirocycle	Bed Reactive Media
AeroDiffuser	Bioclere model 16/12	CMS Rotordisk	EnviroFilter C	Heterotrophic Suspended Growth
Aero-Stream	Biocycle, Inc.	Coir	Enviro-Guard .75	HOOT
AES BESTEP- IDEA	Bio-Coir	Corn Cobs	EnviroSBR	Horizontal Flow Bioreactor
Agricultural Residues	Biodisc	Cotton	Enviroserver	Hydro-Action
AIRR	Bio-fosse	Cromaglass	Eparco	IDEA Bestep
Alliance	BioGreen	Crushed brick	Expanded aggregate	Immersed Membrane
Amphidrome	Biokreisel	Crushed Glass	Expanded Clay	Bioreactors
Anoxic Packed Bed Reactors	Biomax	Delta ECOPOD	Expanded Shale	JET BAT
Aqua Aire	Bionest	Delta Whitewater ATU	Extended Aeration	Klargester Biodisc
Aqua Safe	Biorotor	EcoFlo	FAST Environm	EN AND SAWYEK ental Engineers & Scientists

Onsite Nitrogen Reduction Studies/Tests/Systems Identified

Biological (cont)

Klargester RBC

Kubota

Limestone

Lotus

Membrane Bioreactor

MicroFast

Mighty Mac

Mixed Biomass Systems

Modified Drainfields (Using Media)

Modulair

Modular Recirculating

Peat Filters

Moving Bed Bioreactor

Mudbug

Multi-flo

Navadic

Nayadic

Nibbler

Biological (cont)

NirtoRaptor

Nitrex

NoMound

Onsite Wastewater Mgmt,

Inc NITE-LESS

Open Cell Foam

Opoka

Orenco RTF

Paper

Peat

Pirana

Plastic Media

Polonite

Poly (e-caprolactone)

Polystyrene

Pulse Aeration

Puraflo Peat

ReCip® RTS ~ 500 System

Reciprocating Media Beds

Biological (cont)

Recirculating Media Filters

Recirculating Sand Filters

Recirculating Textile Filters

Retrofast

RIGHT

Rock Tank

Rotofix

Rotordisk

Rubber, shredded

RUCK

Sand (stratified)

Sand (uniform)

Sawdust

SCAT Biofilter

Segregated Biomass Denitrification

SeptiTech

Sequencing Batch Reactors

Single Pass Media Filter

Biological (cont)

Singulair

Slag

Solar Air

Stratified Sand Biofilters

Sulfur/Limestone Column

Sulfur/Oyster Shell Filter

SYBR AFR

Thomas TRD

Tire Chips

UASB

USBF

Waterloo Biofilter

Whitewater ATU

Woodchip

Zenon

Zeolites

ZeroImpact

HAZENAND SAWYER

Onsite Nitrogen Reduction Studies/Tests/Systems Identified

Physical / Chemical

Biovac A/S

Columbio

Evapotranspiration

Magenetic Ion Exchange Resin

Nano Filtration

Reverse Osmosis

Ultra Filtration

Wallax

Natural Systems

American Manufacturing Inc.

Annamox

AZTEC Products

Denitrification in Soil

Ecological Systems

Geoflow, Inc.

Lagoons

Netafilm Irrigation, Inc.

SF Wetlands

SSF Wetlands

Wastewater Systems, Inc.

Source Separation

Aerobic MBR

Ammonia Stripping

Anaerobic MBR

Aquatron

Clinoptilolite

Complete Mix Reactors

Constructed Wetlands

EcoSan

Electrochemical Treatment

Electrodialysis/Ozonation

Evaporation

Fluidized Bed Reactors

Freeze-Thaw

Internal Recycle Seeding Reactor

Ion Exchange

Low Intensity Aerobic Treatment

Membrane Bioreactor

Membrane Chemical Reactor

Source Separation (cont)

Microfiltration/Oxidation

Nanofiltration

Novaquatis

Packed Column Nitrification

Passive Anaerobic Digestion (Septic Tanks)

Pellet Reactors

Polymeric Ion Exchange Resins

Precipitation

Reverse Osmosis

Rotating Biological Contactor

Sand Filtration

Shallow Ponds with Riparian Zones

UASB followed by Membrane Filtration

Upflow Anaerobic Sludge Blanket Reactor

Urine Separating Toilets

Waterless Urinals

Wollastonite

Zeolites

HAZEN AND SAWYER
Environmental Engineers & Scientists

Nitrogen Reduction Technology Evaluation Methods

N Reduction Technology Evaluation Criteria

- Effluent total nitrogen concentration
- Performance consistency
- Performance reliability
- Construction costs
- Operation and maintenance cost
- Land area requirements
- Energy requirements
- Homeowner acceptance
- BOD/TSS effluent concentration
- Restoration of performance
- Stage of technology development

N Reduction Technology Evaluation Methods

- Evaluation Criteria
- Each criterion is scored against its particular attribute using a scale ranging from 1 to 5
- Criteria Weighting
- To account for relative differences in significance between criteria, weighting factors ranging from 1 to 10 are assigned
- > Technology Scoring
- The total score is the sum of the products of the individual criterion scores times the weighting factors for each criterion
- > Technology Ranking
- The priority ranking for a technology is determined by its total score. The highest score represents the highest priority ranking.

N Reduction Technology Evaluation Methods Ranking Criteria & Weighting Factors

Criterion Description	Maximum Score (S)	Level of Significance	Weighting Factor (W)	Total Possible Score (S x W)
Effluent total nitrogen concentration	5	Very High	10	50
Performance consistency	5	Very high	10	50
Performance reliability	5	Very high	10	50
Construction costs	5	High	7	35
Operation and maintenance cost	5	High	7	35
Land area requirements	5	High	7	35
Energy requirements	5	Medium	4	20
Homeowner acceptance	5	Medium	4	20
BOD/TSS effluent concentration	5	Low	2	10
Restoration of performance	5	Low	2	10
Stage of technology development	5	Low	2	10
				325

N Reduction Technology Evaluation Methods How We Determined Criteria Weighting

		Effluent Total Nitrogen Concentration	Performance Consistancy	Performance Reliability	Restoration of Performance	Construction Costs	Operation and Maintenance Costs	cBOD/TSS Effluent Concentrations	Homeowner Acceptance	Energy Requirements	Land Area Requirements	Stage of Technology Development	Relative Rank Score	Criterion Rank
	Effluent Total Nitrogen Concentration		1	1	1	1	1	1	1	1	1	1	10	Very High
	Performannce Consistancy	0		0	1	1	1	1	1	1	1	1	8	Very High
	Performance Reliability	0	1		1	1	1	1	1	1	1	1	9	Very High
	Restoration of Performance	0	0	0		0	0	0	0	0	0	1	1	Low
	Construction Costs	0	0	0	1		1	1	1	1	0	1	6	High
	Operation and Maintenance Costs	0	0	0	1	0		1	1	1	1	1	6	High
	cBOD/TSS Effluent Concentrations	0	0	0	1	0	0		0	0	0	0	1	Low
	Homeowner Acceptance	0	0	0	1	0	0	1		0	0	1	3	Med
31.	Energy Requirements	0	0	0	1	0	0	1	1		0	1	4	Med
	Land Area Requirements	0	0	0	1	1	0	1	1	1		1	6	High
	Stage of Technology Development	0	0	0	0	0	0	1	0	0	0		1	Low
49	3	0	2	1	9	4	4	9	7	6	4	9		

N Reduction Technology Evaluation Methods Criterion: Effluent Total N Concentration

Effluent TN (mg/L)	Score
< 3	5
3 – 10	4
11 – 15	3
16 – 30	2
> 30	1

N Reduction Technology Evaluation Methods Criterion: Performance Consistency

Variation in Onsite Nitrogen Removal Performance	Score
Physical/Chemical & Source Separation	5
MBR / IMB*	4
Fixed Film	3
IFAS**	2
Activated Sludge Nite/Denite	1

*MBR/IMB: Membrane Bioreactor / Immersed Membrane Bioreactor **IFAS: Integrated Fixed Film Activated Sludge

N Reduction Technology Evaluation Methods Criterion: Performance Reliability

Mean Time Between Service Calls	Score
annually	5
semi-annually	4
quarterly	3
monthly	1

N Reduction Technology Evaluation Methods Criterion: Construction Cost

Construction Cost (\$1000)	Score
< 5	5
5 - 10	4
10 – 15	3
15 – 20	2
> 20	1

N Reduction Technology Evaluation Methods Criterion: Operation & Maintenance Cost

O&M Annual Cost (\$/year)	Score
100 - 200	5
200 - 300	4
300 - 400	3
400 - 500	2
> 500	1

N Reduction Technology Evaluation Methods Criterion: Land Area Requirements

Land Area Required (ft²)	Score
< 250	5
251-500	4
501-1000	3
1001-2000	2
> 2000	1

N Reduction Technology Evaluation Methods Criterion: Energy Requirements

Energy Use (kW-hour/year)	Score
< 500	5
500 – 1,000	4
1,000 — 1,500	3
1,500 – 2,500	2
> 2,500	1

N Reduction Technology Evaluation Methods Criterion: Homeowner Acceptance

Homeowner Acceptance	Score
Acceptable	5
Perceived nuisance	3
Aesthetically displeasing	1

N Reduction Technology Evaluation Methods Criterion: cBOD/TSS Effluent Concentration

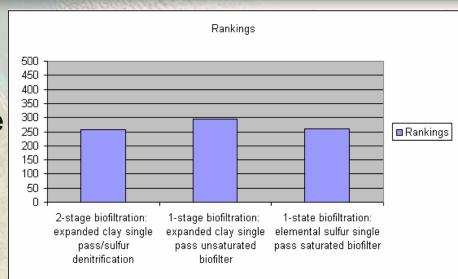
Effluent cBOD/TSS (mg/L)	Score
10 / 10	5
20 / 20	4
30 / 30	2
> 50	1

N Reduction Technology Evaluation Methods Criterion: Performance Restoration

90% Performance Restoration Time (days)	Score
< 1	5
1 - 3	4
3 – 7	3
7 – 14	2
> 14	1

N Reduction Technology Evaluation Methods Criterion: State of Technology Development

Stage of Development	Score
National use	5
State use	4
Demonstration	3
Experimental	2
Conceptual	1


Nitrogen Reduction Technology Testing Priority

Nitrogen Reduction Technology Testing Priority

- Prioritization will be based on systematic application of the ranking criteria to individual technologies identified in the literature review
- Technologies will be grouped according to the classification scheme developed
 - Source Separation Technologies
 - Biological Treatment Technologies
 - Physical / Chemical Treatment Technologies
 - Natural Systems Technologies
- Each technology will receive individual scores for each evaluation criteria; the weighing criteria will then be used to generate a total score.
- For each classification, the technologies will be ranked according to their total score.

Nitrogen Reduction Technology Scoring and Priority Ranking

Excel spreadsheet
 developed for real time weight and score
 adjustment

	Α	В		С			D	F	Н
						2-stage biofiltration:	1-stage biofiltration:	1-state biofiltration:	
							expanded clay single	expanded clay single pass	elemental sulfur single
1	Criteria #	Ranking Criteria	Wε	Weighing Factor p		ctor	pass/sulfur denitrification	unsaturated biofilter	pass saturated biofilter
2	1	Effluent Nitrogen concentration	4		Þ	10	5	5	5
3	2	Performance consistency	4		Þ	10	3	3	3
4	3	Performance Reliability	4		Þ	10	5	5	5
5	4	Construction cost	4		F	7	4	5	5
6	5	Operation and maintenance cost	4		Þ	- 7	1	5	1
7	6	Land area required	4		Þ	7	5	5	5
8	7	Energy Requirement	4		Þ	4	3	3	3
9	8	Homeowner acceptance	4		F	4	5	5	5
10	9	BOD/TSS effluent concentration	4		F	2	5	5	5
11	10	Restoration of Performance	4		Þ	2	4	5	3
12	11	Stage of technology development	4		Þ	2	3	4	2
13			4		F	0			
14			4		F	0			
15							256	295	259

Biological Treatment Technologies Summary (Example)

		100	100				TO THE	ta .				
			Criteria									
		1	2	3	4	5	6	7	8	9	10	
	Technology	Nitrogen effluent concentration	Performance consistency	Reliability	Construction costs	Operation and maintenance cost	BOD/TSS effluent concentration	Homeowner acceptance	Energy requirement	Land area required	Stage of technology development	Total Score (out of 330)
		mg/L, Table 2,3,4	Table 5	Table 6,7	\$, Table 8		mg/L, Table 10	Table 11	kw-hr/ year, Table 12	1000 ft², Table 13	Table 14	
	Two stage biofiltration: expanded clay single pass/sulfur denitrification	<3	5	5	7,187	1	5	5	1,209	200	3	285
	One stage biofiltration: expanded day single pass unsaturated biofilter	<1	5	5	3,770	5	5	5	1,209	120	4	315
	One stage biofiltration: elemental sulfur single pass saturated biofilter	<1	5	5	3,417	1	5	5	1,209	80	2	278
	MicroFAST								3,273			
	Waterloo Biofilter								886			
	Amphidrome								823			
Nersymbol (Geoflow								565			
1839 64	Recirculating sand filters	20	5	5	2,800	5	5	5	909	120	5	

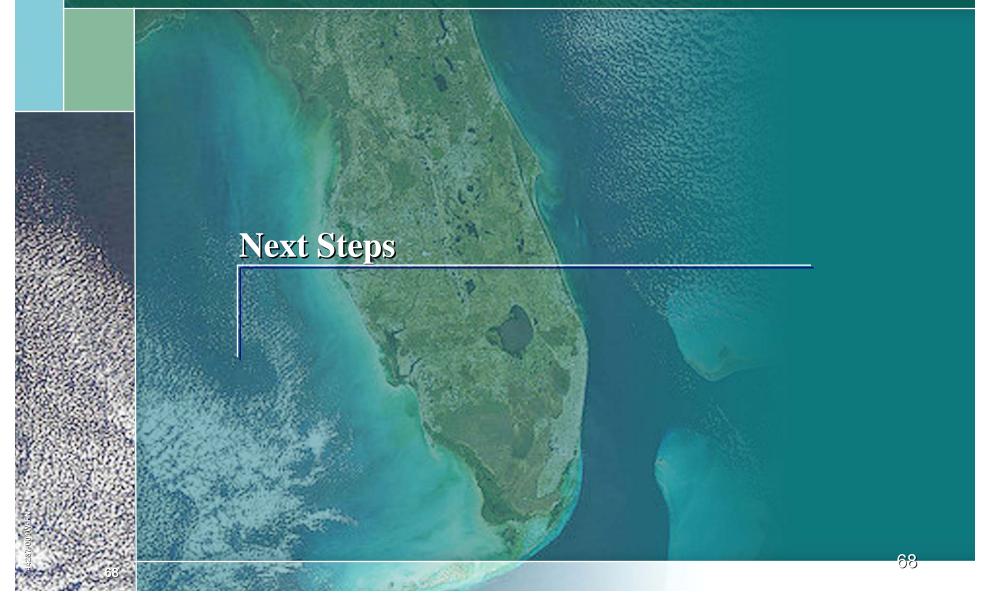
HAZENAND SAWYER
Environmental Engineers & Scientists

Summary

Summary

Questions?

■ Let's review criteria, weights agreed on



Review of Ranking Criteria & Weighting Factors

	Criterion Description	Maximum Score (S)	Level of Significance	Weighting Factor (W)	Total Possible Score (S x W)
i	Effluent total nitrogen concentration	5	Very High	10	50
	Performance consistency	5	Very high	10	50
	Performance reliability	5	Very high	10	50
	Construction costs	5	High	7	35
	Operation and maintenance cost	5	High	7	35
	Land area requirements	5	High	7	35
	Energy requirements	5	Medium	4	20
300	Homeowner acceptance	5	Medium	4	20
	BOD/TSS effluent concentration	5	Low	2	10
	Restoration of performance	5	Low	2	10
3	Stage of technology development	5	Low	2	10
¥.	N COURT TO SEE SHEET IN				325

HAZENAND SAWYER
Environmental Engineers & Scientists

Next Steps...

- Consensus on technology classification criteria
- Finalize ranking criteria, attribute assignments, initial weighing factors based on today's workshop
- Complete scoring and ranking of technologies based on criteria and weights agreed upon
- Finalize draft report for Tasks A3 A6, and deliver back to RRAC
- Finalize literature review and deliver to RRAC

