- Dr Salah Hassouna
- Dr HeshamZaki
- Dr Moustafa Abbasy

Why water analysis?

- 1. Detect changes in water quality.
- 2. Comply with laws and regulations.
- 3. Design a treatment system for wastewater.
- 4. Monitor water quality in an area.

WATER ANALYSIS FOR ENVIRONMENTAL STUDIES

Salah E. Hassouna

IGSR Alexandria University

email: s_hassouna@link.net

http://groups.yahoo.com/group/IGSR_Env_Measurements/

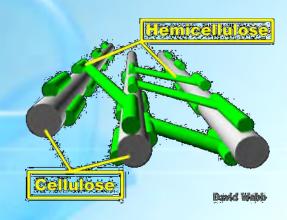
NO FACEBOOK Please

How to identify an unknown substance?

- Humidity (water content)
- Organic/inorganic contents
 - Inorganics such as:
 - Salts
 - Inert
 - Metals
 - etc.
 - could be identified by specific scheme
 - Organics could be identified by:
 - Solvents solubility
 - Fractionation by partitioning
 - Mass determination
 - Molecular configuration

Inorganic materials

- Colourimetric
- Titration methods
- Spectrophotometry
- Potentiometric
- Instrumental analysis



Organics

- Synthetic Compounds
- Natural Compounds

- Solvent extraction
- Selective dyes
- Instrumental analysis



- Carbohydrates
- Proteins
- Lipids

Instruments for detailed analysis

- **♦ Infra-red (IR)**
- **& GC & GC/Mass**
- Spectrophotometer (UV/Vis)
- * NMR (Nuclear Magnetic Resonance)
- *** ICP (Inductively Coupled Plasma) & ICP/MS**
- Atomic Absorption [AA]

Water Quality Indices

- Organic load
- Nutrients
- Toxic & hazardous substances
- Pathogenic & parasitic agents

River Nile Water Quality (average)

Parameter	Value	units	Parameter	value	units
рН	7.5	units	COD	24	mg/L
TOC	10	mg/L	BOD	9	mg/L
Turbidity	6	NTU	TDS	250	mg/L
DO	6.1	mg/L	TSS	6.2	mg/L
EC	300	μ mhos/cm	Nitrate	1.8	mg/L
Tot Alkalinity	160	mg/L	Nitrite	0.01	mg/L
Tot Hardness	150	mg/L	Ammonia - NH ₃	0.06	mg/L
Mg Hardness	110	mg/L	Sulfate	45	mg/L
Ca Hardness	50	mg/L	Phosphate	0.1	mg/L
Chloride	35	mg/L	Silica	3.5	mg/L
Iron	0.4	mg/L	Potassium	7	mg/L

Seawater Analysis

K

Ni

Pb

Cu

Fe

Zn

Bromide

Fluoride

Units

mg/m

mg/L

mg/L

mg/L

mg/L

mg/L

μg/L

μg/L

mg/L

mg/L

μg/L

mg/L

mg/L

380

0.15

4.03

5.70

34.07

32.75

66

1.0

Parameter	Value	Units	Parameter	Value
рН	7.99	units	Chl- <u>a</u>	1.20
Salinity	38,900	ppm	CI	19,500
TSS	28,600	mg/L	Na	10,770
DO	5.65	mg/L	Ca	412
COD	4.20	mg/L	Mg	1,290

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

mg/L

2.41

0.65

0.12

4.38

6.00

1.75

2,700

145

BOD

NH₄

NO₂

 NO_3

TN

Silicate

Sulfate

Bicarbonate

Water Pollution

Laws & Regulations in control of water quality

Law	Title	Executive Decrees/ remarks
93/1962	Discharges	Decree <u>44/2000</u> MCH
<u>48/1982</u>	Protection of River Nile	Amendments 2010
<u>4/1994</u>	Environmental law	"
9/2009	Environmental law	Modified from 4/1994
27/1978	Drinking water Guidelines	Decree <u>458/2007</u> MOHP

Law 48/82						Law 4/94	Ministerial Decree 44/2000	
	Fresh water	to River	branches + F Underground w	Drains to Fresh	to Brakish water bodies			Sewarage
	bodies must not exeed	Nile south		water courses	Sewarage systems	Industrial effluents	Sea	systems
Temp C*	5 above	35	35	5 above	35	35	10 above	
pH*	7-8.5	6-8	6-9	7-8.5	6-9	6-9	6-9	6-9.5
Colour*	<100	0	0	100	-		-	no limits
BOD	6	30	20	10	60	60	60	600
COD**	10	15-40	10-30	6-15	40-80	50-100	100	1100
DO	>5			>5				
Total Solids	500	1,200	800	500	2,000	2,000	2,000	
Suspended Solids		30	30		50	60	60	800
Ash		1100	700				1800	
Oil & Grease	0.1	5		1	10	10	15	100
Nitrate		30	30	45	50	40	40	25
P(i) [inorganic]		1	1	1	0	10	15	
Ammonia	0.5			0.5			3	25
Organic N	<1							
Total Alkalinity	20-150			50-200				
Sluphites	<200							
Sulphides		1	1		1	1	1	
Phenol		0.002	0.001	0.02	0	0.005	1	0.5
Flourides		0.5	0.5	0.5	0	0.5	1	
Residual Chlorine		1	1					
Turbidity*							50 NTU	
Coliform MPN*				5,000	5,000	5,000	5,000	
all in mg/L except*								
**if two values then first for Dichromate, second for Permenganate								

Water Quality Measurements

- 1. Physical Parameters
- 2. Chemical Parameters
- 3. Biological Parameters

Methods of Water Analysis

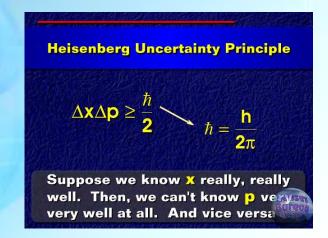
- > Standard method
- > Proposed method
- > Obsolete method

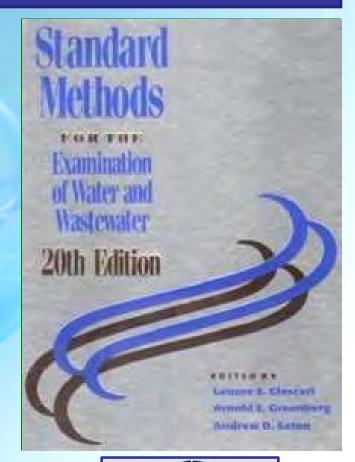
A Standard Method


- Sampling
- Limit of detection
- Precision and Bias
- Interferences

Standard Methods

Method applications


Method validation


Trueness of Measurements [uncertainty]

- 1. Selectivity
- 2. Specificity
- 3. Precision
- 4. Repeatability
- 5. Reproducibility
- **6. Linearity**
- 7. Minimum Detection Limit
- 8. Standard Error & Standard Deviation

Standard Methods for Water Analyses

- SMEWWW (APHA& AWWA & WEF)
- ASTM (American Society for Testing and Materials)
- BSA (British Standards Institution)
- DIN (Deutsches Institut für Normung)

General Considerations in Lab Analysis

[The 10 commandments]

- 1. You should follow all safety precautions for lab work.
- 2. Remember that all glassware are calibrated at certain temp (25°C).
- 3. You should know how to get ultrapure water (free of ions, i.e. $18\Omega0HMI$.
- 4. You should know how to prepare standard solutions [e.g. NaOH/HC1].
- 5. You should know what concentrations you should use for standard curve construction for any assay.

General Considerations in Lab Analysis

[The 10 commandments]

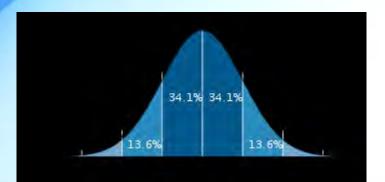
- 6. You should know how to calibrate basic lab essentials light meter, balances, micropipettes.
- 7. You should know storage time and temp of solutions, reagents, etc.]
- 8. You should follow the calibration timetable of all equipment in the lab.
- 9. You should know the uncertainty items of the method you are using fir analysis.
- 10. Repeat any one to make them 10!!

Water Analysis for:

- 1. Fresh & brackish water bodies
- 2. Seawater
- 3. Underground water
- 4. Potable water
- 5. Wastewater
- 6. Industrial water [Production + Cooling + Utilities]
- 7. Agricultural drainage water

On-site measurements

- 1. Water clarity (Secchi disk)
- 2. Temperature
- 3. DO
- 4. pH
- 5. Salinity



Water Analyses

- 1. On-site measurements.
- 2. Sampling procedure.
- 3. Samples' selection and collection.
- 4. Samples preservation and handling.
- 5. Lab analyses.
- 6. Instruments used in water quality testing.
- 7. Results uncertainty.

Sampling of water bodies

- Grab-sampler
 - (sediments)
- Inverted Bottles
 - (water @ different depths)

Sample's Preservation

- D0= Manganous sulfate (MnSO₄)
- Ammonia = acidification below pH2
- **Phenol** = acidification below pH2

Cool storage (Ice Box)

Laboratory Water Testing

Organic load

- **BOD**₅
- · COD
- Nutrients
 - P compounds
 - **–** N
 - Org
 - Nitrate
 - Nitrite
 - Ammonia

• Solids:

- 1. Total Solids
- 2. Dissolved Solids
- 3. Suspended Solids
- 4. Volatile Solids
- 5. Settleable solids (Imhoff Cone)
- Turbidity
- Oil & Grease

Water Quality Parameters

- Total Alkalinity
- Total Hardness
- Heavy metals
- Phenol
- Pesticides
- Detergents
- Residual chlorine

Gas chromatograph

Atomic Absorption

Oil & Grease

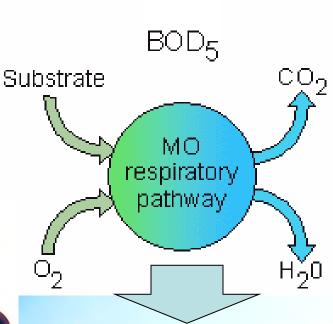
Gravimetric

Turbidity

- NTU (Nephelometer Turbidity Units)
- What is the difference between a spectrophotometer and a Turbidimeter?
- PEG Standards

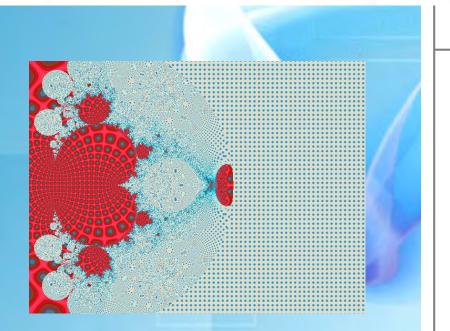
Nephel in Greek = cloud

TOC [Total Organic Carbon]


- is the amount of carbon bound in an organic compound and is often used as a non-specific indicator of water quality.
 - 1. Acidification
 - 2. Oxidation
 - 3. Detection and Quantification
- samples are combusted at 1,350 °C in an oxygenrich atmosphere. All carbon present converts to carbon dioxide which is measured by an Infrared Detector. Alternatively ultra-violet light alone oxidizes the carbon within the sample to produce CO2.
- The UV oxidation method offers the most reliable, low maintenance method of analyzing TOC in ultrapure waters

BOD

- **BOD**₅
- BOD ultimate
- BOD seeded


BOD attention!!

- pH & nutrients requirements.
- Dilution water precautions.
- Dark storage importance.
- Avoidance of complete depletion of oxygen.
- DENITRIFICATION inhibitor addition:
 - TCMP" 2-chloro-6-(trichloromethyl) pyridine

$$NH_4^+ + NO_2^- \rightarrow N_2 + 2H_2O$$

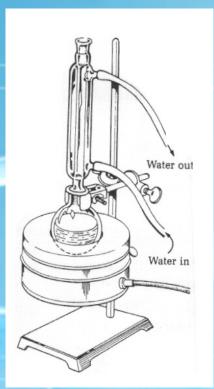
Direct pipetting i	nto 300mL bottles
Range of BOD	mL sample
1,200 - 4,200	0.5
600 - 2,100	1.0
300 - 1,050	2.0
120 - 420	5.0
60 - 210	10.0
30 - 105	20.0
12 - 42	50.0
6 - 21	100.0
0 - 7	300.0

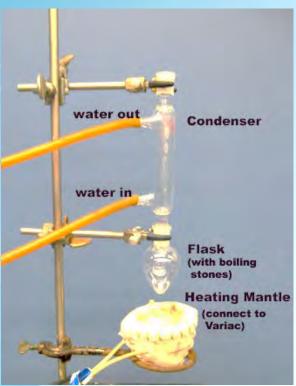
BOD Dilutions

Using separate	container
Range of BOD	% mixture
1,000 - 3,500	0.2
400 - 1,400	0.5
200 - 700	1.0
100 - 350	2.0
40 - 140	5.0
20 - 70	10.0
10 - 35	20.0
4 - 14	50.0
0 - 7	100.00

BOD Bottle-cap Sensor

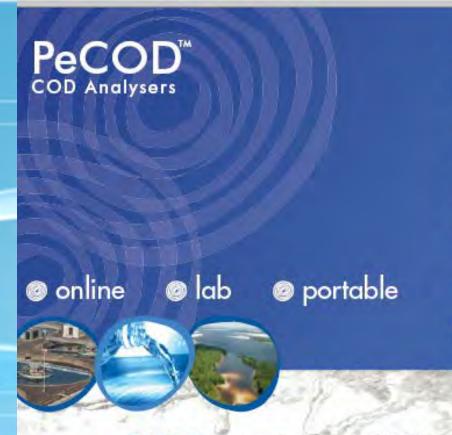
COD

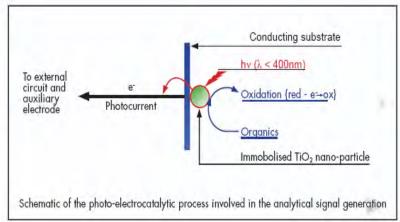

- Oxidizers:
 - Dichromate
 - Permanganate
 - Manganese III
- Interferences with chlorides



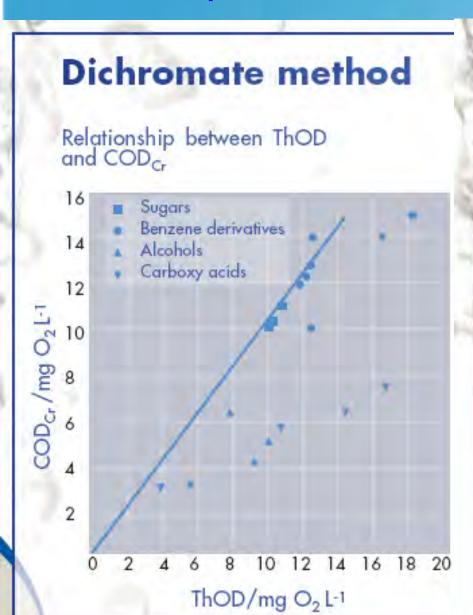
COD

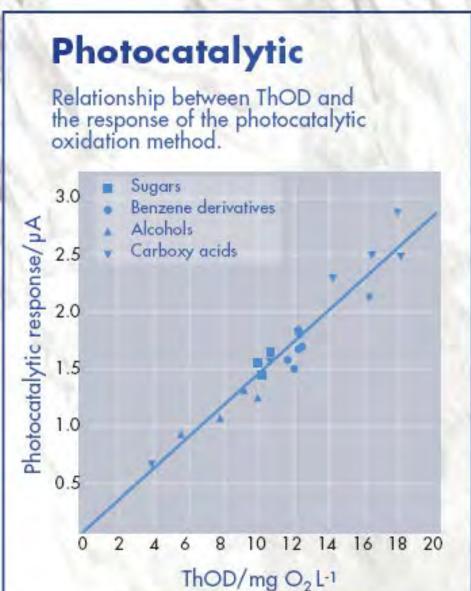
- Open reflux
- Closed reflux




New COD

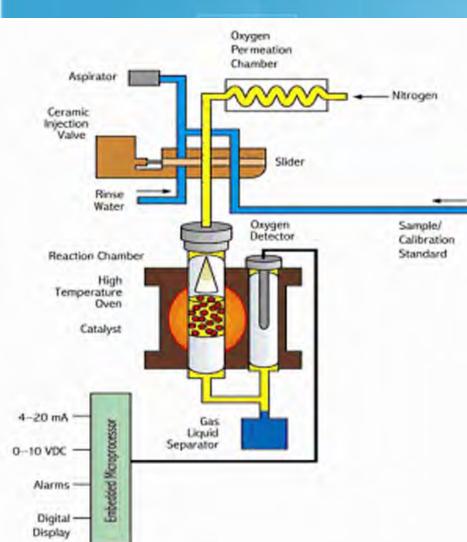
- Photoelectrocatalytic
- The powerful oxidation potential of UV-illuminated TiO2 ensures that almost all species will be fully oxidized giving a true measure of COD.


Saves TIME, Reduces COST



Comparison between the two methods

Total Oxygen Demand (ASTM)


Water

By Category

Friday 27 January, 2012

the analysis is based on the change in oxygen reading of the carrier gas compared to that when a sample is introduced.

TOD

- A percent of oxygen is admitted to nitrogen carrier gas (whose pressure and flow rate is controlled) via a dosing cell. The quantity of oxygen is controlled by a range selector.
- 2. The mixture of gases flows through the injection valve, reaction chamber, to the oxygen detector. The detector monitors the oxygen concentration in the carrier gas.
- 3. Sample is vacuum aspirated through the injection valve and a precise volume is injected to a catalyst maintained at 900°C.
- 4. The sample is quantitatively oxidized, which consumes part of the oxygen in the carrier gas. The oxygen depletion correlates directly to the oxygen in the sample.

TOC, TC, TOD, BOD & COD!!

Parameter	TOC	TC	TOD	BOD	COD
Analysis time	5-10 minutes	3-10 minutes	2-10 minutes	5-6 days	2-3 hours
Initial cost	highest	high	high	lowest	moderate
Precision	±2%	±2%	±2%	±15%	±8%
Solids recovery	excellent	excellent	excellent	poor	variable
Effects of toxics	none	none	none	high	none
Measurement units	mg C/I	mg C/l	mg C/l	mg O2/l	mg O2/l
Results include:					
SO_3^{2-} , S^{2-} , and organic S	no	no	yes	yes	yes
organic nitrogen	no	no	yes	yes	yes
chloride	no	no	no	no	yes

TOD

- Reading within 3 minutes
- TOD is unaffected by the presence of inorganic carbon
- TOD analysis will also indicate noncarbonaceous materials that consume or contribute oxygen, i.e. the oxygen demand of ammonia, sulfite and sulfides will be reflected in the TOD measurement.
- TOD reflects the oxidation state of the chemical compound (that
 is, urea and formic acid have the same number of carbon atoms,
 yet urea has five times the oxygen demand of formic acid).

Qs ???????

- 1. What does the ratio between BOD and COD mean?
- 2. Could you calculate COD from BOD values or *vise-versa*?
- 3. Could BOD value be more than the COD value?
- 4. Is there a relation between TSS, TS, TDS, TOC, NTU and BOD or COD?

Alkalinity

- Mainly carbonates
- 150-160(mg/L) x 0.6= carbonates

Hardness

- Presence of multivalent cations (valence more than one +)
- Mainly Ca²⁺ & Mg²⁺, but Fe, Al, Zn and Mn

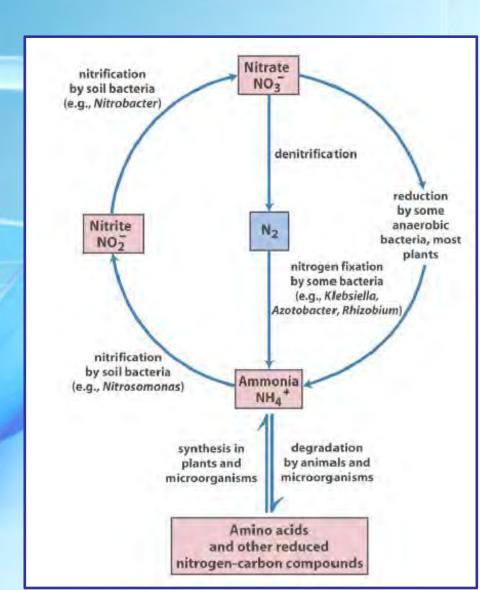
- **Soft** 0-60 mg/l

Moderate hard 61-120 mg/l

– Hard 121-180 mg/l

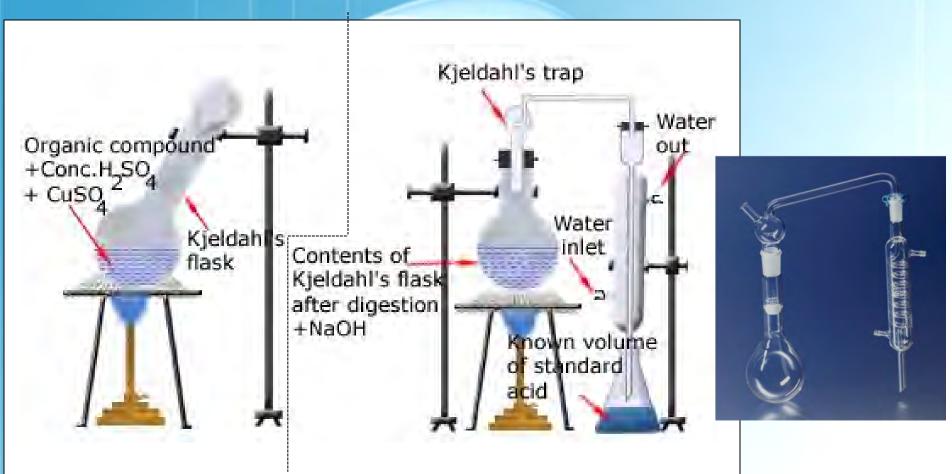
Very hard >180 mg/l

- Importance to industrial water use; no proven health effects on humans, only on soaping.
- Mainly ground water problem in Egypt (dolomite, sand stone, etc.....)


Measurements of Hardness

- Titration against Na₂EDTA +indicator
- Sodium cyanide is used to overcome interferences (very toxic).

• Ion exchange resins are used to soften the water, as well as RO.

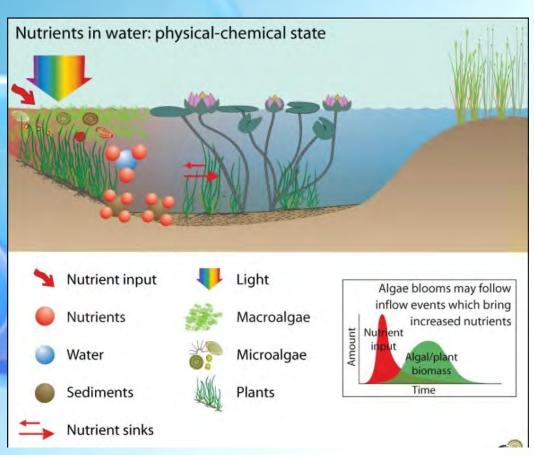

Nitrogen in samples

- Total Nitrogen
- Nitrogen_{org} (Kejldahl N)
- Ammonia
- Nitrate
- Nitrite

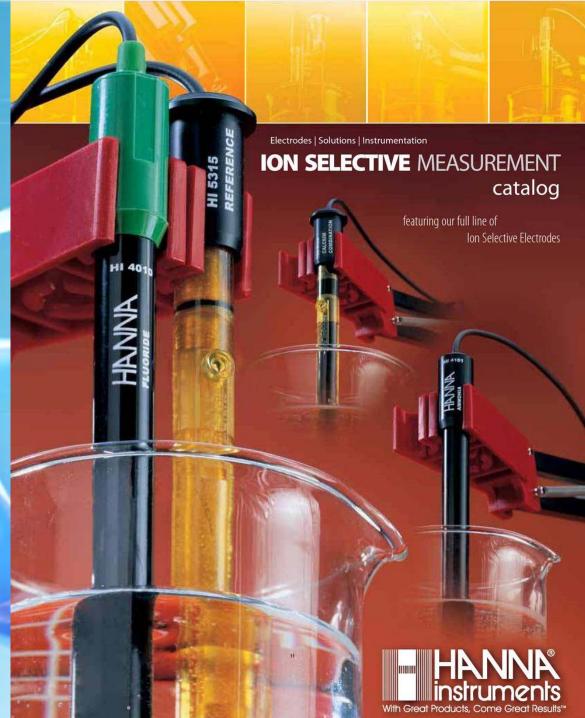
Total Nitrogen

Kjeldahl nitrogen distilling apparatus

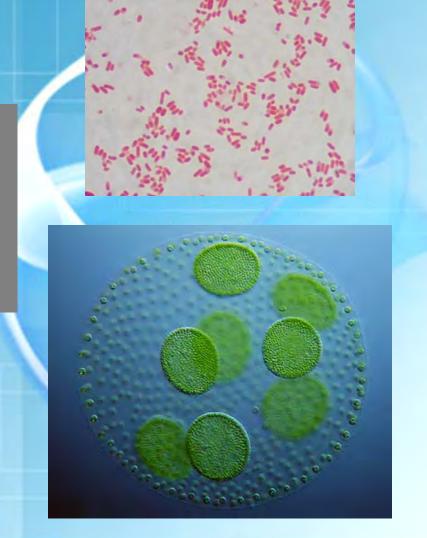
Automated Kjeldahl


Nitrate

- Nitrate (NO3-) is very difficult to measure directly, whereas nitrite (NO2-) is easier to measure.
- Nitrate (NO3-) in the water sample is converted to nitrite (NO2-) by cadmium to the water sample.
- ➤ A second chemical is then added to the water sample and reacts with the nitrite (NO2-) to cause a color change proportional to the amount of nitrite in the sample.
- ➤ The measurement in the nitrate gives the combined concentration of nitrite (if present) and nitrate.
- ➤ The chemical reaction that causes nitrate (NO3-) to change to nitrite (NO2-) is an oxidation—reduction reaction, which involves the exchange of electrons from one molecule to another molecule. i.e. Cadmium removes electrons from nitrate (NO3-) to form nitrite (NO2-).


Other nutrients

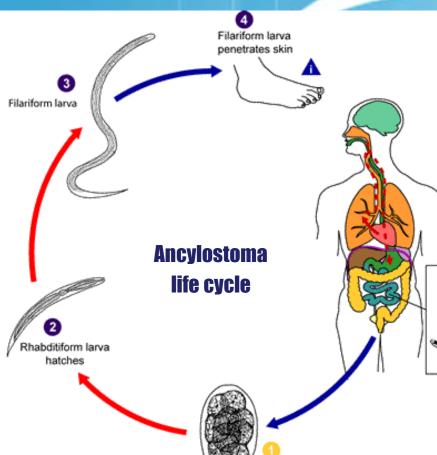
- Phosphorous
 - Total
 - Dissolved
- Sulfur
 - Sulfate
 - Sulfide
- Silica


Potentiometric Tools lon selective electrodes

- Chloride
- Ammonia
- Nitrate
- Fluoride
- Potassium
- Calcium
- Sodium
- sulfide

- Bromide
- lodide
- Copper
- Lead
- Perchlorate
- Cyanide
- Hardness
- Surfactants

BIOLOGICAL EXAMINATIONS


Pathogens & Parasites

- •Shigella spp
- Pathogenic Escherichia coli
- Vibrio cholerae
- Campylobacter jejuni
- Salmonella typhi
- Adenoviruses
- Enteroviruses
- Hepatitis A & E
- Norwalk virus
- Rota virus
- Small round viruses
 - Giardia intestinalis
 - Cryptosporidium parvum
 - Entamoeba histolytica

Biological Examinations

Item	Standard	
Total Bacterial Count	50 CFU/1ml/24hr	
Total Coloiforms (MPN)	95% of samples free up to 100cm ³ for a year	
Total Typical Colon Bacilli	Free	
Colon Streptococci	Free	
Algae	1 μg/L Microcystin	
	in case of bluegreen outbreak	
Protozoa	Free of living protozoa and all forms of parasites	

Eggs in feces

Life cycle of Ascaris spp.

3. L3 larvae migrate to hepatic portal through intestinal wall (1-2 dpi)

> 2. Eggs reach small intestine and hatch

Infective eggs are swallowed

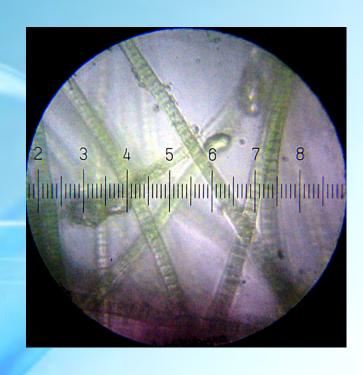
7. Eggs are passed in feces and embryonate becoming infective in a few weeks

4. Larvae enter lungs (5-6 dpi) and alveolar spaces causing cough

5. Coughed-up larvae are swallowed

6. Larvae reach small intestine for a second time, mature (50-55 dpi) and adult worms lay eggs

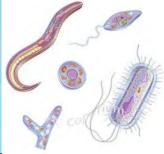
dpi - days post-infection

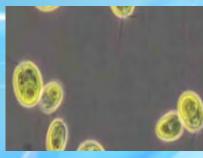


A = Infective Stage

A = Diagnostic Stage

Biological Examinations


- Microscopic
- Growth
- Chlorophyll
- Serological
- Molecular (PCR)



Microbial Counts

Oxoid Ltd.

- Bacteria
- Parasites
- Algae

- Direct counts: magnification if needed
- Indirect counts: Culture media

Membrane Filter (MF) Technique (Steps)

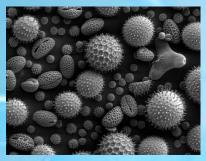
Sampling

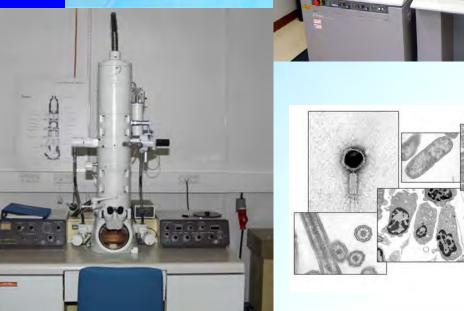
Culturing

Examination

- Filtration

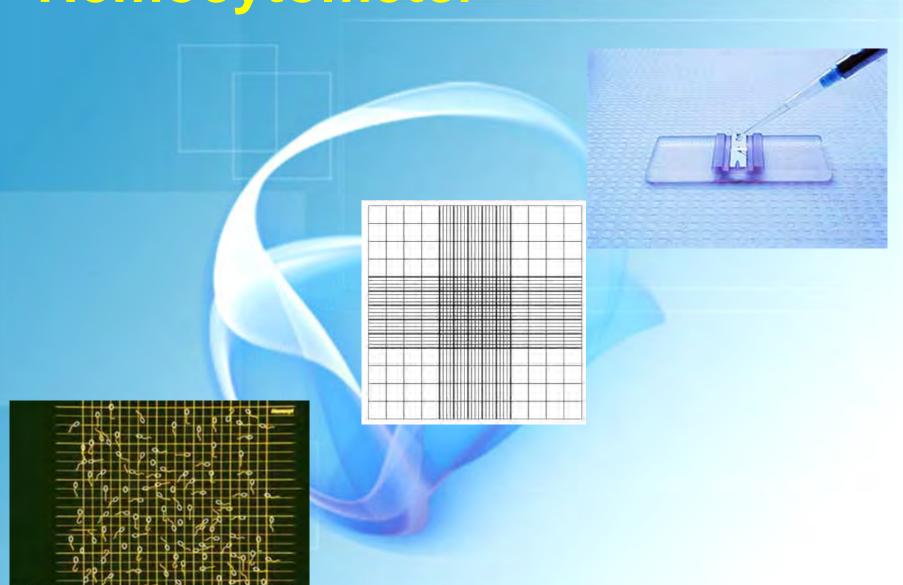
Incubation





Microscopy

- Binocular
- Light
- Phase contrast
- Polarizing
- Dark Field
- SEM
- TEM



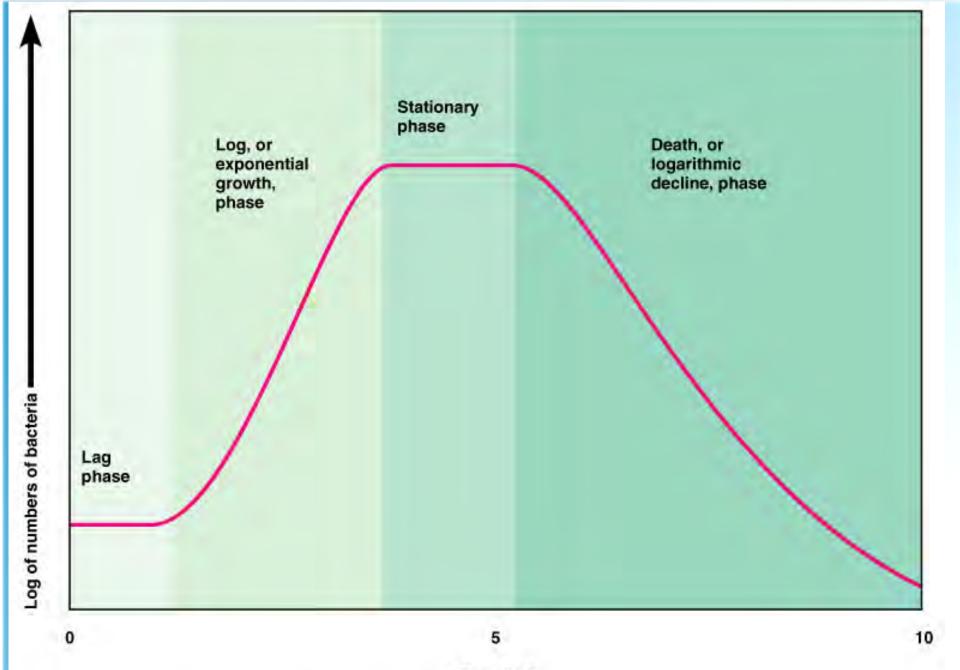
Hemocytometer

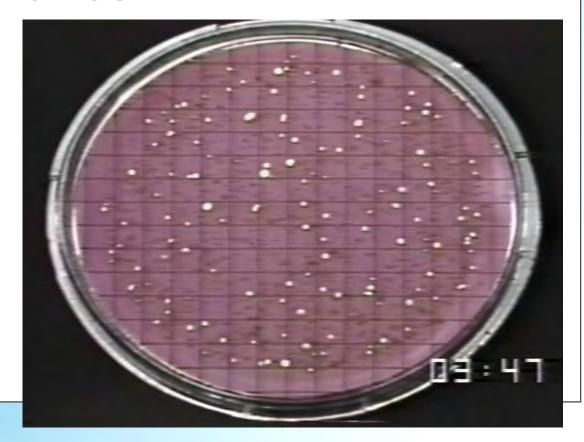
Purdue University

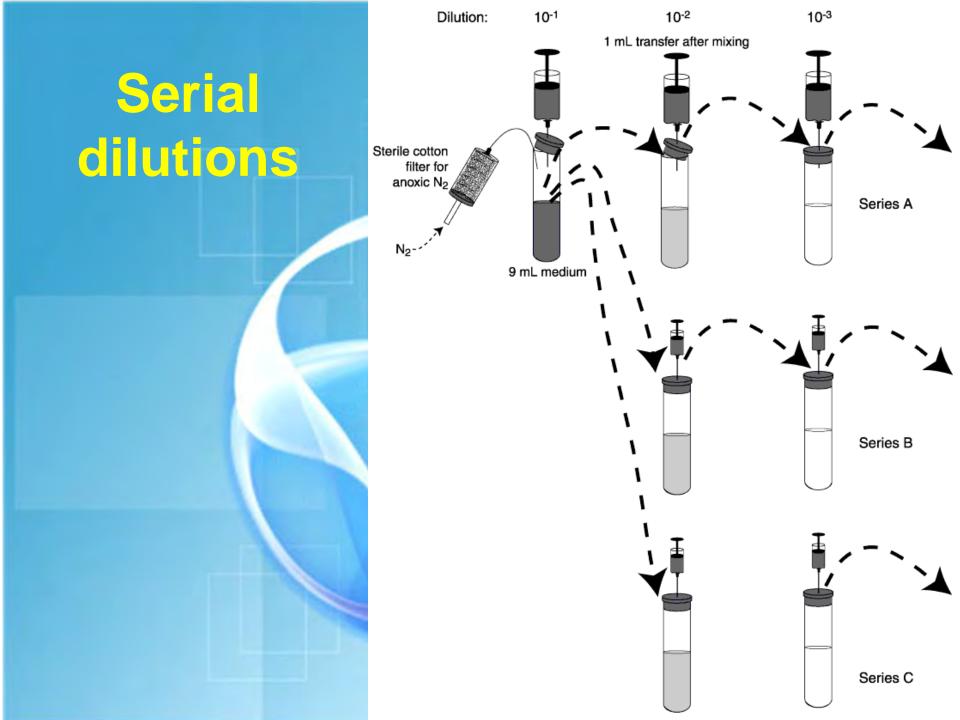
Microbial Counts

Specific Media

For TPC

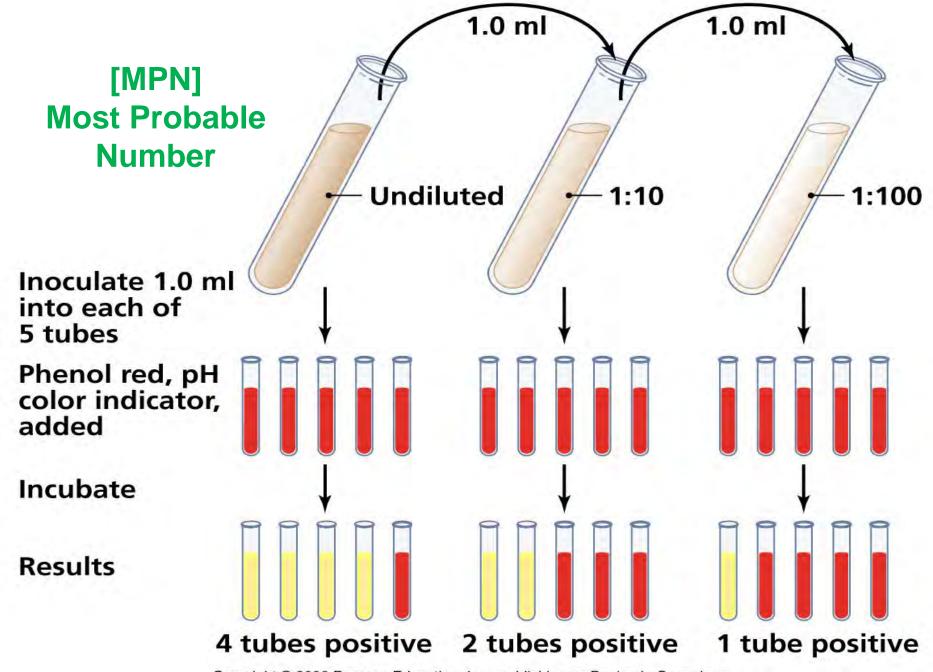

- For *E. coli*
- For Streptococci

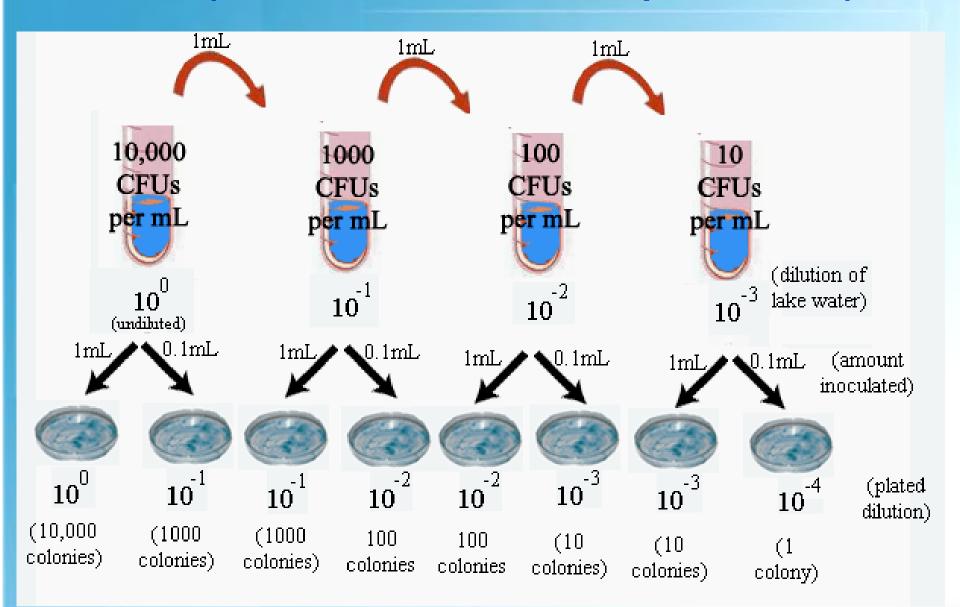




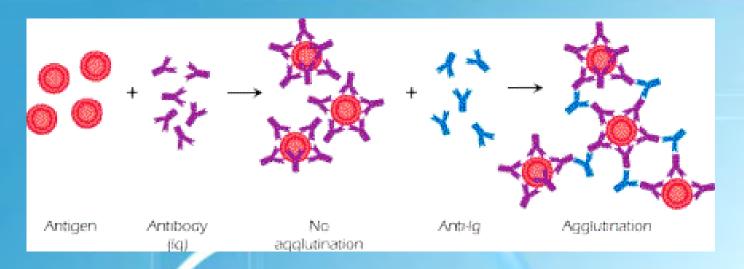
Time (hr.)

Total Coliform

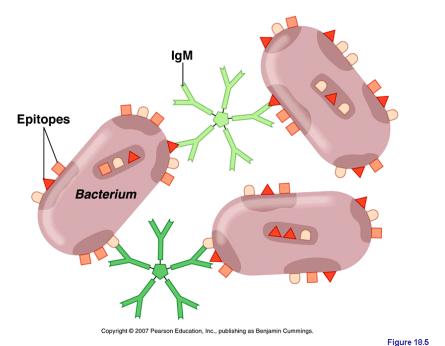

 Total Coliform bacteria are enumerated by the Membrane Filter (MF) procedure

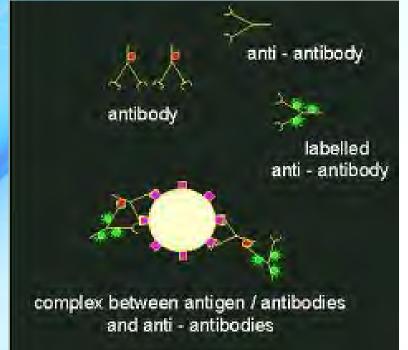

MPN bacterial count

- When using dilution if 10⁻³ show growth, while 10⁻⁴ does not; then it is possible to say that there are greater than 1X10³ cells/ml but less than 1X10⁴/ml.
- Bacteria are rarely, if ever, distribute evenly in a sample; e.g. if a 10 ml sample contains a total of 300 cells, not every ml will contain 30 cells. So MPN was envisaged.



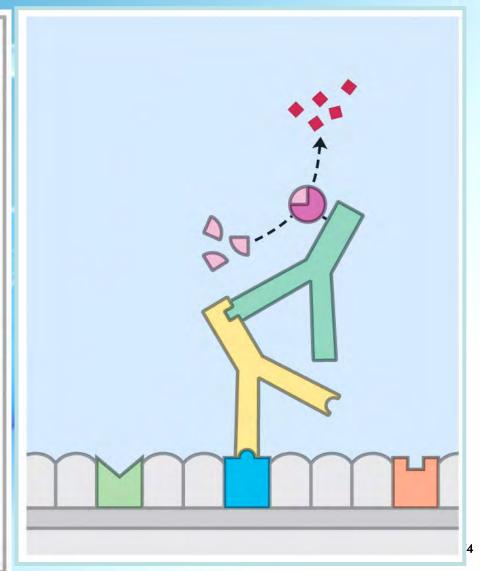
Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings.

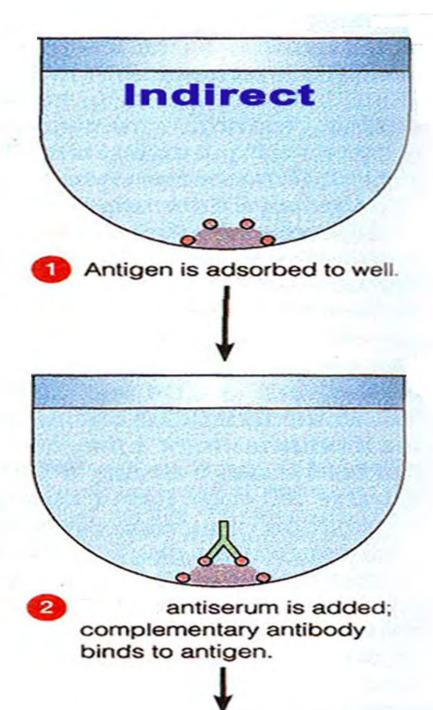

(3 dilutions + 3-10 tubes per dilution)

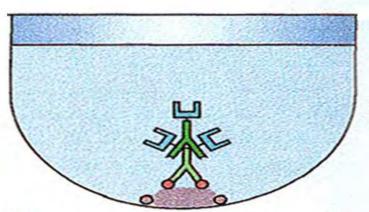


No. of Tubes Positive in:			MPN in the inoculum of the middle set of tubes	
First Set	Middle Set	Last Set	tne middle set of tubes	
0	0	0	<0.03	
0	0	1	0.030	
0	0	2	0.060	
0	0	3	0.090	
0	1	0	0.030	
0	1	1	0.061	
0	1	2	0.092	
0	1	3	0.120	
0	2	0	0.062	
0	2	1	0.093	
0	2	2	0.120	
0	2	3	0.160	
0	3	0	0.094	
0	3	1	0.130	
0	3	2	0.160	
0	3	3	0.190	
1	0	0	0.036	
1	0	1	0.072	
1	0	2	0.110	
1	0	3	0.150	
1	1	0	0.073	
1	1	1	0.110	
1	1	2	0.150	

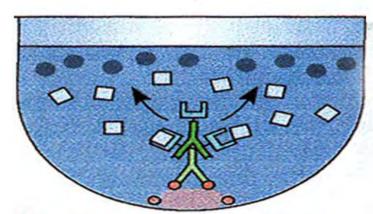
Serological Methods






Serological Methods ELISA (starting with AG)

- 2 Block unoccupied sites with nonspecific protein.
- 3 Incubate with primary antibody against specific antigen.
- 4 Incubate with antibody-enzyme complex that binds primary antibody.
- (5) Add substrate. (
- 6 Formation of colored product indicates presence of specific antigen.



3 Enzyme-linked anti-human immune serum globulin is added and binds to bound antibody.

Enzyme's substrate () is added, and reaction produces a visible color change ().

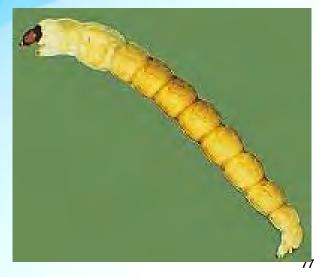
Alkaline Phosphatase: *p*-Nitrophenyl phosphate

PCR for pathogens detection

Bacteria

Viruses

Principal of PCR detection


Toxicity Testing

- 1. Daphnia magna
- 2. Chironomus riparius
 [Diptera:Chironomidae]
- 3. Artemia silana

Conditions for toxicity bioassays

- Linearity and not "yes" or "no" response
- Dose response = Sensitivity

Water is a precious commodity

keep it safe.....