

Design Considerations

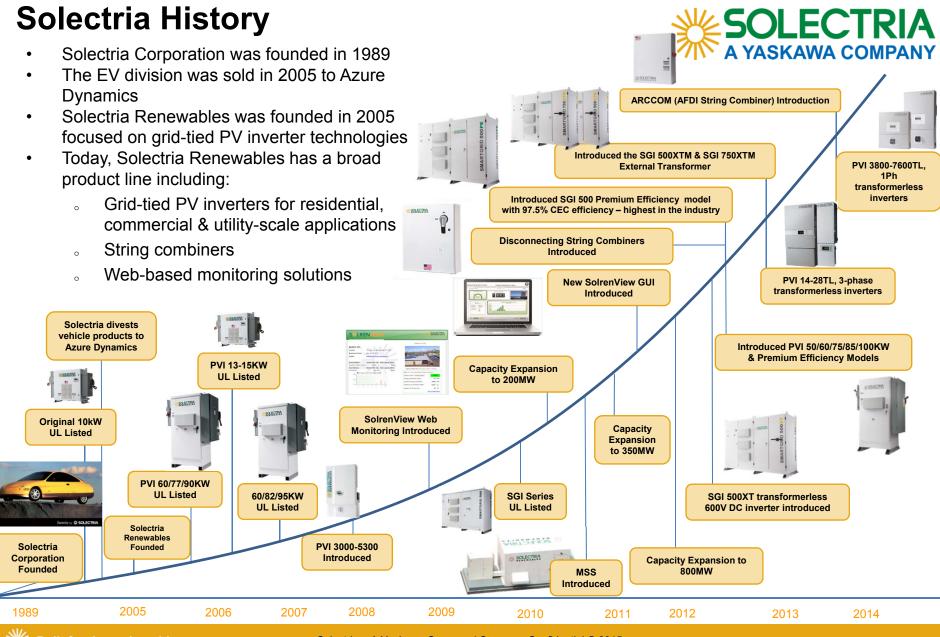
DC Considerations
AC Design Considerations
Solectria Commercial Solutions

By Claude Colp

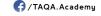
claude.colp@solectria.com

Twitter: @ClaudeColp

@SolectriaRen



For those transitioning from Residential to Commercial...


- String Sizing
- Wire/OCPD Sizing
- Combiners & Subcombiners
- BOS Specification
- Inverter Specification
- Site Visits
- Incentives
- Equipment Layouts
- Engineering Drawings
- Performance
 Estimates
- Grounding
- Permitting/Inspection

- Interconnection Agreements
- Project Management
- Commissioning
- Interconnection Strategy
- Power Factor
- Three-Phase
- Utility Relaying

DEVELOP A
STRONG PROJECT
TEAM, INCLUDING
SOLECTRIA!

Learn Renewables

Some of our trusted partners and customers

SoCore Energy

Gehrlicher

JARADA Inc.

nexamp

... Even More Solutions from the Industry's

Best Inverter Lineup

PV Inverters

Utility External Transformer Inverters

Megawatt Solar Stations

Commercial Central Inverters,

3-Phase String

Residential String Inverters

500-750 kW

1-2MW

50-100, 225-500 kW

14-28 kW

3.8-7.6 kW

String Combiners

Web-Based Monitoring

PVI 3800-7600TL

PVI 14-20TL PVI 23-28TL

PVI 50-100KW

SGI 225-500PE

SGI 500XT

SGI 500XTM SGI 750XTM

DC Design Considerations

String Sizing Recommendations

String Sizing

RECOMMENDATION #1

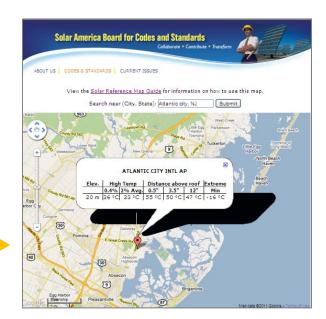
Use Max Allowable String Size to...

- Reduced BOS Costs Fewer strings means fewer combiner boxes and fewer PV source and output circuits
- Reduce System Losses fewer circuits and higher voltage/lower total current
- Maximize Production for System Life
 - Ensures string Vmp stays within the MPPT range of inverter for array life.
 - Protects from Vmp calc "shortcomings" and high AC voltage

Of course, using max. number of modules is not always possible or preferred for other reasons (complex layout, odd string size, carport...)

Next Stage in Design Evolution: 1000V Systems

String Sizing



RECOMMENDATION #2

Use ASHRAE Low Temperature

(a.k.a. Extreme Annual Mean Minimum Design Dry Bulb Temperature)

- Often yields higher max string size
- Supported by:
 - NEC 2011 690.7(A) Informational Note
 - "Array Voltage Considerations", B. Brooks, SolarPro Oct/Nov 2010
- CHECK WITH INSPECTOR IN NEC 2008 OR 2005 LAND!!
- SolarABC's Map Tool

www.solarabcs.org/about/publications/reports/expedited-permit/map/

String Sizing – (example)

Use Solectria PV System Builder (<u>www.solren.com</u>)

Location: Atlantic City, NJ

Array Size: 600kW DC

Module: Sharp NU-U235F1

Inverter: PVI 500

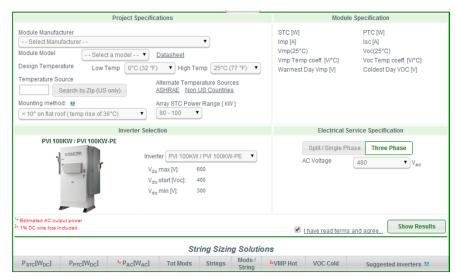
Record Low/Average High (Traditional Approach)

-23° C/29° C

⇒ 13 Modules Per String

⇒ 196 Strings

ASHRAE


-16° C/33° C

⇒ 14 Modules Per String

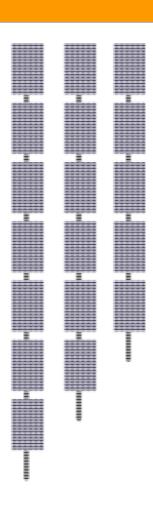
⇒ 182 Strings

THAT'S ONE LESS

14-STRING COMBINER AND HOME RUN
WIRING/CONDUIT!!

String Sizing - Example

String Sizing



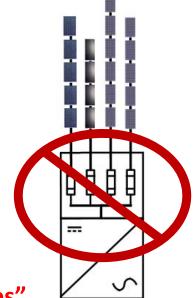
RECOMMENDATION #3

Make sure that your string voltage is well above the min.
 MPPT voltage of the inverter

Remember:

- Voltage Drop The voltage at the inverter will be lower than the string voltage due to voltage drop.
- Cell Temp Is an Estimate
 - Based upon "Average High" or "ASHRAE"
 - Include <u>estimated</u> racking adder
- Different methods for calculating k_Vmp
- High Line Voltage Increases the Min. MPPT voltage

String Mismatch (Voltage Mismatch)

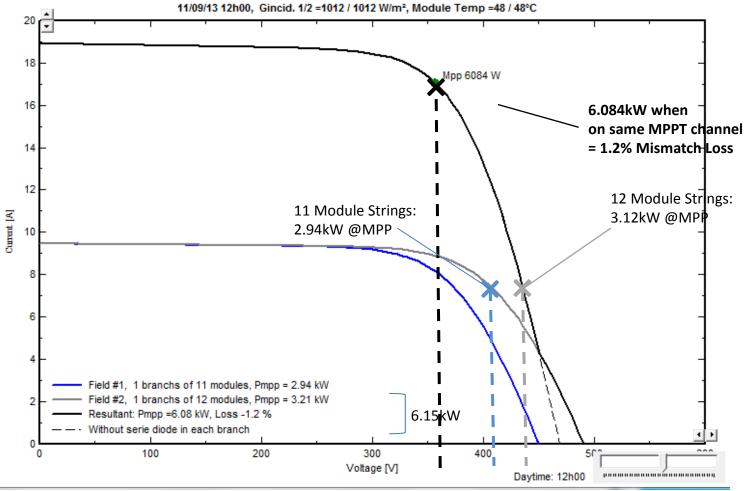


BEST PRACTICE:

Avoid combining different "Sting Types" to the same MPPT channel.

String Types

- String Size
- Tilt Angle
- Azimuth Angle (Orientation)
- Different module types
- New and Old of the same module
- Shaded and Unshaded Strings


Combining dissimilar strings results in String "Mismatch Losses"

(Each string type has a specific MPP voltage, but when combined in parallel all strings are forced to operate at the same voltage...)

String Mismatch (Voltage Mismatch)

Oversizing

Oversizing

What is the Array-to-Inverter Ratio?

- The ratio of Array's STC Nameplate Power to Inverter's Rated Power
- Also called: DC/AC Ratio, Oversizing Ratio, Overloading Ratio

Example:

Array: 120kW

Inverter: PVI 100KW

100kW

120kW = 1.2 ...the Array-to-Inverter Ratio is 1.2 (120%)

120kW PV Array

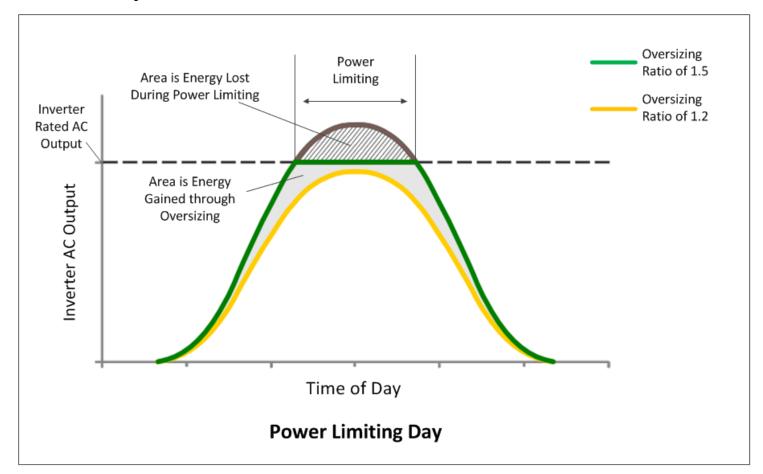
Oversizing

Historically:

• Due to high module prices, optimal oversizing: 1.10 to 1.25

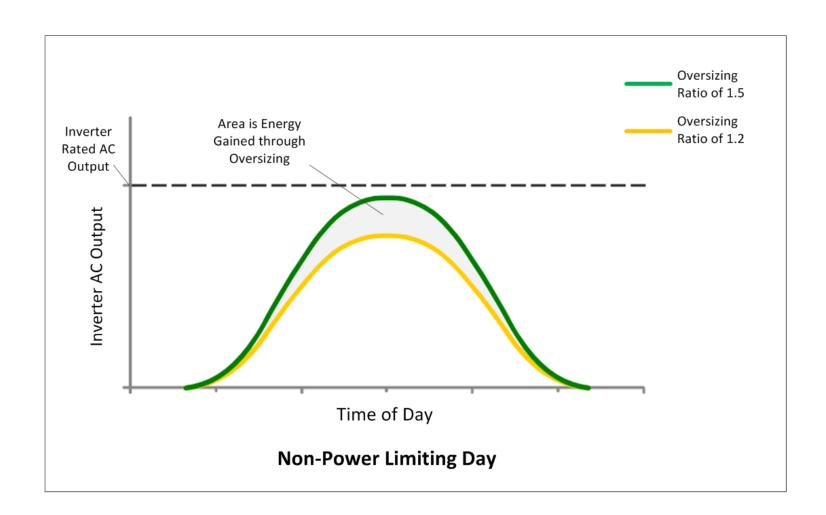
- Design Goal:
 - Optimize Annual Energy Harvest per Panel = Optimize Specific Yield (Annual kWh/kWdc)
 - Little to No clipping
 - Minimal shading

Today:


- Cheaper Module Prices
 - Larger array feeding a fixed size inverter results in greater production
 - Greater production across the same fixed AC costs
- Time-of-Use Utility Rates
 - Generate most energy when it has the most value

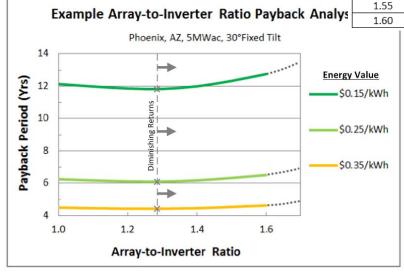
Designers are exploring vary tilt angle and power density and encroaching into shaded regions

Daily Output Profile: Clipping Day



- Oversized systems produce more energy
- Oversized systems match TOU rate structures

Daily Output Profile: Non-Clipping Day

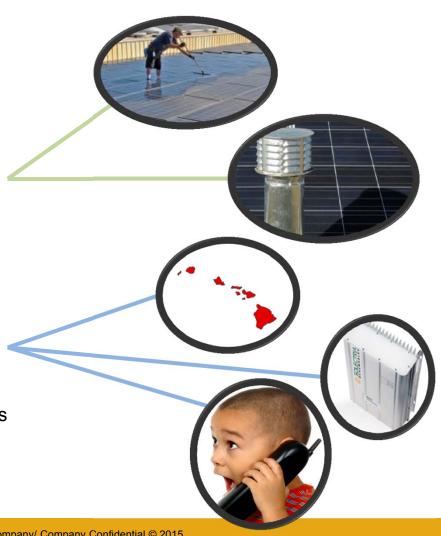


How to determine "Optimal" Array to Inverter Ratio

Perform Oversizing Analysis using simulation program (PVsyst, PV*SOL, SAM) => Feeds Financial Model

Array-to- Inverter Ratio	Array STC Power (MWdc)	Inverter Rated Power (MWac)	Annual Production (MWh/yr)	Specific Production (kWh/kW)	\$/W	LCOE Real (c/kWh)	Payback
1.00	5.00	5	9223	1845	\$3.70	7.48	12.13
1.05	5.23	5	9656	1845	\$3.69	7.44	12.05
1.10	5.50	5	10152	1845	\$3.67	7.41	11.98
1.15	5.74	5	10579	1844	\$3.65	7.39	11.92
1.20	6.01	5	11068	1843	\$3.64	7.36	11.86
1.25	6.24	5	11482	1840	\$3.62	7.35	11.83
1.30	6.51	5	11937	1834	\$3.61	7.35	11.83
1.35	6.74	5	12300	1824	\$3.60	7.37	11.87
1.40	7.01	5	12664	1806	\$3.59	7.42	11.99
1.45	7.25	5	12950	1787	\$3.58	7.48	12.13
1.50	7.52	5	13242	1762	\$3.57	7.57	12.32
1.55	7.75	5	13415	1731	\$3.56	7.68	12.58
1.60	7.98	5	13686	1714	\$3.55	7.75	12.74

Higher or Lower A-I Ratio?


The further away your system is from "Optimal" the Higher the "Best" Array-to-Inverter Ratio

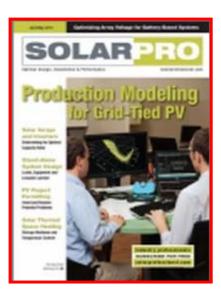
HIGHER Array-to-Inverter Ratios:

- Large Commercial/Utility Scale Projects
- TOU Rate Structure
- Cheaper Modules
- Low/No Tilt Angle
- High Soiling/Don't want to clean
- Off-optimal orientation
- Shading (inter-row, obstructions)
- Fixed ACkW interconnection

LOWER Array-to-Inverter Ratios:

- High Altitude
- Constant "Cooler" temps year round
- Residential Systems, Light Commercial Systems
- Clipping???!!! Customers

Oversizing Reverences


SolarPower World: "Supersize It," J. Fiorelli, M. Zuercher, June 2013

SolarPro Magazine: "Designing for Value in Large-Scale PV Systems," G. Everts and M. LeDucq, June/July 2013

SolarPro Magazine: "Optimal PV-to-Inverter Sizing Ratio," A. Gregg, C. Adcock, B. Brooks, April/May 2010

Voltage Drop

Voltage Drop

DC and AC conductors are sized to meet:

- Code Requirements (NEC)Safety
- Voltage Drop Requirements Performance/Efficiency

Best Practices for Voltage Drop

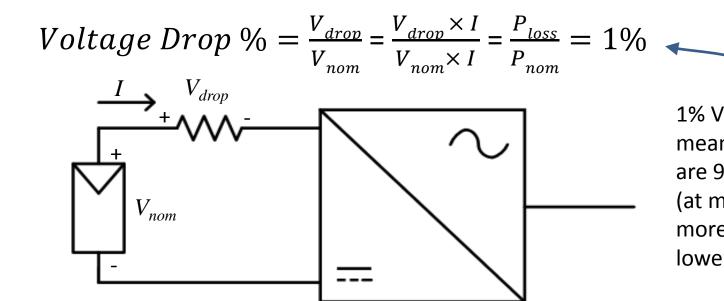
- DC Voltage Drop Limit to 1-1.5%*
- AC Voltage Drop Limit to 0.5 to 1%*

Voltage drop specs are often called out in RFP Spec.

*See next slide

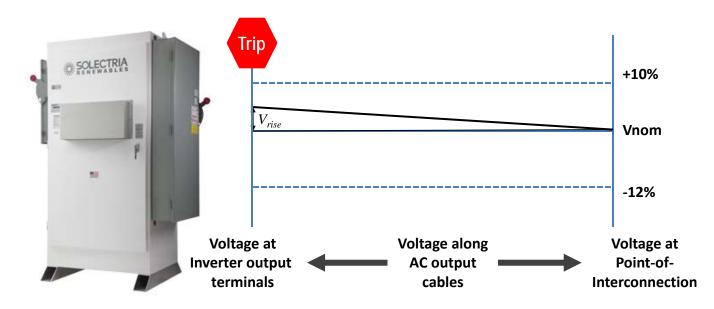
Voltage Drop

*Of course, there are always exceptions....


Why Limit Voltage Drop?

Voltage Drop % is a Power Loss Fraction.

1% Voltage Drop means DC circuits are 99% Efficient (at max power... more efficient at lower power)

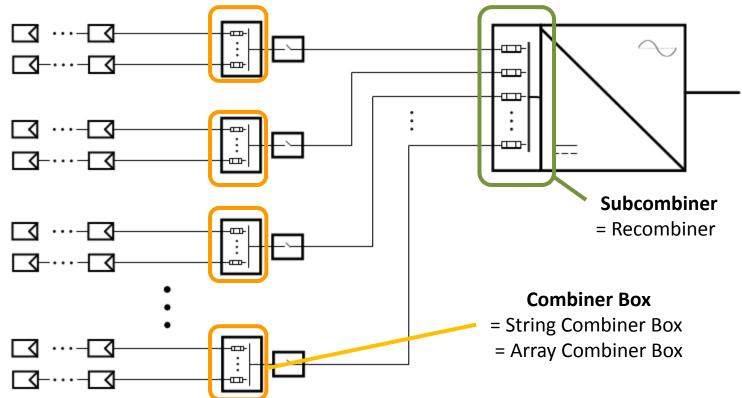

Why Limit Voltage Drop?

Minimize Voltage Rise

The inverter sees the grid voltage <u>plus</u> the AC Voltage Drop. If grid voltage is high and voltage drop is high >>> **Nuisance Tripping**

DC Design – Overcurrent Protection

DC Overcurrent Protection


DC OCPD...Fancy Name for:

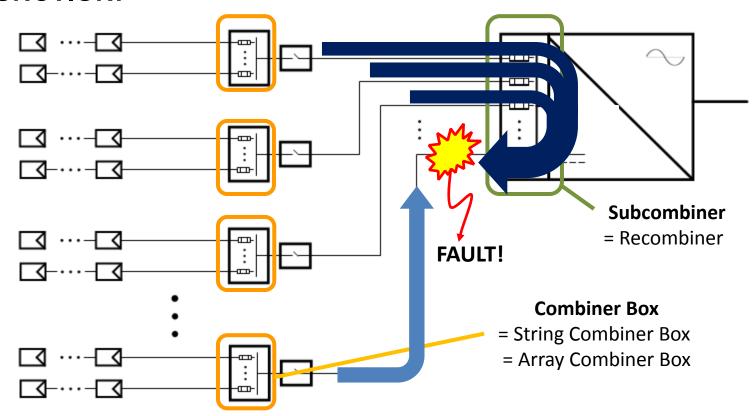
Circuit Breaker

LOCATION: Combiner Boxes and Subcombiner Boxes

FUNCTION:

DC Overcurrent Protection

DC OCPD...Fancy Name for:

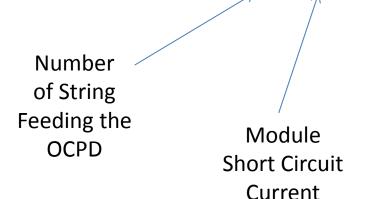


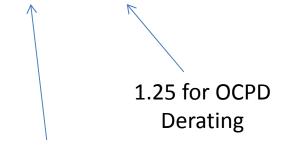
Fuse

Circuit Breaker

LOCATION Combiner Boxes and **Subcombiner Boxes**

FUNCTION: Protects cables


DC Overcurrent Protection



1.56

 $Min. OCPD Size = n \times Isc \times 1.25 \times 1.25$

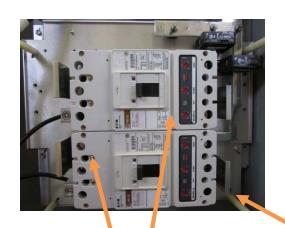
[NEC 690.8]

1.25
Factor for
Increased
Irradiance

Example Calcs:

Isc = 8.46

What is the min. size string fuse?

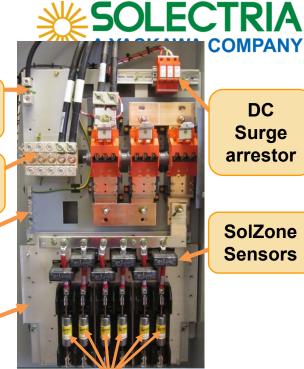

1 x 8.46 x 1.56 = 13.2A=> 15A

What is min. size fuse for 12 string combiner box?

12 x 8.46 x 1.56 = 158.4....=> 175A

Select next standard fuse size up in NEC 240.6

PVI 50-100KW Subcombiner Options

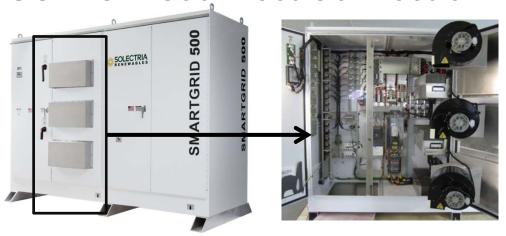


Ground Bars

PV **Negative**

Ground **Bars**

DC Surge arrestor


SolZone **Sensors**

PV Positives, breaker option (2 positions, 300A fuses)

DC DISCONNECT With SUBCOMBINER PV Positives, fuse option (6 positions, 100A fuses)

SPECIFICATIONS	FUSED POSITIONS	FUSE RANGE		
PVI 50/60/75/85/100KW				
	2	225 A, 250 A, 300 A		
Fuses	2, 3, 4	110 A, 125 A, 150 A, 175 A, 200 A		
ruses	2, 4, 6	70 A, 80 A, 90 A, 100 A		
	6, 8	40 A, 50 A, 60A		
	2	225 A, 250 A, 300 A		
Breakers	2, 3, 4	110 A, 125 A, 150 A, 175 A, 200 A		
	2, 3, 4, 5, 6, 7, 8	40 A, 50 A, 60A, 70 A, 80 A, 90 A, 100 A		

SGI DC Disconnect Connection

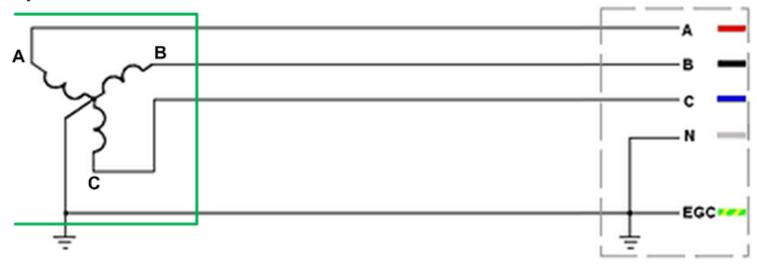
SGI 225/250/266/300		Positions Fuse Ra
	6	225 A, 250 A, 300 A, 350 A, 400 A
Fuses	12	110 A, 125 A, 150 A, 175 A, 200 A
	24	70 A, 80 A, 90 A, 100 A
Breakers	6	225 A, 250 A, 300 A, 350 A, 400 A
Dieakers	12	110 A, 125 A, 150 A, 175 A, 200 A
SGI 500/500PE/500XT		
	8	225 A, 250 A, 300 A, 350 A, 400 A
Fuses	16	110 A, 125 A, 150 A, 175 A, 200 A
	32	70 A, 80 A, 90 A, 100 A
Breakers	8	225 A, 250 A, 300 A, 350 A, 400 A
Dieakeis	16	110 A, 125 A, 150 A, 175 A, 200 A

Current Transducers (CT's)

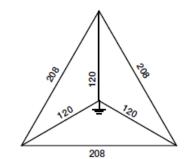
8 Breaker Option (7, 400A; 1, 350A)

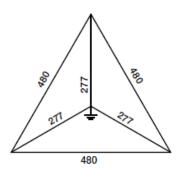
16 Fuse Option (4, 150A; 4, 125A; 8, 175A)

AC Design


Commercial Service Types

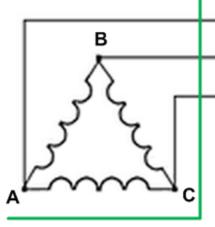
Commercial Service Types: COMMON




3-Phase, Four-Wire Grounded Wye

Utility Service Transformer

Voltage			
Phase-to-Phase	Phase-to-Neutral		
208	120		
480	277		

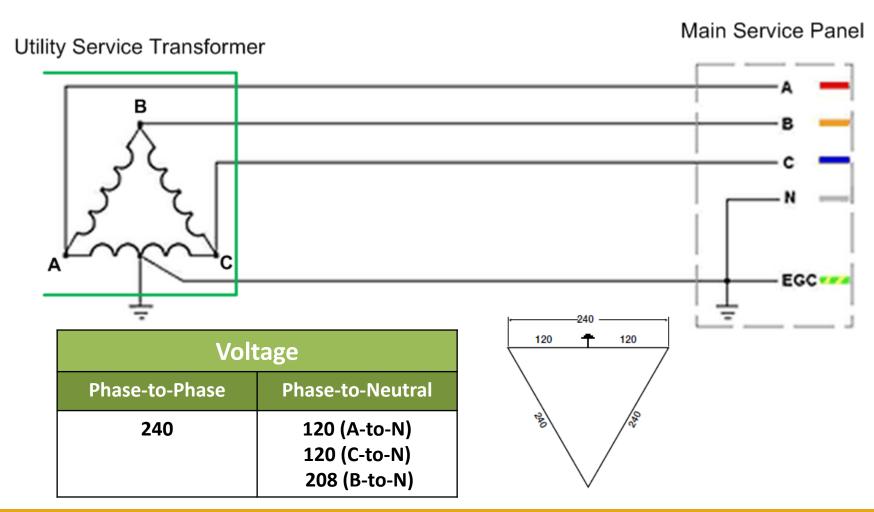

Commercial Service Types: COMMON

3-Phase, Three-Wire Unrounded Delta

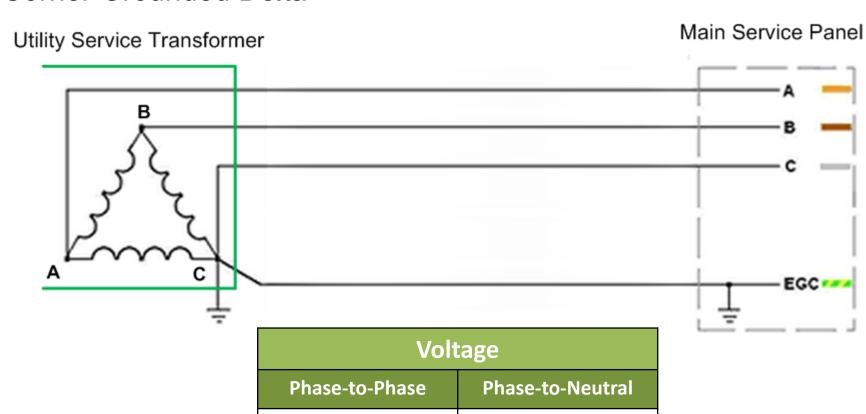

Utility Service Transformer

Main Service Panel

В			^
			В —
1 25 -			c
13 2			
A Pomy			
A C	J		EGC
			¦ ÷
	Voltago	490/240/209	


Voltage					
Phase-to-Phase	Phase-to-Neutral				
208					
240					
480					

Commercial Service Types: UNCOMMON

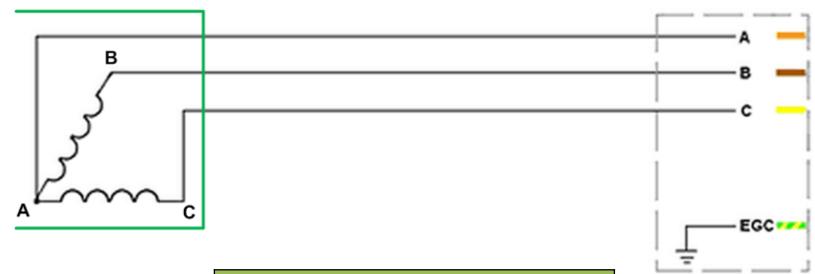

High-Leg Delta (Red Leg, Wild Leg, Bastard Led Delta, Crazy Leg)

Commercial Service Types: UNCOMMON

Corner Grounded Delta

240

480


Commercial Service Types: UNCOMMON

Open Delta

Utility Service Transformer

Voltage						
Phase-to-Phase	Phase-to-Neutral					
240						
480						

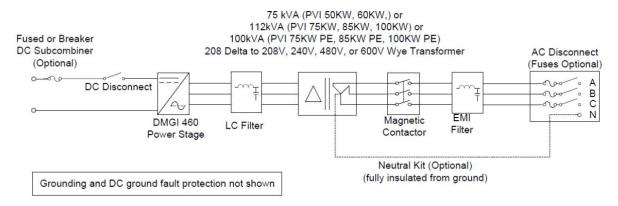
Commercial Service Types:

SERVICE TYPE	NOTES	SUPPORTED?
Grounded Wye	Most common type of 480V, 208V service	Υ
Ungrounded Delta	Common for 480V, 240V, 208V motor control centers	Υ
High-Leg Delta	240V service sometimes found in agricultural and older urban areas	Y
Corner Grounded Delta	Uncommon	N
Open Delta	Uncommon	N

Commercial Service Types:

How to confirm the electrical service type?

- Transformer/Transformer Nameplate
- Call Utility
- Have qualified person measure all voltages line-to-line and line-to-ground



...Also confirm kVA rating of utility transformer...

Is a Neutral Required?

- Solectria inverters output balance three-phase current, as a result a neutral is not required for inverter operation
- If required by a utility (for effective grounding or establishing ground reference), Solectria PVI 50-100 and SGI 225-500 are available with 4-Wire Option, where neutral connection point is solidly connected to the isolation transformer neutral point.
- When connecting the inverter as a 4-wire device currents may flow on neutral due to voltage imbalance and harmonics on the distribution line feeding the site.
- Size Neutral conductor cable equal to line conductors.

Example Inverter Block Diagram (from PVI 50-100KW Manual)

What About on TL Inverters???

- 3 Phase Solectria TLs often require a neutral reference.
 - The PVI -20 TL is the only inverter in the 3 phase TL family that can work with a 480V Delta or WYE
 - The PVI-14, 23, 28 TL inverters do require a neutral reference.
 - The neutral IS NOT a current carrying conductor! > Can be sized differently than other conductors.

Bonding Jumper between ground and the neutral terminal has been tested and CAN work but not recommended.

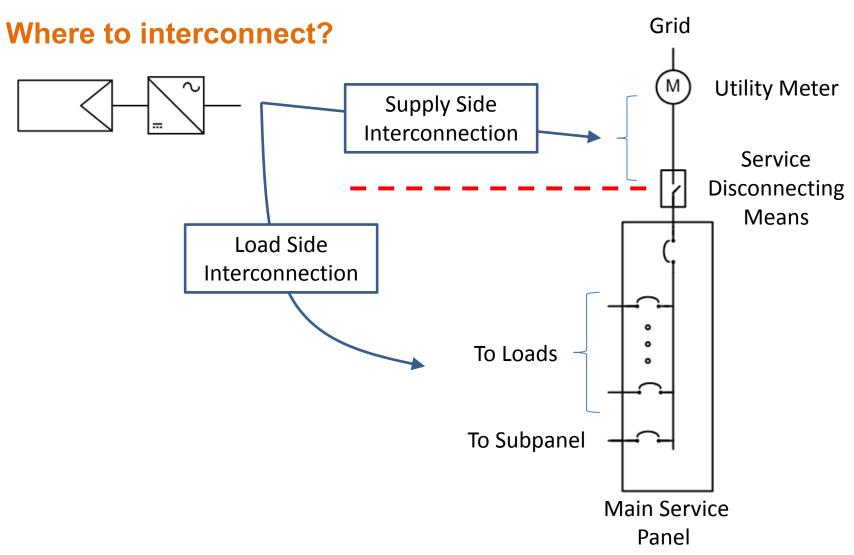
- Likelihood that installers will double up wire in terminals
- Has been know to not always provide the appropriate neutral reference.

Solectrial Recommendation: Plan on a neutral conductor for sensing

AC Design - Interconnections

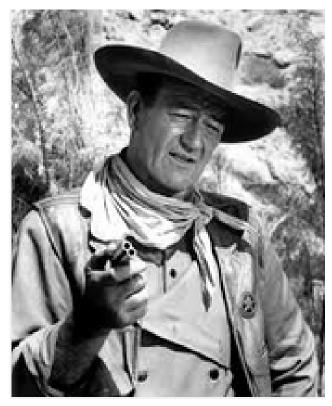
Interconnections

One of the factors that can limit the size of a project....


Limiting Factors (Design Constraints)

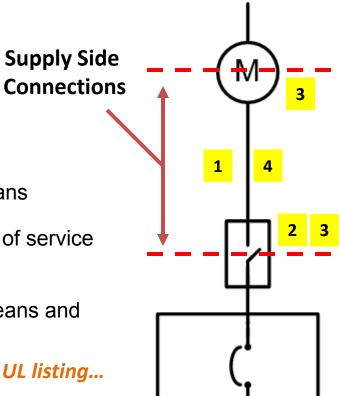
- Interconnection
 - Existing Electrical Infrastructure (Service Rating, Utility Transformer, Interconnection Panel...)
 - Utility
- Space/Area
- Budget
- Utility

Interconnection Types



Rules of Interconnections

- NEC 2011 and 2014 Found in 705.12
- NEC 2008 Found in 690.64


Them's the rules!

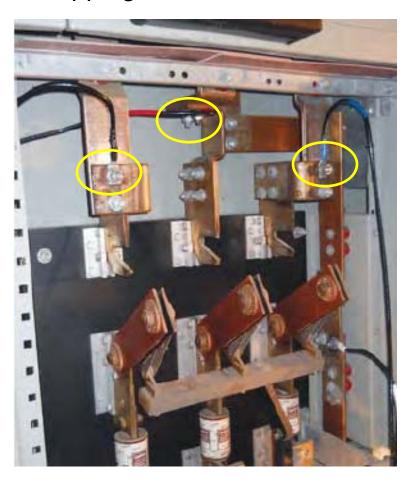
- = "Line Side Connection" = "Line Side Tap"
- Between Utility Meter and Service Disconnecting Means
- Connection made via:
- Splicing Utility Feeder Conductors
- 2. Tapping bus bars on line side of service disconnecting means
- Double Lugging on load side of utility meter or on line side of service disconnect
- Junction Box between meter and service disconnecting means and installing junction box with terminal block

Check with manufacturer to find out what is allowed per UL listing...

Work with the utility b/c you'll have to disconnect power...

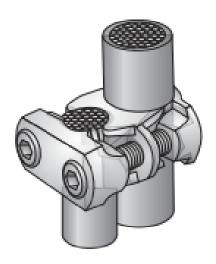
SOLECTRIA A YASKAWA COMPANY

1. Splicing Utility Feeder Conductors



Insulation Piercing Tap Connector

2. Tapping bus bars on line side of service disconnecting means



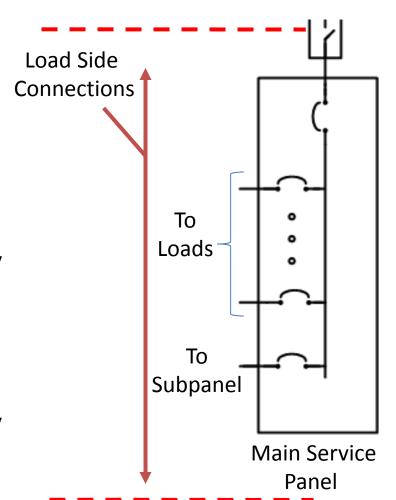
3. Junction Box between meter and service disconnecting means and installing junction box with terminal block

Polaris
Insulating Terminal Block

Gutter/Parallel Tap
Connector

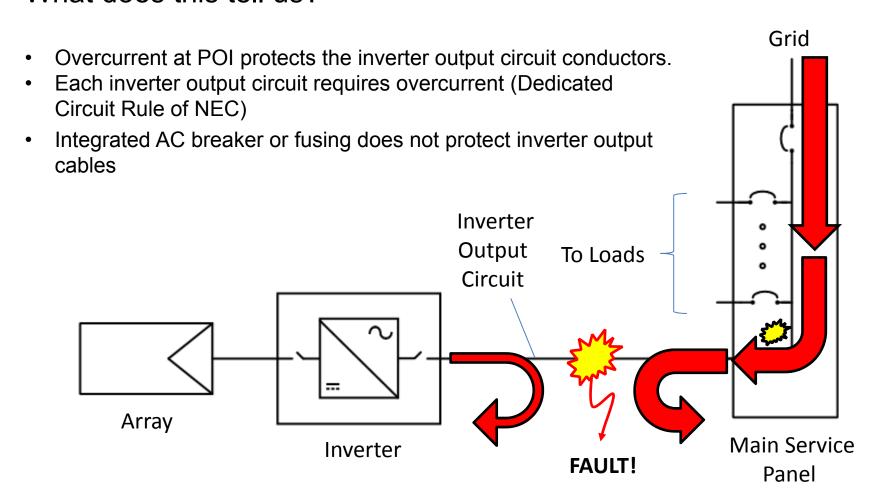
Supply Side Connections (Cont.)

- Must also follow rules of NEC 230 "Services"
- Service disconnecting means shall have of at least 60A rating (230.79(D)) (Smaller fuses can be used)
- Six Switch Rule (230.71)?
- Overcurrent protection must be integrated or adjacent to the disconnecting means (230.91)
- Min conductor size of #8 Cu and #6 Al between point of connection and disconnect (230.23(B), 230.31(B)) (60A disco will require #2 terminals anyways)


OTHER RULES

- kAIC of overcurrent protection devices must exceed available fault current from the service (110.9 and 110.10)
- **LIMITING FACTOR:** Sum of overcurrent protection devices from power producing sources can't exceed the rating of the service (705.12(A))
- CHECK WITH YOUR UTILITY for additional requirements (ex. Lockable disconnect, Location... Labeling)

Load Side Connections


- NEC 705.12(D)
- Typically backfeeding a breaker
 - Breaker must be suitable for backfeeding
- Connection can be made in any distribution equipment (subpanel)
- Dedicated circuit breaker/fused disconnect
- 120% Rule Breakers from sources feeding a panel can exceed panel rating by 120%
 - Panel must be labeled that it is supplied by multiple sources
 - Can downsize the main breaker in some cases
 - 120% Does not apply to combining panel
 - When 120% rule limits system size (supply side connection)
- Ground fault breaker must be suitable for backfeed

Understanding Interconnections

What does this tell us?

Other Design Topics

Ungrounded Systems

Ungrounded Systems

Also called "Floating Systems," but not this type!!!

Far Niente Winery, Oakville, CA, Napa Valley, ~400kW across land and lake

3-P String vs. Central Inverters There are many considerations...

- DC Wiring
- DC Wiring Type
- Combiner Boxes
- AC Combining Panel
- AC Collection System
- Mounting (wall vs. pad)
- Communications Wiring
- Monitoring Granularity
- Ground Fault
- Arc Fault
- PID
- Full Power Temp
- Wire Coloring
- Wiring Isolation?
- Central Point of Utility Control
- Weight
- Shipping Cost
- Efficiency
- Oversizability

- MPPT Range
- String Balancing
- NEMA Rating
- Design Flexibility
- Failure Points/Part Count
- Noise
- Permitting
- AC Voltage
- 1000Vdc Module?
- DC Disconnects
- · Revenue Grade Metering
- Utility Acceptance
- Protective Relaying
- Remote Shutdown
- Mismatch Losses
- MPPT Range
- Commissioning
- Service
- O&M

PVI 14TL, 20TL

PVI 50-100KW

Topics Covered

- Examine \$/W vs. kW for String and Central Architectures
- Architecture Considerations
 - Performance
 - Monitoring
 - Design
 - Other (Code, Safety, PID, EG)

Project Specific Variability

- Inverter Pad/Mounting Costs
- Monitoring/Metering Level
- Home runs length (Roof-to-ground length)
- Arc-fault
- Ground Fault
- Rapid Shutdown
- Effective Grounding
- PID

Why 480Vac?

- DC circuits are sized to:
 - 1.25 x 1.25 x Short Circuit Current =
 - 1.25 x 1.25 x 1.1 x DC Rated Current =
 - 1.72 x "Rated Current"
- AC circuits are sized to:
 - 1.25 x Rated Current
- 3-phase system is better use of conductor than a 1-phase system even at 1000V
- DC Combining gear is more expensive than AC combining gear
- Run favors AC even considering ground conductor and <u>communications cable/conduit</u>.
- Exception: Very long run (due to need to upsize for voltage drop)

AC run has:

- Less Cable Volume
- Smaller conduits

Why 480Vac - Example

Module:	290	W
Isc:	8.64	Α
String Size:	18	modules
No. Strings:	8	strings
kWdc	41.8	kWdc
kWac	34.8	kWac

	POWER CABLES											
	Min. Ampacity	Min. Cable - Alumium, 90C	Ampacity	\$/ft	No. Conductors	Subtotal, \$/ft	Cross Sectional Area Per Cable (mm2)	Cross Sectional Area Total (mm2)	Min. Ground Cable (AI)	\$/ft	Total, \$/ft	
1000V	108.0	1AWG	115	0.800	2	1.60	42.4	84.82	4AWG	0.545	2.15	
480V	52.3	6AWG	55	0.325	3	0.98	13.3	39.90	6AWG	0.325	1.30	

	POWER CONDUIT	COMN	TOTAL						
	Conductors	Min. Conduit (EMT)	\$/ft	Cable	\$/ft	Conduit	\$/ft	Total \$/ft	\$/ft
1000V	2 x 1AWG, 1 x 4AWG	1.25"	2.82	NA	\$0.00	NA	\$0.00	\$0.00	\$4.97
480V	4 x 6AWG	3/4"	0.96	CAT 5	\$1.00	1/2"	\$0.62	\$1.62	\$3.88

Project Specific Variability

- Inverter Pad/Mounting Costs
- Monitoring/Metering Level
- Home runs length (Roof-to-ground length)
- Arc-fault
- Ground Fault
- Rapid Shutdown
- Effective Grounding
- PID

Why 480Vac?

- DC circuits are sized to:
 - 1.25 x 1.25 x Short Circuit Current =
 - 1.25 x 1.25 x 1.1 x DC Rated Current =
 - 1.72 x "Rated Current"
- AC circuits are sized to:
 - 1.25 x Rated Current
- 3-phase system is better use of conductor than a 1-phase system even at 1000V
- DC Combining gear is more expensive than AC combining gear
- Run favors AC even considering ground conductor and <u>communications cable/conduit</u>.
- Exception: Very long run (due to need to upsize for voltage drop)

AC run has:

- Less Cable Volume
- Smaller conduits

Why 480Vac - Example

Module:	290	W
Isc:	8.64	Α
String Size:	18	modules
No. Strings:	8	strings
kWdc	41.8	kWdc
kWac	34.8	kWac

	POWER CABLES											
	Min. Ampacity	Min. Cable - Alumium, 90C	Ampacity	\$/ft	No. Conductors	Subtotal, \$/ft	Cross Sectional Area Per Cable (mm2)	Cross Sectional Area Total (mm2)	Min. Ground Cable (AI)	\$/ft	Total, \$/ft	
1000V	108.0	1AWG	115	0.800	2	1.60	42.4	84.82	4AWG	0.545	2.15	
480V	52.3	6AWG	55	0.325	3	0.98	13.3	39.90	6AWG	0.325	1.30	

	POWER CONDUIT	COMN	TOTAL						
	Conductors	Min. Conduit (EMT)	\$/ft	Cable	\$/ft	Conduit	\$/ft	Total \$/ft	\$/ft
1000V	2 x 1AWG, 1 x 4AWG	1.25"	2.82	NA	\$0.00	NA	\$0.00	\$0.00	\$4.97
480V	4 x 6AWG	3/4"	0.96	CAT 5	\$1.00	1/2"	\$0.62	\$1.62	\$3.88

Performance

3φ-String Inverters

- Efficiency 0% to 1% CEC Efficiency Gain
- *Minor Benefit* Lower Mismatch Losses
- *Minor Benefit* Lower Start Voltage
- Array may be susceptible to PID
- Downtime: More failures/shorter duration/duration of downtime may vary (higher percentage of the array that down, the short the downtime)

Central Inverters

- Array not susceptible to PID
- Downtime: Less failures/shorter duration/greater percentage of the system down

<u> 3ф-String Inverters</u>

- String Sizing/Layout Flexibility Tied to More/Smaller MPPT Zones
- Standardize designs with a certain product

Central Inverters

- Greater sub-array size flexibility tied to subcombiner fuse size increments
- Oversizing flexibility allows optimization array-to-inverter ratio
- Granular inverter increments with Solectria PVI/SGI

- 3φ-String Inverters have an 8 string input
- Racking designed around 8 strings per row allows for scalable "cookie cutter" designs

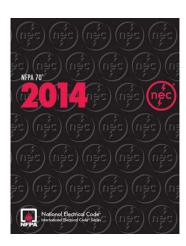
30MW: Qty. 504- PVI 82kW Inverters

- Depending on system size, a distributed approach can still be achieved with "Central" inverters.
- Redundancy is based on number of inverters, not inverter kW rating.

installed in carports made inaccessible require additional planning for service

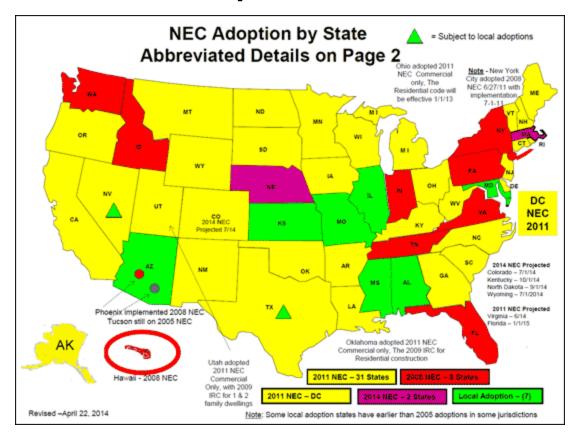
New/Imminent Code Requirements

SOLECTRIA A YASKAWA COMPANY


NEC 2011

- Arc Fault (690.11)
- Fuse Servicing Disconnects (690.16)

N F P A 7 0° 8 2011 National Electrican Condrivatement States


NEC 2014

- Grounded Conductor Ground Fault (690.5)
- Rapid Shutdown (690.12)

NEC 2014 Adoption

	A TASKAWA COMPAN
State	Projected Effective Date
<u>Alabama</u>	June 2014 (for the Alabama Electrical
	Contractors Board for testing purposes only)
<u>Alaska</u>	TBD
<u>Arkansas</u>	TBD
<u>Colorado</u>	July 1, 2014
Connecticut	TBD
Georgia	January 1, 2015
<u>Hawaii</u>	TBD
<u>Idaho</u>	July 1, 2014
<u>Iowa</u>	January 1, 2015
<u>Kentucky</u>	July 1, 2014
<u>Maine</u>	July 1, 2014
<u>Massachusetts</u>	In effect as of January 1, 2014
<u>Michigan</u>	To be determined
<u>Minnesota</u>	July 1, 2014
<u>Montana</u>	September 1, 2014
<u>Nebraska</u>	July 15, 2014
New Hampshire	January 1, 2015
New Jersey	TBD
New Mexico	July 1, 2014
North Carolina	TBD
North Dakota	September 1, 2014
<u>Ohio</u>	January 1, 2015
<u>Oklahoma</u>	TBD
<u>Oregon</u>	October 1, 2014
Rhode Island	July 1, 2014
South Dakota	July 1, 2014
Texas	September 1, 2014
<u>Utah</u>	To be determined
Vermont	June 1, 2014
<u>Washington</u>	July 1, 2014
Wyoming	July 1, 2014

- MA and NB are the <u>ONLY</u> states that have adopted 2014 code thus far
- NEC 2014 adoption varies state by state
 - By the end of 2014, 18 states plan to adopt NEC 2014

Ground Fault Detection

- 3φ-string inverters have residual ground fault detection.
 - Shorter DC runs decreases likelihood of ground fault.
- 2014 NEC requires grounded conductor (Blind-spot) ground fault detection.
- During ground fault only 3\$\phi\$ inverter is taken offline rather than the entire array.
 - Better system uptime
 - More focused troubleshooting

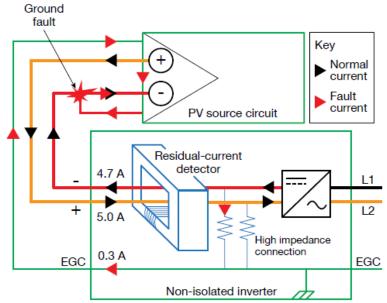
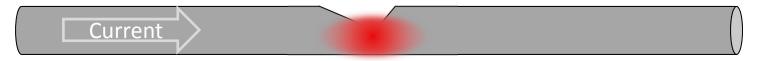
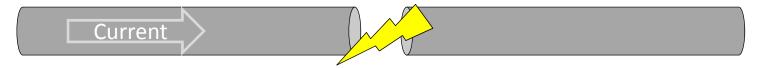


Figure from "Ungrounded PV Power Systems in the NEC," SolarPro, Aug./Sept. 2012


Arc-Fault Detection

What is an arc-fault?



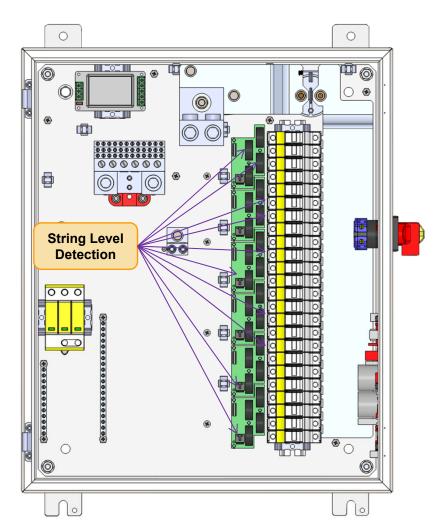
Healthy Wire

- The same amount of current must flow through a smaller conductor
- Conductor heats up and eventually melts

- Air Ionizes and plasma allows current to flow across the gap
- Temperatures can reach 9000 degrees Fahrenheit

690.11 ARC-Fault Circuit Protection (Direct Current)

- Photovoltaic Systems with dc source circuits, dc output circuits, or both, operating at a PV system maximum system voltage of 80 volts or greater, shall be protected by a listed (dc) arc-fault circuit interrupter, PV type, or other system components listed to provide equivalent protection. The PV arc-fault protection means shall comply with the following requirements:
 - (1) The system shall detect and interrupt arcing faults resulting from a failure in the intended continuity of a conductor, connection, module, or other system component in the dc PV source and dc PV output circuits.


(2) The system shall require that the disabled or disconnected equipment be manually restarted.

(3) The system shall have an annunciator that provides a visual indication that the circuit interrupter has operated. This indication shall not reset automatically.

Maximize SNR to Minimize Nuisance Tripping

- NEC 690.11 requires manual reset
- Every arc-fault trip requires a truck roll
- ARCCOM has undergone 1 year of product compatibility testing to minimize nuisance tripping.
- Single sensor, reflection based technology is significantly more prone to nuisance tripping and more costly to maintain

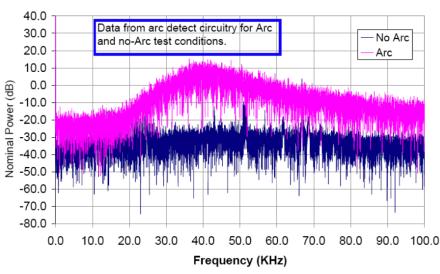
690.11 ARC-Fault Circuit Protection (Direct Current)

- Photovoltaic Systems with dc source circuits, dc output circuits, or both, operating at a PV system maximum system voltage of 80 volts or greater, shall be protected by a listed (dc) arc-fault circuit interrupter, PV type, or other system components listed to provide equivalent protection. The PV arc-fault protection means shall comply with the following requirements:
 - (1) The system shall detect and interrupt arcing faults resulting from a failure in the intended continuity of a conductor, connection, module, or other system component in the dc PV source and dc PV output circuits.

✓ ARCCOM is listed to UL1699B

(2) The system shall require that the disabled or disconnected equipment be manually restarted.

✓ ARCCOM must be manually restarted


(3) The system shall have an annunciator that provides a visual indication that the circuit interrupter has operated. This indication shall not reset automatically.

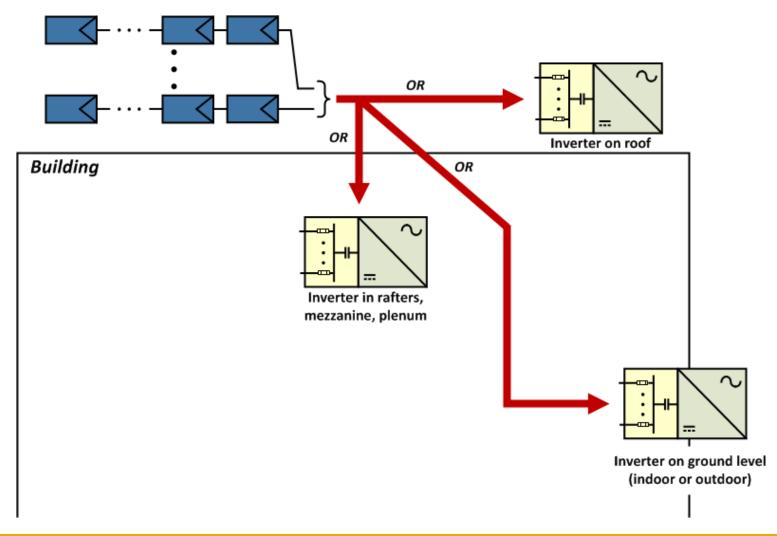
✓ ARCCOM includes audible buzzer, LEDs, and auxiliary contact

Arc-Fault Detection

- 3φ-String Inverters have integrated arc-fault detection.
 - Fault is isolated to one inverter
- Central inverters require arc-fault combiners
 - Fault is isolated to the arc-fault string combiner

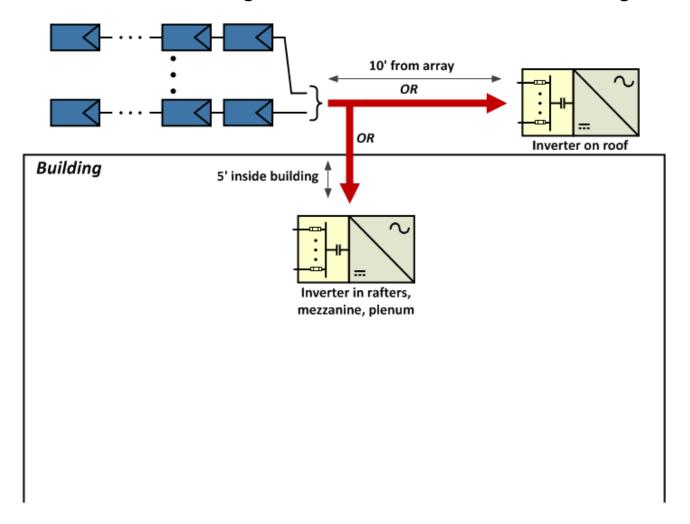
Source- Implementing Arc Detection in Solar Applications
Brett Novak. Texas Instruments

690.12 (C) Facilities with Rapid Shutdown

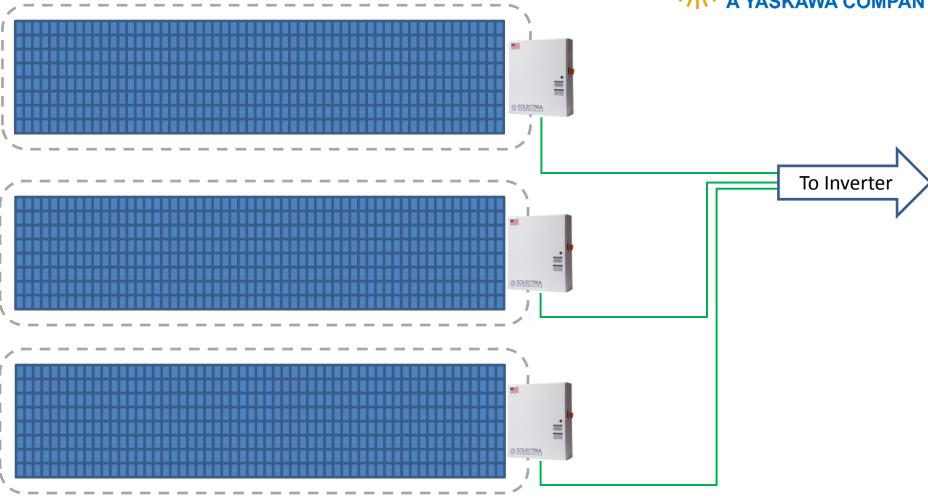


- NEC 690.12 (C) states: PV system circuits installed on or in buildings shall include a rapid shutdown function that controls specific conductors in accordance with 690.12(1) through (5) as follows:
 - (1) Requirements for controlled conductors shall apply only to PV system conductors of more than 1.5m (5 ft) in length inside a building , or more than 3m (10 ft) from a PV array.
 - (2) Controlled Conductors shall be limited to not more than 30V and 240 volt-amperes within 10 seconds of rapid shutdown initiation.
 - (3) Voltage and power shall be measured between any conductor and ground
 - (4) The rapid shutdown initiation methods shall be labeled in accordance with 690.56(B)
 - (5) Equipment that performs the rapid shutdown shall be listed and identified.

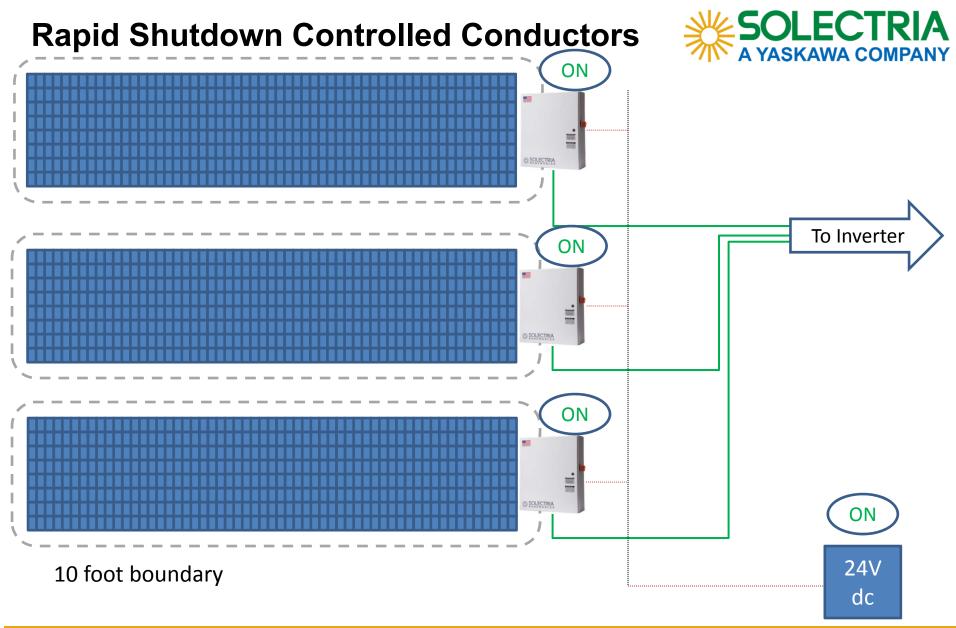
2011 NEC – Rapid Shutdown Not Required

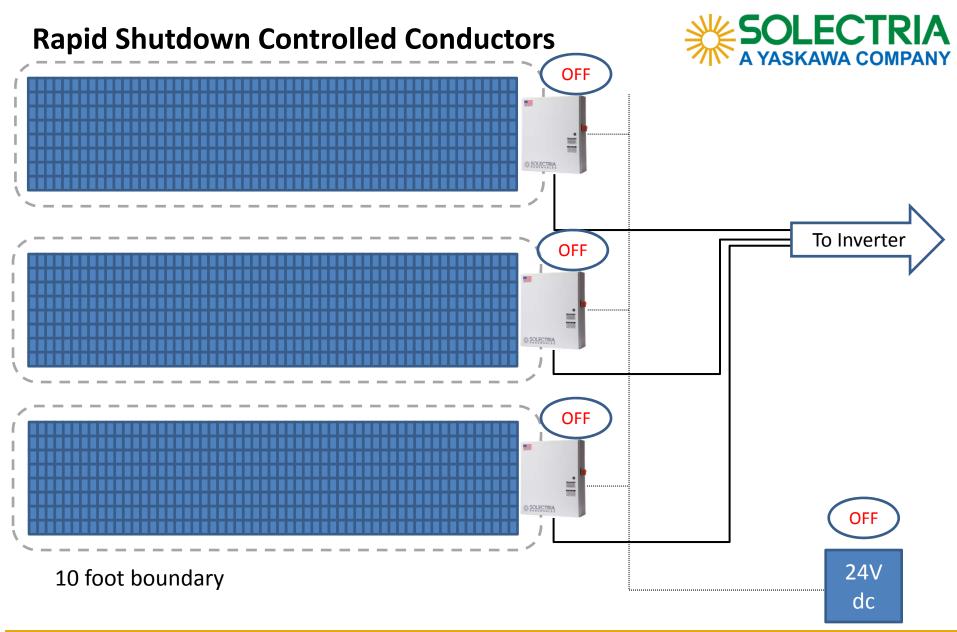

Rapid Shutdown does not impact string inverter location

2014 NEC Compliance by Shutdown at String Inverter

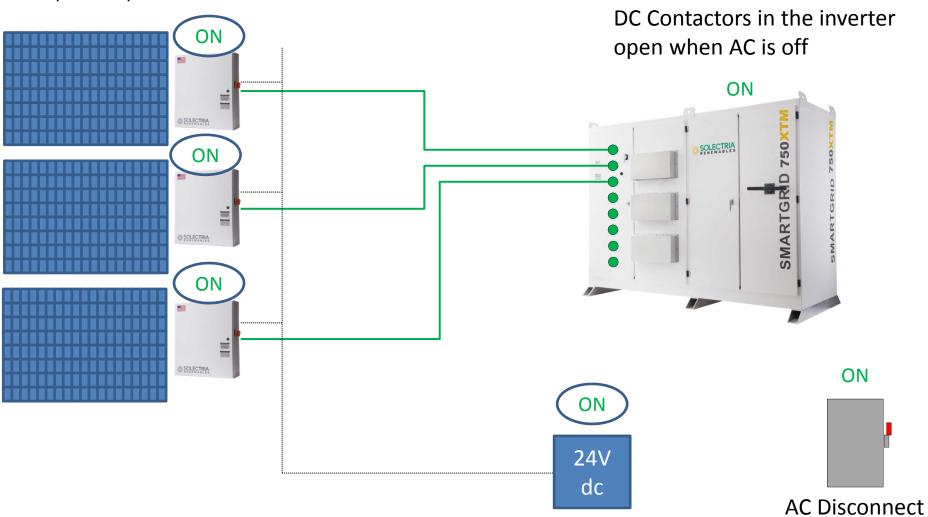


Rapid Shutdown restricts string inverter location. Difficult servicing.

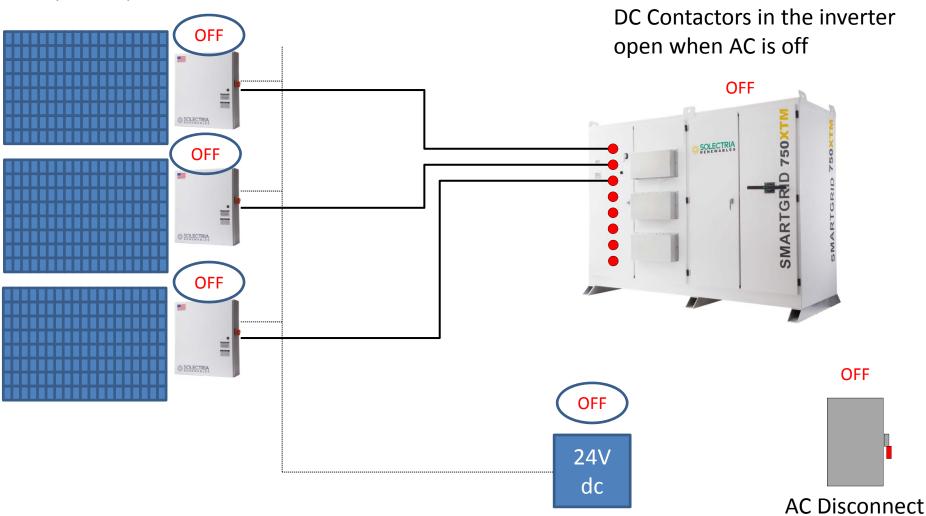



Rapid Shutdown Controlled Conductors

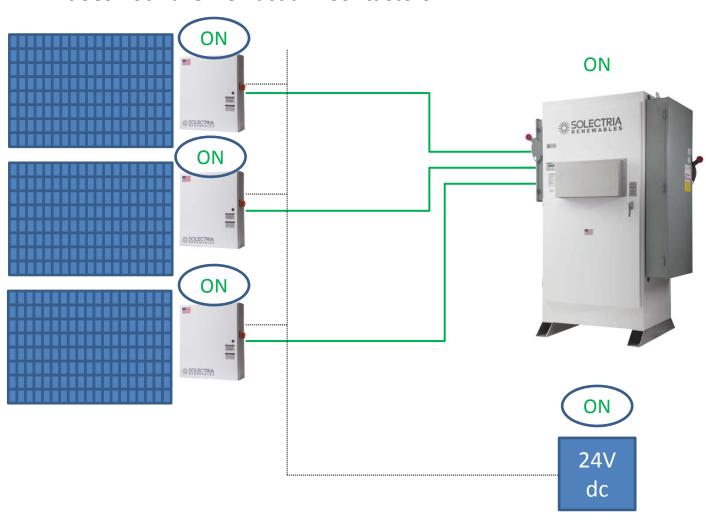
10 foot boundary



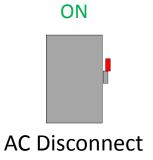
DC Bus Capacitance


SGI, SGI XT, and SGI XTM all have DC Vacuum Contactors

DC Bus Capacitance


SGI, SGI XT, and SGI XTM all have DC Vacuum Contactors

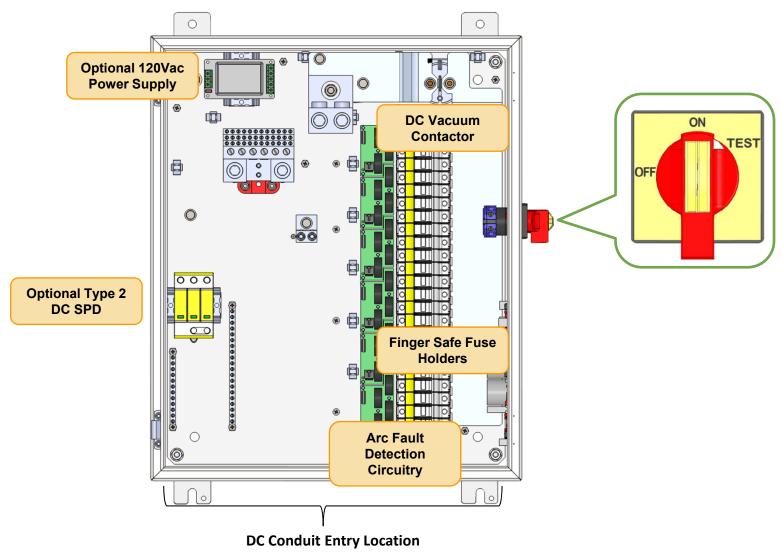
DC Bus Capacitance



PVI does not have DC Vacuum Contactors

DC Bus Capacitance must discharge within 10s

PVI does this in 2.5s



SOLECTRIA A YASKAWA COMPANY **Controlled Conductors with 3-Phase String Inverters** ON To Panelboard ON ON ON 10 foot boundary **AC Disconnect**

SOLECTRIA **Controlled Conductors with 3-Phase String Inverters OFF** To Panelboard **OFF OFF OFF** 10 foot boundary **AC Disconnect**

Inside the ARCCOM

690.12 (C) Facilities with Rapid Shutdown

- NEC 690.12 (C) states: PV system circuits installed on or in buildings shall include a rapid shutdown function that controls specific conductors in accordance with 690.12(1) through (5) as follows:
 - (1) Requirements for controlled conductors shall apply only to PV system conductors of more than 1.5m (5 ft) in length inside a building , or more than 3m (10 ft) from a PV array.
 - ✓ Achieved by Inverter/ ARCCOM placement
 - (2) Controlled Conductors shall be limited to not more than 30V and 240 volt-amperes within 10 seconds of rapid shutdown initiation.
 - ✓ Achieved by Inverter Shutdown or DC Contactors in the ARCCOM
 - (3) Voltage and power shall be measured between any conductor and ground
 - ✓ No shorting out or free-floating the array to achieve 30V
 - (4) The rapid shutdown initiation methods shall be labeled in accordance with 690.56(B)
 - ✓ Provide a placard with the prescribed phrasing
 - (5) Equipment that performs the rapid shutdown shall be listed and identified.
 - ✓ TL Inverters and ARCCOM are listed

690.56 Identification of Power Sources

(C) Facilities with Rapid Shutdown Buildings or structures with both utility service and a PV system complying with 690.12 shall have a permanent plaque or directory including the following wording:

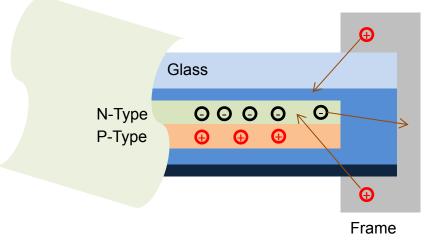
PHOTOVOLTAIC SYSTEM EQUIPPED WITH RAPID SHUTDOWN

The plaque or directory shall be reflective, with letters capitalized and having a minimum height of 9.5mm (3/8 in.), in white on red background.

PHOTOVOLTAIC SYSTEM EQUIPPED WITH RAPID SHUTDOWN

Where do you put this?

Potential Induced Degradation (PID)

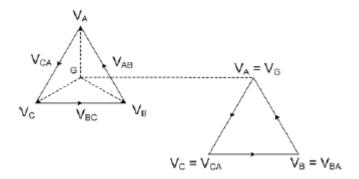


3ф-String Inverters – Ungrounded Arrays/Bipolar

- Ungrounded arrays may be susceptible to PID.
- PID "offset" box can be used to reverse the effects of PID

Central Inverters – Grounded Arrays

Grounded Arrays do not experience PID.



Effective Grounding

<u>3φ-String Inverters</u>

Require grounding transformer for effective grounding

Central Inverters

Can be effectively grounded via 4-wire solid ground (neutral kit),
 4-wire impedance ground (grounding reactor), 3-wire with grounding transformer

Smart Inverter Functions

...PF adjustment, Ramp Rate, Curtailment, Volt-VAR

<u>3φ-String Inverters</u>

- Have smart inverter functions
- Multiple points of communication and control

Central Inverters

- Have advanced smart inverter functions
- Single point of communication and control

Service and Warranty

SOLECTRIA A YASKAWA COMPANY

<u>3φ-String Inverters</u>

- Service Frequency: More points of failures
 => More visits (may not be more frequent)
- Smaller percentage of system effected
- Duration of Downtime: Shorter
- Service: "Rip and Replace," Replacing on roof may be a challenge.

Service and Warranty

Central Inverters

Service Frequency: Fewer points of failure => Fewer visits

Larger percentage of system effected

Duration of Downtime: Longer

Service: Manufacturer Trained Rep

Warranty: 5 year

What Architecture is Best?

- The "best" architecture is the one that optimizes the financial performance of the project.
- Financial performance is determined by:
 - ✓ Engineering Cost
 - ✓ Installation Cost (Equipment and Labor)
 - ✓ Performance/Uptime

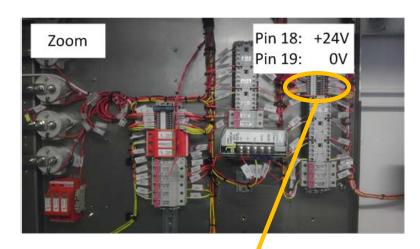
Answer: It depends. Best architecture will be project specific.

Advanced Inverter Features

Remote Shutdown

Why remotely shut down the inverter?

- Utility control
- Disabling inverter during back-up generator operation
- Integrating with Relaying
 - AC Relaying Protective Relaying
 - DC Relaying Residual ground fault detection systems
- Integration with BMS/Sprinkler System


Remote Shutdown

- PVI 50-100 and SGI 225-500 inverters come standard with a 24V isolated Digital Input terminals to shut down the inverter
- How is works:
 - o Apply 24V to terminals → Inverter shuts down
 - Remove 24V from terminals → Inverter waits for 5min of stable grid, then resumes conversion
- Shutdown rate is adjustable 4 sec (default), As fast as 0.16s
- Other options for remote shutdown
 - Modbus RTU/RS-485
 - Shunt Trip (not available in all models)

Remote Shutdown

24V Remote Shutdown Terminals

Solectria Commercial Inverter Solutions

PVI 14TL & PVI 20TL

Industry Buzz...

"Transformerless?" Yes!

For "Ungrounded/Floating Arrays?" Yes!

"3-Phase String?" Yes!

Models

PVI 14TL – 14kWac (600Vdc, 208Vac)

PVI 20TL - 20kWac (600Vdc, 480Vac)

PVI 14TL/20TL Features

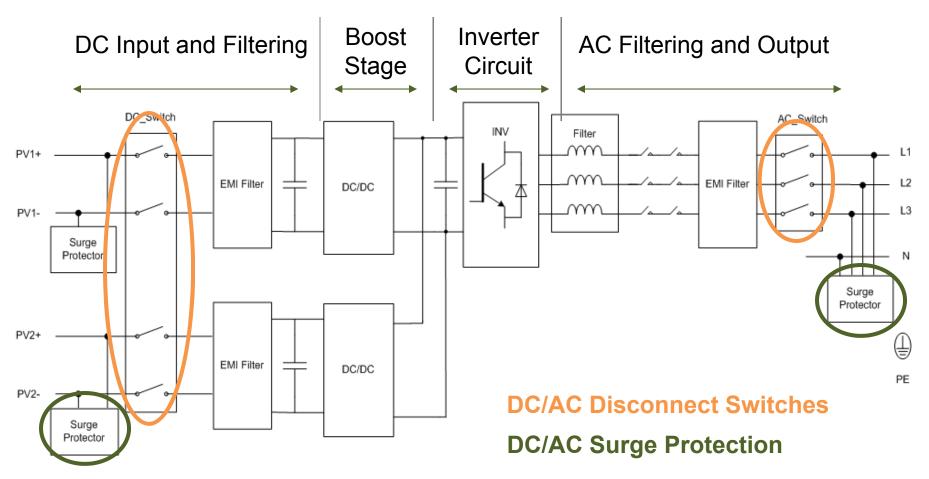
SOLECTRIA A YASKAWA COMPANY

- 600 or 1000 VDC
- Best-in-class efficiency
- Three-phase transformerless inverters
- Quick and easy installation
- Dual MPP tracking zones
- Wide MPPT range
- Lightweight, compact design
- Modbus communications
- User-interactive LCD
- Wall mount configuration

Options

- Integrated DC fused string combiner
- o DC arc-fault protection
- Web-based monitoring

Applications

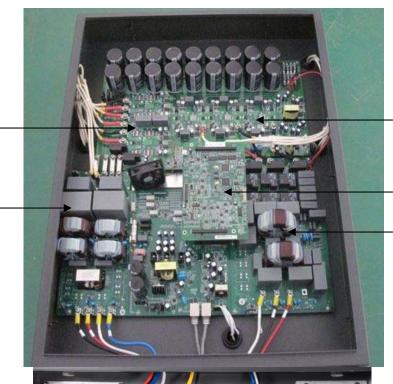


- Light Commercial Systems
- Systems with Multiple Tilt Angles/Orientations
- Complex Layouts
- Limited Space for Central Inverter
- Carports
- Utility Scale Trackers

Inverter Topology

*DC +/- Fusing Not Shown

Design



Boost Circuits

DC filter

DC string fuses and surge arrestors

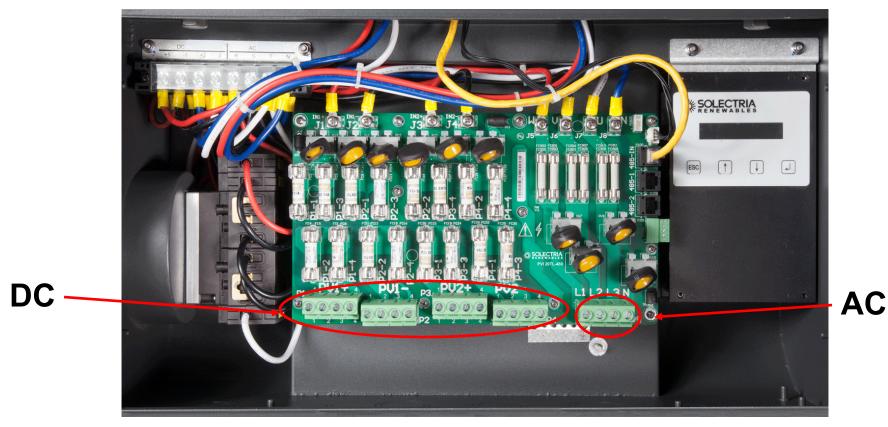
DC/AC Switch

*DC Fuse Pullers Not Shown

Inverter

Main control board

AC filter


AC fuses and surge arrester

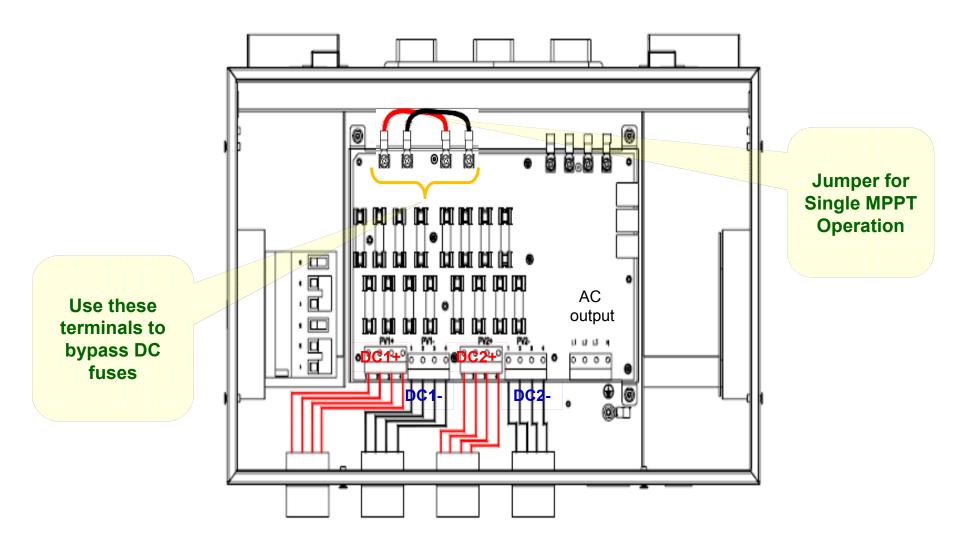
SolrenView Web Monitoring Hardware

Wiring Box

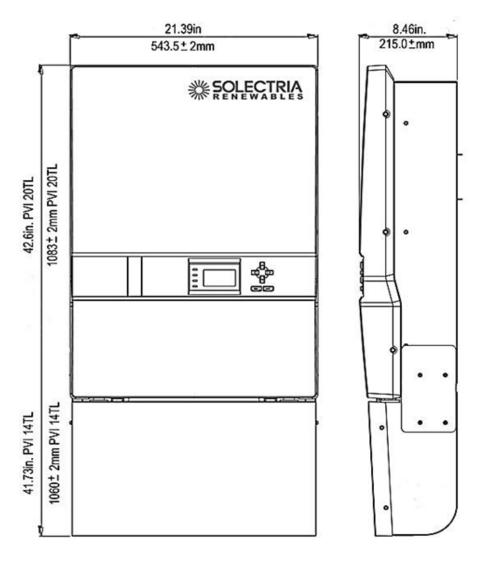
DC and AC Wiring Connection Terminals
*DC Fuse Pullers Not Shown

- High CEC and Peak Efficiencies
- Dual MPPT Zones

PVI 14TL >>> 2 x 7kW MPPT Zones


PVI 20TL >>> 2 x 10kW MPPT Zones

- Design Flexibility Strings of different tilt, orientation, length, module type per zone
- Increased Performance Reduced mismatch losses
- Solutions for 208V and 480V 3-Phase Services
- Connect to DELTA or WYE Services
- Connect as 4 or 3-Wire Device (No neutral required)
- <2W Tare/Standby Losses
- Class III DC and AC Surge Protection (standard)



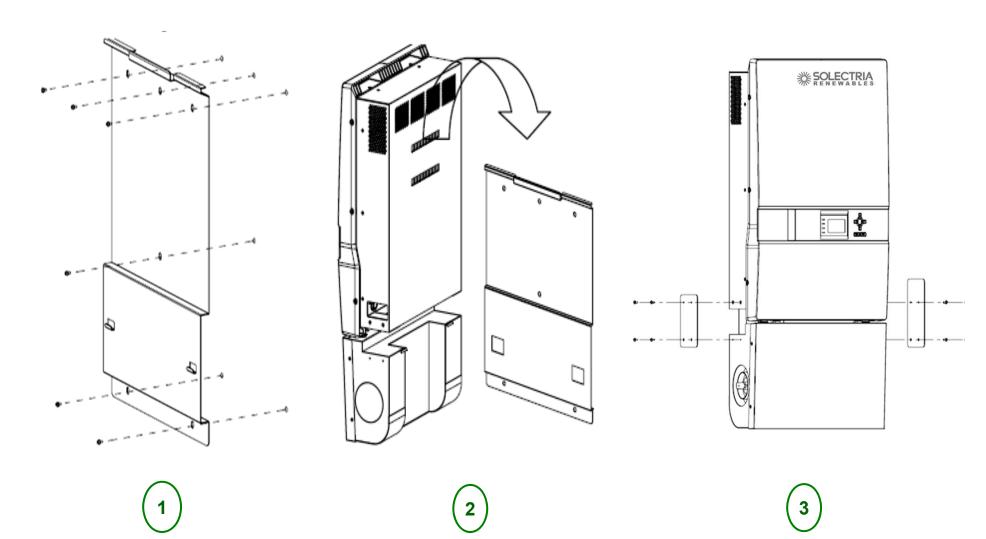
Additional Field Flexibility

Compact and Lightweight

Weight:

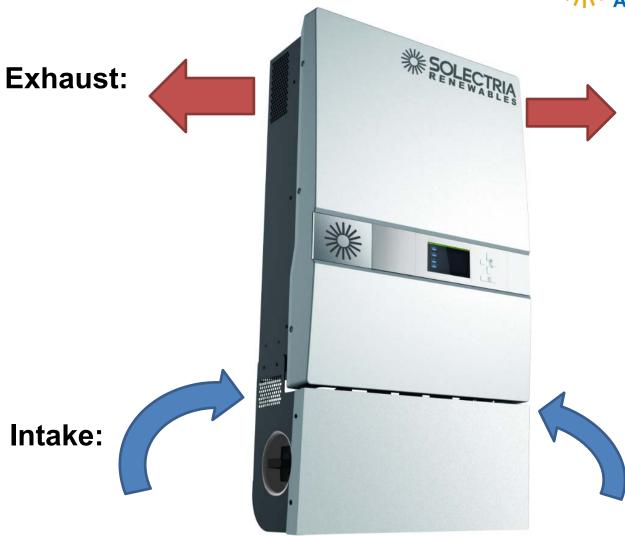
141 lbs (PVI 14TL) 132 lbs (PVI 20TL)

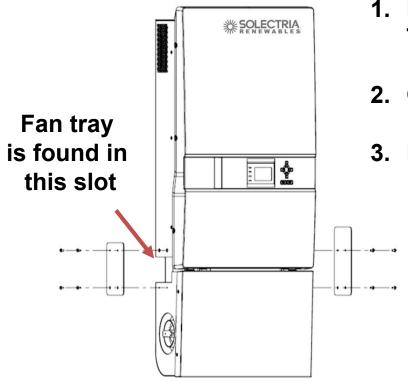
Can be lifted and mounted by two people!


Mount to:

Exterior, Interior, or Parapet Walls, Racking Structure, Carport Frame

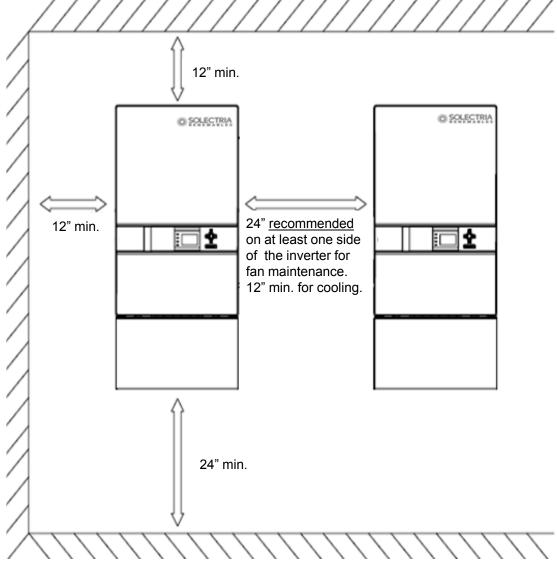
Save on inverter pad cost!


Easy to Install


Cooling Air-Flow

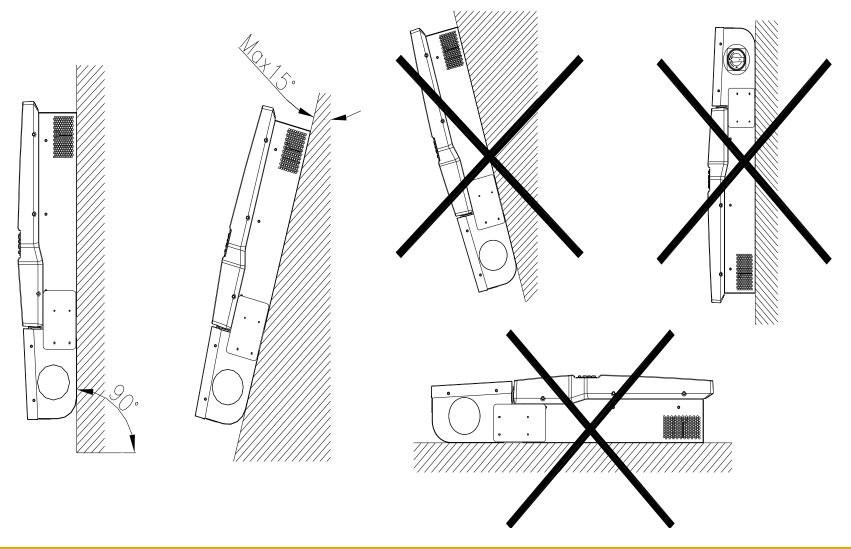
Fan Tray Maintenance

- 1. Remove hardware, connectors, and tray. Tray slides out from ether side.
- 2. Clean tray with a dry cloth.
- 3. Re-install tray, connectors, and hardware



Recommended Maintenance Interval:

6 months,
More frequently in dusty
environments


Clearance Requirements

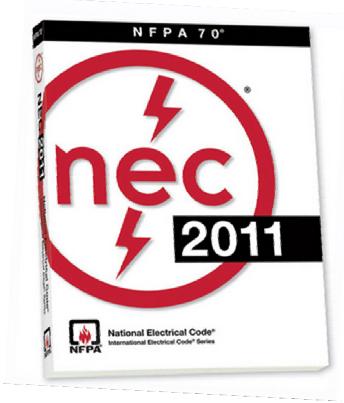
Tilt Angle Considerations

Engineered to Maximize Uptime

Choice of swapping entire inverter or only top section for service.

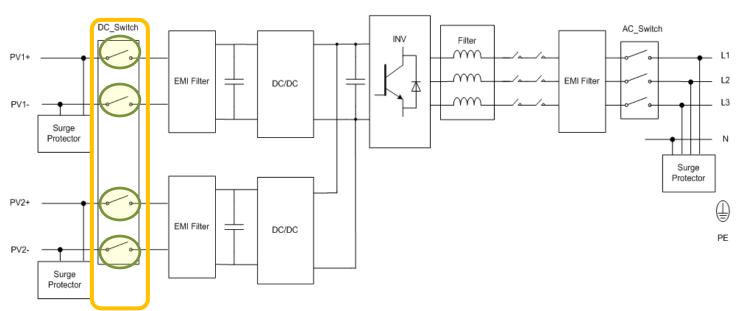
Replacement unit is provided for field swap of down unit.

Standard 10 year warranty (15 and 20 year options available)

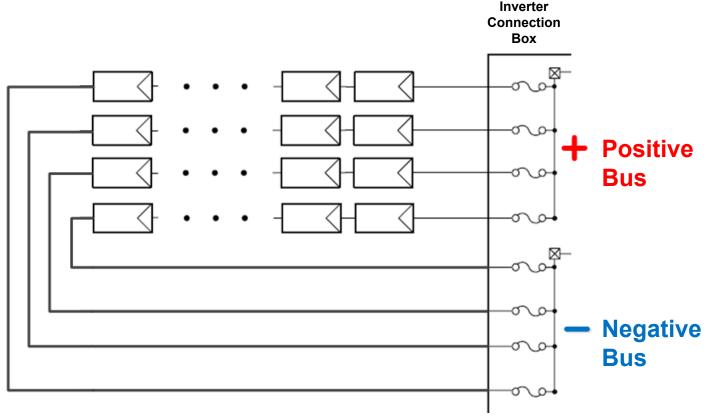

NEC Compliance

PVI 14TL and 20TL are listed to UL1741 for use with ungrounded/floating arrays (only)

Ungrounded systems must comply with NEC 690.35: "Ungrounded Photovoltaic Power Systems"



Disconnecting Means


Integrated DC Disconnect opens both (+) and (-) Poles of the Array. [690.35(A), 690.13]

Overcurrent Protection

Fusing on both (+) and (-) inputs [690.35(B), 690.9].

^{*} Only 1 MPP tracker shown

Overcurrent Protection

Fuse Serviceability via Integrated Fuse Pullers [690.16(B)].

Connection Box – Fuse Pullers <u>NOT</u> Shown Connection Box – Fuse Pullers Shown

Ground Fault Protection

Two Methods Utilized

- Differential/Residual Ground Fault Detection
- 2. Impedance Check, Both (+) to ground and (-) to ground

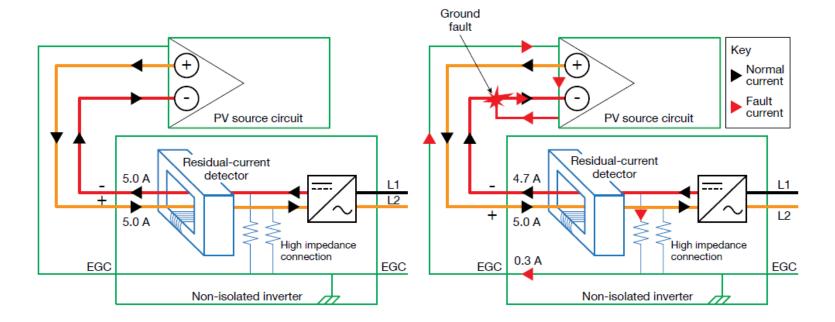


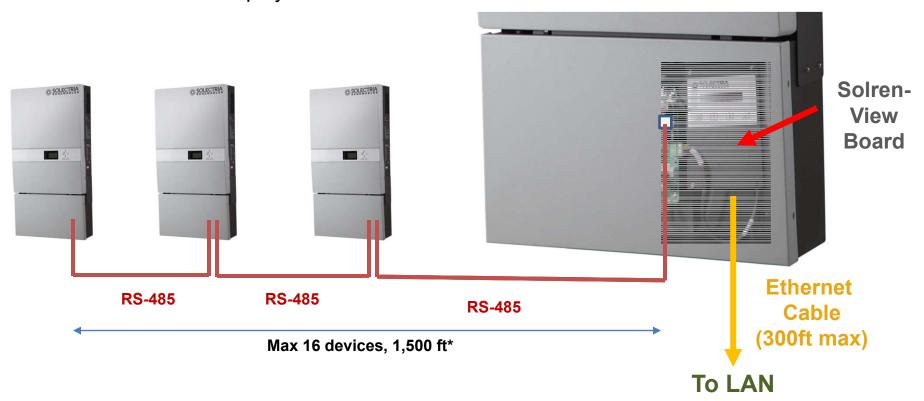
Figure from "Ungrounded PV Power Systems in the NEC," SolarPro, Aug./Sept. 2012

Other System Requirements

- Even though array is "Ungrounded," DC Equipment
 Grounding of metal frames, racking, exposed metal parts is
 still required
- PV Wire on module and exposed cable instead of USE-2 [690.35(D)]

Solectria's Web Based Monitoring Software

- Benefit: Work with one company for monitoring and inverter
- Benefit: Site visibility by Solectria Service and Apps for troubleshooting system issues
- Download Data
- Create email fault notifications (email or SMS)
- Kiosk View Standard
- Upgrade Options:
 Reporting Services (with Revenue Grade Meter)

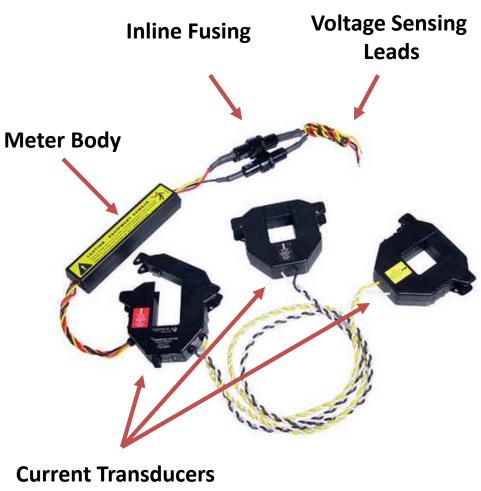


Configuration 1: Daisy Chaining via Modbus RTU/RS-485

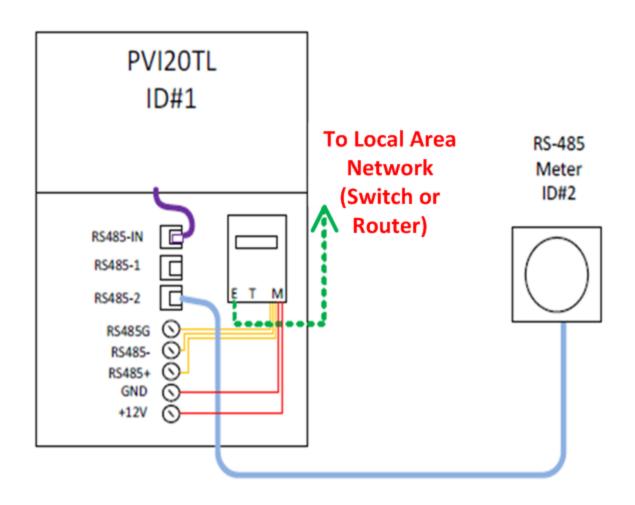
- Requires at least one PVI TL with SolrenView Board.
- All inverters are displayed on same SolrenView site

*Longer network length possible in low noise environment or with isolator/repeaters

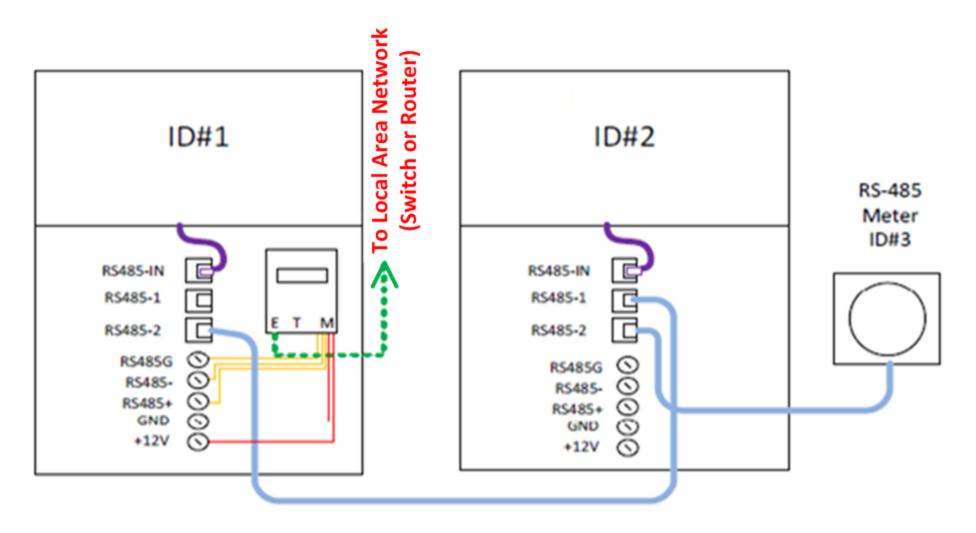
Configuration 2: Ethernet Connection to Each Inverter


- Designer/Installer may choose to make direct Ethernet connection directly to each inverter
- Requires SolrenView board in each inverter
- All inverters are displayed on the same SolrenView Site

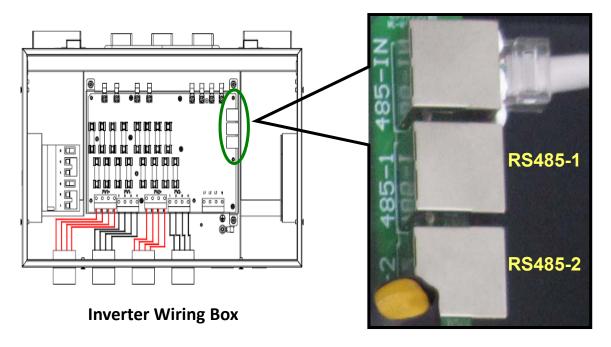
Revenue Grade Metering and Reporting


- Monitor the combined output of multiple inverters with revenue grade accuracy (1%)
- Agency Reporting Option through Solectria SolrenView Software
- Meter Kit with 100A CT's, meter kit, inline fusing, and voltage sensing leads. Can monitor:
 - > 2 x PVI 14TI 208V
 - > 4 x PVI 20TL 480V
- Options for 300A CT's and Larger
- Meter kit installed in downstream panel or CT cabinet (enclosure provided by customer)

(CT's)


Example 1: Single Inverter w/ RGM

Example 2: Multiple Inverters w/ RGM



Third-Party Monitoring

- Utilizes the inverters standard RS-485 ports
- No SolrenView Board required
- Compatible with Third-Party Monitoring Software that utilizes Modbus RTU/RS-485
- Register Map Available

Internal comm. connection

To third-party data logger/gateway card (or next inverter in daisy chain)

Open or to previous inverter in daisy chain

PVI 23TL & PVI 28TL

Introducing the PVI 23TL/28TL

Industry Buzz...

"Transformerless?" Yes!
For "Ungrounded/Floating Arrays?" Yes!
"3-Phase String?" Yes!
1000Vdc Arrays Yes!

Models

PVI 23TL - 23kWac (1000Vdc, 480Vac)

PVI 28TL - 28kWac (1000Vdc, 480Vac)

PVI 23TL/28TL Features

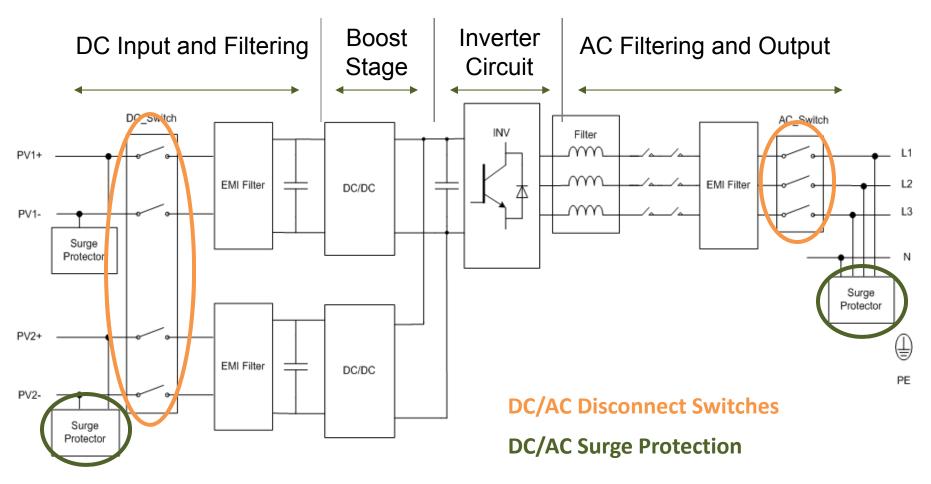
- Integrated Lockable DC/AC switch
- Compact, Light-Weight
- NEMA 4
- High Reliability
- Easy Installation & Maintenance
- Solectria or Third-Party Web Based Monitoring

PVI 23TL/28TL Features

- High CEC and Peak Efficiencies
- Dual MPPT Zones for design flexibility and increased energy harvest
- 8 Fused Inputs (4 per MPPT channel), Fuse bypass possible
- Integrated fusing and DC/AC disconnect meets NEC 2011/2014 requirements

Applications

SOLECTRIA


A YASKAWA COMPANY

- Light Commercial Systems
- Systems with Multiple Tilt Angles/Orientations
- Complex Layouts
- Limited Space for Central Inverter
- Carports
- Weight Restricted Projects
- Utility Scale Trackers

Inverter Topology

*DC +/- Fusing Not Shown

Design

Boost Circuits

DC filter

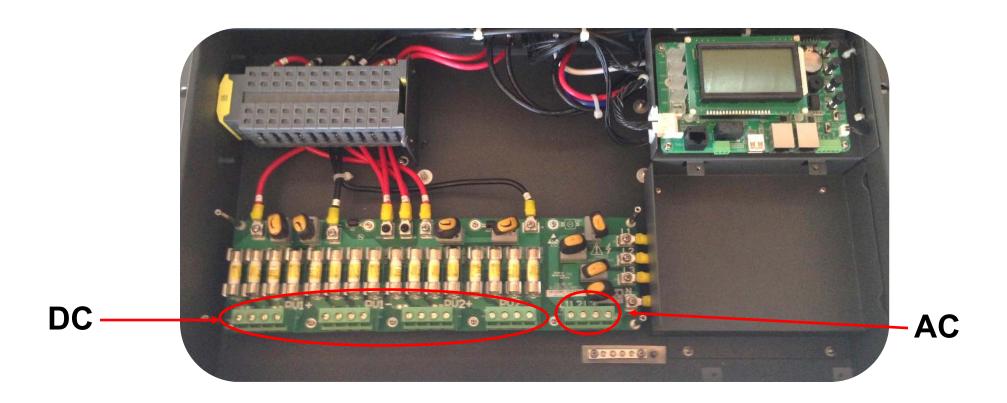
DC string fuses and surge arrestors

DC/AC Switch

Main control board AC filter

AC fuses and

surge arrester


SolrenView Web Monitoring Hardware

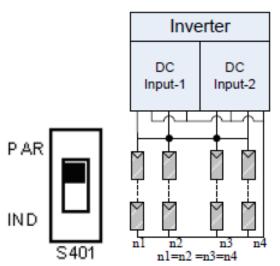
3000000

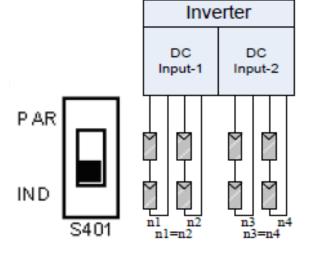
Wiring Box

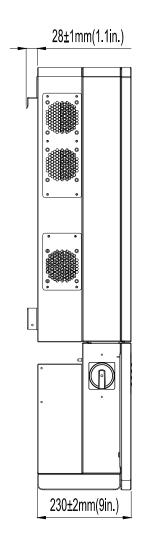
DC and AC Wiring Connection Terminals *DC Fuse Pullers Not Shown

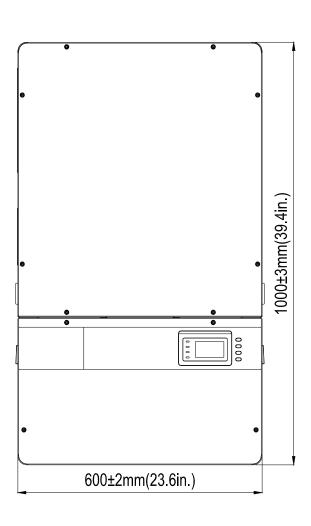
- High CEC and Peak Efficiencies
 - 23TL- 98% CEC, 98.2% Peak
 - 28TL- 98% CEC, 98.2% Peak
- <2W Tare/Standby Losses
- Class III DC and AC Surge Protection (standard)
 - Optional Class II for AC/DC

Dual MPPT Zones


PVI 23TL >>> 2 x 11.5kW MPPT Zones
PVI 28TI >>> 2 x 14kW MPPT Zones


- Design Flexibility Strings of different tilt, orientation, length, module type per zone
- Increased Performance Reduced mismatch losses

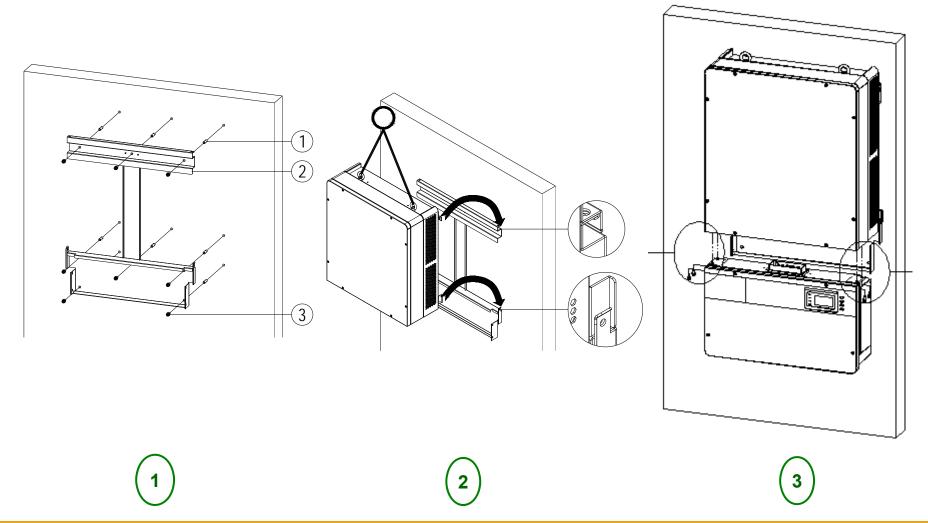

- Dual MPPT Zones
 - PVI 23TL >>> 2 x 11.5kW MPPT Zones
 PVI 28TI >>> 2 x 14kW MPPT Zones
 - Design Flexibility Strings of different tilt, orientation, length, module type per zone
 - Increased Performance Reduced mismatch losses



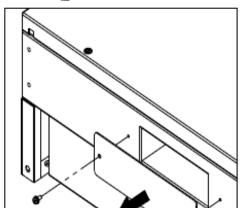
Compact and Lightweight

Weight: 122lbs

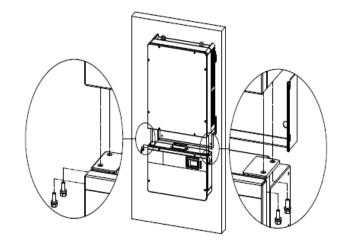
Can be lifted and mounted by two people!

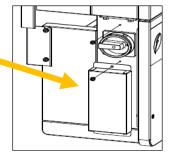

Mount to:

Exterior, Interior, or Parapet Walls, Racking Structure, Carport Frame

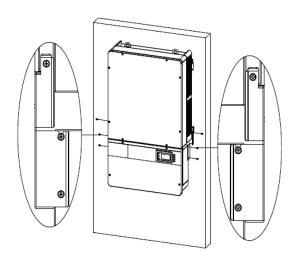

Save on inverter pad cost!

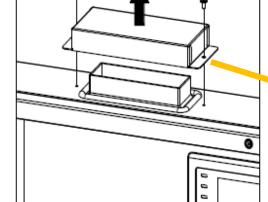
Easy to Install




Easy to Install

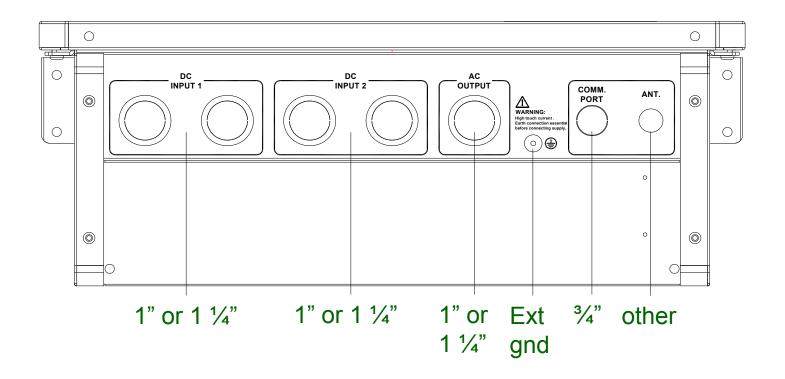
Secure the wiring box to the inverter



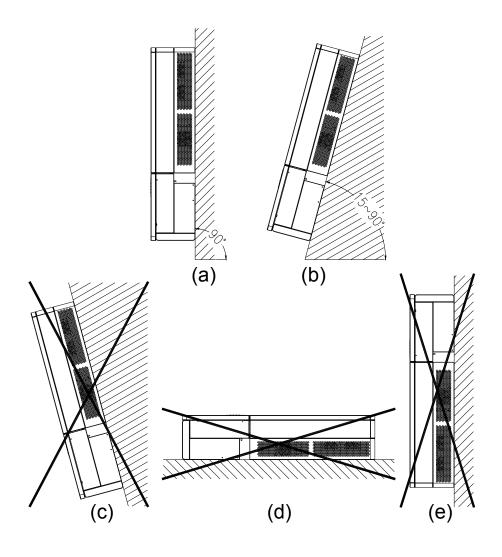

Save the cover

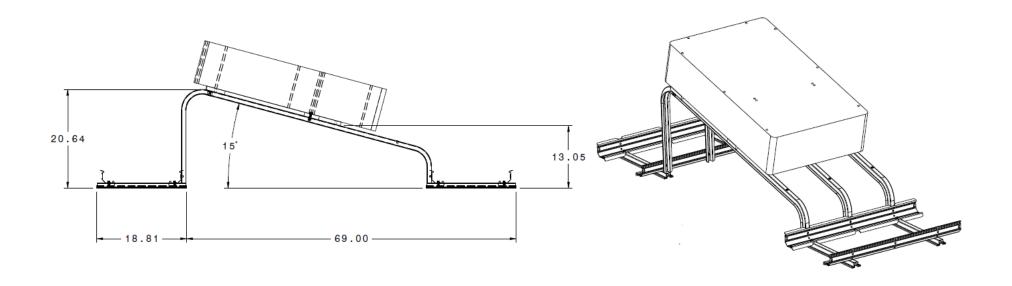
Secure the wiring box to the mounting bracket

SOLECTRIA A YASKAWA COMPANY

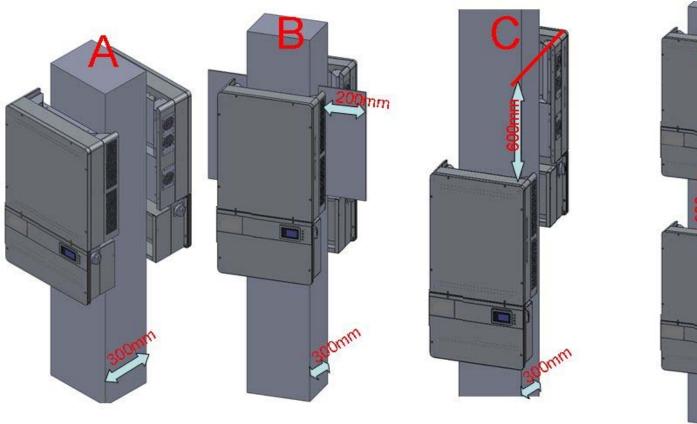


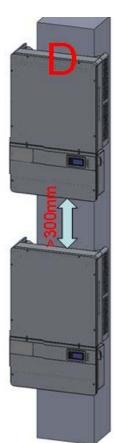
Knock Out Locations


Clearance Requirements


Mounting Considerations

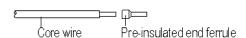
Mounting Considerations

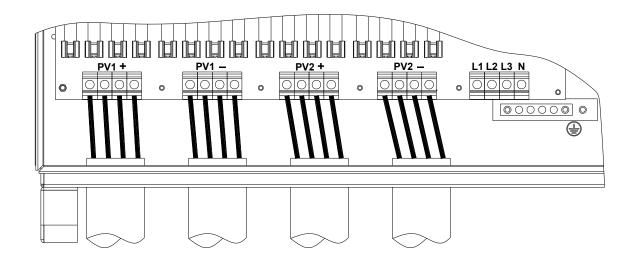




Ballasted racking system for 15° tilt

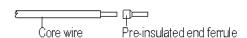
Mounting Considerations

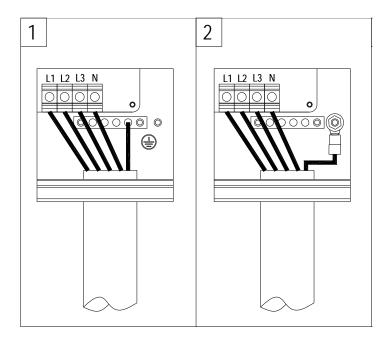

A- Air Intake temperature is 3-4 degrees greater than ambient.


B, C, & D-Inverters will not affect each other .

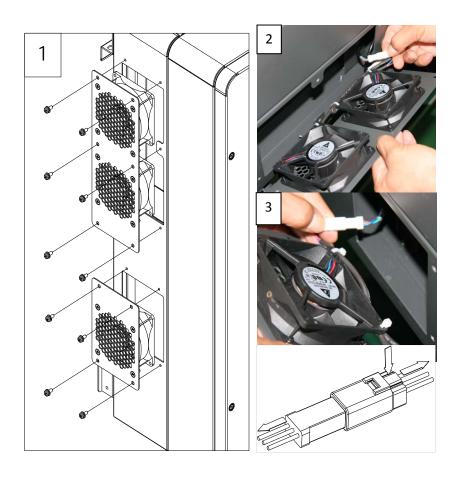
DC Wiring

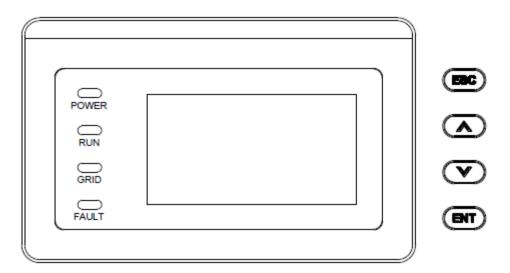
Prepare cable ends with ferrules





AC Wiring


Prepare cable ends with ferrules


Fan Servicing

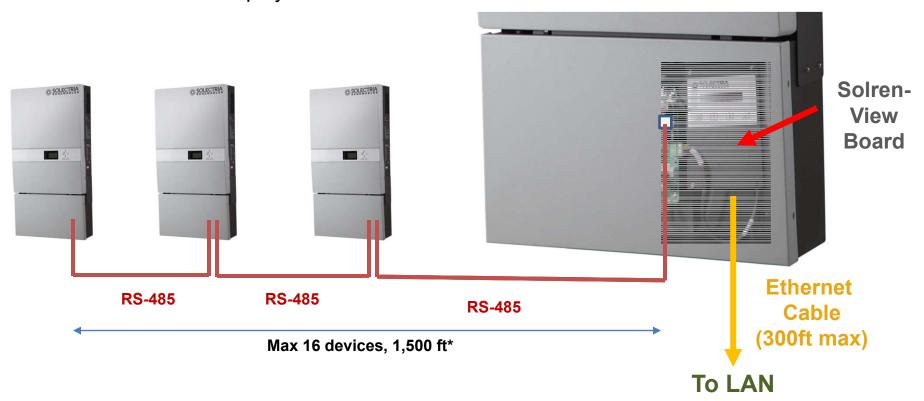
LED Trouble Shooting

LED fault status	Solutions
Neither the "Power" LED nor the LCD screen lights	1. Turn off the external AC breaker
up.	2. Switch the DC switch to "OFF" position
	3. Check the PV input voltage and polarity
The "GRID" LED is blinking.	1. Turn off the external AC breaker
	2. Switch the DC switch to "OFF" position
	3. Check whether the grid voltage is normal and
	whether the cable connection of AC side is
	correct and secure
The "RUN" LED lights off or "FAULT" LED lights up.	Call Solectria Renewable's Customer Service

Engineered to Maximize Uptime

Choice of swapping entire inverter or only top section for service.

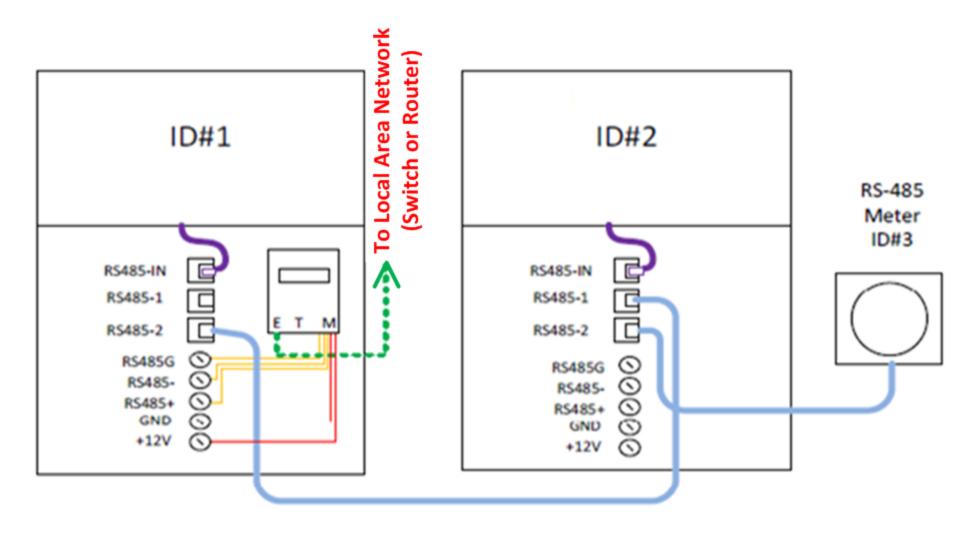
Replacement unit is provided for field swap of down unit.


Standard 10 year warranty (15 and 20 year options available)

Configuration 1: Daisy Chaining via Modbus RTU/RS-485

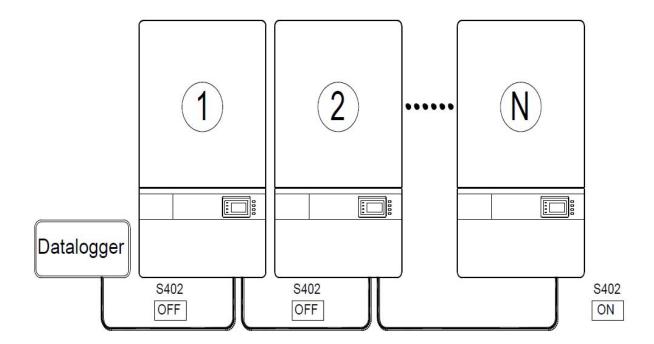
- Requires at least one PVI TL with SolrenView Board.
- All inverters are displayed on same SolrenView site

*Longer network length possible in low noise environment or with isolator/repeaters


Configuration 2: Ethernet Connection to Each Inverter

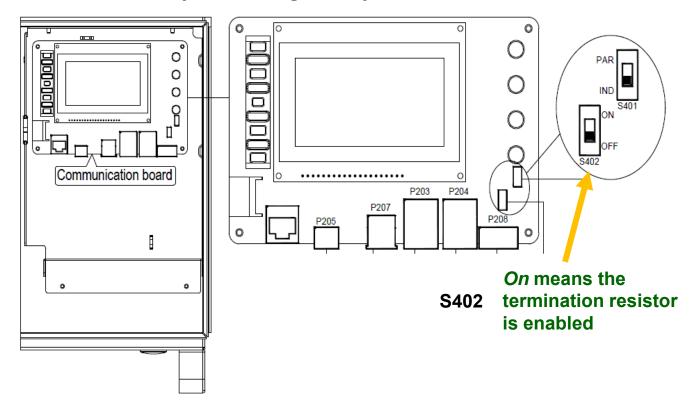
- Designer/Installer may choose to make direct Ethernet connection directly to each inverter
- Requires SolrenView board in each inverter
- All inverters are displayed on the same SolrenView Site

Example 2: Multiple Inverters w/ RGM



RS-485 Termination Resistor

■ The inverter furthest away from the gateway needs its termination resistor set.

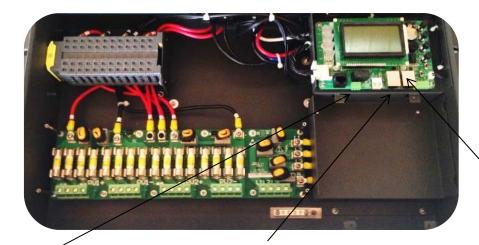


The termination resistor helps maintain data signal quality and prevents Ghost Data

RS-485 Termination Resistor

The inverter furthest away from the gateway needs the termination resistor enabled.

■ The termination resistor helps maintain data signal quality and prevents Ghost Data


Third-Party Monitoring

- Utilizes the inverters standard RS-485 ports
- No SolrenView Board required
- Compatible with Third-Party Monitoring Software that utilizes Modbus RTU/RS-485
- Register Map Available

Inverter Wiring Box

RS485-1

Internal comm. connection

To third-party data logger/gateway card (or next inverter in daisy chain)

RS485-2

Open or to previous inverter in daisy chain

PVI 50-100KW

Competitive Comparison Chart – 50-85kW

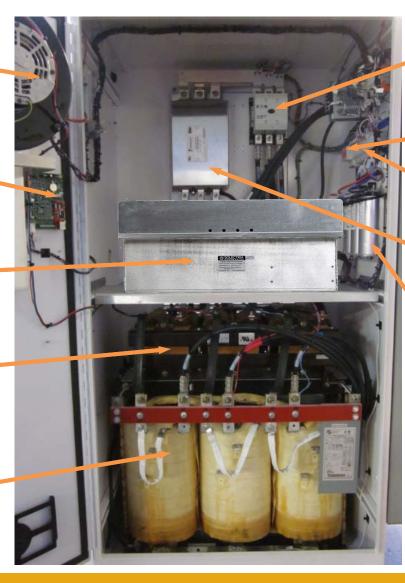
[T			T		T
	SOLECTRIA	** SOLECTRIA	ADVANCED ENERGY	Fronius	Fronius	SOLECTRIA	SOLECTRIA	ADVANCED ENERGY
Model	PVI 50KW	PVI 60KW	AE 50TX (PVP 50)	Fronius CL 55.5 Delta	Fronius CL 60.0	PVI 75KW/75KW-PE	PVI 85KW/85KW-PE	AE 75TX (PVP 75)
Electrical								
MPP tracking range	300-500	300-500	295-595	230-500	230-500	300-500	300-500	295-595
Low voltage MPP range	285-500	285-500	n/a	n/a	n/a	285-500	285-500	n/a
Available grid voltages	208, 240, 480, 600	208, 240, 480, 600	208, 480, 600	008, 240	277	0 208, 240, 480, 600	208, 240, 480, 600	0 208, 480, 600
Number of DC inputs	8	8	6 5	0	0	8	8	9
Transformer Isolation	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Delta/Wye Compatible	Yes	Yes	No	Yes	Yes	Yes	Yes	No
Nighttime tare loss (W)	 0.49-2.85W (depends on VAC) 	0.49-2.85W (depends on VAC)	93W	11.6W	9 12.2W	0.49-2.85W (depends on VAC)	 0.49-2.85W (depends on VAC) 	942W
CEC Efficiency	96.0% (208) 96.0% (480)	96.0% (208) 96.0% (480)	96.0% (208) 96.0% (480)	94.5% (208) 95.0% (240)	95.5%	96.0% (208/240); 96.5% (208 PE) 97.0% (480/600); 97.5% (480 PE)	96.0% (208/240); 96.5% (208 PE) 96.5% (480/600); 97.0% (480 PE)	95.5% (208) 95.5% (480)
Mechanical					•			
Dimensions (HxWxD - inches)	76 x 54 x 29.25	76 x 54 x 29.25	73.5 x 48.75 x 34.5	76.6 x 43.5 x 31.4	76.6 x 43.5 x 31.4	76 x 54 x 29.25	76 x 54 x 29.25	91.5 x 60 x 35
Weight (lbs)	<u> </u>	1545	<u> </u>	783	783	1765	1765	9 2750
Enclosure rating	NEMA 3R	NEMA 3R	NEMA 4	NEMA 3R	NEMA 3R	NEMA 3R	NEMA 3R	NEMA 4
Cooling method	Fan	Fan	Fan	Fan	Fan	Fan	Fan	Fan
Temp range full power	-40°F to 122°F	-40°F to 122°F	-22°F to 122°F	-13°F to 122°F	-13°F to 122°F	-40°F to 122°F	-40°F to 122°F	-22°F to 122°F
AC/DC Disconnects	External	External	External	Internal	Internal	 External 	External	External
Communications								
Standard communication	RS-485	RS-485	RS-485	RS-485	Yes	RS-485	RS-485	RS-485
Ethernet port hardware	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Cellular option, installed	Yes	Yes	No	No	No	Yes	Yes	No
Integrated Subarray monitoring optional	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Certifications								
UL1741 / IEEE1547	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
CSA 22.2 #107.1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
FCC Part 15 Class A	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Additional	Additional							
Subcombiner options	Yes (fuses or breakers)	Yes (fuses or breakers)	Fuses only	Fuses only	Fuses only	Yes (fuses or breakers)	Yes (fuses or breakers)	Fuses only
Stainless enclosure option	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Third party compatibility	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Competitive Comparison Chart – 100kW

	SOLECTRIA	power-one-	ADVANCED ENERGY **	KACO 📎	Schneider Blectric	SUNGROW	
Model	PVI 100KW/100KW-PE	PVI-CENTRAL-100	AE 100TX (PVP 100)	XP-100-U	GT100	SG100KU/KC	
Electrical							
MPP tracking range	300-500	330-600	295-595	300-600	300-480	300-600	
Low voltage MPP range	285-500	n/a	n/a	n/a	n/a	n/a	
Available grid voltages	208, 240, 480, 600	208, 480	208,480,600	208, 480	208, 480	480	
Number of DC inputs	8	6	9	4	4	4	
Transformer Isolation	Yes	Yes	Yes	Yes	Yes	Yes	
Delta/Wye Compatible	Yes	Yes	No	No	No	Yes	
Nighttime tare loss (W)	0.49-2.85W (depends on VAC)	<30W	942W	<60.4W	<100W	<30W	
CEC Efficiency	96.0% (208/240); 96.5% (208 PE) 96.5% (480/600); 97.0% (480 PE)	95.0% (208) 95.0% (480)	95.5% (208) 96.0% (480)	N/A 96.0% (480)	95.0% (208) 96.0% (480)	N/A 96.5% (480)	
Mechanical							
Dimensions (HxWxD - inches)	76 x 54 x 29.25	50 x 66 x 33.5	91.5 x 60 x 35	73 x 68 x 37	73.3 x 67 x 46.1	77 x 40 x 30	
Weight (lbs)	1765	1873	3000	2425	3000	1984	
Enclosure rating	NEMA 3R	NEMA 1	NEMA 4	NEMA 3R	NEMA 3R	NEMA 3R	
Cooling method	Fan	Fan	Fan	Fan	Fan	Fan	
Temp range full power	-40°F to 122°F	14°F to 122°F	-22°F to 122°F	-5°F to 122°F	-5°F to 122°F	-13°F to 131°F	
AC/DC Disconnects	External	Internal	External	Internal	Internal	Internal	
Communications							
Standard communication	RS-485	RS-485 (2)	RS-485	RS-232, RS-485 Ethernet	RS-232, RS-485 Ethernet	RS-485 Ethernet	
Ethernet port hardware	Yes	No	Yes	Yes	Yes	Yes	
Cellular option, installed	Yes	Yes	No	No	No	data not available	
Integrated Subarray monitoring optional	Yes	No	Yes	No	Yes	data not available	
Certifications							
UL1741 / IEEE1547	Yes	Yes	Yes	Yes	Yes	Yes	
CSA 22.2 #107.1	Yes	Yes	Yes	Yes	Yes	Yes	
FCC Part 15 Class A	Yes	 Data not available 	Yes	Yes	Yes	No	
Additional	Additional						
Subcombiner options	Yes (fused or breakers)	Fuses only	Fuses only	Fuses only	Fuses only	data not available	
Stainless enclosure option	Yes	No	Yes	Yes	No	data not available	
Third party compatibility	Yes	Yes	Yes	Yes	Yes	Yes	

PVI 50-100KW interior explained

SOLECTRIA A YASKAWA COMPANY


3-Ph Automatic Cooling Fan

SolrenView Gateway

Power Stage (core)

Inductors

Grid Isolation Transformer

Grid Isolation Contactor

AC surge suppressors

GFDI Fuse

Power Quality Filter

Capacitor

PVI 50-100KW Integrated Inverter

LIFTING EYES

LED INDICATORS

AC DISCONNECT (NEMA3R)

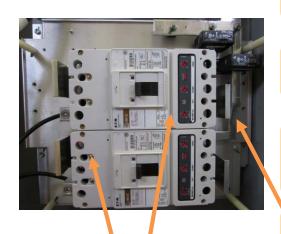
LCD DISPLAY/ SOLRENVIEW GATEWAY

RAINPROOF
MAIN ENCLOSURE

INSIDE: TRANSFORMER, FILTERS, OFF-LINING CONTACTOR DC DISCONNECT (NEMA3R)

MOUNTING FEET

Forward Facing Disconnects



PVI 50-100KW Electrical Connections & Subcombiner Options

NOTES:

- Do not bond PV negative outside of the inverter
- Do not switch the negative array conductor

PV Positives, breaker option (2 positions, 300A fuses)

DC Surge arrestor

PV Negativ e

Bars

SolZone Sensors

PV Positives, fuse option (6 positions, 100A fuses)

AC Disconnect Connection

SOLECTRIA A YASKAWA COMPANY

 Connection dedicated AC overcurrent protection device to inverter AC disconnect

AC Fusing optional

SGI 225-500PE

Reliable & High Efficiency Design

- Sealed electronics enclosure
- Full power testing
 - 4-12 hours at 100%+
 - "burned in" before leaving factory
- Over 20 years experience
- Premium efficiency transformer and filters
- Low loss IGBTs
- Lowest night-time losses
- Thermostat controlled automatic blower
- 97.5% CEC efficient SMARTGRID inverters
 - Highest CEC tranformer-based inverter in the industry

SGI 225-300 vs. competition

		ADVANCED	Satcon	SMA	power-one:
Model	SGI 225, 250, 266, 300	Solaron 333 (TRANSFORMERLESS)	PowerGate 375	Sunny Central 250	PVI Central 300
Electrical					
MPP tracking range	300-600	330-600	320-600	330-600	320-600
Low voltage MPP range	285-600	n/a	n/a	n/a	n/a
Start up voltage	9380	425	320	380	320
Available grid voltages	480 / 600	480	0 208 / 480	480	480
Number of DC inputs	6-24	4	15-24	4-6	5
Redundant cores	Yes	No	No	No	Yes
Transformer Isolation	Yes	No	Yes	Yes	Yes
Nighttime tare loss (W)	28	60.0	123	79.0	90
CEC Efficiency	97.5	97.5	95.5	97.0	97.0
Mechanical					
Dimensions (HxWxD)	109 x 79 x 37	81 x 74 x 35	155 x 93 x 39	110 x 80 x 33	116 x 76 x 49
Footprint	109 x 36	91 x 35	155 x 39	9 110 x 33	116 x 49
One piece	Yes	Yes	No	No	Yes
Weight	6 5650	2045	5800	4189	5750
Enclosure rating	NEMA 3R	NEMA 3R	NEMA 3R	NEMA 3R	NEMA 3R
Cooling method	Blower	Blower	Blower	Blower	Blower
Temp range full power	-40 to +50	-20 to +50	-20 to +50	-25 to +45	-25 to +50
Disconnects	AC & DC	No	AC & DC	Optional	DC only
Communications					
Standard communication	RS-485	RS-485	RS-485	RS-485	RS-485
Ethernet port hardware	Yes	Yes	Yes	Option	Yes
Cellular option, installed	Yes	Yes	No	Yes	Yes
Subarray monitoring optional	Yes	No	Yes	● No	No
Mechanical					
UL1741 / IEEE1547	Yes	Yes	Yes	Yes	Yes
CSA 22.2 #107.1	Yes	Yes	Yes	● No	Yes
FCC Part 15 Class A	Yes	No (Exempt from FCC requirements per 47 CFR 15.103(b))	Yes	Yes	Yes

SGI 225-300 vs. competition cont.

	* SOLECTRIA	△EADVANCED ENERGY	Satcon	SMA	power-one-
Model	SGI 225, 250, 266, 300	Solaron 333 (TRANSFORMERLESS)	PowerGate 375	Sunny Central 250	PVI Central 300
Additional					
Subcombiner options	Yes	No	Yes	- 4-6	6
Revenue grade meter option	Yes	Yes	Yes	No	Yes
Stainless enclosure option	Yes	Yes	No	No	No
Install/wiring labor	Minimum	Average	Maximum	Maximum	Average
Third party compatibility	Yes	Yes	Yes	Yes	Yes
GFDI breaker	Breaker	Fused	Fused	Breaker	Fused
AC OCPD	Breaker	Fused	Breaker	Breaker	Fused
Contactors (AC & DC)	Yes	Yes	Yes	 Disconnect optional 	AC contactor
Uptime Guarantee Option	Yes	Yes	Yes	No	No

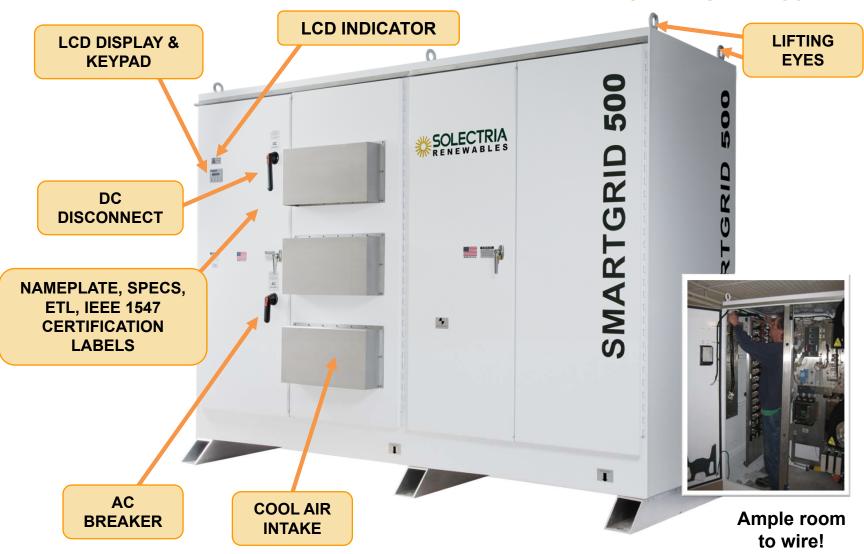
SGI 500 vs. competition

	SOLECTRIA	 SOLECTRIA RENEWABLES	ADVANCED ENERGY	ADVANCED ENERGY	SMA
	TENEWABLES .	RENEWABLES	ENERGY	ENERGY	
Model	SGI 500	SGI 500XT (EXTERNAL TRANSFORMER)	AE 500TX	AE 500NX-HE (TRANSFORMERLESS)	Sunny Central 500
Electrical					
MPP tracking range	300-600 VDC	9 300-500 VDC	9 310-595 VDC	930-600 VDC	330-600 VDC
Start up voltage	980 VDC		330 VDC	425 VDC	980 VDC
Available grid voltages	480, 600 VAC	908 VAC	9480 VAC	9 480 VAC	9 480 VAC
Number of DC inputs	8-32	8-32	0 20	2 x 10	6-9
Redundant Power Stages	Yes	Yes	No	No	No
Transformer Isolation	Yes	Yes	Yes	No	Yes
Nighttime tare loss	32 W	41 W	< 80 W	< 100 W	90 W
Susceptibility to unbalanced array voltages	No	No	No	Yes	No
Compatible with Delta or Wye Transformer	Yes	Yes	No	No	Yes
Simplicity-fewer points of failure	Yes	Yes	No	No	No
Standard IGBT's	Yes	Yes	Yes	No	Yes
Can be substituted into existing PV plant design	Yes	Yes	Yes	No	Yes
DC contactor in array needed	No	No	No	Yes	No
GFDI breaker	Yes	Yes	Yes	No	Yes
Built-in AC OCPD	Breaker	Breaker	None	None	None
Built-in DC OCPD	Fuses or Breaker	Fuses or Breaker	Breakers only	Fuses only	Fuses only
CEC Efficiency	97.5%	98.0%	97.0%	98.0%	97.0%
Mechanical					
Dimensions (H x W x D)	79 x 109 x 37 in.	82 x 109 x 41 in.	99 x 120 x 49 in.	83 x 128 x 38 in.	80 x 140 x 37 in.
One piece	Yes	Yes	Yes	Yes	No
Weight	980 lbs.	3410 lbs.	8750 lbs.	4100 lbs.	9 7165 lbs.
Enclosure rating	Type 3R	Type 3R	Type 4	Type 3R	Type 3R
Cooling method	Blower	Blower	Blower	Liquid	Blower
Redundant cooling system	Yes	Yes	Yes	No	No
Temp range full power	-40°F to +122°F	-40°F to +122°F	-22°F to +122°F	-4°F to +122°F	-13°F to +113°F
Disconnects	AC/DC standard	AC/DC standard	AC/DC standard	Optional	Optional

SGI 500 vs. competition cont.

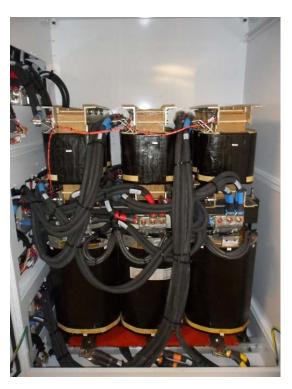
	** SOLECTRIA	**SOLECTRIA	△EADVANCED ENERGY	ADVANCED ENERGY	SMA	
Model	SGI 500	SGI 500XT (EXTERNAL TRANSFORMER)	AE 500TX	AE 500NX-HE (TRANSFORMERLESS)	Sunny Central 500	
Communications						
Third party compatibility	Yes	Yes	Yes	Yes	Yes	
Standard communication	RS-485	RS-485	RS-485	RS-485	RS-485	
Ethernet port hardware	Yes	Yes	Yes	Yes	Yes	
Cellular option, installed	Yes	Yes	Yes (if purchased with SEEDs monitoring equipment)	Yes (If purchased with SECOs monitoring equipment)	- Yes	
Subarray monitoring optional	Yes	Yes	Yes	Yes	No	
Compliance	Compliance					
UL1741 / IEEE1547	Yes	Yes	Yes	Yes	Yes	
CSA 22.2 #107.1	Yes	Yes	Yes	Yes	Yes	
Additional						
Subcombiner options	Yes	Yes	Yes	Yes	Yes	
Revenue grade meter option	Yes	Yes	Yes	Yes	Yes	
Stainless enclosure option	Yes	Yes	NO (Doempt from PCC requirements per 47 CFR 15.300(b))	NO (Downpt from PCC requirements per 47 CFR 15.300(b))	• No	
Install/wiring labor	Yes		Yes	Yes	Yes	

SGI Inverter Models and Efficiency Chart



Inverter Model	Peak Efficiency	CEC Efficiency
SGI 225 – 480VAC	98.0%	97.5%
SGI 250 – 480VAC	98.0%	97.5%
SGI 266 – 480VAC	98.0%	97.5%
SGI 300 – 480VAC	97.9%	97.5%
SGI 500 – 480VAC	97.9%	97.0%
SGI 500PE – 480VAC	98.3%	97.5%

SGI 225/250/266/300/500



SGI Inverter Components

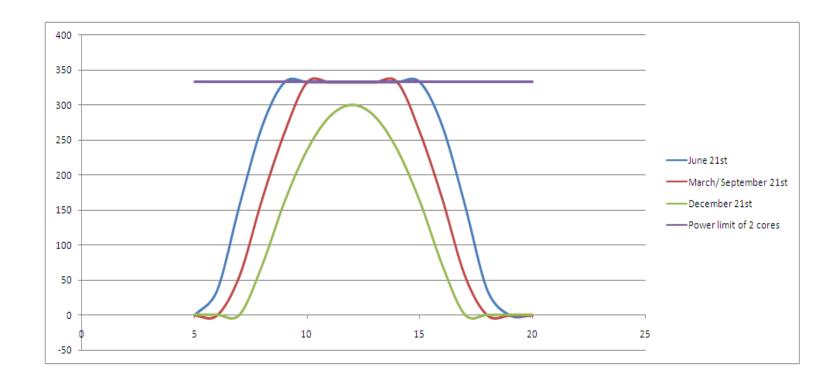
- Redundant cores contains all electronics
- Transformer / Magnetics Enclosure
- Premium-efficient components
- Web-based Monitoring (SolZone & Agency Reporting options)

Redundant/Modular Inverter Core

SOLECTRIA A YASKAWA COMPANY

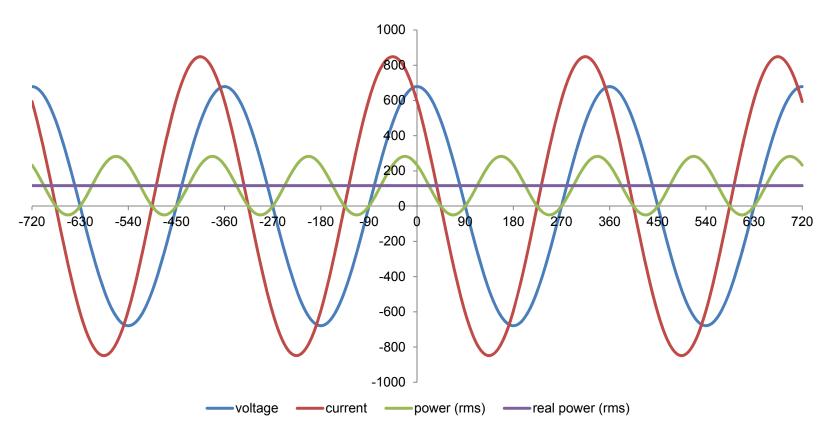
- DMGI 960 cores
- Redundant/module cores:
 - 2 inverter cores
 - SGI 225/250/266/300
 - 3 inverter cores
 - SGI 500
- Tested ("burnt in") at factory before shipping
 - Tested at above nameplate capacity
- Run paralleled input & output, ramping up power as c competition which maxes 1 out

Smart Inverter


Features: (sites >10MW)

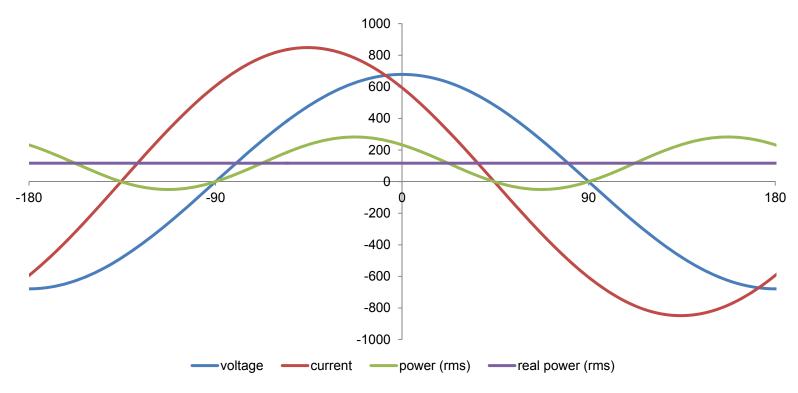
- VAR support (Power factor control, AC voltage control, VAR control mode)
- Low voltage ride-through (LVRT)
- Frequency ride-through
- Power curtailment
- Reactive power control
- Controlled ramp rate

SGI will function with a core down



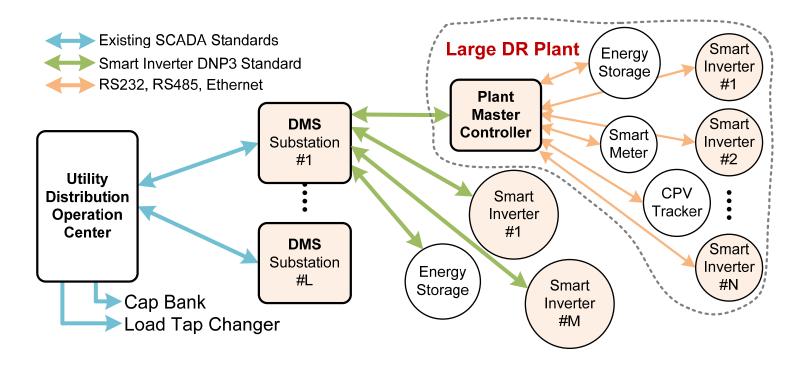
In the wintertime, 2 cores are sufficient to convert 100% of the available power

VAR support (remote utility option)



PPA owned ("in front of the fence")
 UL1741 enforces a PF > 0.95

Leading or lagging power factor



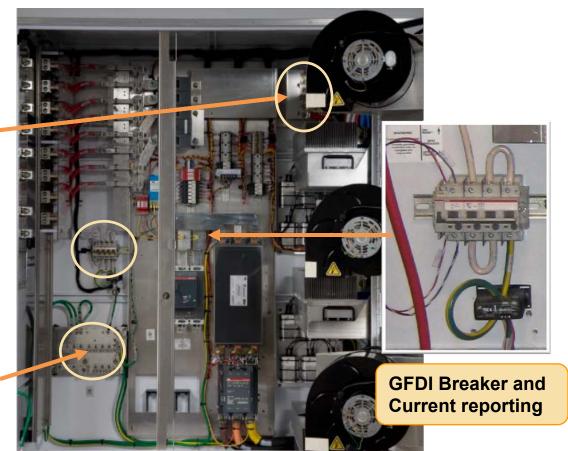
- Utility owned ("behind the fence")
 - o IEEE 1547.4 enables VAR support on systems > 250kW
- VARs absorbed by the inverter, in order to adjust power factor on secondary side of distribution transformer

Power System Engineering Services

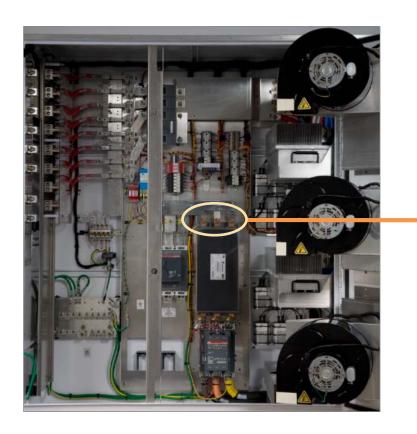
Plant master controller (SCADA)

Plant testing / Certification

SGI Advanced DC Features

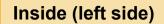


DC bus bar structure



Large AC and DC ground bar for EGCs and GEC

Revenue grade meter (option)



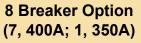
Only one wire connection is to be made for agency reporting (Ethernet)

SGI 225/250/266/300/500 Subcombiners & CT's

Current Transducers (CT's)

8 Breaker Option (7, 400A; 1, 350A)

16 Fuse Option (4, 150A; 4, 125A; 8, 175A)


SGI DC Disconnect Connection

Current Transducers (CT's)

SGI 225/250/266/300	Position	s Fuse Range
Fuses	6	225 A, 250 A, 300 A, 350 A, 400 A
	12	110 A, 125 A, 150 A, 175 A, 200 A
	24	70 A, 80 A, 90 A, 100 A
Breakers	6	225 A, 250 A, 300 A, 350 A, 400 A
	12	110 A, 125 A, 150 A, 175 A, 200 A
SGI 500/500PE/500XT		
Fuses	8	225 A, 250 A, 300 A, 350 A, 400 A
	16	110 A, 125 A, 150 A, 175 A, 200 A
	32	70 A, 80 A, 90 A, 100 A
Breakers	8	225 A, 250 A, 300 A, 350 A, 400 A
	16	110 A, 125 A, 150 A, 175 A, 200 A

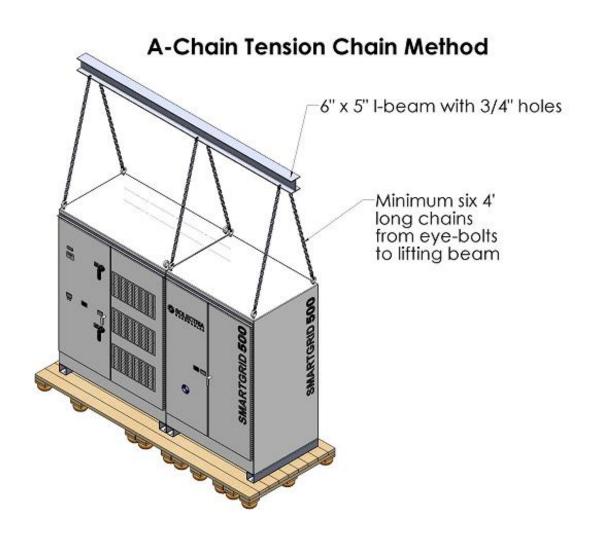
16 Fuse Option (4, 150A; 4, 125A; 8, 175A)

AC Disconnect Connection

AC BREAKER OPTIONS

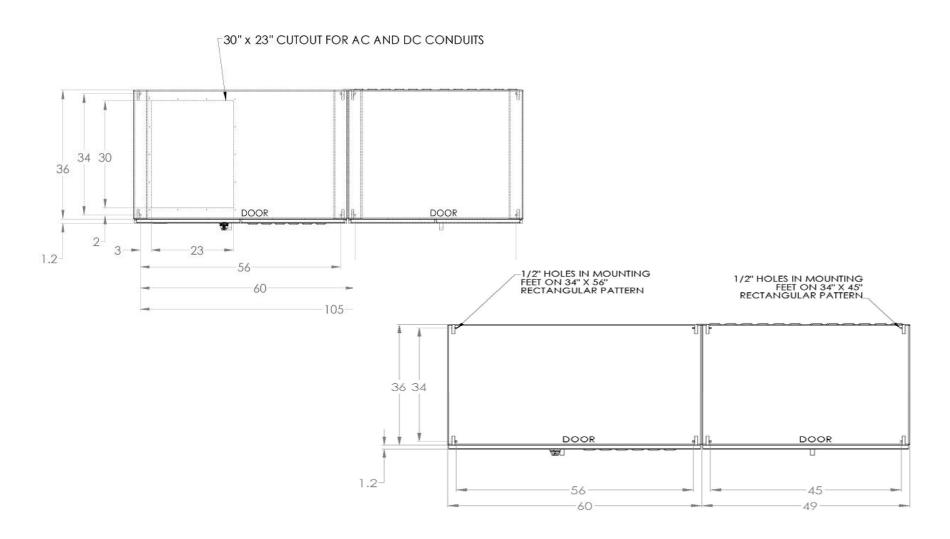
SGI Advanced AC Features

Heavy Duty circuit breaker

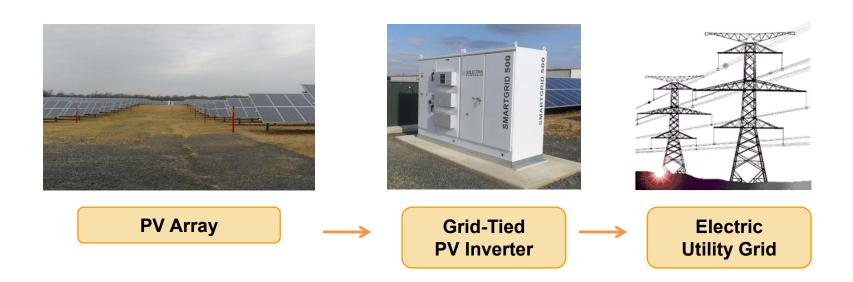

Optional integrated revenue-grade meter

EMI Filter

Contactor


SGI Lifting Diagram

SGI Mounting Diagrams



Installation

Quick Installation = Low Installed Cost

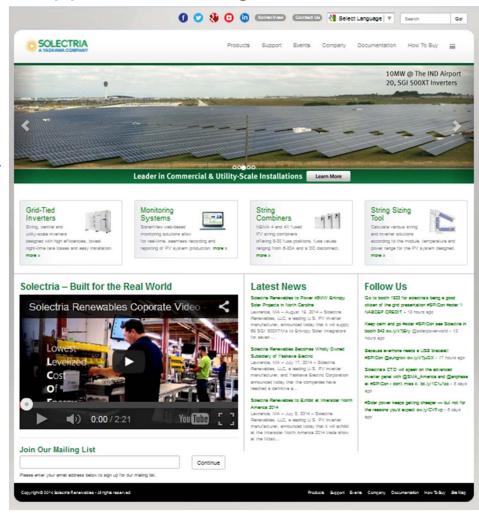
SGI Installation

ACCEPTABLE:

- Conduit Entry (removable plate)
- Conduit enters/exits in same place

UNACCEPTABLE

- Drilling top of Inverter
- **•**DO NOT DRILL INVERTER


Resources

Resources

#1 Technical Resource is Solectria Applications Engineers

- Design/Application Questions
- String Sizing Review
- Single Line Review
- 。 Code Questions
- Solectria Website www.solectria.com
 - Spec Sheets
 - Installation Manuals
 - PVsyst Files
 - String Sizing Tool
 - Customer Interface Drawings
- Other Resources
 - SolarPro
 - . HomePower

Thank You

Questions??

Thank you!

@SolectriaRen

Solectria Renewables, LLC

/105590461511696994974

/SolectriaRenewables0

Solectria – A Yaskawa Company

360 Merrimack Street Building 9, 2nd Floor Lawrence, MA 01843