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PREFACE

This workshop includes rainfall data processing exercises, assignments on the computation
of evaporation, composition of rating curves, flood routing, aspects of rainfall-runoff
modelling, reservoir operation, computation of unsaturated flow and actual
evapotranspiration. All applications use Microsoft Excel spreadsheet software.

The use of spreadsheet software for data screening and analyses has an advantage over
specialized hydrological software because 1) spreadsheet software is widely available and
2) the participants have to write the algorithms themselves and go through the underlying
theories and practises of data processing and analyses while designing there own
calculation spreadsheets and graphs.

Data of hydrologic phenomena form the basis of most hydrological work. Through data,
theories are verified and phenomena quantified. It should be realized that hydrological and
meteorological data, even from renowned institutes, may contain large errors. Therefore,
data from observations need cautious treatment. Data screening is a first step in the process
of applying data. A simple procedure, such as plotting the time series is a powerful tool to
spot suspicious data in a glance. Some well-known screening techniques are exercised in
these notes.

Data analysis techniques are often used for data screening, but the purpose of data analysis
is much wider: to describe or present a hydrological phenomenon in other terms than the
basic observations. Statistical analyses are in this sense important. The analyses described
in these notes are spatial homogeneity, K-day rainfall, analysis of extremes, double mass,
cumulated residuals, frequency distributions and homogeneity tests. In the application of
the techniques a distinction is made between daily, monthly or annual rainfall data. Special
attention is given to techniques for data completion.

Participants are supposed to have some background of statistics for successful
understanding of the exercises. In data screening and analysis use is made of statistic
parameters (means, moments) and theories for fitting distributions (Normal, Lognormal,
Gumbel) on observed data. For data completion the principles of regression and correlation
are applied. The statistical background for some special topics related to homogeneity tests
is dealt with in the appendices. Each assignment is accompanied by an explanatory text on
the principles of application of the technique.

In most water balances evaporation plays a dominant role. Calculating reference
evaporation from meteorological data using the Equation of Penman-Monteith or the
Radiation Method is often the most reliable basis for estimating potential and actual
evapotranspiration. These computations are easily carried out with spreadsheets. In the
workshop attention is given to a comparison of different methods.

Rating curves are an important link in processing hydrological data. Most discharge data
are obtained via the rating curve. The water level-discharge relation is, however, by no
means time-invariant. Re-establishment of the rating curve is to be carried out regularly.
This activity is easily done with the help of a spreadsheet.



There are several methods for hydrological flood routing in a river of which the
Muskingum method is probably the best known. The required parameters can be optimised
from a repeated regression analysis.

In the field of rainfall-runoff modelling, concepts such as hydrograph separation, unit
hydrograph derivation and convolution are often used. One assignment involves a more
complicated analysis of the rainfall-runoff relation of the Umbeluzi River which runs from
Swaziland into Mozambique. The mentioned concepts as well as flood routing are applied
to compute the effective precipitation and the surface water unit hydrograph.

Data from the Jatiluhur reservoir on Java, Indonesia are used for various assignments on
reservoir operation. First the reservoir capacity will be determined using the cumulative
mass curve or Rippl diagram and the Sequent Peak Algorithm. The storage in the reservoir
will be simulated using monthly data and the effect of rainfall and evaporation on the
reservoir is taken into account. The use of rule curves will also be exercised. Finally, the
size of the spillway has to be determined by routing a design flood through the reservoir.

Estimation of actual evapotranspiration is important in, for example water balance studies
and irrigation water management. A simple approach for estimating actual
evapotranspiration from the potential values is based on soil moisture accounting. In these
notes use will be made of soil physical data of an international soil series to estimate the
soil parameters. The same data are used for an assignment of the derivation of the Van
Genuchten model parameters and the derivation of soil pressure and soil moisture profiles
using the equation of Darcy.

The theoretical background of the exercises in this workshop is not, or only briefly,
discussed in these notes. This workshop is linked to the lecture notes on Hydrology (De
Laat & Savenije, 2008) and Soil-Water-Atmosphere (De Laat, 2009). For a more elaborate
discussion on the principles of hydrology the reader is referred to text books such a Shaw
et al. (2010).

Pieter de Laat



CONTENTS

1 DAILLY RAINFALL DAT A oottt ettt e ettt e ettt e e e st e e e s eb b e e e s e st it e e s sabeaessbbeessarteeessarns 1
1.1 TABULAR COMPARISON ....cciiiittttiitieetiiiitttiettesssssisbsssseessssissbsstsessssssasbbstsssessssabbabessessssasbbbasseesssssasrreens 1
1.2 GRAPHICAL COMPARISON ...ceciitviieietttteiesteeesstteessssseesssssaesssssbesessssessssbsesssasbassssssessssbesesssstessssssesesssseens 3
G Ty VN I = T 1Y o L] = N = 7 5
1.4 DURATION CURVES FOR K-DAY VALUES ....uviiiiiiiiiiiiiiiee e e s iiiirtiees e s s ssiibbasesssssssssbasesssesssssssssessssssssssssssnes 7
1.5 ANALYSES OF EXTREMES AND EXCEEDANCES ......uvtviiiieiiiiiiiiiiiieeeessiiiittieesesssssssssessesssssssssesssssssssansssnes 9

2 MONTHLY RAINFALL DATA ettt sttt st e et e s s ba e s s st e e e s st b e e s sbree e s saees 15
2.1 TABULAR COMPARISON ..uutiiiiiiiiitttttieeeessiitstttesseessssisstssssesssssisstsessssssssisstssssssssssssssssssssssssssssssesesesssnns 15
2.2 DATA COMPLETION THROUGH LINEAR REGRESSION.....cciieiiiiiirtieiieeeesiistieieesesssissssesesesesssssssssssessssinns 16
2.3 DOUBLE MASS ANALYSIS ..eiiiiiiiiitttttieee e s seitbtttetseessesabtrsssessssssabbsetsessssssbbaateeaesssssbbbesseesssssasbssesesesssases 18
2.4  METHOD OF CUMULATIVE RESIDUALS ......uttttiiiieeiiiiittiitteesseeisttteteesssssssbsatsesesssssssbesssesssssssssssesesesssses 21
2.5 FREQUENCY DISTRIBUTION .....cciitttteiittieeeeitteeeiitreeesateeeseisaesesesseeeaasbeesssasssessssseeseassesesassesesssesesssseeeeans 23

3 Y EARLY RAINF A LL DA T A ittt e e e e e st e e e e e s s s bbb et e e e e e s s sabbabeeeeessaases 27
3.1 SPEARMAN'S RANK CORRELATION METHOD ....cciiiiiiiiuitieiieeeiiiiiiiieeeeessesisbsesessssssssbassesssesssssssssssssessnnnns 27
3.2 F-TEST FOR THE STABILITY OF THE VARIANCE ......ociiiiiiiiiiiii i 29
3.3 STUDENTS-T TEST FOR STABILITY OF THE MEAN .....ccciiiiiiiiiiiiiiin s 29

4 LAY AN =L O] = ¥ AN I L0 ] R 31
ot R o = N 1Y N 1Y/ [ N =1 1 RO 31
4.2 RADIATION IMETHOD ....coiiitttiiiiie ettt e e e ettt e e e s e et e it e e e e e et st b b et e e e e e s s sab bbb e e e e e e e ssabbbbbeeeeesssaabbbaeeeeeas 35

5 COMPOSITION OF A RATING CURNVE ...ttt 37

6. FLOOD ROUTING ...ttt ettt e e e s et et e e e e s e e bbb et e e e e s e sab b b et e e eessssbbaaeeeeesssssrreees 41
(S0 A 1N =10 016 Lo () 41
6.2 IMUSKINGUM METHOD ..uvvvviiieeiiiitttetieeessseesstetessesssssssstssssessssssssssesssssssssssssssssessssssbaesssssssssssssssesssessssies 42

7 RAINFALL RUNOFF MODELLING.....ooiiiiii ittt s sttt r s e e e s s sibaate e e e s s s sabreees 45
% T 1 N 210 ] 01U [0 (0] N N 45
4 = e o] o Y = To U 1[N LTS 46
7.3  BASE FLOW SEPARATION ..uiiiiiiiiittttiiteeesiiittattetseessissstsssseessssissbsessssssssiasbassessessssbbbasesesesssassrssesssesssases 46
7.4 ESTIMATING EFFECTIVE PRECIPITATION L..uututiiiieeiiiiititietieesseiitttetesessssissbsssessssssssssssssssesssssssssssssssssnnns 48
7.5 DERIVATION OF THE UNIT HYDROGRAPH ....uttiiiiieiiiiititiete e e e s eeibbtet e e e s s s siabbbasesssssssasbassesesesssssssssesesesssnses 49

8 RESERVOIR OPERATION ...ttt ettt sttt et e s sttt a e s s ata e e s st e e s sbaa s e s sbbaeesanbaneens 55
LS R N =0 T o 1] 55
8.2 DETERMINATION OF THE RESERVOIR CAPACITY weeeiiiutiieeiteieeiitteeeeeteeessssaesssssseessssseessssseessssssesessssensesns 55
8.3 RESERVOIR SIMULATION.....uuuiiiiitteeeietteeeeeteeessistesesassesssssessssssesssaassesssassesssssssessssssesessssessessssesessssensesns 57
8.4 RULE CURVES .....ttie e ittt e e ettt e e et ee e s et e e e e tae e e s bt e e e e eabeeeeeabaeseeabaeeeesabeeeeabeeseaanbeseessbeeeesasbessssnreneessreneeaas 61

8.5  RESERVOIR ROUTING ....uteutitittsteatisteesteste sttt sttt sse st esee st sbe bbb e se e st e nb e ab e s bt eb e e be e b e nn e b e b anenbeese e 64



9 SOIL MOISTURE ...t e e 67

9.1 ACTUAL EVAPOTRANSPIRATION THROUGH SOIL MOISTURE ACCOUNTING ....cvvvviviiiieirrieesirieeeserieeens 67
9.2 OPTIMISATION OF THE VAN GENUCHTEN PARAMETERS. ....ciiiiteieiittieeiitteeesssreeessistessssssessssssenesssssesesas 70
9.3 COMPUTATION OF MOISTURE PROFILES USING THE EQUATION OF DARCY ....ccoiiiiiiiiiieie et 12
[ o ] 2 = N[O TR 73
YN o o = NN D] O PR 75
A STATISTICAL BACKGROUNDS.......uuttiiiieiiiiiiittiitteessssiisbietseessssssbassseessssissbbatssssessiasbbssseesessssssbaresssesssssns 75
B STUDENT T-DISTRIBUTION ....ieiiiiituttiitieeiiiiitttettteessssisbsetsessssssssbsssssesssssssbbasssssessiabrssssssessssssrssssssesssses 89
C PERCENTILE POINTS OF THE FISCHER-F DISTRIBUTION .....cccuttiiiieiiiiiitiieiieeeessieirereeeeesssesssssesssesssssnsnns 91
D TABLE OF STANDARD NORMAL DISTRIBUTION ....uvtiiiiieieiiiitiiiiieeeessieiirieeeseesssissseessesssssssssesesees 93
E PARAMETERS FOR GUMBEL TYPE | DISTRIBUTION ...uuvviiiiiiiiiiitirieeeeesssiiirieesseessesasbbessssssssssnrssesssesssnnns 95
F SOIL PHYSICAL DATA INTERNATIONAL SOIL SERIES ..vvviiiiiiiiiiiiiiiee e siitiniees e e s snbbarees e s s ssasrssesssessnnnns 97



1 Daily Rainfall Data 1 Workshop on Hydrology

1 DAILY RAINFALL DATA

This chapter deals with screening of daily data. For this workshop rainfall data are used,
but the same procedures are also applicable to other types of daily data. The screening of
these data is restricted to identifying suspicious values. No attempt will be made correcting
the data, because additional information on how these values were obtained and processed
is lacking. The homogeneity of time series will be dealt with in the next chapter. Some
analyses do not require daily rainfall data, but k-day values, where k usually varies from 2
to 30. Ranking k-day rainfall data over at least one year may result in Depth-Duration
curves, which give the percentage of time a certain rainfall depth is exceeded. If a long
time series, say at least 20 years of daily rainfall data are available, an extreme value
analysis may be carried out, giving the probability that an extreme daily rainfall event will
be exceeded. In these notes the extreme value distribution of Gumbel (1941) will be used.

In this workshop use will be made of daily rainfall data of four stations in the Umbeluzi
catchment area in Mozambique. The length of the records varies, but the period 1958/59 -
1981/82 is always included.

Station code  Period of records File name

P5 1945/46 - 1981/82 i:\groupwork\nydata\p5_dr.txt
P6 1951/52 - 1988/89 i:\groupwork\hydata\p6_dr.txt
P119 1913/14 - 1986/87 i:\groupwork\nydata\p119_dr.txt
P425 1958/59 - 1984/85 i:\groupwork\hydata\p425_dr.txt

A map of the catchment and location of the stations is provided in figure 1.1. The
computations will be carried out with the "Microsoft Excel Spreadsheet Program™.

1.1 Tabular comparison

In the first assignment rainfall data of four stations in the Umbeluzi catchment of the same
year will be screened through tabular comparison. For this purpose the data have to be
entered into an empty worksheet. The original (rough) data are available in text files. The
files may be retrieved from the IHE network using the names given above. Missing data
are indicated by the value -1.0.

Assignment

For each of the four rainfall stations the data for the year assigned to you is to be copied to

your own spreadsheet file. The procedure is as follows.

e Start the Microsoft Excel software and open the first file P5_dr.txt in the directory
groupwork/hydata on the i-drive. Make sure that you have selected in the menu Files of
type: All files (*,*) otherwise the directory looks empty. Select: next and finish.

e Select the range of cells containing the year assigned to you (including the two lines on

top with the station number and year) and copy to clipboard.

Paste contents clipboard into blank workbook and close file P5_dr.txt

Open file P6_dr.txt, copy required data and paste in cell Q1

Open file P119_dr.txt, copy required data and paste in cell AG1

Open file P425_dr.txt, copy required data and paste in cell AW1

Save this spreadsheet in your own directory on the H-drive under the name Anum,

where num is your (three digit) locker number (e.g. A063.xIsx if your locker number is

63).
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Fig. 1.1 Map of catchment and location of stations
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The spreadsheet now contains 4 tables, each of which represents one year of daily rainfall
data. The format of each table is as follows:
Rows are day numbers from 1 to 31.
Columns are months.
The first data column is for the month of October (month X), which corresponds to the
start of the hydrological year in Mozambique.

e Insert a row (Click with right mouse button in cell A3, and select: Insert, Entire row).

e Write in this row above each column the name of the month (starting with October).
Right align and change letter type to bold. Copy this heading to the other three tables.

o Freeze titles (Click in cell A4 and select: View, Freeze panes, Freeze Panes).

e Delete at the end of the each column data for non-existing days (mind leap years during
which 29 February does exist). Repeat this for each of the four stations.

e Save the spreadsheet under the same name. (It is advisable to make a copy on your
memory stick).

e Have a close look at the daily values in the table. Check for strange values, long
sequences of rainfall, long sequences of 0.0, extreme high values. At the same time
compare the data of one station with the other. Do not change any of the values when
they are correctly copied from the original files, just be alert for suspicious values.

e Make rows at the bottom of your table for the monthly minimum and maximum rainfall
value (Mmin and Mmax). Use the functions MIN(range) and MAX(range). Also make
a row for the monthly total (Mtot), using the function SUM(range).

e Finally fill a row by hand (Missing) indicating the number of missing days. An example
of the result is given in table 1.1.

e Compute the year total as the sum of all monthly values. Copy all 4 lines at the bottom
of the table to each of the other tables. Compute missing values by hand in the other
tables. Note: exclude months with missing values in your calculations. A monthly or
yearly total in this case is left blank.

e By comparing the monthly totals, minima and maxima of the four stations, suspicious
data are easily detected.

1.2 Graphical comparison

Comparison of data between the 4 stations is facilitated by the graphical features of Excel.
We could create stacked-column graphs for daily rainfall data. It is expected that the daily
rainfall data are closely correlated so any suspicious data are easily spotted.

In this exercise we will not compare daily values but monthly totals of the 4 stations using
a stacked-column graph. As an example of the graph to create, see figure 1.2.

Assignment
Make sure you have opened your spreadsheet Anum with the daily data of four stations of
one and the same year.

e Select: View, Freeze Panes, Unfreeze Panes and click on an empty cell (not close to an
array of values) where you want the chart to appear.

e Select: Insert, Column and choose the middle icon of the first row of 2-D column charts.
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119
1960 1961
Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep
1 0 0 0 3.4 0 0 0 0 0.3 1.6 5.3 0
2 0 0 0.8 6 0 0 8.7 0 0.3 0 0 0
3 0 0 7.9 1 0 0.3 0 0 0 0 8.6 0
4 0 0 7.7 0 0 7.3 0 0.9 0 0 13 0.5
5 0 0 21.3 0 0 0 0 0 0 0 0 0
6 2 0 71.2 0.3 3.2 0 4.8 0 7 0 0 0
7 1.3 0.4 4 0 0 0 18.2 0 0 0 0 0
8 0 0 16.2 0 0 1 0 0 1.7 0 0 0
9 0 50.7 2 0 0 5.1 2.2 0 0 0 0.3 0
10 0.2 0.7 0.2 0 0.4 0 0.5 0 0 0 0 0
11 0 1.8 7.3 0 53.1 0 0 0 0 0 0 0
12 0.2 22.2 2.2 0 38.2 0 12.5 0 0 0 0 0
13 6.2 0 0 0 11.3 1 0 2.6 0 0 0.3 0
14 7.6 0 0 0 0 0 0 0 0 0 0.2 0.3
15 0 2.7 0 30.8 0 0 0 0 0 0 0.1 0
16 0 4.5 0 0 0 0 0 0 0 3.6 0 0
17 0 0 0 0 1.8 0 0 0 0 5.3 0 0
18 0 2.3 0 0 0 0 0 1.4 0 0 2.7 7.1
19 0 0 2.6 0 0 0 0 0 10 0.1 0 0.1
20 0 0 0 1.8 0 0 0 0 7.1 0 0 0
21 0.2 2.2 0 0 0 0 0.5 0 0 0 0 0
22 0 335 1.2 0 0 0 0 0.4 0 0 0 0
23 0 0 67.4 0 0 2.2 0 0.3 0 0 0 0
24 30.4 3.4 1.6 0 0 0 0 0 0 0 4.8 0
25 1.3 0 0 0 0 64.1 0 0 0 0 0.2 311
26 0 0.4 7.7 0 0 47.7 0 0 15 0 0 0
27 0 1.5 0 0 0 7.1 0 0 7.1 0 0 0
28 0 4.3 3.1 0 0 0 0 0 0 0 0 0
29 0 13.2 34 1.3 10.8 0 0 0 0 0 4.2
30 0 0.5 42.6 4.5 8.9 0 0 0 0 0 12
31 0 25.7 0 0 0.3 0 0
Mmin 0 0 0 0 0 0 0 0 0 0 0 0
Mmax 30.4 50.7 71.2 30.8 53.1 64.1 18.2 2.6 15 5.3 13 311
Mtot 49.4 144.3 296.1 49.1 108 155.5 47.4 5.9 48.5 10.6 355 55.3 1005.6 Yeartot
Missing 0 0 0 0 0 0 0 0 0 0 0 0
Table 1.1 Example of tabulation of one year of daily rainfall data
.
Monthly Rainfall Data for 1960/61
1000
900
800
700
£
£ 600 H p425
=
T mP119
T
3 HP6
£ 400
e Hps
300
200
100

Oct

Nov

Feb

Mar

Apr

May

Jun

Jul

Aug Sep

Fig. 1.2 Chart (stacked-column) of monthly rainfall values for 4 different stations
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e Select: Select data, Add, Series Name: type P5, Series values: highlight the monthly
totals of station P5, repeat this for the other three stations. Click edit in Horizontal
(Category) Axis labels and highlight the names of the months of one of the stations.
Click OK OK

e Select an appropriate chart layout and fill in the title and legends.

e The properties of the chart are easily changed by double clicking on the appropriate
item.

e Save the spreadsheet.

1.3 Spatial homogeneity

In spatial homogeneity tests data of a base station are related to data of surrounding
stations. In principle good correlations are expected with stations nearby. This can be
expressed by a negative exponential function (see lecture notes Hydrology)

pr :po e[ "o] (11)
where
pr correlation at distance r
po correlation at distance 0
r distance between stations
ro coefficient

The correlation of monthly data will generally be better than daily data. Apart from the
time period and distance, a third parameter affecting the correlation is the type of rainfall
that can be expected (convective, orographic, or depression type of rainfall).

For the Umbeluzi catchment with mixed convective, orographic and depression type of
rainfall, values for the coefficients are taken as follows: po = 0.94 and ro = 300 km. A
maximum distance rpax between the base station and neighbouring stations is defined as
the limit where correlation becomes insignificant (p < 0.75).

Assignment

e Find the distances between P5 and the other stations from figure 1.1 and compute the
correlation coefficients for these three distances.

e Compute the maximum correlation distance rma, assuming a minimum value of the
correlation coefficient of p = 0.75.

e Are there distances between stations that fall beyond this limit?

To investigate the reliability of point observations, the measurements, Ppeas(t), Of one
station are compared with estimated values, Peg(t), based on a weighted calculation using
the rainfall at neighbouring stations. Only stations with a correlation distance smaller than
'max are taken into consideration. The weights are inversely proportional to some power of
the distance between the base station and the neighbouring stations.

The estimated daily rainfall is calculated with
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(1.2)

where
Pest(t) estimated rainfall of base station at time t
Pi(t) measured rainfall of station i at time t
ri distance to station i
b power of distance (usually b = 2)

The difference between the observed value Ppeas(t) and the estimated value Peg(t) is
considered to be insignificant if the following conditions are met

1 Absolute criterium
| Pmeas (t) - Pest (t) |S Xabs (13)
2 Relative criterium

| P rreas (t) ~ Pest (t) | < Xrel - SpPmeas(t) (14)

where
Xaps  admissible absolute difference
Xret  multiplier of standard deviation
Spmeas(y) Standard deviation of values of neighbouring stations at time t within rpax

The calculation of Spmeasty does not yield a realistic value if only a few stations are
involved.
For this situation an alternative relative criterium can be used

es t
F1S—PP t((t))SFz (1.5)

where F; is the admissible relative difference coefficient.

Assignment

Make sure you are in spreadsheet Anum with the tables of daily rainfall data for the four

stations. Spatial correlation will be performed between the utmost left table (base station

P5) and the others as neighbouring stations. Assume that the parameter b equals 2.

e Make a small table with in the first column the distances r; and in the next column the
correlation coefficient according to equation 1.1. In the last column appear values for
1/r{? and the sum of these values at the bottom.

e Create a new table below the table with daily values for station P5 with values for Pe;.
Write in the first cell of this table the equation using absolute cell references for 1/r
and the sum, and relative cell references for the values P; of the neighbouring stations.
Copy this equation to create a table with 12 x 31 Peg(t) values.

o Create another table below this one with absolute differences between the measured
rainfall of station P5 and the estimated values, thus |Ppmeas(t) - Pest(t))-

e Finally create a table with the ratio of estimated over observed rainfall values for P5,
thus Pest(t)/Pmeas(t). You may use an IF-function to avoid dividing by zero, e.g.
IF(b4=0,””,b54/b4).
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From the last two tables it is possible to inspect in a glance the suspected values, i.e. those
values that are out of the admissible range, say greater than Xaps = 50 mm or values for
which the ratio is not between F; = 0.1 and F, = 5. (You may use the formatting function
of Excel to give these values a different colour. Select: Home, Conditional formatting,
etc.).

Question: Please write in the top left corner of your spreadsheet a brief assessment of
the quality of your data set.

Save the sheet Anum.

1.4 Duration curves for k-day values

Duration curves, which give the percentage of time a certain average discharge or rainfall
amount is exceeded, are frequently used in hydrology. In this assignment the construction
of a rainfall duration curve for different rainfall durations (k-day rainfall, where k = 1, 3,
10 and 30 days) will be practised. In this context k-day rainfall values refer to the sum of
rainfall over the previous k days, including the day under consideration. If the duration
curve is based on one year of data, it gives information on that particular year. It is obvious
that if the data include many years, say more than 20 or 30 years, the curve obtains the
character of a probability curve that has a more general use. In this assignment we will
derive a duration curve based on ten years.

Assignment

Each participant will be assigned one hydrological year for station P119 to carry out the

analysis of k-day rainfall data. Retrieve this specific year from the data file and prepare the

tables as follows.

e Open file i:\groupwork\hydata\p119_dr.txt and select the year assigned to you. Copy the
data of this year to the clipboard.

e Open a new workbook, click cell G1 and paste clipboard contents.

e Delete non-existing days.

e Fill A5to A370 with values from 1 to 365 or 366 (Put in A5 the value 1 and in A6 the
value 2. Select both cells. Put the cursor in the small black square and drag downwards
with the left or right mouse button pressed until cell A370. (If you drag over the range
with the right mouse button pressed a small menu will appear from which you may
choose an option). Delete cell A370 if this is not a leap year.

e Move the daily rainfall data into column B. (It is convenient to use the keyboard keys
END and the arrow keys 1| to move to the beginning and end of a column. The
combination Ctr-Home moves the cursor to Al). Put above this column the title: 1k.

e For safety reasons it is better to already save the worksheet now as Bnum.

e Click in P119 dr.txt in the taskbar at the bottom of your screen and copy from this
spreadsheet the data for the remaining nine years into cell G1.

e Move the daily rainfall data into column B as done earlier for the months of the year
assigned to you.

e Extend the values in column A to 3650 + 3 or 4 (depending on the number of leap
years).

e Compute in column C, D, and E respectively, the 3, 10 and 30 k-day rainfall data, make
use of the function SUM(range). Save again for safety reasons your worksheet.
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Cumulative number of occurrences greater than or Percentage of time the k-day rainfall depth is exceeded
equal to the class bottom
1K 3K 10K 30K 1K 3K 10K 30K
0 3653 3651 3644 3624 0 100.0 100.0 100.0 100.0
10 285 782 2007 3111 10 7.8 21.4 55.1 85.8
20 152 480 1532 2779 20 4.2 131 42.0 76.7
30 90 306 1165 2560 30 25 8.4 32.0 70.6
40 48 197 819 2335 40 1.3 54 225 64.4
50 23 137 628 2077 50 0.6 3.8 17.2 57.3
60 15 102 527 1922 60 0.4 2.8 145 53.0
70 11 68 409 1735 70 0.3 1.9 11.2 47.9
80 8 43 314 1537 80 0.2 1.2 8.6 42.4
90 5 34 236 1390 90 0.1 0.9 6.5 38.4
100 3 25 180 1215 100 0.1 0.7 4.9 335
110 2 18 148 1051 110 0.1 0.5 4.1 29.0
120 2 14 119 871 120 0.1 0.4 3.3 24.0
130 2 12 97 740 130 0.1 0.3 2.7 20.4
140 2 9 87 628 140 0.1 0.2 24 17.3
150 2 8 63 579 150 0.1 0.2 1.7 16.0
160 0 6 55 514 160 0.0 0.2 15 14.2
170 0 2 37 446 170 0.0 0.1 1.0 12.3
180 0 1 29 371 180 0.0 0.0 0.8 10.2
190 0 0 23 322 190 0.0 0.0 0.6 8.9
200 0 0 22 246 200 0.0 0.0 0.6 6.8
210 0 0 21 203 210 0.0 0.0 0.6 5.6
220 0 0 19 181 220 0.0 0.0 0.5 5.0
230 0 0 19 159 230 0.0 0.0 0.5 4.4
240 0 0 16 135 240 0.0 0.0 0.4 3.7
250 0 0 9 130 250 0.0 0.0 0.2 3.6
260 0 0 7 124 260 0.0 0.0 0.2 34
270 0 0 6 118 270 0.0 0.0 0.2 3.3
280 0 0 1 111 280 0.0 0.0 0.0 3.1
290 0 0 0 107 290 0.0 0.0 0.0 3.0
300 0 0 0 74 300 0.0 0.0 0.0 2.0
310 0 0 0 55 310 0.0 0.0 0.0 15
320 0 0 0 44 320 0.0 0.0 0.0 1.2
330 0 0 0 37 330 0.0 0.0 0.0 1.0
340 0 0 0 36 340 0.0 0.0 0.0 1.0
350 0 0 0 35 350 0.0 0.0 0.0 1.0
360 0 0 0 35 360 0.0 0.0 0.0 1.0
370 0 0 0 33 370 0.0 0.0 0.0 0.9
380 0 0 0 28 380 0.0 0.0 0.0 0.8
390 0 0 0 22 390 0.0 0.0 0.0 0.6
400 0 0 0 15 400 0.0 0.0 0.0 0.4

Table 1.2  Example computation k-day duration curves for 1951-1961

Rainfall duration curves for 1951-1961
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Fig. 1.3 Rainfall duration curves for 1951-1961
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e Create a table similar to table 1.2, with in the first column the class bottom (use class
intervals of 10 mm, or if your data range is very large use 20 mm) and in the subsequent
columns the number of intervals greater or equal to the class bottom. To count the
number of intervals greater than or equal to the class bottom us the function
COUNT IF(range; condition™).

e Compute in the next table (see also table 1.2, right hand side) the percentage of time the
rainfall depth is exceeded.

e Make a chart similar to figure 1.3, with on the horizontal axis the percentage of time the
rainfall depth is exceeded and on the vertical axis the rainfall depth. (Click in a cell
some distance away from the table, Select: Insert, Scatter, Select data, Add, etc.).

Please write in the left top corner of your spreadsheet answers to the following two

guestions:

1. How many percent of the time is 20 mm or more rainfall in a 30 day period
exceeded?

2. s this chart useful to estimate the rainfall depth that will be exceeded once in 100
years?

Save the worksheet Bnum.

1.5 Analyses of extremes and exceedances
The following two methods will be used for analysing extreme daily rainfall events

1 Analysis of extremes (annual series)
From each (hydrological) year the maximum value is registered. The extremes for a
large number of years are fitted into a distribution, for example Gumbel type I.

2 Analysis of exceedances (partial duration series)

All the values exceeding a certain level (threshold) of daily rainfall are registered,
regardless the number of times in a year they occur. This method, also known as
‘Peaks Over Threshold’ (POT), is more correct as all values above a certain
threshold are included, but it involves more work. Moreover, there is a greater risk
that the extreme values are not independent of each other. The method is most
easily compared with the annual series if the threshold is selected in such a way that
the number of values above the threshold equals the number of years of data.

Langbein (see Chow, 1964) has shown that the following relation exists between the two
methods

T

Ti =1- exp[_lj (1.6)

where T is the return period of annual extremes and T, the return period for the partial
duration series (exceedances). The relation, which is summarized in table 1.3, shows that
for rare events, say T > 10 years, the difference between the two methods is very small.

In this workshop both methods will be applied and the results will be plotted in a chart.
About 30 years of data from file P119_dr.txt will be used for this analysis.
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Return period Kexol Xext

2 years 1.090
5 years 1.023
10 years 1.009

where
Xext = rainfall depth referring to annual extremes
Xexc = rainfall depth referring to exceedances

Table 1.3  Relation between annual extremes and exceedances

Analysis of extremes (annual series)
In this workshop the well-known Extreme Value Distribution developed by Gumbel (1941)
will be applied. This distribution has been used with success to describe the populations of
many hydrological events. When applied to extreme values, the fundamental theorem can
be stated as follows.
If X1, X2, X3, oo Xn are independent extreme values observed in N samples of equal size n
(e.g. years), and if X is an unlimited exponentially-distributed variable, then as n and N
approach infinity, the cumulative probability g that any of the extremes will be less than a
given value X; is given by

q=exp(-exp(-y)) (1.7)

where q is the probability of non-exceedance, y is the reduced variate. If the probability
that X will be exceeded is defined as p =1 - g, then (1.7) yields

y=-In-In(1-p))=-In(-In(1-1/T)) (1.8)
where T is the return period measured in sample sizes N (e.g. years).
According to Gumbel, there is a linear relation between X and y
y=a (X-b) (1.9)
where a is the dispersion factor and b is the mode.

If the samples are finite, which they always are (already a series of 30 years (N = 30) is
large), the coefficients a and b are computed according to the following equations

b=X, —s, N (1.10)

a=—N (1.11)
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where X_, is the mean of X and s the standard deviation of the sample. Values for yy

(the mean of the reduced variate) and oy (the standard deviation of the reduced variate) are
tabulated as a function of N in appendix E. With X = Xeum equation (1.9) modifies to

xGum = Xext + h(y_ yN) (112)
Oy

On probability paper where the horizontal axis is linear in y, (1.12) plots a straight line. To
plot the data points on the horizontal axis a, so-called, plotting position, or estimator of the
probability of non-exceedance q is required. The following plotting position is used

m-a
q=1-p=1-—N+1_2a (1.13)

where m is the rank number of the maximum occurrences in decreasing order, N is the total
number of years of observations and a = 0.44 as proposed by Gringerton for Gumbel
distributions. For « = 0 equation (1.13) yields the well-known Weibull formula.

Assignment

o Create a table similar to table 1.4 as follows.

e Open file P119 dr.txt and copy years assigned to you into a new spreadsheet. Close file
P119 dr.txt.

e Compute for each year the maximum and minimum daily rainfall in columns N and O,
respectively (use the functions MAX and MIN).

e Delete years with missing data (delete all rows of years with minimum rainfall equal to
-1).

e Save the file in your own directory as Cnum.

e Copy the annual extremes (only the values) in column N to column S (Copy to
Clipboard, Paste, Paste Special, Values, OK).

e Sort data in column S in descending order (Select with mouse data range, Select: Data,
Sort, Largest to smallest, OK)

e Rank the values in column R similar to table 1.4 (Put the values 1 and 2 in the first and
second cell, select both cells and drag the square dot to end of the column with the left
mouse button pressed). There should be about 30 values.

¢ In the next column the plotting position p (the probability of exceedance), is calculated
for each value of Xey using the formula of Gringorten (see Cunnane, 1978)

_ m-0.44

PN +012 (1.14)

e The log of the return period T = 1/p is computed in the next column. Sometimes a near
linear relation may be found between log T and the annual extreme rainfall depth.

e Create a graph of the XY(scatter)-type, similar to figure 1.4, showing this relation.
(Select: Insert, Scatter, etc.). Add a straight regression line as follows: Click right
mouse button on one of the dots in the chart of the series, Select: Add Trendline, Linear,
Close.

e Create a column next to the column of logarithmic values for the computation of the
reduced variate y using equation 1.8.
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Rank p=(m-0.44) LogT= Y=-Ln Lower Upper
i CaICUIate the average (m) Xext  /(N+0.12) Log (1/p) (-Ln(1-p)) Xgum Conf level Conflevel Xexc
; ; 1 2217 0.018 1.745 4.01 229.6 165.4 2937 2217
Xext with  function 2 1832 0.050 1.300 297 187.6 139.1 2362 1832
AVERAGE and 3 1829 0.082 1.085 2.46 167.0 126.0 2080 1829
o 4 1429 0.114 0.942 211 153.0 117.0 1890  142.9
standard deviation Sey 5 1381 0.147 0.834 1.84 1423 1101 1746 1381
. . 6 1303 0.179 0.748 1.63 133.6 104.3 162.8 1352
with function STDEV 7 110.0 0.211 0.676 1.44 126.1 99.4 1529 1303
8 1075 0.243 0.615 1.28 119.6 95.0 1443 1100
of the Sample' 9 1040 0.275 0.561 1.13 113.8 91.0 136.6 1075
e Given the number of 10 100.9 0.307 0513 1.00 108.5 87.2 129.7  104.0
1 1000 0.339 0.469 0.88 103.6 83.7 1235 1015
years N, values for yy 12 95.0 0371 0430 077 99.0 804 1177  100.9
. 13 78.1 0.404 0.394 0.66 94.7 771 1123 100.0
and oy may be found in 14 763 0436 0361 0.56 90.6 740 1072 100.0
appendlx E and Copled 15 75.0 0.468 0.330 0.46 86.7 70.8 102.5 99.3
i 16 746 0.500 0.301 0.37 82.9 67.7 98.1 95.0
to cells somewhere in 17 735 0.532 0.274 0.27 79.2 64.5 93.9 92.4
18 734 0.564 0.249 0.19 75.6 61.3 89.8 92.4
the SpreadSheet for 19 69.0 0.596 0.224 0.10 72.0 58.1 86.0 88.6
20 65.4 0.629 0.202 0.01 68.5 54.7 82.4 816
later use. 21 625 0.661 0.180 -0.08 65.0 51.2 78.8 78.1
e For each value of y 22 60.2 0693  0.159 -0.17 61.4 475 754 765
23 58.3 0.725 0.140 -0.26 57.8 43.6 72.1 763
calculate the 24 55.9 0.757 0.121 -0.35 54.1 395 688 750
; ; 25 54.9 0.789 0.103 -0.44 50.3 35.1 65.4 748
correspondlng ramfall 26 54.0 0.821 0.085 -0.54 4622 304 62.1 746
value Xeum a_(;(;ordmg 27 50.5 0.853 0.069 -0.65 4138 25.1 58.6 735
) 28 484 0.886 0.053 077 37.0 19.1 54.8 734
to Gumbel (equation 29 478 0918 0037  -0.92 313 119 506 690
1 12) 30 465 0.950 0.022 -1.10 24.0 2.6 454 67.5
. . 31 415 0.982 0.008 -1.39 121 -12.9 37.2 675
e Make another chart
.. . Xavg= 89.8
similar to figure 1.5 Std= 449

with on the horizontal

axis the y values and Table 1.4  Example computation of Gumbel distribution
on the vertical axis the

series Xext and Xcum.

Adding confidence limits

The longer the time series the more confidence we have in the derived extreme value
distribution. In particular for short series it may be wise to indicate the level of confidence
for the data we have used. The procedure is the following.

First the standard error of estimate SEx is computed in terms of the reduced variate y. The
equation varies with the type of probability distribution used, and may be written for
Gumbel as

05
S 1.14 1.10
SEX=_ﬁi{1+7;—-y—yN)+:;r(y—yNy} (1.15)

N N §

From the Student’s t-distribution the critical values for a 95 % confidence interval may be
found given the degree of freedom v, which equals the sample size minus one, or

y=N-1 (1.16)

The confidence limits t; are read from appendix B. For the example data set in table 1.4 the
degree of freedom is 30 and the critical t-values are t. = +2.04.
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Assuming that the errors of the estimated extremes Xgym are normally distributed, the upper

and lower limit of the confidence interval X; is as follows related to the standardized values
te

SE,
or
X = Xgm Tt SEy (1.18)
Assignment

e Find the critical t-values from Appendix B for the degree of freedom v.

e Add two more columns for the lower and upper confidence limits (see table 1.4) and
use equation (1.17) for the computation.

e Add the confidence limits to the chart (see figure 1.5).

Annual Maximum Daily Rainfall Gumbel Distribution with 95 % confidence limits
Station P6, Period 1951 - 1982 Station P6, Period 1951 - 1982

250 300
——Gumbel
*
200 250 ¢ Extremes /
. s
/ ——Upper Conf level /
200
150 ——Lower Conf Level ///‘
150 o d
®
S /f/
/ E" P
o g|oooood %
50 /
o 50 %

100

Daily Rainfall Depth (mm)
\d
Daily rainfall depth (mm)

0 0 A
0.0 0.5 1.0 15 2.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0
Log Return Period Reduced variate y
Fig. 1.4 Logarithmic distribution of Fig. 1.5 Analyses of extremes and exceedances

annual maximum daily rainfall

Analysis of exceedances (partial duration series or POT)

Assignment

Compute for the same series as used above the N largest daily rainfall values (Xexc). This is
most easily done by sorting the columns with N years of original data in descending order.
Copy all values larger than a set limit to a column in the same table that you used for
analysis of extremes. The lower limit should be such that the number of values larger than
this limit is larger than N. Sort these Xexc Values in descending order. See table 1.4.
According to the Langbein theory we only analyze the number of highest values equal to
the number of years of the data series. You can erase now all lower values. Indicate Xy in
the Gumbel graph by filling an additional plot range with the column Xexc. See figure 1.5.
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Compare the results and notice that in particular for low return periods Xexe/Xext > 1.

Remark

It should be noted that sometimes a procedure is used for the computation of the extreme
value distribution according to Gumbel that does not take into account the sample size.
This applies for example for the Time Series Analysis software (TSA) developed by
Guzman and Chu (2003). The difference between the two methods can be significant for
small sample sizes.

Question: Please write in the top left corner of your spreadsheet a brief assessment of
how well your data fit the Gumbel distribution.

Use both distributions (Gumbel and Logarithmic) to compute the 50 year annual
extreme rainfall.

Save the file as Cnum.
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2 MONTHLY RAINFALL DATA

In a previous exercise monthly data have been generated through aggregation of daily data.
Each participant performed this for each of the four stations over a particular year.
Through combining all the years, tables can be generated with monthly data over the years
of observation per station. As an example see Table 2.1. A worksheet file containing the
monthly rainfall values of all four stations is named i:\groupwork\hydata\month_31.txt.
The period of observations is 1951/52 until 1981/82.

2.1 Tabular comparison

Assignment

Retrieve the file with tables of monthly data over the period 1951/52 - 1981/82 of the 4
stations into the spreadsheet program. Each participant will be assigned a particular month
for which a statistical analysis is to be carried out.

In order to retrieve the data file and to establish the table with monthly data of the 4
stations the following procedure could be applied.

e Open the file with monthly data of the 4 stations: i:\groupwork\hydata\month_31.txt

e Prepare a table (starting in cell A45) with columns for the year numbers and monthly
values of the stations P425, P119, P5 and P6 (in this order). Fill the columns with
values over the years 51/52 - 81/82 for the month assigned to you.

Station_code: P119

Yearly
Month X Xl Xl | I 1 \% \% \ \l Vi IX Total
Year
51/52 127.6 8.8 91.4 108.8 109.6 50.9 22.2 19.1 40.9 82.9 9.5 16 673.3
52/53 43.2 194.2 119.6 305.4 188.1 78.8 23.2 11.7 0.0 14.1 2.4 50.4 1,031.1
53/54 76.3 1445 28.1 84.2 95.4 115.1 85.7 30.5 123 15 30.1 198.5 902.2
54/55 155.9 187.4 94.1 293.8 292.6 183.1 76.1 735 24.7 0.0 0.0 20 1,383.2
55/56 193.9 297.5 1143 123.0 375.7 172.1 6.6 56.4 19.0 7.6 20 1255 1,493.6
56/57 18.0 78.5 160.7 87.4 95.1 132.0 1515 15.7 335 99.3 68.3 104.9 1,044.9
57/58 132.4 30.9 152.7 253.1 133.9 82.7 60.0 0.0 25.1 4.0 53 45.3 925.4
58/59 34.8 68.9 136.8 123.7 92.6 60.9 8.5 133.3 14.0 10.4 55 70.3 759.7
59/60 85.2 415 102.0 63.5 85.8 70.8 179.8 7.2 21.0 10.0 233 63.0 753.1
60/61 49.4 1443 296.1 49.1 108.0 1555 47.4 5.9 48.5 10.6 355 55.3 1,005.6
61/62 140.3 62.2 49.2 118.1 26.3 57.8 81.6 16 22.7 3.0 54.7 75 625.0
62/63 67.4 127.8 97.8 115.8 204.6 95.6 313 321 69.0 152.4 15.0 6.2 1,015.0
63/64 51.6 72.4 52.0 173.2 42.2 75 96.9 5.0 2.9 3.1 18 3.4 512.0
64/65 107.4 63.0 163.8 56.2 69.0 139.1 33.6 4.1 135 4.7 315 59.7 745.6
65/66 48.7 1315 62.7 672.2 124.9 9.0 15.3 51.1 41.4 9.9 31.3 22.2 1,220.2
66/67 75.8 36.3 99.2 190.1 353.6 174.0 114.4 21 123 8.3 25 2.0 1,070.6
67/68 89.3 113.4 52.0 113.7 227.9 112.7 32.6 141 255 58.4 37.1 19.6 896.3
68/69 33.1 114.6 57.7 188.7 58.2 154.3 110.0 56.2 0.0 22.0 -1 31.1
69/70 236.4 43.1 1175 13.0 47.2 52.9 9.5 37.1 9.5 4.0 7.5 17.7 595.4
70/71 89.3 96.0 84.7 98.6 63.4 147.4 95.9 53.7 13.8 0.6 4.6 20.5 768.5
7172 96.3 104.3 236.5 320.6 327.1 176.6 745 171.7 5.0 14.0 1.0 5.0 1,532.6
72/73 86.6 122.7 96.8 57.2 141.8 52.2 98.0 11.7 12.1 0.3 22.0 2175 918.9
73/74 85.5 122.9 379.2 209.6 107.7 70.6 1153 10.8 0.0 54.8 3.5 11.3 1,171.2
74/75 44.6 118.0 70.3 183.8 356.5 1148 107.4 12,9 36.1 16 5.6 37.4 1,089.0
75/76 35.8 71.4 200.3 416.7 255.4 141.0 76.1 21.4 8.5 0.6 0.4 3.5 1,231.1
76177 423 157.3 104.9 150.9 580.5 228.6 22.6 21.2 3.3 0.0 43.5 89.4 1,4445
77178 34.8 27.4 1148 354.0 86.9 205.0 76.5 19.7 248 61.7 35 151.6 1,160.7
78/79 85.1 168.5 153.4 171.2 25.1 122.1 125.4 15.7 15.3 2.6 16.1 21.4 921.9
79/80 51.6 56.6 75.7 157.7 237.4 54.2 104.1 17.7 0.0 6.2 30.8 113.1 905.1
80/81 10.3 142.2 719 112.5 229.3 141.9 26.6 48.1 75 18.6 32.5 120.7 962.1
81/82 115.0 175.3 156.1 96.1 36.2 57.1 139.6 4.6 5.0 0.0 5.4 23.8 814.2
MIS 0 0 0 0 0 0 0 0 0 0 1 0 1
AVG 82.1 107.2 122.3 176.2 167.0 110.2 725 31.2 18.3 215 54.9
STD 51.3 61.5 74.6 1333 130.5 56.8 46.6 38.0 16.2 35.5 58.8
MIN 10.3 8.8 28.1 13.0 25.1 75 6.6 0.0 0.0 0.0 16
MAX 236.4 2975 379.2 672.2 580.5 228.6 179.8 171.7 69.0 152.4 2175
P20 39.0 55.5 59.7 64.2 57.4 62.5 33.4 -0.8 4.7 -8.3 55
P80 125.2 158.9 185.0 288.2 276.6 157.9 111.7 63.1 319 51.3 104.3

Table 2.1  Monthly rainfall data sheet for station P119
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e Erase the original data of the four stations (erase the rows A1..A43). Your table is now
at the left top of the spreadsheet.
e It is better to save the file now as Dnum.
e Copy the table to a place right of the original table.
e Delete in the original table all missing data (-1) in order to carry out the following
calculations at the bottom of each column (see also table 2.1):
1) Number of missing values
2) Monthly average (use function AVERAGE)
3) Standard deviation (use STDEV)
4) Calculate the minimum value (MIN)
5) Calculate the maximum value (MAX)
6) Probability of non-exceedance with 20% by
P, = AVERAGE - 0.84*STDEV (assuming a normal distribution)*
7) Probability of non-exceedance with 80% by
Pso = AVERAGE + 0.84*STDEV (assuming a normal distribution)
If the data are normally distributed 60 % of the values are between Py and Pg.

2.2 Data completion through linear regression

One way of data completion is through linear regression.
With linear regressions a mathematical relation is defined between data of a base station
and other stations of the form:

Y=C+C, X, +C,X,+C, X, +etc. (2.1)
where
Y aseries of values of the base station (dependent variable)
Xi aseries of values of neighbouring station i (independent variable)
C the equation's constant
Ci the equation's coefficients

Multiple regression means that more than one neighbouring station (independent variable)
is regarded. In case of a base station and one neighbouring station, the equation reduces to

Y =C+CX, 2.2)

The method is based on fitting the 'best’ straight line through observations. In general there
always will be a difference between a calculated value, Y' according to this line and a
measured value. In linear regression this difference (Y-Y') is minimized using the method
of 'least squares'. The quality of the fit obtained can be investigated by calculating the
coefficient of determination p?. The coefficient of determination is a number between 0
and 1, where 1 represents perfect fit. A minimum value of p2 should be applied giving the
limit of a realistic regression (minimum of p? should be around 0.5). This is also a criterion
for the selection of stations to be included in the regression analysis.

L you were assigned data from the dry period, the mean value is very low and the standard deviation
high. Consequently P,, may be calculated as a negative value, indicating that the normal distribution is not very
suitable for this set of data.
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The square root of the coefficient of determination is the correlation coefficient p which
value varies between -1 and +1. The correlation coefficient p is related to the differences
between measured and calculated values of the dependent variable (Y-Y') and defined as

(see also appendix Ab)
(==Y Y”
p_[Z(Y N )ZJ (2.3)

Among the statistical applications of the Excel spreadsheet program is the option of
multiple linear regression. This provides directly the coefficient of determination p? (in the
spreadsheet known as R Square), as well as the coefficients and the Intercept of the
regression equation.

Assignment

Open the file Dnum with the monthly data of the four stations. The (multiple) regression
analysis will be performed between P425 (dependent variable) and P119, P5 and P6 as
neighbouring stations (independent variables). A worked out example as a reference for the
exercise is provided in table 2.2. The correlation analysis will be carried out for only those
years in which all 4 stations have data.

e Copy the table in the sheet to an area below the original table and delete all rows in

which not all stations have data (see e.g. table 2.2, notice that some years are missing).

This table will be used to calculate the constant (intercept) and coefficients of the
regression.

First the individual correlation coefficients between P6 (independent X) station and each of
the other (dependent Y) stations will be investigated.

January pP425 P119 P5 P6 SUMMARY OUTPUT

58/59 175.3 123.7 162.9 79.5 P425 - P6

59/60 79.5 63.5 76.4 84.3 Regression Statistics

60/61 56.0 49.1 110.0 84.5 Multiple R 0.8564737

61/62 142.4 118.1 93.1 188.6 R Square 0.7335473

62/63 95.7 115.8 111.8 84.7 Adjusted R Square 0.7202246

63/64 249.0 173.2 210.3 215.5 Standard Error 60.297187

64/65 12.3 56.2 14.3 40.4 Observations 22

65/66 546.8 672.2 625.1 587.6

66/67 76.6 190.1 48.5 162.1 Coefficients

67/68 121.5 113.7 92.0 71.4 Intercept 10.380164

68/69 157.7 188.7 125.5 111.4 X Variable 1 0.7697746

69/70 47 13.0 98.4 9.6

70/71 51.8 98.6 87.9 53.1 SUMMARY OUTPUT

71/72 218.0 320.6 156.8 210.4 P425 and P119, P5, P6

72173 56.7 57.2 79.1 63.3 Regression Statistics

73174 108.6 209.6 151.7 299.5 Multiple R 0.9044524

74175 81.3 183.8 138.7 232.3 R Square 0.8180341

75/76 210.2 416.7 311.4 275.0 Adjusted R Square 0.7877065

76177 44.3 150.9 77.0 115.5 Standard Error 52.524354

77/78 122.0 354.0 305.6 202.9 Observations 22

78179 1225 171.2 60.5 129.0

79/80 62.2 157.7 52.9 33.8 Coefficients
Intercept 3.821143
X Variable 1 0.0918169
X Variable 2 0.4495039
X Variable 3 0.2729471

Table 2.2  Example of (multiple) linear regression between 2 and 4 stations



2 Monthly Rainfall Data 18 Workshop on Hydrology

Perform linear regression between P6 and P425 as follows.

e Select: Data, Data Analysis?, Regression, OK, Input Y-Range, (use mouse to select
P425 data), X-Range (use mouse to select P6 data), Output Range (click cell for
output), OK.

e Repeat the analysis for P6 and P119 and also for P6 and P5

e The multiple regression is carried out in the same way except that a range covering
three columns has to be specified for the independent (X) data. If the intercept appears
to be negative, values estimated with this equation may also be negative. In that case
the regression is to be repeated with the intercept forced to zero (Click: Constant is
zero).

The results of the correlation analysis may now be used to complete missing data, provided

the coefficient of determination (R Square) is larger than 0.5.

e Use the result of the individual regressions with station P6 to complete missing data
(cells with the value -1) in the right hand side table at the top, of the spreadsheet.

e Use the results of the multiple regression analysis to complete data for station P425 in
the years 1951/52 - 1957/58.

e Calculate from the completed time series the mean, standard deviation, P,y and Pg
(assuming a normal distribution) and compare the result with the values you have been
calculating for the uncompleted series. Look for suspicious values.

e Save sheet Dnum.

2.3 Double mass analysis

The principle of double mass analysis is to plot accumulated values of the station under
investigation against accumulated values of another station, or accumulated values of the
average of other stations, over the same period of time.

Through a double mass curve inhomogeneities in the time series (gradual changes and
jumps) can be investigated. The series may be not homogeneous if, for example, there was
a change in the type of instrument, the position of the instrument, the observer, or due to
the growth of trees, etc. This is indicated in the curve of a double mass plot, showing an
inflection point in the straight line.

The principle of double mass curve analysis will be exercised through plotting
accumulated monthly rainfall of station P425 against the mean of the other three stations.
A worked out example is provided in table 2.3 and figure 2.1.

Assignment

e The completed data for the years 1951/52 - 1981/82, as obtained in the previous
exercise, will be used for the double mass analysis. Make sure you are in spreadsheet
Dnum.

e Create a table in the area to the right of the table with completed data (see e.g. table
2.3). The new table will contain 4 columns with accumulated values of the 4 stations.

e Compute in the next column the average of the stations P119, P5 and P6.

e Insert an XY-chart with the average values of the stations P119, P5 and P6 as X,
against the accumulated values of P425 as Y (see e.g. figure 2.1). A straight line
indicates that the data of station P425 may be considered homogeneous.

%I Data Analysis does not appear in the ‘Data’ task bar, this Add-In has to be installed. Click: Office
button, Excel Options, Add-Ins, Go, Select: Analysis toolpak, OK. Installation may take some time.
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January P425 P119 P5 P6 P425 P119 P5 P6 Average Average Residual
sum sum sum sumP119,P5,P6 Linear mass
0 0 0 0 0 0 0
51/52 845 108.8 114.2 70.8 845 108.8 114.2 70.8 97.9 78.1 6.4
52/53 162.6 3054 186.2 172.3 247.1 414.2 300.4 243.1 319.2 2544 -7.4
53/54 62.9 84.2 87.4 443 310.0 498.4 387.8 287.4 391.2 3118 -1.8
54/55 164.2 293.8 154.1 235.0 4742 792.2 541.9 522.4 618.8 493.2 -19.0
55/56 68.6 123.0 85.6 54.9 542.8 915.2 627.5 577.3 706.7 563.2 -20.4
56/57 57.9 87.4 66.2 59.8 600.7 1002.6 693.7 637.1 777.8 619.9 -19.2
57/58 171.1 253.1 216.2 171.7 7718 1255.7 909.9 808.8 991.5 790.2 -18.4
58/59 175.3 123.7 162.9 795 947.1 1379.4 1072.8 888.3 11135 887.5 59.6
59/60 795 63.5 76.4 84.3 1026.6 1442.9 1149.2 972.6 1188.2 947.0 79.6
60/61 56.0 49.1 110.0 845 1082.6 1492.0 1259.2 1057.1 1269.4 1011.7 70.9
61/62 142.4 118.1 93.1 188.6 1225.0 1610.1 1352.3 1245.7 1402.7 11179 107.1
62/63 95.7 115.8 111.8 84.7 1320.7 1725.9 1464.1 13304 1506.8 1200.9 119.8
63/64 249.0 173.2 210.3 2155 1569.7 1899.1 1674.4 1545.9 1706.5 1360.1 209.7
64/65 12.3 56.2 14.3 40.4 1582.0 1955.3 1688.7 1586.3 17434 1389.5 1925
65/66 546.8 672.2 625.1 587.6 2128.8 26275 2313.8 21739 23717 1890.3 238.5
66/67 76.6 190.1 48.5 162.1 2205.4 2817.6 2362.3 2336.0 2505.3 1996.7 208.7
67/68 1215 113.7 92.0 714 2326.9 2931.3 24543 2407.4 2597.7 2070.3 256.6
68/69 157.7 188.7 1255 1114 2484.6 3120.0 2579.8 25188 2739.5 21834 301.2
69/70 4.7 13.0 98.4 9.6 2489.3 3133.0 2678.2 2528.4 2779.9 22155 2738
70/71 51.8 98.6 87.9 53.1 2541.1 3231.6 2766.1 2581.5 2859.7 2279.2 261.9
71/72 218.0 320.6 156.8 210.4 2759.1 3552.2 2922.9 2791.9 3089.0 2461.9 297.2
72173 56.7 57.2 79.1 63.3 2815.8 3609.4 3002.0 2855.2 3155.5 2515.0 300.9
73/74 108.6 209.6 151.7 299.5 2924.4 3819.0 3153.7 3154.7 3375.8 2690.5 233.9
74[75 81.3 183.8 138.7 2323 3005.7 4002.8 32924 3387.0 3560.7 2837.9 167.8
75176 210.2 416.7 3114 275.0 3215.9 4419.5 3603.8 3662.0 3895.1 3104.4 1115
76177 44.3 150.9 77.0 1155 3260.2 4570.4 3680.8 37775 4009.6 3195.6 64.6
77178 122.0 354.0 305.6 202.9 3382.2 4924.4 3986.4 3980.4 4297.1 3424.8 -42.5
7879 1225 171.2 60.5 129.0 3504.7 5095.6 4046.9 4109.4 4417.3 3520.6 -15.9
79/80 62.2 157.7 52.9 338 3566.9 5253.3 4099.8 41432 4498.8 3585.5 -18.6
80/81 160.0 1125 183.2 194.4 3726.9 5365.8 4283.0 4337.6 4662.1 3715.7 112
81/82 29.2 96.1 31.7 24.5 3756.2 5461.9 4314.7 4362.1 4712.9 3756.2 0.0
Table 2.3  Double mass analysis

e In order to asses the homogeneity, the relation is compared with a straight line, the
average linear increase AL, which is computed in the next column as follows

where

AL =-1—>X, (2.4)

AL; Average Linear increase at year i

Xj Monthly rainfall in year j of station X

Y; Monthly rainfall in year j of station Y

i,j 1,..,nwhere n is the total number of years considered

e Add the average linear increase to the XY-chart. Click in the chart, Chart tools, Select
data, Add, select for the X-values the average of the 3 stations and for the Y-values the
average linear increase AL. The line you have now plotted connects the total
accumulated P425 values with the origin.

e Add one more column with the difference between the accumulated P425 values and
the average linear increase AL. These differences are known as the residuals.

e Insert another XY-chart with on the horizontal axis the accumulated P425 values and
the residuals on the Y-axis. As an example see figure 2.2. This chart is known as the
residual mass curve.

The residual mass curve shows more clearly the deviations of station Y from the mean
(indicated as inflection points in the double mass analysis). The curve can be interpreted as

follows:
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Question:

an upward deviation from the linear relation indicates relative high values of station Y
a parallel line indicates a constant relation between station X and Y
a downward deviation from the linear relation indicates relative low values of station Y

Please write in the top left corner of your spreadsheet the largest

accumulated difference as a percentage and in which year it occurs.

Save Dnum.
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2.4 Method of cumulative residuals

Application of the double mass technique provides an opportunity to visually inspect the
homogeneity of a time series. The method does, however, not give a criterion for accepting
or rejecting the hypothesis of homogeneity. For this purpose the method of Cumulative
Residuals may be used (Allen et al., 1998). The method of cumulative residuals makes use
of the original series (not the accumulated values). In this analysis we will test the
homogeneity of the 31 values of station P425 against the average of the 3 other stations
(P5, P6 and P119).

Assignment
Retrieve the file Dnum with the double mass analysis of the completed monthly data of the
four stations.

e Copy the column with ‘filled-in" monthly data of station P425 to the right hand side of
your sheet (e.g. to column AA). Use Paste Special, Values!

e Compute in the next column the average of the monthly values of the stations P119, P5
and P6. The series to be tested is P425 and these data are the Y values, while X refers to
the average of the other three stations.

e Plot the monthly rainfall of P425 against the mean of the other stations (see e.g. figure
2.3) and show the regression line including the equation and the coefficient of
determination, R? (Click on a data point in the chart with the right mouse button,
choose: Add Trendline, click: Display equation on chart and Display R-squared value
on chart).

e Use the regression equation to compute in the next column the values estimated for Y
(P425) from the other three stations. The estimated values are known as Yest.

e Compute in the next column the residuals of the observed Y values to the regression
line, thus Y-Yest.

e Compute in the next column the cumulated residuals Ei.

e Select a probability for accepting the hypothesis of homogeneity. The value of non-
exceedance g = 0.8 (or 80 %) is commonly utilized. The relation between the

probability of exceedance p (p = 1-g) and the standardized or reduced variate t is given
in appendix D and summarized here in a table 2.5.

e Compute the parameters « and g as follows:

g % t
a="1 60 0.25
2 70 0.52
B= nts, . 80 0.84
n-1 85 1.04
90 1.28
where n is the number of years and s, is the standard 95 164
deviation of the residuals.
e Add a column with the values 0 to 31 and another with values Table 2.5 )
varvine from 0 to 21t The reduced variate t
ying ) for the probability of
e The equation of the ellipse is then non-exceedance q
X =a cos(8)
y=psin(8)

with @ varying from 0 to 2x.
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P425 Average Yest Residual Ei Year Theta

P119,P5,P6 X y x-shifted
Y X 0 0 0.00 15.5 0.0 31.0
84.5 97.9 78.7 5.8 5.8 1 0.20 15.2 40.5 30.7
162.6 221.3 175.6 -13.0 -7.2 2 0.41 14.2 79.4 29.7
62.9 72.0 58.3 4.6 -2.6 3 0.61 12.7 115.0 28.2
164.2 227.6 180.5 -16.3 -18.9 4 0.81 10.7 145.9 26.2
68.6 87.8 70.8 2.2 -21.1 5 1.01 8.2 170.9 23.7
57.9 71.1 57.7 0.3 -20.8 6 1.22 5.4 188.8 20.9
171.1 213.7 169.6 1.5 -19.3 7 1.42 2.3 199.0 17.8
175.37 122.0 97.6 77.7 58.4 8 1.62 -0.8 201.1 14.7
79.57 74.7 60.5 19.0 77.4 9 1.82 -3.9 194.9 11.6
56.07 81.2 65.6 -9.6 67.9 10 2.03 -6.8 180.7 8.7
142.4"7 133.3 106.4 36.0 103.8 11 2.23 -9.5 159.2 6.0
95.77 104.1 83.5 12.2 116.0 12 2.43 -11.8 131.1 3.7
249.07 199.7 158.6 90.4 206.4 13 2.63 -13.6 97.7 1.9
12.37 37.0 30.8 -18.5 187.9 14 2.84 -14.8 60.3 0.7
546.87 628.3 495.1 51.7 239.6 15 3.04 -15.4 20.4 0.1
76.6” 133.6 106.7 -30.1 209.5 16 3.24 -15.4 -20.4 0.1
121.5" 92.4 74.3 47.2 256.7 17 3.45 -14.8 -60.3 0.7
157.7" 141.9 113.2 44.5 301.2 18 3.65 -13.6 -97.7 1.9
477 40.3 33.5 -28.8 272.4 19 3.85 -11.8 -131.1 3.7
51.87 79.9 64.5 -12.7 250.7 20 4.05 -9.5 -159.2 6.0
218.07 229.3 181.8 36.2 295.9 21 4.26 -6.8 -180.7 8.7
56.7” 66.5 54.0 2.7 298.5 22 4.46 -3.9 -194.9 11.6
108.67 220.3 174.8 -66.2 232.4 23 4.66 -0.8 -201.1 14.7
81.37 184.9 147.0 -65.7 166.7 24 4.86 2.3 -199.0 17.8
210.27 334.4 264.3 -54.1 112.6 25 5.07 5.4 -188.8 20.9
44.3" 114.5 91.7 -47.4 65.2 26 5.27 8.2 -170.9 23.7
122.07 287.5 227.5 -105.5 -40.4 27 5.47 10.7 -145.9 26.2
12257 120.2 96.2 26.3 -14.1 28 5.68 12.7 -115.0 28.2
62.2" 81.5 65.8 -3.6 -17.6 29 5.88 14.2 -79.4 29.7
160.0 163.4 130.1 30.0 12.3 30 6.08 15.2 -40.5 30.7
29.2 50.8 41.7 -12.4 -0.1 31 6.28 15.5 0.0 31.0

Stdev = 42.3

n= 31

Alpha = 15.5

Intercept = 1.7969 t= 0.84

X-coefficient = 0.7852 Beta = 201.3

Table 2.4  Method of cumulative residuals

e Add an extra column with values for x+a which causes the ellipse to be shifted.
e Plot Ei against time (0 to 31) and add to this chart the ellipse (plot (x+«) against y).

e |f the Ei values lie inside the ellipse, the hypothesis of homogeneity is accepted at the
80 % level of confidence or any other level that was selected.

Question: Do you think that the results of the homogeneity test for P425 will be better

if less data were missing? Why?
Save worksheet Dnum.
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2.5 Frequency distribution

The purpose of this exercise is to present data by a statistical distribution. The monthly
rainfall totals of a particular month over a large number of years are used.

Two distributions will be considered:
e normal distribution
e log-normal distribution

The monthly rainfall data of station P119 are used for this exercise. Each participant will
be assigned a particular month containing approximately 70 years of monthly values.

A normal distribution assumes a symmetrical distribution around the mean where also
negative values are possible. Since negative rainfall values do not exist, a normal
distribution does not seem very suitable. However, if the logarithm of the rainfall data are
considered, the values may be approximately normally distributed. This is known as a log-
normal distribution.

Assignment

Create a table similar to the example table 2.5 using the month assigned to you and the

monthly data of station P119.

e Open file i:groupwork\hydata\p119 mr.txt

e Copy the values in the column of the month assigned to you to the clipboard.

e Close the data file and open a new workbook, click in cell B3 and paste the data.

e Rank the data in descending order (Select with the mouse the data to be sorted, Select:

Data, Sort, Select: Largest to Smallest, OK)

Delete the negative values at the bottom.

e Fill the first column with the rank values (Put the values 1 and 2 in the first two cells,
select both cells with the mouse, double click square dot in bottom right corner).

Rank X LnX p=(m-0.375) t X LnX

(m) /(N+0.25) cal cal

1 297.5 5.70 0.01 2.370 199.7 5.80

2 236.4 5.47 0.02 1.993 178.8 5.50

3 193.9 5.27 0.04 1.782 167.1 5.33

4 188.1 5.24 0.05 1.630 158.7 5.21

5 183.3 5.21 0.07 1.508 151.9 5.12

6 155.9 5.05 0.08 1.405 146.2 5.04

65 14.8 2.69 0.92 -1.405 -9.3 2.84

66 13.6 2.61 0.93 -1.508 -15.0 2.76

67 11.2 242 0.95 -1.630 -21.8 2.66

68 11.1 241 0.96 -1.782 -30.2 2.54

69 10.3 2.33 0.98 -1.993 -41.9 2.38

70 10.0 2.30 0.99 -2.370 -62.8 2.08
AVG = 68.5 3.94
STD = 554 0.78

Table 2.5  Application of Normal and Log-normal distribution
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e Compute in the third column the natural logarithm of X, Ln(X)

e Save the sheet in your own directory as Enum

e Make another table (as an example see table 2.6) with columns for classes and the
number of elements within each class interval. Fill this table with classes from 0 to an
upper limit that can include your maximum value with class-width of 10 or 20. Count
the number of values within each class.

e Make a histogram of the frequency distribution similar to figure 2.5 with on the
horizontal axis the classes and vertical axis the number of elements. (Insert, Column,
choose first type, Select data, Add, highlight column with number of values (n) in each
class interval in table 2.6, OK, in Horizontal axis (category) labels click: Edit, highlight
class intervals, OK, OK).

e Extend the table with In(X) class values and plot the frequencies into another
histogram.

As you have noticed now, the
.. . Monthly values Monthly Ln-values
fr?quency dIStI_'IbUt_IOI’l of monthly class interval n class interval n
rainfall values is (right) skewed and
the one with the logarithm of the 0/-120 9 0-05
monthly rainfall values is not. The 20.-.40 17 05.- 10
y raintafl v: : 40 - 60 15 10 - 15
frequency distribution of In(X) looks 60 - 80 5 15 - 2.0
more like a normal distribution. 80 - 100 12 20 - 25 4
Therefore, it is expected that a 100;-1120 | 3 25-30 | 6
AN . 120 - 140 2 30 - 35 11
normal distribution applled on |n(X) 140 - 160 2 35 - 4.0 18
values gives more satisfactory results 160 - 180 0 40 - 45 17
in representing the data. 180}- 1200 3 45-150 | 9
200 - 220 0 50 - 55 4
220 - 240 1 55 - 6.0 1
A characteristic of a normal 240 - 260 0 6.0 - 65
distribution is that data represented 260, - |280 0 6.5 -17.0
e 1 280 - 300 1 70 - 75
by this distribution on probability 30011320 0 25 -la0
paper plot a straight line. The 320 - 340 0 80 - 85
horizontal axis of this paper
expresses probability of exceedance 70 70
p, or non-exceedance ¢, on a non- Table 2.6  Distribution of the (log of) monthly
linear scale and the vertical axis the values over the class intervals
Histogram of frequencies Histogram of frequencies of log
of monthly rainfall (October) of monthly rainfall (October)
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Fig. 2.5 Histogram of frequencies of monthly Fig. 2.6 Histogram of frequencies of the

rainfall logarithm of monthly rainfall
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values analyzed. In order to plot the distribution in a spreadsheet the scale of the
horizontal axis has to be linear. A linear scale is obtained in terms of the normalized value
t, derived from a normal distribution which is related to the probability of exceedance (or
non-exceedance). The relation between t and p is read from a table of the normal
distribution, see appendix D.

The relation between the standardized or reduced variate t and X in the normal distribution
is given as

X-X
Sx

t =

(2.5)

where

X average value of series X
s, standard deviation of series X

Next the theoretical line of the normal distribution will be fitted through the monthly
values of your series and subsequently through the In-values of the same series, after which
the results will be compared.

Assignment

e Create in your table of ranked values for X and In(X) a column for the probability of
exceedance p, using the formula of Blom (see Cunnane, 1978)

_m-0.375

= 2.6
P N +0.25 (26)

where m is the rank and N the sample size.

e Use the table of the normal distribution to find for each value of p the related t-value or
use the spreadsheet function NORMSINV, which returns the inverse of the standard
normal distribution, i.e. the value for t for P(X<Xx).

e Create columns for Xc and In(Xca) and calculate for each t-value the theoretical
corresponding Xca and Year, Where Yea = In(Xcqr) Using

Xy = X+t (2.7)
Ycal =Y__’_tSY (28)

e Make a graph which plots t (X-axis) against X (Y-axis) and the line X, similar to
figure 2.7.

e Make another graph which plots t (X-axis) against In(X) (Y-axis) and the line In(Xcal),
similar to figure 2.8.

e Do not forget to save sheet Enum.

Question: Please write in the top left corner of your spreadsheet which distribution
(Normal or Lognormal) is most appropriate for a series of monthly minimum flows?



2 Monthly Rainfall Data 26 Workshop on Hydrology
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3 YEARLY RAINFALL DATA

This chapter is about homogeneity tests. Hydrological time series may exhibit trends
referred to as inconsistencies or non-homogeneities. Inconsistencies result from changes in
the amount of systematic errors associated with recording of data, such as those arising
from changes in instrumentation or observational practises. Non-homogeneity is defined as
a change in the statistics of the data set which are caused by natural or man-made changes
(e.g. change in landuse (deforestation!), water use, climatic change, etc.). Split record tests
on variances and means are applied to detect the presence of inconsistencies or non-
homogeneities. These tests are referred to as the F-test for stability of the variances and t-
test for stability of the mean. These two tests can be reinforced by a third test, Spearman’s
rank correlation test, for indicating absence of trends.

All three tests determine the presence or absence of ‘absolute’ consistency or homogeneity,
as they are performed on an individual data series without comparison with other series.
The theoretical background of these tests is explained in appendix A.

3.1 Spearman's rank correlation method

Assignment

e Time series of 39 years of annual rainfall data of 4 stations are found in file
i:\groupwork\hydata\yeartot.txt. Open this file and delete the columns with data except
for the station assigned to you. Save the sheet as Fnum.

e Prepare a table with columns for:

Xobs  Yearly rainfall in order of observation

Xrank  Yearly rainfall in ascending order

Kx;  the rank of the data as observed

Kyi  the rank of the same data in ascending order.
D; Kx; - Kyi

D  square of D;

e Fill the columns Kx;and Ky; with the rank (the values 1 to 39).

e Copy the values in column Xobs into the column Xranked.

e To rank the data in ascending order, select with the mouse data in the columns D and E,
Select: Data, Sort, Sort by column D, Smallest to Largest, OK.

e Compute D; = Kx; — Ky; and in the last column the square of D;.

e Then calculate in the spreadsheet the Spearman's rank correlation coefficient R, and the
test statistics t, as

6» D/
Rsp=1—rl T (3.1)
2 0.5
n_
t= RS (32)
p(l— RSZJ

where n represents the number of observations. An example is presented in table 3.1.
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Year Xobs Kxi Xranked Kyi Di Din2
46/47 521.2 1 473.3 18 -17 289
47/48 524.7 2 475.4 25 -23 529
48/49 770.8 3 502.4 19 -16 256
49/50 801.8 4 502.7 37 -33 1089
50/51 633.7 5 508.2 16 -11 121
51/52 528.6 6 521.2 1 5 25
52/53 850.9 7 524.7 2 5 25
53/54 597.9 8 528.6 6 2 4
54/55 921.0 9 529.6 24 -15 225
55/56 828.9 10 537.1 34 -24 576
56/57 734.2 11 570.2 14 -3 9
57/58 593.8 12 593.8 12 0
58/59 594.2 13 594.2 13 0 0
59/60 570.2 14 597.9 8 6 36
60/61 836.0 15 619.5 33 -18 324
61/62 508.2 16 626.7 27 -11 121
62/63 830.7 17 633.7 5 12 144
63/64 473.3 18 638.5 36 -18 324
64/65 502.4 19 657.3 22 -3 9
65/66 971.9 20 702.7 32 -12 144
66/67 768.0 21 721.3 39 -18 324
67/68 657.3 22 734.2 11 11 121
68/69 800.1 23 768.0 21 2 4
69/70 529.6 24 770.8 3 21 441
70/71 475.4 25 786.7 38 -13 169
71/72 988.2 26 800.1 23 3 9
72/73 626.7 27 801.8 4 23 529
73/74 830.9 28 828.9 10 18 324
74/75 896.1 29 830.7 17 12 144
75/76 839.9 30 830.9 28 2 4
76/77 1179.8 31 836.0 15 16 256
77/78 702.7 32 839.9 30 2 4
78/79 619.5 33 850.9 7 26 676
79/80 537.1 34 896.1 29 5 25
80/81 954.8 35 921.0 9 26 676
81/82 638.5 36 954.8 35 1 1
82/83 502.7 37 971.9 20 17 289
83/84 786.7 38 988.2 26 12 144
84/85 721.3 39  1179.8 31 8 64

Sum Dif2 = 8454
Rsp = 0.14

t= 0.89

ter=  +,-2.02

Table 3.1  Spearman's rank correlation test

The test variable t has a Student's t-distribution with v = n - 2 degrees of freedom. Use a
table of the Student's-t distribution (appendix B) to define with a level of significance of
5% the critical region (see Appendix A6.2)

{0 , t (v,25% BJU{t(vVv,975% ), +x} (3.3)
Thus the time series does not have a trend if

t{v,25% }<t<t{ v, 97.5% } (3.4)

Based on your results specify the absence or presence of a trend.
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3.2 F-test for the stability of the variance

Assignment

The same series that was investigated for the presence of a trend will be subjected to an F-
test. Make sure you are in the right spreadsheet. Make a quick investigation on the spread
of the variance by plotting the years against the yearly rainfall data. Is there any suspicious
period?

An investigation will now be carried out to see whether there is prove for a significant
difference between the variance of the first half of the series and the second half.

Create a table with two columns X; and X, with yearly rainfall data from the original series
of approximately equal length, where

X3 yearly rainfall first half of the series
X, yearly rainfall second half of the series

Calculate for each series the variances s;> and s, and the test statistic

2
F=3 (3.5)

5,

Use a table of the Fisher-F distribution (appendix C) to define with a level of significance
of 5% the critical region (see Appendix A6.3)

{0, F(vi,v2,25% }U{ F(vy,v,,97.5% ) ,00 )} (3.6)

where v; and v, are the respective numbers of degrees of freedom of the numerator and
dominator. v; = n;-1 and v, = n»-1 where n; and n, are the number of observations in each
sub-set.

Based on your results specify the stability or non-stability of the variance of the series.

3.3 Students-t test for stability of the mean

Assignment

The same series that was investigated for the presence of a trend and the stability of the
variance will be subjected to a test for stability of the mean. Make sure you are in sheet
Fnum.

You will investigate now whether there is prove for a significant difference between the
mean of the first half of the series and the second half.

Use the same subsets X; and X, as used in the F-test.

Calculate for each subset the averages X, and X, and the test statistic t.

X, - X
(= 1= % (3.7)

[(nl ~1)s2+(n, - 1)s? [ 11 Do.s

n,+n,-2
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where
n; the number of data in subset i

X; the mean of subset i
s’ the variance of subset i

Use a table of the Student's-t distribution (appendix B) to define with a level of
significance of 5% the critical region (see Appendix A6.4)

{ -0, t(v,25%)}U{t(v,975%), +oo} (3.8)
where v is the number of degrees of freedom,v=n; +n, - 2
Based on your results indicate if the mean of the time series is stable.

Save the sheet as Fnum.

Question: Please write in the top left corner of your spreadsheet answers to the
following questions.

1 Can you apply the students-t test to a series for which the variance is not stable?

2 Canyou apply the split record test to more than 2 subsets (e.g. 3 or 4)?

3 If the series shows a linear trend, does that also mean that the mean is not stable?
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4 EVAPORATION

Evapotranspiration rates will be calculated for the meteorological station Lelystad, The
Netherlands. For a period of 20 years (1961 - 1980) meteorological data are available in
file i:\groupwork\hydata\MeteoData.txt. The data are specified as an average value per
decade. With decades the month is divided into three parts: 1 - 10, 11 - 20 and 21 - end of
month. Thus the third decade in the month consists of 8, 9, 10 or 11 days.

The first computation concerns the evapotranspiration according to the Penman-Monteith
equation. This quantity is often used as reference evaporation ET.s for estimating the
potential evapotranspiration of crops ETyo as follows

ETpot = kc ETref (41)

where k. is the crop coefficient. The reference evapotranspiration according to Penman-
Monteith, using the FAO defined constants, yields the evapotranspiration rate of grass with
a length of 12 cm (see lecture notes on Hydrology).

An alternative for the equation of Penman-Monteith is the Radiation Method, a more
simple approach proposed by Makkink (1957), which formula also computes the potential
evapotranspiration of grass, using only global radiation and temperature data. In this
assignment both methods are applied and compared.

4.1 Penman-Monteith
The Penman-Monteith formula is written as

ET =ESRN +cppa(ea—ed)/ r,
ML s+y(1+r./r,)

(4.2)

where
ETe.m potential evapotranspiration of grass in mm.d™
C constant to convert units from kg.m?.s™ to mm.d™ (C = 86400)
R net radiation at the earth's surface in W.m™
L latent heat of vaporization (L = 2.45*10° J.kg™)
s slope of the temperature-saturation vapour pressure curve (kPa.K™)
C, specific heat of air at constant pressure (c, = 1004.6 Jkgt.Kh
pa density of air (pa = 1.2047 kg.m™ at sea level)
eq actual vapour pressure of the air at 2 m height in kPa
e, saturation vapour pressure for the air temperature at 2 m height in kPa
y  psychrometric constant (y = 0.067 kPa.K™ at sea level)
ra aerodynamic resistance in s.m™
r. crop resistance in s.m™ (FAO takes for grass r. = 70 s.m™)

The aerodynamic resistance r, is a function of the wind speed. The following expression
for ra (s.m™) is used by the FAO for wind velocities, U, (m.s™), observed at a height of 2 m
over grass
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r=— (4.3

Values for e, (kPa) and s (kPa.K™) may be obtained from

17.27T,

e, =0.6108 *"* ™ (4.4)

4098 e,

S= m (45)

where T, is the 24 hour mean temperature of the air in °C.

The actual or dewpoint vapour pressure eq (kPa) is calculated from measurements of the
relative humidity RH, thus

RH

e, =€, ——
100

(4.6)

The net outgoing long wave radiation Ry (W.m™) is estimated with the empirical equation
R, =56745x10°(273+T,)(0.34-0.139. /&, J0.1+0.9n/N) a.7)

and the short wave or global radiation Rs (W.m) with
Rs =(0.20+0.60n/N)R, (4.8)

where N is the day length (hours) and n the actual number of hours of sunshine during the
day.

The net radiation Ry is calculated as the incoming short wave radiation at the earth's
surface (or global radiation) Rs minus the fraction that is reflected and minus the net
outgoing long wave radiation Ry, hence

Ry=(1-r)Rs-R, (4.9)
where r is the reflection coefficient ( FAO uses r = 0.23 for grass)

Values for radiation received at the outer limits of the atmosphere Ra are read for a given
date and latitude from table 4.1 and values for the day length N from table 4.2.

Assignment

o Retrieve file i:\groupwork\hydata\Meteo.txt. Delete all data except for the year assigned
to you and save the sheet as Ghum. The meteorological data are observed at a height of
2 m and refer to 24-hour totals or means, which are averaged over a decade.

e Extend the columns in the spreadsheet similar to table 4.3 and compute the Penman-
Monteith evapotranspiration ETp.y. Read values for N and Ra from tables 4.1 and 4.2
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respectively, for a northern latitude of 52 degrees which applies to The Netherlands. A
more accurate approach (see table 4.5) is the computation of N and Ra for given latitude
and Julian day number, using the algorithms specified in the text boxes in this chapter.

It is interesting to compare the global radiation flux and the evapotranspiration rate. To do
this Rs (W.m? = J.s2.m™) has to be converted into the unit mm/d, which is accomplished
through dividing Rs by the latent heat of vaporization L (J.kg™), giving kg.s*.m, which is
approximately mm.s™. Multiplying by C = 86400 s yields mm.d™, thus

*

C
Ry = R (4.10)

e Make a separate column to compute the global radiation Ry in mm.d™.

e Plot in one graph the global radiation flux and the evapotranspiration rate according to
Penman-Monteith (see e.qg. figure 4.1).

North Lats. | Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec
South Lats. | July Aug Sept Oct Nov Dec Jan Feb Mar Apr May June
60 6.7 9.0 11.7 145 17.1 18.6 17.9 15.5 12.9 10.1 7.5 5.9
58 7.2 9.3 11.7 143 16.6 17.9 17.3 15.3 12.8 10.3 7.9 6.5
56 7.6 9.5 11.7 141 16.2 174 16.9 15.0 12.7 104 8.3 7.0
54 7.9 9.7 11.7 13.9 15.9 16.9 16.5 14.8 12.7 105 8.5 7.4
52 8.3 9.9 11.8 13.8 15.6 16.5 16.1 14.6 12.7 10.6 8.8 7.8
50 8.5 10.0 11.8 13.7 15.3 16.3 15.9 14.4 12.6 10.7 9.0 8.1
48 8.8 10.2 11.8 13.6 15.2 16.0 15.6 14.3 12.6 10.9 9.3 8.3
46 9.1 104 11.9 135 149 15.7 154 14.2 12.6 10.9 9.5 8.7
44 9.3 105 11.9 134 14.7 154 15.2 14.0 12.6 11.0 9.7 8.9
42 9.4 10.6 11.9 134 146 15.2 149 13.9 12.6 111 9.8 9.1
40 9.6 10.7 11.9 133 144 15.0 147 13.7 124 11.2 10.0 9.3

35 10.1 11.0 11.9 13.1 14.0 145 14.3 135 12.4 11.9 10.3 9.8

30 10.4 111 12.0 12.9 13.6 14.0 13.9 13.2 12.4 12.0 10.6 10.8

25 10.7 113 12.0 12.7 133 13.7 135 13.0 12.3 12.0 10.9 10.6

20 11.0 115 12.0 12.6 131 133 13.2 12.8 12.3 12.0 11.2 10.9

15 113 11.6 12.0 125 12.8 13.0 12.9 12.6 12.2 12.0 114 11.2

10 11.6 11.8 12.0 12.3 12.6 12.7 12.6 12.4 12.1 12.0 11.6 115

5 11.8 11.9 12.0 12.2 12.3 12.4 12.3 12.3 12.1 12.0 11.9 11.8
Equator 0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0

Table 4.1 Mean daily duration of maximum possible sunshine hours (N)

Lat Jan Feb | Mar | Apr [ May | Jun Jul Aug | Sep | Oct | Nov | Dec

NORTHERN HEMISPHERE

60 40 103 200 | 317 | 417 | 469 | 446 | 360 243 134 57 26
52 91 157 252 357 | 440 | 475 | 457 | 389 292 192 111 74
50 106 172 263 | 363 | 443 | 475 | 460 | 392 297 | 203 126 89
40 177 | 240 | 317 395 | 455 | 477 | 466 | 420 346 | 266 194 160
30 232 | 300 | 366 | 420 | 460 | 472 | 463 | 435 [ 386 | 320 | 260 226
20 309 | 354 | 400 | 435 | 449 | 452 | 452 | 440 | 412 | 369 | 323 297
10 366 | 397 | 423 | 435 | 429 | 423 | 426 | 429 | 423 | 406 | 375 357
0 415 | 429 | 435 | 420 | 397 | 383 | 389 | 409 | 426 | 429 | 417 | 409
10 455 | 449 | 432 | 397 | 357 | 334 | 343 | 375 | 412 | 440 | 449 | 452
Equator 20 489 | 457 | 415 | 357 | 306 277 | 289 | 332 | 389 | 437 | 469 | 483
30 492 | 452 386 | 312 | 246 214 | 226 277 | 352 | 423 | 477 500
40 495 | 432 349 254 | 183 149 160 | 217 | 306 | 395 | 472 509
50 483 | 403 297 192 117 83 97 154 249 | 357 | 457 503
60 472 | 360 | 237 123 51 26 37 89 186 | 309 | 432 500

SOUTHERN HEMISPHERE

Table 4.2 Short wave radiation R, received at the outer limits of the atmosphere expressed in W.m?
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1971 u n RH T, N n/N e, s ey r, Ry Rs Rs Ry Ry Epm Enakc
m/s Hours % °c Hours - kPa kPa/K kPa s/m W/m? W/m? mm/d W/m? W/m? mm/d mm/d
1 2.5 1.8 91 -1.8 8.3 0.22 0.54 0.04 0.49 83 91 30 1.06 22 1 0.16 0.26
2 3.5 23 90 2.0 8.3 0.28 0.71 0.05 0.64 59 91 33 1.18 26 0 0.26 0.33
3 5.5 0.5 90 5.2 8.3 0.06 0.88 0.06 0.80 38 91 21 0.76 11 5 0.44 0.24
4 3.0 0.7 89 4.0 9.9 0.07 0.81 0.06 0.72 69 157 38 1.34 12 17 0.47 0.40
5 4.0 2.9 88 3.6 9.9 0.29 0.79 0.06 0.70 52 157 59 2.08 27 18 0.54 0.61
6 3.5 3.4 83 3.4 9.9 0.34 0.78 0.06 0.65 59 157 64 2.25 31 18 0.65 0.66
7 3.0 3.7 85 -2.4 11.8 0.31 0.51 0.04 0.44 69 252 98 3.45 29 46 0.63 0.81
8 4.0 3.0 85 53 11.8 0.25 0.89 0.06 0.76 52 252 89 3.13 25 44 0.94 0.98
9 3.5 3.7 81 5.0 11.8 0.31 0.87 0.06 0.71 59 252 98 3.45 29 46 1.06 1.07
10 35 41 86 6.8 13.8 0.30 0.99 0.07 0.85 59 357 135 4.76 27 77 133 1.56
11 3.5 4.9 83 7.4 13.8 0.36 1.03 0.07 0.85 59 357 147 5.20 31 82 1.53 1.73
12 35 7.6 70 8.5 13.8 0.55 111 0.08 0.78 59 357 189 6.68 46 100 2.28 2.30
13 3.0 9.6 70 11.4 15.6 0.62 1.35 0.09 0.94 69 440 250 8.83 50 143 3.12 3.28
14 3.0 7.9 82 14.0 15.6 0.51 1.60 0.10 1.31 69 440 222 7.82 39 132 2.77 3.09
15 2.5 5.8 80 12.9 15.6 0.37 1.49 0.10 1.19 83 440 186 6.56 31 112 244 2.53
16 3.5 6.2 81 15.3 16.5 0.38 1.74 0.11 1.41 59 475 202 7.13 30 126 2.84 2.90
17 3.5 3.6 82 123 16.5 0.22 1.43 0.09 1.17 59 475 157 5.54 21 100 2.15 2.10
18 3.0 7.0 79 14.0 16.5 0.42 1.60 0.10 1.26 69 475 216 7.61 34 132 2.90 3.01
19 2.5 12.0 79 18.1 16.1 0.75 2.08 0.13 1.64 83 457 296 10.43 51 177 4.09 4.48
20 3.0 7.5 71 16.1 16.1 0.47 1.83 0.12 1.30 69 457 219 7.73 37 131 3.45 3.19
21 35 43 84 17.6 16.1 0.27 2.01 0.13 1.69 59 457 165 5.81 22 105 2.57 2.47
22 3.0 5.5 80 17.5 14.6 0.38 2.00 0.13 1.60 69 389 166 5.84 29 98 2.62 2.48
23 2.5 4.7 78 17.2 14.6 0.32 1.96 0.12 1.53 83 389 153 5.39 26 91 2.51 2.28
24 3.0 5.0 79 16.3 14.6 0.34 1.85 0.12 1.46 69 389 158 5.56 28 94 2.49 231
25 25 8.1 75 15.5 12.7 0.64 1.76 0.11 1.32 83 292 170 6.00 48 83 2.36 2.45
26 1.5 5.6 78 13.0 12.7 0.44 1.50 0.10 1.17 139 292 136 4.78 36 69 1.70 1.85
27 1.5 3.2 85 12.8 12.7 0.25 1.48 0.10 1.26 139 292 103 3.62 23 56 1.32 1.39
28 2.0 6.9 85 118 10.6 0.65 1.38 0.09 1.18 104 192 113 4.00 48 39 1.03 1.50
29 4.5 2.6 80 10.2 10.6 0.25 1.24 0.08 1.00 46 192 67 2.35 24 28 1.24 0.85
30 3.0 4.6 84 9.0 10.6 0.43 1.15 0.08 0.96 69 192 88 3.12 36 32 0.95 1.09
31 4.0 3.5 84 9.0 3.8 0.40 1.15 0.08 0.96 52 111 49 1.72 33 4 0.69 0.60
32 3.0 14 84 5.2 8.8 0.16 0.88 0.06 0.74 69 111 33 1.16 18 7 0.52 0.36
33 4.0 0.5 91 4.5 3.8 0.06 0.84 0.06 0.77 52 111 26 0.92 11 9 0.37 0.28
34 25 0.6 92 4.9 7.8 0.08 0.87 0.06 0.80 83 74 18 0.64 12 2 0.21 0.20
35 4.5 0.8 90 6.3 7.8 0.10 0.95 0.07 0.86 46 74 19 0.68 14 1 0.38 0.22
36 4.0 1.7 88 4.8 7.8 0.22 0.86 0.06 0.76 52 74 24 0.86 22 -3 0.36 0.27
Table 4.3  Computation of reference evapotranspiration for Lelystad, 1971, using decades

Algorithm for the computation of the day length N (hours)
given the Latitude in degrees and the number of the day in the year DAYN

A= LATITUDE*PI/180

IF(A<0) B = 0.4014*SIN(2*PI*(DAYN-259)/365)
IF(A>=0) B = 0.4014*SIN(2*PI*(DAYN-77)/365)
X1 = 1-(-SIN(A)/COS(A)*B)"2

X2 = -SIN(A)/COS(A)*SIN(B)/COS(B)

Y1 = ASIN(SQRT(X1/(X1+X2*X2)))

IF(B>0) Y2 = PI-Y1

IF(B<=0) Y2 = Y1

N = 24*Y2/PI

Algorithm for the computation of the extraterrestrial radiation Ra (W.m™)
given the Latitude in degrees and the number of the day in the year DAYN

A= LATITUDE*PI/180

X1 = 0.0172*(DAYN-2.5)

X2 = X1 - 1.35512 + 0.0335*SIN(X1) + 0.00035*SIN(2*X1)

X3 = ASIN(0.397949*SIN(X2))

X4 = -TAN(A)*TAN(X3)

IF(ABS(X4)<1.0) X5 = ACOS(X4)

IF(X4>=1.0) X5 = 0.0

IF(X4<=-1.0) X5 = P|

X6 = 1.00028 + 0.0167547*COS(X2+1.35512)
RA=430.673*X6*X6*(X5*SIN(X3)*SIN(A)+COS(A)*COS(X3)*SIN(X5))
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Comparison of Ep-m and Rs Comparisonfor 1971
Lelystad (NL) 1971 Penman-Monteith and Makkink
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Fig. 4.1 Comparison of evapotranspiration

and global radiation
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27.4
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EMak

mm/dec
2.6
3.3
2.6
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6.1
5.3
8.1
9.8
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17.3
23.0
32.8
30.9
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30.1
44.8
31.9
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24.5
18.5
13.9
15.0
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12.0
6.0
3.6
2.8
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2.2
2.9
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Table 4.4 Comparison of Ep_y

and Emakki

nk

Fig. 4.2 Comparison of potential
evapotranspirations

4.2 Radiation Method

It may be seen from figure 4.1 that the global radiation
and the evapotranspiration are closely related. This was
reason for Makkink (1957) to propose a simplified
equation for the computation of evaporation, based on
radiation and temperature data alone. The method is
known as the Radiation Method.

The Makkink formula is written as

s R
ETMakkink =C CM m TS (4-11)

where for grass in The Netherlands Cy = 0.65. Equation
(4.11) with Cy = 0.80 may be used to estimate the
evaporation of open water.

Assignment

e Compute the potential evapotranspiration of grass
according to the Makkink formula.

e Compare in one figure (see e.g. figure 4.2) the
results of the Radiation method with Penman-Monteith.
e Compute for both methods the annual total, similar
to the example given in table 4.4. The difference
between the totals should not be more than 10 %.

e Carry out a sensitivity analysis by changing the
meteorological data by 10 %.

e Save the sheet Ghum

Question: Show which of the meteorological parameters (data) is most sensitive to the
computation of Ep. and Emakkink-
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5 COMPOSITION OF A RATING CURVE

A rating curve gives the relation between the discharge and the gauge reading (also
referred to as stage or water level reading) in a certain cross section at a fixed geographical
location (gauging station). The water level-discharge relation is often approximated with
the following formula

Q=a(H-H,) (5.1)
where
Q discharge in m3/s
H gauge reading in m
Ho gauge reading for zero discharge
a,b coefficients

This equation is compatible with the Chézy formula where the cross sectional area A and
the hydraulic radius R are functions of (H-Hg). Assuming a wide river, where
approximately A = B*(H-Hy) and R = H-Hy it can be shown that

Q=CB(H-H,)"*Vs (5.2)
where
C Chézy roughness coefficient
S bed slope

The coefficient b has a value of 1.67 in a rectangular channel for which B>>H, and a value
of 2.67 in a triangular channel. When the coefficients a and b are fixed, plotting Q against
H-H, produces a straight line on double logarithmic paper as can be seen from the
transformed equation of the rating curve

Log(Q)=Log(a)+b Log(H - H, ) (5.3)

In reality a cross section of a riverbed is a composite of sections. Consequently a rating
curve on double logarithmic paper also can be a composite of several straight lines, each
with its own values for a and b. Often one distinguishes between conditions under normal
and bankfull flow.

Once a rating curve is established, regular measurements of water level can be converted to
discharges. It should be realized that a rating curve is only valid over the range of
discharges or water levels that were used for its establishment. Moreover, a rating curve
has to be updated regularly, since sedimentation and scour changes the cross sectional
profile and slope of the river.

In this workshop data will be used from the gauging station ‘Boane’ in the lower part of
the Umbeluzi catchment (see figure 1.1). Discharge measurements are available from the
period 1951 until 1989, as well as water level readings over the same period. Each
participant will establish a rating curve for the year assigned to him/her.

The average bed slope of the river Boane is 0.0005. The cross sectional profile is depicted
in figure 5.1.
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Fig. 5.1 Cross section of the Umbeluzi at Boane Fig. 5.2 First estimate of H
Ho = 0.5
Date H Q LOG(H-Ho) LOG(Q) LOG(Qcal)
10-01-81 1.47 7.652 -0.013 0.884 0.946
10-02-81 467  89.284 0.620 1.951 1.917 Ho RSquare
11-02-81 467  88.339 0.620 1.946 1.917 0.9 0.9672
18-02-81 3.35  35.599 0.455 1.551 1.663 0.8  0.9747
17-03-81 2.77 27450 0.356 1.439 1.512 0.7 09778
18-03-81 2.77 28395 0.356 1.453 1.512 0.6 0.9789
21-03-81 243 23.536 0.286 1.372 1.404 05 0.9791
27-03-81 228 26916 0.250 1.430 1.350 0.4 0.9787
28-03-81 228 27.861 0.250 1.445 1.350 0.3  0.9780
31-03-81 3.16  37.279 0.425 1.571 1.618 02 09772
03-04-81 249 26302 0.299 1.420 1.424 01 0.9762
04-04-81 249 27.247 0.299 1.435 1.424 0.0 0.9752
15-04-81 1.69  10.865 0.076 1.036 1.082
18-04-81 1.64  12.505 0.057 1.097 1.053
29-04-81 1.44 8.700 -0.027 0.940 0.925
30-04-81 1.43 8.383 -0.032 0.923 0.918
05-05-81 1.67  12.338 0.068 1.091 1.070 SUMMARY OUTPUT
15-05-81 1.37 8.057 -0.060 0.906 0.873
16-05-81 1.37 8.175 -0.060 0.912 0.873 Regression Statistics
20-05-81 1.77  14.857 0.104 1.172 1.125 Multiple F 0.989478
21-05-81 179  15.879 0.111 1.201 1.135 RSquare 0.979066
10-06-81 1.40 6.539 -0.046 0.816 0.896 Adjusted | 0.978432
15-06-81 1.26 6.381 -0.119 0.805 0.783 Standard [ 0.054187
23-06-81 1.28 6.617 -0.108 0.821 0.800 Observati 35
06-07-81 1.33 7.231 -0.081 0.859 0.842
22-07-81 1.26 5.881 -0.119 0.769 0.783 ANOVA
24-08-81 1.22 5.344 -0.143 0.728 0.747 df
28-08-81 1.24 6.529 -0.131 0.815 0.765 Regressio 1
07-09-81 1.22 6.075 -0.143 0.784 0.747 Residual 33
29-10-81 1.20 4.853 -0.155 0.686 0.728 Total 34
11-11-81 1.08 3.931 -0.237 0.595 0.603
23-11-81 1.38 5.479 -0.056 0.739 0.881 Coefficient:
27-11-81 1.44 8.545 -0.027 0.932 0.925 Intercept 0.965892
03-12-81 3.70  62.297 0.505 1.794 1.741 X Variable 1.533624
15-12-81 1.44 8.693 -0.027 0.939 0.925

Table 5.1  Discharge measurements and regression analysis for 1981
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Assignment

Create a table similar to table 5.1 with level and discharge data for the year that is assigned

to you.
e Open file i:\groupwork\hydata\umb_e8.txt

e Select cells in the columns A-C for the year assigned to you and copy to clipboard.

e Open New Blank Workbook, Click in cell A4 and paste.
e Save file as Hhum,
Complete table similar to table 5.1.

[ ]

e Insert a Scatter Chart showing the data of Q (horizontal axis) in relation to H.

e Sketch a line through the lower data points and estimate Hy similar to figure 5.2 (Insert,
Shapes, click on the line icon and draw line). Write the estimate of Ho in an empty cell.

e Make two columns with values for Log (H-Ho) and Log(Q).

e Perform linear regression between Log (H-Hp) as the independent X-variable and
Log(Q) as the dependent Y-variable (Select: Data, Data Analysis, Regression, etc.)

e Follow the procedure below to optimize Ho.

Make a note of the value of the regression coefficient R? and repeat the regression for a
different value of Ho. Make a table in the spreadsheet with Hy-values and the
corresponding values for R? that are obtained from these regressions. Determine the Ho-
value for which the correlation coefficient is maximum. This is the best estimate of Ho.
Repeat the regression analysis for the best estimate of Hy and take the regression constant
(Intercept) as Log(a) and the X-Variable as parameter b in the rating curve equation 5.3.

In general there are plenty of low flow measurements available
and only few flood events. Since the rating curve is often used
for extreme floods or even for extrapolation to events for
which no observations exist, as many flood events as possible
should be considered in the establishment of the rating curve.
The flood events in the period 1951 to 1989 in the Umbeluzi
catchment are separately listed in the same file umb_e8.txt
(see also table 5.2).

Assignment

e Copy the list with flood events in file
i:\groupwork\hydata\umb_e8.txt to the clipboard and paste
it to the bottom of the columns with the data of the year
assigned to you in your sheet Hnum.

e Extend also the columns with Log(H-Ho) and Log(Q)
values.

e Compute in the next column the Log(Qca) according to
equation 5.3, where Log(a) is the Intercept and b the X-
Variable as computed with the regression analysis after
optimization of Ho.

e Make a chart similar to figure 5.3.

This graph clearly shows that extreme events do not fit well
the flood relation that was derived for the low flows. This does
not come as a surprise in view of the shape of the cross section
of the river Boane as presented in figure 5.1. The cross section

DATE H Q
24-2-1972 8.29 656.3
11-2-1985 7.48 633.8
6-10-1989 7.07 620.7
18-2-1975 7.57 513.4
11-2-1977 7.13 486.0
12-2-1985 7.20 446.6
23-3-1972 6.48 355.9

22-12-1973 6.13 328.4
20-2-1975 5.99 321.7
1-2-1979 5.75 245.7
1-2-1974 5.75 244.7
12-2-1977 5.77 208.9
23-12-1973 5.76 208.7
7-12-1989 5.94 208.7
22-2-1967 5.14 207.9
14-12-1989 5.60 207.9
22-3-1972 5.66 207.6
5-10-1989 5.54 202.0
19-2-1975 5.38 201.8
4-1-1978 5.45 174.2
2-2-1974 5.50 174.2
28-2-1967 5.48 170.8
1-3-1967 5.48 169.8
18-2-1955 5.38 168.2
6-2-1955 5.48 168.1
7-2-1955 5.55 162.3
Table 5.2 Recorded
flood flows
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shows a dramatic change for a value of H approximately equal to 4.5 m. The rating curve
could, therefore best be presented by two straight lines intersecting for H = +4.5 m.
Consequently, linear regression is to be performed on two sets of data, with stage values
below and above 4.5 m. The procedure is explained below.

Assignment

Copy the table with data to another place in the spreadsheet.

Sort the table for H in ascending order: highlight with the mouse all columns of copied
data, Select: Data, Sort, Sort by (select column with H-data), Smallest to largest, OK.
Some of these flood events may be from the same date in the year that is assigned to
you. Check for double dates and delete rows with flood events that are already listed in
the same column.

Perform a regression analysis for the Log(H- Ho) as the independent X-variable and
Log(Q) as the dependent Y-variable for all values for which H < 4.5.

Do the same for the lower part of the table for which H > 4.5.

The regression analysis results in two sets of parameters for equation 5.3. Compute (by
hand) the point of intersection Log(H-Ho) of the two linear approximations of the
rating curve and add this point to your table so that it can be plotted.

Extend the table with another column for the computation of Log(Q.a) using equation
5.3.

Apply one set of parameter values for the H-values less than the point of intersection
and the other set for the levels larger than the point of intersection.

Make a chart similar to figure 5.4.

Save the sheet Hnum.

Question: Please write in the top left corner of your spreadsheet for which range of
discharges your rating curve applies.

Rating curve based on data from 1981 only Rating curve for Boane
3.0 3.0

L4 T 4L
2.5 2l 2.5
*
OO L]
/ /
2.0 2.0 /.

g g
% 15 . -~ = 15 . -~
g g /

1.0 1.0 /7

0.5 0.5

0.0 0.0

-0.5 0.0 0.5 1.0 0.5 0.0 0.5 1.0
Log(H-Ho) Log(H-Ho)

Fig. 5.3 Rating curve represented by a Fig. 5.4 Rating curve represented by two

single straight line straight lines
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6. FLOOD ROUTING

6.1 Introduction . .
ranslation

The shape of a hydrograph changes when it ] = =
travels along the river from point A to point B 30 ?
(see figure 6.1). If lateral in- and outflows
between A and B are negligible, the peak of
the hydrograph arriving in B will be lower
(attenuation) and the time of arrival later
(translation).

Lateral or tributary flow, however is seldom
negligible. The map of the Umbeluzi
catchment (figure 1.1) indicates that a
recorded flood hydrograph at Goba (E10) o ——
when propagating to Boane (E8) is increased 8588858 3388533

25 | Attenuation

¢

Discharge in m3/s
o
X
o

by hydrographs resulting from tributaries Time (days)
draining the Mozambican part of the
catchment. The hydrographs of tributaries are Fig. 6.1 Hydrograph translation and
superimposed on the flood wave coming from attenuation

Goba resulting in a composite hydrograph in

Boane. Consequently peak flow and flood volume in Boane can exceed peak flow and
flood volume in Goba. As an example, a flood hydrograph as recorded in January 1971 at
Boane (E8) is shown in figure 6.2. On the same time axis the hydrograph as registered at
Goba (E10) at the Mozambican border with Swaziland is presented.

In this chapter the movement of a flood wave through a channel reach without lateral in-
and outflows will be

analyzed, using the
Muskingum method for Flood hydrographs Goba and Boane
flood routing. 160 January 1971

X
A
i
AR
]
N

H
>
o

In the next chapter the
contribution of the
intermediate catchment
between Goba and Boane
(completely  within  the
Mozambican part of the
catchment) is studied with
the aid of the unit
hydrograph method.
Finally the combination of
these methods enables us to -
predict quantitatively flood 0 : : :
waves at the location of the 16-jan 23-jan 30-jan 6-feb
river at Boane on the basis
of river flow at Goba —#—Goba —®—Boane
taking into account the
rainfall in the catchment in
between these two locations.

=
N
o

D
o

N
o

N
o
I

Daily average discharge (m3/s)
@
o

Fig. 6.2 Flood hydrographs at Goba and Boane
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6.2 Muskingum method

A procedure for the routing of floods which is based on the continuity equation and the
assumption of wedge storage in the river reach, is known as the Muskingum method. The
storage S is as follows defined as a function of the inflow | and the outflow Q in the
considered reach of the river

S=K[x1+(1-x)Q] (6.1)

In the Muskingum formula the parameter x is a dimensionless weighing factor indicating
the relative importance of I and Q in determining the storage in the reach. The value of x is
limited between 0 and 0.5. The parameter K has the dimension of time. Both K and x are
constants for a certain river reach. Neglecting lateral inflow, K and x can be determined if
the input and output hydrographs of the river reach are known.

One method of obtaining values for K and x is by plotting values of S against [xI + (1-x)Q]
for different trial values of x. Theoretically for a correct value of x the result will plot a
straight line with K as the tangent as demonstrated in figure 6.3.

Values for the storage S are derived from continuity. Using the finite difference notation
the continuity equation over a time interval Az from ¢ = iAt to ¢t = (i+1)A4¢ is written as

Si+1_Si=|i+l+|i_Qi+l+Qi (62)
At 2 2 |
and
t
Si=S, +Z(Si+l - Si) ©3
i=1

It should be noted that for the solution of K and x the initial storage Sy is irrelevant.

For the purpose of predicting outflow at time t = (i+1)4¢, rearrangement and substitution
of the value of S according to equation 6.2 and the Muskingum equation 6.1 into the
continuity equation 6.3 yields the following routing equation

A A A
A B C
X1 X, X3
S S S K
1
> > -
[xI+(1-x)Q] [xI+(1-x)Q] [xI+{1-x)Q]

Fig. 6.3 Trial plots for obtaining the Muskingum parameters K and x
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Qi+1 = Clli + C2|i+1 + C3Qi

where

c = At+2Kx
YA+ 2K —2KX

= At —2Kx
2 At+2K —2Kx

c _—At+2K—2Kx
P At+2K —2Kx

It should be noted that the sum of the parameters ¢, ¢, and ¢z equals 1.

(6.4)

(6.5a)

(6.5b)

(6.5¢)

Table 6.1 gives the data of a flood recorded in Goba (E10) and Boane (E8) in
November/December 1970. The flood occurred in a period that it was very dry in
Mozambique. Consequently, the inflow in the river reach between Goba and Boane was
negligible. In file i:\groupwork\hydata\flood.txt floods for similar situations are found. The
flood in table 6.1 is plotted in figure 6.4 and used in this text as an example.

Assignment
Open the text file i:\groupwork\hydata\flood.txt with MS Excel software, copy the year
assigned to you and paste it into an empty worksheet. Save the file with the name

Inum.

You may now plot the two hydrographs, select: Insert, Line, Select Data, Add, etc. The
flood originated from rainfall in Swaziland as no rainfall was recorded in the part of the
catchment situated in Mozambique. The data are 24 hour mean values of the discharge

specified in m%s.
Create columns for the computation of

at the top of the column

[xI + (1-x)Q], where the reference for x is an
absolute cell address (set x equal to 0.2)

Make a graph similar to figure 6.3 with [xI + (1-x)Q]
on the X-axis and S on the Y-axis.

Carry out a regression analysis (Data, Data Analysis,
etc.) on the last two columns with [xI + (1-x)Q] as the
independent X-value and S as the dependent Y-value.
Optimize the parameter x by repeating the regression
analysis for values of x ranging from 0.2 to 0.5.

The parameter x is selected from the regression analysis
that has the lowest R? value. The parameter K is found
from the same regression analysis as the X-Variable.
Use equations 6.5 to compute the parameters cy, ¢, and
C3. Take the time step A4¢ = 1 day. Check if the three
parameters add up to exactly 1.

Y VVVYVY

lav = (Ii + 1i+1)/2, the average input over two consecutive days

Qav = (Qi + Qi+1)/2, the average output over two consecutive days
AS = I, - Qay, the change in storage over two consecutive days

S, accumulated storage as from the start of the flood wave at E10. Add a zero value

Date

26-Nov-70
27-Nov-70
28-Nov-70
29-Nov-70
30-Nov-70
1-Dec-70
2-Dec-70
3-Dec-70
4-Dec-70
5-Dec-70
6-Dec-70
7-Dec-70
8-Dec-70
9-Dec-70

E10

4.96
6.35
7.91
12.40
27.90
36.12
29.87
16.40
10.90
7.98
6.62
5.72
5.32
491

E8

4.22
5.43
5.43
7.51
11.10
22.20
28.08
28.98
24.32
15.87
11.34
8.23
6.98
4.75

Table 6.1 Recorded flood
hydrographs
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Flood hydrographs Goba and Boane

26 Nov - 9 Dec 1970
40

Comparison of Observed and
Calculated Hydrographs at Boane
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Fig. 6.4 Observed flood hydrographs in Fig. 6.5 Comparison of observed and

Goba and Boane

calculated flood hydrographs

e Copy the first two columns of the spreadsheet to another location and add one column,
using equation 6.4 to calculate the discharge in Boane from observed discharge in
Goba. Take the first value equal to the observed discharge.

e Compare in a graph the calculated and observed discharges in Boane similar to figure

6.5 (Use as graph type Line).
e Save sheet Inum.

Question: Please write in the top left corner of your spreadsheet the last value of S in
the unit m® and explain why it is not equal to zero.
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7 RAINFALL RUNOFF MODELLING

7.1 Introduction

In this chapter a unit hydrograph will be derived which applies to the part of the Umbeluzi
catchment that is situated in Mozambique. A map of the catchment in the Mozambican part
is shown in figure 7.1. There are two gauging stations. One station is at the boarder with
Swaziland in Goba (station E10), where the river enters Mozambique. In Boane is another
gauging station. The procedure for the derivation of the unit hydrograph is the following.

e The Muskingum method will be used to route the discharge at Goba to Boane.

e The hydrograph representing the runoff from the Mozambican part of the catchment is
the difference between the measured discharge in Boane and the contribution from
Goba as routed with the Muskingum method to Boane.

e The Mozambican hydrograph is subject the further analysis. Base flow and surface
runoff will be separated.

e The surface hydrograph will then be used to estimate the effective rainfall.
e Precipitation data from 4 stations are used to determine the areal rainfall.

MOZAMBIQUE

P-6

SWAZILAND

LEGEND

A Stream gauges

Catchment boundary
B P-5  Rainfall station

SCALE 1 :500 000

Fig. 7.1 Mozambican part of the Umbeluzi catchment
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e The difference between the areal rainfall and the effective rainfall yields the losses
from which the ®-index can be determined.

e From a multiple regression analysis the unit hydrograph is finally derived.
e The method will be validated for a storm occurring in a different period.

7.2 Flood routing

The observed hydrograph in Boane will be decomposed into two components. Part of the
hydrograph consists of discharge entering Mozambique in Goba and the other part
originates from the rainfall excess in the Mozambican part of the catchment. The
hydrograph observed in Goba (E10) is first routed to Boane (E8) and then subtracted from
the hydrograph as observed in E8. Table 7.1 shows the data of the observed hydrographs in
Goba and Boane as well as Qmus, the hydrograph routed with the Muskingum method from
Goba to Boane, using K = 1.24 and x = 0.40. The three hydrographs are plotted in figure
7.2.

Subtracting Qmus from the observed hydrograph in Boane yields the hydrograph Qwmoz,
which represents the runoff from the tributaries draining the Mozambican part of the
catchment (see table 7.1 and figure 7.4).

7.3 Base flow separation

In order to separate the base flow from the hydrograph Quy; it is assumed that the depletion
curve may be represented by the following equation

-(t-t5)
Q=Qe (7.1)

The parameter K can be found from a logarithmic plot of the depletion curve (Log Q
against time). The best approach is to find the average K-value from the master depletion
curve which may be derived from a plot of many depletion curves. Since there is only one
such curve available for this problem, the K-value is found from plotting Qmo; in a semi-
logarithmic chart as shown in figure 7.3. Our interest is not so much the K-value, but the
date at which the depletion curve actually starts. Depletion starts after a dry period when
the contribution of the fast runoff component has ceased. The depletion curve ends when
the next rainstorm causes surface runoff. In this example the rain stops on 26 December

Measured and routed hydrographs Hydrograph Boane
300 Contribution Mozambiquan part

=
o
[=]
o

250 A
200

150 1

100 H \X\D\g\

Mean daily Q (m3/s)

Log mean daily discharge (m3/s)

—
100 1 Pl | | oo
3-9-9.15_54\\
50 1
o +——FFTF———T T 10 T T —t i
17-dec 22-dec 27-dec 1jan 6-jan 11-jan 8 b 3 S S S S
‘ —E10(measured) =——E8(measured) —— E8(routed) ‘ E E E — ® ;l' c\é{
— N N
Fig. 7.2 Hydrographs at Goba and Boane Fig. 7.3 Log plot of the discharge from the

Mozambican part and determination
of the start of the depletion curve
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E10 E8 E8 E8
GOBA BOANE Surface Areal Effective
Qm Qm Qmusk Qmoz Baseflow flow rainfall rainfall
m3/s m3/s m3/s m3/s m3/s m3/s mm mm
19-dec-73 12.7 17.1 17.1 0.00 0.00 0.00 40 0
20-dec-73 49.1 25.0 13.8 11.20 1 5.89 5.31 103 56
21-dec-73 135.0 278.0 429 235.10 2 11.78 223.32 62 15
22-dec-73 1140 286.5 117.2 169.30 3 17.67 151.63 15 0
23-dec-73 104.0 2447 1145 130.20 4 23.56 106.64 0 0
24-dec-73 75.3 209.9 105.8 104.10 5 29.45 74.65 5 0
25-dec-73 575 172.0 81.1 90.90 6 35.34 55.56 11 0
26-dec-73 57.8 1424 62.0 80.40 7 41.23 39.17 0 0
27-dec-73 471 1308 58.5 72.30 8 4712 25.18 0 0
28-dec-73 36.0 1148 49.2 65.60 9 53.01 12.59 0 0
29-dec-73 335 97.4 38.5 58.90 10 58.90 0.00 0 0
30-dec-73 335 90.7 345 56.20
31-dec-73 28.2 88.0 33.7 54.30 236 71
1-jan-74 18.1 81.3 29.2 52.10
2-jan-74 235 71.0 20.3 50.70
3-jan-74 23.4 71.7 22.9 48.80 Total= 6.0E+07 m3
4-jan-74 30.1 69.6 23.3 46.30 Total = 71 mm
5-jan-74 25.9 73.0 28.8 44.20
6-jan-74 25.4 72.8 26.4 46.40
7-jan-74 23.4 75.8 25.6 50.20 Constant loss rate (®-index) = 47
8-jan-74 20.7 84.5 23.8 60.70
9-jan-74 19.8 87.1 21.3 65.80
10-jan-74 19.1 78.3 20.1 58.20
11-jan-74 17.3 73.3 19.3 54.00

Table 7.1  Derivation effective rainfall (see text)

and starts again on 1 January in Swaziland and 5 January in Mozambique. So the dry
period is rather short. The discharge observations in this dry period are used to determine
the date, to at which the depletion curve is starting. From the graph (figure 7.3) this appears

to be 29 December
1973, since on 28
December and earlier
the runoff is larger than
is found from the
extrapolated linear
semi-log plot of the
depletion curve. The
base flow is now
assumed to increase
linearly from the start
of the storm on 19
December (Qwoz = O
m3/s) to 29 December
when Omoe; = 58.90
m*/s. The computation
is shown in table 7.1
and the separation line
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Fig. 7.4 Discharge from the Mozambican part and the
base flow separation

between base flow and surface runoff is plotted in figure 7.4.
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7.4 Estimating effective precipitation

Subtracting the base flow hydrograph from Quo, Yyields the surface hydrograph of the
Mozambican part of the catchment (see table 7.1). The surface runoff in m* divided by the
catchment area (850 km?) gives the effective precipitation (P.). In this example P, = 71
mm.

Part of the areal rainfall P that does not belong to the fast runoff component (the surface
hydrograph) is know as the losses, thus

Losses=P - P, (7.2)
where P is the areal rainfall.

The precipitation that caused the surface hydrograph fell in the period 19 - 25 December
1973. The daily rainfall data in the four gauging stations in the area are presented in table
7.2. For each day an isohyetal map was drawn, taking into consideration the orographic
effect related to the mountain range of the Libombos and Pequeno Libombos (see for
example figure 7.5). The areal rainfall expressed in millimetres over the total catchment of
850 km? is then calculated for each day (see table 7.2). The areal rainfall over the entire

S0 30
mm mm

150
mm

SWAZILAND

104.2
E10 25

LEGEND

A Stream gauges

Catchment boundary

M P-5  Rainfall station

%5 »  SCALE 1 :500 000

mm

150 75
125 5
o mm [1]1]][?] o

Fig. 7.5 Isohyets Mozambican part of the Umbeluzi catchment for 20 December 1973
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period of 7 days is P =236 mm. The [pate P119 P5  P425 P6 Areal
_ — Rainfall

total Iosses_ are thus 236 - 71 : 165 19.12.73 28 400 00 157 s
mm. In this workshop use will be  |2.12.73 1035 1243  104.2 29.8 103
made of the ®-index, which assumes  [21-12-73 87.6 540 406 13.5 62
H 22-12-73 22.0 0.0 6.0 3.0 15

a constant loss rate during the |>0" 7" 00 00 00 00 o
duration of the rainstorm. A first |24.12.73 45  12.0 8.1 84.0 5
estimate of the ®-index of 45 mm/d 25-12-73 17.9 9.0 5.2 1.1 1
236

brings the total losses to 2 x 45 + 40

+15+ 5+ 11 = 161 mm. Increasing Table 7.2 Computation areal rainfall Mozambican
the ®-index to 47 mm/d yields a loss part of the Umbeluzi catchment

of exactly 165 mm over the entire

storm period. Subtracting the loss from the areal rainfall gives the effective rainfall P, as
shown in table 7.1.

7.5 Derivation of the unit hydrograph

The theory of the unit hydrograph was introduced by Sherman in 1932. The method is
based on the assumption that the physical characteristics within a river basin (such as
slope, size, drainage network, etc.) do not change significantly, and consequently there
should be a great similarity in the shape of the hydrographs resulting from similar high
intensity rainfalls. The unit hydrograph is defined as the runoff of a catchment to a unit
depth of effective rainfall (e.g. 1 mm) falling uniformly in space and time during a period T
(minute, hour, day). It should be noted that the intensity of the rainfall during this period T
is equal to 1/T in order to obtain unit depth. The requirement of an effective precipitation
falling uniformly in space limits the application of the unit hydrograph theory to
catchments smaller than 500 - 1000 km?, since for larger basins the assumption of a
uniform distribution of the rainfall is hardly ever valid.

The specific period of time for the excess rainfall T is known as the ‘unit storm period’.
For small to medium sized drainage basins there is a certain unit storm period for which
the shape of the hydrograph is not significantly
affected by changes in the time distribution of the —> days

1 2 34 5

excess rainfall over this unit storm period. This 0
means that equal depths of excess rainfall with
different time-intensity patterns produce hydrographs
of direct runoff which are the same when the
duration of this excess rainfall is equal to or shorter
than the unit storm period.

An example of a unit hydrograph is given in figure
7.6, where the effective rainfall, P, and the unit
hydrograph, DUH (Distribution Unit Hydrograph)
are expressed in the same units: mm/d. The unit
hydrograph has a length of 4 days. The memory of
the rainfall-runoff system is 3 days, since 3 days after
the rain has stopped, the last rainfall excess comes to
runoff. If the ordinates of the DUH are expressed in 0012345
the same unit as the rainfall excess, they should sum
to one. This will not be so if the ordinates convert

unites from e.g. mm/d to m*/s. Fig. 7.6 Example of unit hydrograph
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The unit hydrograph theory is based on the
following assumptions:

The rainfall-runoff system is linear. This
means that the duration of the surface runoff
is constant for a given unit storm period, and
the runoff is proportional to the effective
rainfall depth. Thus, for a rainfall intensity
twice the unit depth, the ordinates of the unit
hydrograph have to be multiplied by two in
order to obtain the corresponding surface
runoff.

The principle of superposition applies. This
is demonstrated with an example in figure 7.7
for a rainstorm that lasts 3 days. The effective
rainfall on these three days is 1, 3 and 2 mm,
respectively. The rainfall of the first day
produces a runoff Qi equal to the unit
hydrograph (DUH in figure 7.6). The rain of
3 mm on the second day produces a runoff Q,
starting on the second day and with ordinates
three times the unit hydrograph (principle of
linearity above). Finally the 2 mm rain on the
third day results in a hydrograph Qs with
ordinates twice as large as the DUH and
starting on day 3. The principle of
superposition means that the rainfall-runoff
relation of each day is independent of events
on other days, so that the combined effect of
the three day rainstorm may be found by
adding the runoff (Q; + Q2 + Q3) produced by
each single day as shown on the bottom of
figure 7.7. This process of computing the
runoff for each time step and the subsequent

ae!
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12 34 5 6
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Fig. 7.7 The process of convolution

shifting and adding is known as convolution. The process of convolution shown in

figure 7.7 is numerically worked out in table 7.3.

Time-invariance. This means that the unit hydrograph does not change with time. So,
in summer and winter, dry or wet season, the same direct runoff response to rainfall

excess applies.

Time 1 2 3 4 5 6 7
DUH 0.1 0.5 0.3 0.1

P 1 3 2

Q1 0.1 0.5 0.3 0.1

Q2 0.3 15 0.9 0.3

Q3 0.2 1.0 0.6 0.2

Q 0.1 0.8 2.0 2.0 0.9 0.2 0.0

Table 7.3 Numerical example of the convolution procedure
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Thus if the rainfall-runoff system may be assumed linear and time-invariant, the unit
hydrograph may be convoluted with the effective rainfall to yield the surface hydrograph,
as demonstrated with an example in table 7.3. The convolution procedure is
mathematically described below.

Consider a rain storm lasting three 3 time steps (say days) for which the effective rainfall is
given by P4, P, and Ps. The unit hydrograph consists of 4 ordinates, U;, U,, Uz and Ug. The
convolution procedure as explained in table 7.3 may be written as follows.

Q1 =P:U;

Q2 =P2U; + P1U;

Q3 =P3U; + P,U; +P1U3
Qs=0  +P3Us+PUs +PiU,
Qs=0 +0  +P3Us+PUy
Qs=0 +0 +0 + P3U,4

Since XU; = 1 it follows that 2XQ; = XP;, thus the total of effective rainfall equals the
surface runoff. (The convolution procedure does not account for losses). The set of
equations shows that if M is the total number of rainfall ordinates and J the length of the
unit hydrograph, the total number of runoff ordinates N is found from

N=M+J-1 (7.3)

The general expression for the set of equations may be written as

Q=2 Uy (7.4

where Ui=0fori>Jand P =0 fori> M.

The set of equations may also be written in matrix form

(Q,) (P, 0O 0 O
Q, P, P, 0 O U,
Q; _ P, P, PO X U, (7.5)
Q, 0 P, P, P U,
Q. 0 0 PR, U,
\Qs) KO 00 Ps)
or
Q=PU (7.6)

from which U could be solved as QP™. However, the inverse of matrix P can only be
obtained if P is a square matrix. Multiplying both sides of equation 7.6 by the transpose P"
yields a square matrix (P'P) for which the inverse exists. Hence

P'Q=P'PU (7.7)
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and the unknown vector U is found from
u=(P"P)*PTQ (7.8)

The matrix inversion method is one of the methods to solve the unit hydrograph from a set
of rainfall-runoff data. Other solutions to this problem are discussed in various text books.
In the spreadsheet the matrix inversion method is available in the form of a multiple linear
regression. The above problem is considered to consist of 6 linear equations of the type

Y =c, X, +C, X, +C, X, +C, X, (7.9)

where the dependent Y-variable is the discharge, the X-coefficients the ordinates of the
unit hydrograph and the independent X-variables the precipitation values. The procedure is
worked out for the storm derived in table 7.1. The surface hydrograph is reproduced in
table 7.4. The units (m*/s) are first changed to mm/d, so they are compatible to the
precipitation units. The precipitation matrix is set up according to the procedure as
explained above. The effective rainstorm for this example consists of two rainfall
ordinates. The result of the multi-linear regression analysis is also shown in table 7.4. The
unit hydrograph (the X-variables) is plotted in figure 7.6. The shape of the unit hydrograph
should show a
continuous rising limb

and after the peak a
continuous decreasing

. Qobs Qobs
recession curve. It m3/s mm/d Matrix P
may be seen from 5.31 054 56 0 o0 0 0 o0 o0 o0 o
: : 223.32 2270 15 56 0 0O 0 O 0 0 O
figure 7.6 that the _unlt 151.63 541 0 15 56 0 0 0O O 0 O
hydrograph ob_talned 106.64 1084 0 0 15 5 0 O O 0 O
from the analysis has 74.65 759 0 0 0 15 5 0 O 0 O
a reasonable Shape 55.56 5.65 0 0 0 0 15 56 0 0 0
M table 7.4 39.17 38 0 0O O 0O O 15 5 0 O
oreover, lable /. 25.18 256 0 0 0O O 0 0 15 5 O
shows that 2U is very 1259 12646 0 0 O 0O O O O 15 56
g SUMMARY OUTPUT
0'996)' If .SuffIC.Ite]t Regression Statistics
data are available it is  |mutiple R 0.9999784
advisable to repeat the Eds_qua(rjeRS 009888223
juste qguare -0.
procedure  for @ |gongardEmor  0.2061633
number of flood Observations 10

events in order to

. ¢ . Coefficients
obtain an ‘average

_ Intercept 0.000
unit hydrograph. X Variable 1 0.010
X Variable 2 0.403

. . X Variable 3 0.167
Figure 7.7 finally |5 variabie 4 0.149
shows the effective |x variable5s 0.096
rainfall and  the |[XVariable6 0.075
X Variable 7 0.051

surface runo_ff from |\ variable s 0.032
the Mozambican part |x variable 9 0013
of the Umbeluzi |To@! 0.996

catchment.
Table 7.4 Derivation of the unit hydrograph
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Fig. 7.6 Derived unit hydrograph

Assignment

Fig. 7.7 Effective rainfall and surface runoff of the
Mozambican part of the Umbeluzi
catchment

Derive the surface unit hydrograph for the Mozambican part of the Umbeluzi catchment
The data may be retrieved from file
i:groupwork\hydata\uh.txt. Follow the procedure as described above, consisting of the
following steps.

using data

shown in

table 7.5.

e Open file i:groupwork\hydata\uh.txt and save it in your own directory as Jnum.

e Use the Muskingum method to route the discharge from Goba (E10) to Boane (E8).
Use the following parameters: K = 1.24 and x = 0.40.

Date

26-Jan-75
27-Jan-75
28-Jan-75
29-Jan-75
30-Jan-75
31-Jan-75
1-Feb-75
2-Feb-75
3-Feb-75
4-Feb-75
5-Feb-75
6-Feb-75
7-Feb-75
8-Feb-75
9-Feb-75
10-Feb-75
11-Feb-75
12-Feb-75
13-Feb-75
14-Feb-75
15-Feb-75
16-Feb-75
17-Feb-75

E10
GOBA
Qm
m3/s
20.7
24.2
36.0
256.0
315.0
362.0
477.0
275.0
168.0
394.0
145.0
81.4
61.5
55.3
49.8
48.0
46.8
45.9
44.3
43.7
49.3
56.7
55.4

E8
BOANE
Qm
m3/s
20.60
20.71
23.53
34.27
239.17
476.65
761.36
742.04
494.48
322.91
446.56
255.53
152.89
115.59
99.85
89.24
82.9
78.1
74.2
70.0
72.3
83.3
87.7

Rainfall
P119 P5 P425 P6
(mm) (mm) (mm) (mm)
0.0 0.0 0.0 0.0
2.2 3.8 0.0 0.0
3.1 10.7 4.3 0.0
73.4 79.0 75.7 39.2
104.5 129.3 98.1 63.0
53.0 62.2 43.3 20.6
8.3 19.7 1.8 0.0
0.0 7.2 0.0 1.0
0.0 0.0 3.0 2.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
8.7 9.3 7.6 2.1
16.9 18.1 12.9 6.4
111 12.6 7.3 1.9

Table 7.5 Rainfall and discharge data Umbeluzi catchment for January/February 1975
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Plot the observed hydrographs in Goba and Boane as well as the routed hydrograph in
one figure.

Subtract the routed hydrograph from the observed hydrograph in Boane.
Plot the resulting hydrograph Qwmo; in a chart with the vertical axis in a log-scale and
determine the start of the depletion curve.

Compute the base flow as a linear increase of the discharge from the start of Q; to the
start of the depletion curve and plot the base flow separation with Qg in a chart (see
e.g. figure 7.4).

Subtract the base flow from Qmo to obtain the surface hydrograph from the
Mozambican part of the Umbeluzi catchment.

Draw isohyets on the maps (which are found in the back of these notes) and compute
for each day the areal rainfall, using the data in table 7.5.

Compute the total surface runoff from the Mozambican part of the Umbeluzi catchment
in m® as well as in mm.

Make a chart showing the effective precipitation and the surface runoff in mm/d.
Compute the ®-index and determine the effective rainfall in the Mozambican part of
the Umbeluzi catchment.

Derivation of the unit hydrograph:

Construct a matrix with effective precipitation values similar to table 7.4.

Find the unit hydrograph from a multiple-linear regression on the surface runoff
(values in mm) as the Y-dependent variable and the effective precipitation as the X-
independent variable. Put the Y-intercept to zero.

Check if the sum of the ordinates of the unit hydrograph sum to approximately one.
Make a chart showing the unit hydrograph.

Validation procedure:

Use the validation data, which apply for the period 14-25 Dec 1975.
Use Muskingum to route the

discharge from Goba to validation

Boane. © 2(5)8 A —— Calculated
Convolute  effective  areal € 400 /\ —— Observed
rainfall with the derived unit E o ~ /7 \

hydrograph (equation 7.5). 8 250 // X7 =

Add the computed surface 220 T

runoff from Mozambique to £ 100 /

the discharge from Swaziland. 8 58 ~

Compare the observed and
computed hydrograph in a
chart. See e.qg. figure 7.8.

3-11-1974
4-11-1974
5-11-1974
6-11-1974
7-11-1974
8-11-1974
9-11-1974
10-11-1974
11-11-1974
12-11-1974
13-11-1974
14-11-1974

Save the sheet as Jnum. Fig. 7.8 Example validation

Question: Please write in the top left corner of your spreadsheet your opinion on the
“goodness of fit”, in particular with regard to the recession curve.
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8 RESERVOIR OPERATION

8.1 Introduction

The spreadsheet exercises presented below are developed to illustrate the role of the mass
balance calculations in the design and operation of a reservoir. They aim to give insight in
the determination of the reservoir capacity, the dimension of the spillway and the use of
rule curves. It should be realized that reservoir design and operation is a rather complex
matter which cannot be dealt with in a few exercises. This applies in particular if the
reservoir is to serve more than one purpose and if the socio-economical aspects are taken
into consideration.

The exercises make use of a long time series (1920 - 1980) of monthly rainfall and runoff
data. The data refer to the Jatiluhur reservoir in the Citarum river basin on Java
(Indonesia). Part of the data (in particular the rainfall data) is synthetic. The size of the
catchment upstream the dam site is 4550 km?. The rainfall in the catchment varies from
1500 to 3500 mm/a, with a monthly average at the reservoir site of 187 mm. The average
mgnthly runoff in Jatiluhur varies from 6 to 610 m*/s with a long-term average of 183
m°/s.

8.2 Determination of the reservoir capacity

There are two basic methods to determine the capacity of a reservoir: the graphical
approach (Rippl method) and the numerical approach (Sequent Peak Algorithm). Both
methods make use of the critical period, which is the period when the outflow (demand,
yield or draft) from the reservoir is larger than the inflow. The difference in the
accumulated draft and the accumulated inflow during the critical period is the storage that
is required to supply the requested draft in the critical period (or to assure safe yield). If the
considered time includes more than one critical period, the largest reservoir storage is
taken as the reservoir capacity. It is obvious that if the computation of the reservoir
capacity is based on one year of data, it may not be representative, since the considered
year may be more dry or more wet than normal. A long time series, say 20 years or more
is, therefore, recommended as the design period. In this assignment only one year is
considered in order to reduce the computational effort.

The Graphical Approach (Rippl method)

The graphical approach can only be applied to a constant draft from the reservoir. The
method requires that the inflow is accumulated and plotted, which is usually done on a
monthly basis. The required storage is then obtained by drawing tangents forward in time
from the start of the critical period and from the end of the critical period. The critical
period includes those months during which the inflow is less than the draft. Table 8.1 gives
an example for the Jatiluhur reservoir for the year 1965. It may be noticed that the
computations are carried out for 24 months. The series for1965 is repeated, because the
critical period may not be terminated before the end of the year. The incoming flow is first
converted from m®/s to MCM (10° m®) per month, where a month is taken to have a length
of 30.4 days. The draft is taken constant and equal to the average inflow, which is known
as the ideal reservoir case. The example shows that from May onwards the draft is larger
than the inflow. From that time the reservoir is depleting to reach a minimum level in
November after which the inflow is larger than the draft. The difference between the
cumulative inflow in November and the tangent to the cumulative inflow in April is the
required storage to sustain the constant draft. The computed mass curves and tangents are
plotted in figure 8.1.
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Draft D = Qav "ldeal Reservoir case" . . .
Rippl diagram / Cumulative Mass Curve
Month Qin Qin cum Qin  cum Qout cum Qout Capacity
(m3ls)  (MCM)  (MCM) (MCM) ~ (MCM)  (MCM) 14000
1965 0
Jan 457 1200 1200
Feb 466 1224 2424
Mar 186 489 2913 _ 12000
Apr 171 449 3362 3362 O
May 121 318 3680 3779 S
Jun 55 144 3824 4196 10000
Jul 38 100 3924 4614 <
Aug 15 39 3963 5031
Sep 9 24 3987 5448 2 o
Oct 15 39 4027 5865 © 8000 —=
Nov 75 197 4224 6282 4224 2059 = Reservoir Capacity o
Dec 298 783 5006 6699 4641 2059 (&) _ e
Jan 457 1200 6207 5058 2 6000 .
Feb 466 1224 7431 5475 = / /
Mar 186 489 7919 5892 = B
Apr 171 449 8368 8368 > Y
May 121 318 8686 8785 £ 4000 -
Jun 55 144 8830 9203 = Lo
Jul 38 100 8930 9620 (@]
Aug 15 39 8970 10037
Sep 9 24 8993 10454 2000 R
Oct 15 39 9033 10871 e
Nov 75 197 9230 11289 9230 2059 /.-
Dec 298 783 10012 11706 9647 2059 otssrmreinv—+—+—n——vrn——v " ——— —
JFMAMJJASONDUJIFMAMIJIJASOND
Qav= 159 417

Table 8.1 The graphical approach (Rippl Fig. 8.1 The Ideal Reservoir Case: Example of the graphical

diagram) Ideal Reservoir Case approach (Rippl diagram)

The draft is generally taken smaller than the average inflow in order to reduce the height
and thus the cost of the dam. If the draft is taken equal to 2/3 of the average inflow the
required reservoir capacity reduces to approximately half of the value that was computed
for the ideal reservoir case (see table 8.2 and figure 8.2). As a consequence 1/3 of the
inflow leaves the reservoir through the spillway and is lost for e.g. energy production.

The Numerical Approach (Sequent Peak Algorithm)
The numerical approach is particularly suitable for a draft which is not constant in time.
The procedure computes for each month t the storage deficit K in the reservoir as follows

K,=K,_+D,-Q, K,>0

: (8.1)
K,=0 otherwise

where D is the draft and Q is the inflow. To illustrate the flexibility of the method, the
previous set of data is used with a variable demand as follows:

Constant Draft D = 2/3*Qav
Reservoir . . .
Month Qin Qin cum Qin  cum Qout cum Qout Capacity R'ppl dlagl’am /CUmuIat'Ve MaSS CU rve
(m3/s)  (MCM)  (MCM) (MCM)  (MCM)  (MCM)

1965 0 12000

Jan 457 1200 1200

Feb 466 1224 2424 Reservoir Capacity

Mar 186 489 2913 T
Apr 171 449 3362 10000 »
May 121 318 3680 3680

Jun 55 144 3824 3958 3

Jul 38 100 3924 4236 =

Aug 15 39 3963 4514 S 8000 Spill

Sep 9 24 3987 4792 =

Oct 15 39 4027 5070 = l—l

Nov 75 197 4224 5349 4224 1125 2 Reservoir Capacity

Dec 298 783 5006 5627 4502 S 6000

Jan 457 1200 6207 5905 4780 “q‘)

Feb 466 1224 7431 6183 5058 S

Mar 186 489 7919 5336 = .

Apr 171 449 8368 5614 < 4000 v

May 121 318 8686 8686 >

Jun 55 144 8830 8964 S

aul 38 100 8930 9242 =1

Aug 15 39 8970 9520 O 2000 /

Sep 9 24 8993 9799

Oct 15 39 9033 10077

Nov 75 197 9230 10355 9230 1125 0 Y —
Dec 298 783 10012 10633 9508 - e e — a > e = w = a -

8 8 8 32 o o &8 & ® 2 o o

Qav= 159 417 L] = = N =z ] = > [} zZ
2/3*Qav 278

Table 8.2 Rippl method with D = 2/3 Fig. 8.2 Graphical Approach, Rippl method with D = 2/3
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for the first eight months the draft equals 0.5 Qav
and in the last four months D = 2 Qav. It should
be noted that the average annual draft equals 2/3
Qav, similar as in the previous example.

Assignment

Use both methods (Graphical Approach/Rippl
Diagram and the Sequent Peak Algorithm) to
determine the minimum reservoir capacity for
the year with inflow data that has been assigned
to you. The Graphical Approach /Rippl Diagram
will be used for a constant draft D equal to the
average inflow Qav and subsequently for a draft
D = 2/3 Qav. The Sequent Peak Algorithm will
be applied for a variable draft, such that Dav =
2/3 Qav. The inflow data are found in file
i:\groupwork\hydata\jatiluhur.txt

e Copy the inflow data of only the first year

assigned to you into a new spreadsheet.

Complete a table similar to table 8.1.

(see table 8.2 and figure 8.2).

Month

1965
Jan
Feb
Mar
Apr

May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec

Qav=

Qin
(m3/s)
457

466
186

Sequent Peak Algorithm

Qin
(MCM)
1200

1224
489

Variable Draft D where average Dav = 2/3*Qav

D
(MCM)

139
139
139
139
139
139
139
139
556
556

1548 Maximum
1321
260
0
0
0
0
0
39
139
672
1188
1548 Maximum
1321

Table 8.3

Example Sequent Peak Algorithm

Copy and paste these data below, to yield a time series of 24 months.

Make a chart with the cumulative mass curves and the tangents (see figure 8.1).
Repeat the Cumulative Mass Approach for a draft equal to 2/3 of the average inflow

e Notice the large difference in reservoir capacity for a relatively small decrease in

demand.

e Make a third table similar to table 8.3 for the Sequent Peak Algorithm.

e Use a variable demand as follows: the first 8 months D = 1/3 Qav and the last four

months D = 4/3 Qav.

e Compute the reservoir capacity and compare with the Rippl method.

e Save the worksheet as Knum.

8.3 Reservoir simulation

When simulating the water balance of a reservoir, the most important components are the
inflow and the draft, as used in the previous exercise. If the storage capacity of the
reservoir is fixed, the reservoir may run dry or become full and start to spill. Taking these
aspects into account the water balance may be written as follows:

S, =S,_, +(Q-Qleak— D—Sp+Sh) 4t

S.1  Storage in the reservoir at the beginning of the time step (m?)

St Storage in the reservoir at the end of the time step (m°)

Q Inflow into the reservoir during the time step (m°/time)

Qleak Leakage underneath the dam site (m*/time)
D Target release from the reservoir during the time step (m*/time)

Sp Spill from reservoir during the time step (m®/time)
Sh Shortage during the time step (m®/time)

At Length of time step (time)

(8.2)
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Equation 8.2 is first applied with D taken equal to the target release. The actual release is
found after comparing S; with the maximum and minimum storage in the reservoir.

The length of the time interval may vary from 1 hour to 1 month, depending on the size of
the reservoir and the purpose of the simulation. For a study of flood control problems a
small time step (1 hour or 1 day) is required, but for the simulation of reservoir operation
steps of one week or one month may be more appropriate. In general, the larger the
reservoir, the larger the time step to be used.

Assignment
Simulate the water balance of a reservoir for the two years assigned to you, using a time
step of one month. The following data are applicable:
The reservoir capacity equals the storage determined in the previous exercise with the
Rippl diagram.
Minimum required storage in the reservoir (dead storage) = 20% of the reservoir capacity.
Target release:  during January - April: 1.5 Qav

during May - December: 2/3 Qav

There is a constant leakage under the dam site Qleak = 0.5 m3/s

The storage at the start of the simulation is two third of its maximum value.

The procedure includes the following steps:

e Copy the inflow data of the two years assigned to you to an empty spreadsheet.

e Complete the next two columns, similar to table 8.4.

e Compute in the next column the volume in the reservoir as follows:

St = St.1 + Q - Qleak - D and limit this value with IF-statements to the maximum and
minimum reservoir storage.

Spilling occurs if St is larger than the reservoir capacity.

Shortage occurs if S; is smaller than the dead storage.

The actual release equals the target release minus the shortage and plus the spilling.
Make a chart similar to figure 8.3 with the target and the actual release.

Save the worksheet as Lnum.

200 Target and Actual Release
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Fig. 8.3 Target and actual release
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Target Stored Actual So far the effect of
Month Qin Qin Release Volume Spilling Shortage Release evaporatlon from
1965/66 (m3/s) (MCM) (MCM) (MCM) (MCM) (MCM) (MCM) and preC|p|tat|0n on

787 .
Jan 457 1200 647 1181 159 0 805 the reservoir has_nOt
Feb 466 1224 647 1181 576 0 1223 been taken into
Mar 186 489 647 1021 0 0 647 : ;
Apr 171 449 647 822 0 0 647 consideration. These
May 121 318 287 852 0 0 287 components are
Jun 55 144 287 707 0 0 287 genera”y neg|ected
Jul 38 100 287 518 0 0 287 :
Aug 15 39 287 269 0 0o 287 in case of flood
Sep 9 24 287 236 0 232 55 routing, using small
Oct 15 39 287 236 0 249 38 ;
Nov 75 197 287 236 0 92 196 time Steps.
Dec 298 783 287 730 0 0 287 However, when
Jan 261 686 647 768 0 0 647 5imu|ating |arge
Feb 235 617 647 737 0 0 647 . -
Mar 346 909 647 997 0 0 647 time . perlods these
Apr 178 468 647 817 0 0 647 contributions  may
May 152 399 287 927 0 0 287 be Slgnlflcant in
Jun 96 252 287 891 0 0 287 icul if ' h
Jul 33 87 287 689 0 0 287 particular 1t the
Aug 22 58 287 458 0 0 287 surface area of the
Sep 27 71 287 240 0 0 287 T ;
Oct 167 439 287 390 0 0 287 reser_VO'r is large in
Nov 202 531 287 631 0 0 287 relation to  the
Dec 315 827 287 1170 0 0 287 storage.
Average 1642 4312  407.2 4139 If the flow series
used for simulation

Reservoir capacity = 1181 MCM were obtained at the
Dead Storage = 236 MCM .
Draft Jan - April:3/2*Qav = 647 MCM dam Sltea before the
Draft May - Dec: 2/3*Qav = 287 MCM dam was built, the
Qleak 0.50 m3/s 1.3 MCM discharge values

include the
precipitation on the
area occupied by the
reservoir. With regard to the evaporation losses, only the increase due to changing the land
use from a vegetated area with actual evapotranspiration Ea to open water with an
evaporation rate Eo has to be considered. Hence the water balance equation may be written
as

Table 8.4 Example of reservoir simulation

S, =S, +|Q-Qleak— D' —(Eo-Ea)A] 4t (8.3a)
where
D’ Actual release (m®/time)
Eo Open water evaporation (m/time)
Ea Actual evapotranspiration before the dam was built (m/time)
A Surface area of the reservoir (m?)

In this workshop the flow series is considered as inflow into the reservoir after the
construction of the dam, hence equation 8.3 takes the form

S, =S,, +|Q-Qleak— D' — (P - Ea)A] 4t (8.3b)

where P is the precipitation measured at the dam site in m/time.
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Storage-elevation curve Jatiluhur Reservoir Storage-elevation curve Jatiluhur Reservoir
110 110
100 100
2 90 z 90
- 80 £ 80
S 70 S 70
3 60 // 3 60
T 50 / Y 50
40 40

30 T T T T T T 30 T T T T T
0 500 1000 1500 2000 2500 3000 3500 0 1500 3000 4500 6000 7500 9000
Storage in MCM Storage in MCM
Fig. 8.4 Storage-Elevation curve Jatiluhur Fig. 8.5 Area-Elevation curve Jatiluhur
Reservoir Reservoir

The surface area of the reservoir changes with the amount of water stored. The solution of
equation 8.3, therefore, requires a relation between A and S. The average value of A for
time step 4¢ may then be found as the mean of A for the storages Si.; and S;. Since S; is
unknown, equation 8.3 has to be solved by iteration.

The following analytical equations approximate the relations between storage, area and
water level for the Jatiluhur reservoir reasonably well.

A=0.3H?+65H - 2165 (8.4)
H = 100-2410g5+12 (8.56.)
S = 104.1667IogH—5 (85b)

where
A area of the reservoir in ha
H water level in the reservoir in m
S storage in the reservoir in MCM (= 10° m®)

Equation 8.5b is the inverse of equation 8.5a. This equation is required in some
assignments. The relationships are also depicted in figures 8.4 and 8.5.

Assignment

Extend the table in worksheet Lnum to include in the water balance computation the

precipitation on and the open water evaporation from the reservoir. Precipitation and

evaporation data may be found in file i:\groupwork\hydata\jatiluhur.txt. The computations

include the following steps:

e Make a first estimate of S; neglecting precipitation and evaporation (Use the water
balance equation with Si.; equal to the third (last) estimate of the previous time step).

e Compute in the next columns estimates for H; and A; using equations 8.5 and 8.4.

e The water balance component (P - E0) is estimated as (P - E0*30.4)*(A; + Aw1)/2*10 °
MCM, where P is in mm/month, Eo in mm/d and the area A in ha.

e Apply equation 8.2b to compute a second estimate of S; and limit this value with IF-
statements to the maximum and minimum reservoir storage.

e Table 8.5 shows that a third estimate is not required (the values of the third and second
estimate are exactly the same).
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With rainfall and evaporation

First Second Third Actual
estimate H A P-Eo estimate H A P-Eo estimate Spilling Shortage Release Eo P
(MCM) m ha MCM (MCM) m ha MCM (MCM) (MCM) (MCM) (MCM) mm/d mm/month

787 79 4790 787 79 4790 787
1181 87 5710 15.6 1181 87 5710 15.6 1181 174 0 821 35 404
1181 87 5710 18.3 1181 87 5710 18.3 1181 594 0 1241 3 411
1021 84 5366 35 1025 84 5374 35 1025 0 0 647 4 185
826 79 4893 1.9 828 79 4897 1.9 828 0 0 647 45 173
857 80 4972 -0.1 857 80 4972 -0.1 857 0 0 287 45 135
712 7 4583 -2.5 710 77 4576 -2.5 710 0 0 287 45 84
521 71 3976 -2.8 518 71 3966 -2.8 518 0 0 287 45 71
269 61 2884 -3.4 265 60 2865 -34 265 0 0 287 5 53
236 59 2697 -3.3 236 59 2697 -3.3 236 0 239 48 55 48
236 59 2697 -3.2 236 59 2697 -3.2 236 0 253 35 6 64
236 59 2697 -1.1 236 59 2697 -1.1 236 0 93 195 5 110
730 77 4633 5.9 736 77 4650 5.9 736 0 0 287 4 282
773 78 4753 6.4 780 78 4770 6.4 780 0 0 647 35 242
749 78 4686 6.2 755 78 4703 6.2 755 0 0 647 3 222
1016 83 5353 9.9 1026 84 5376 9.9 1026 0 0 647 4 319
845 80 4942 2.2 847 80 4948 2.2 847 0 0 647 45 179
958 82 5219 11 959 82 5222 11 959 0 0 287 45 159
922 82 5134 -1.1 921 82 5131 -1.1 921 0 0 287 45 115
719 77 4602 -34 716 77 4592 -34 716 0 0 287 45 67
485 70 3845 -4.0 481 70 3830 -4.0 481 0 0 287 5 58
263 60 2852 -3.2 260 60 2834 -3.1 260 0 0 287 55 73
410 67 3551 0.0 410 67 3551 0.0 410 0 0 287 6 181
651 75 4403 2.2 654 75 4409 2.2 654 0 0 287 5 208
1181 87 5710 8.8 1181 87 5710 8.8 1181 20 0 307 4 295
Average P - Eo = 2.2 MCM Average release = 415.7 MCM

Table 8.5 Example reservoir simulation including rainfall and evaporation

e Compute in the next columns the Spilling, Shortage and Actual release as done
previously.
e Save sheet Lhum.

8.4 Rule curves

In the reservoir simulation for yield analysis the routing of the inflow followed the
Standard Operating Rule (SOR), which may be summarized as follows:

1 the target demand is not released if the storage at the end of the time period will
be less than the dead storage;

2 if at the end of the time interval the reservoir is full, the actual release equals the
target value plus the amount that is spilling.

In the analysis of reservoir yield, the time series of inflow, precipitation and evaporation
are known values. This allows the computation of the unknown parameters, such as the
variation of the storage over time and the actual release or outflow of the reservoir. From
the yield analysis the target release may be approximated as a function of time. After the
construction of the reservoir the SOR is not likely to be fully applicable, because the
reservoir may serve more than one objective, such as water conservation, power
generation, flood retention and recreation. For multi-purpose reservoirs, the operators have
to control the releases, taking all objectives into consideration and knowing that future
inflows are subject to hydrological uncertainty. For this purpose series of reservoir water
levels (rule curves) are established that vary throughout the year. The rule curves are used
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Fig. 8.6 Example rule curves

by the operators as guidelines for the actions to be taken. In the example in this workshop
the Jatiluhur reservoir serves two purposes: water conservation (for irrigation) and flood
retention (the rule curves are given in figure 8.6).

The following operation rules generally apply for this situation:

1 The Flood Rule Curve (FRC) represents the maximum storage levels necessary to store
large floods. It is usually considered a hard boundary, meaning that the level may not
be crossed. The operator may not always succeed in obeying this rule, in particular on a
day-to-day basis. The success depends on the means of the operator to release water. If
the reservoir e.g. uses a bottom gate with a maximum capacity Qb, the operation rule is
as follows:
IfS>FRCandS-FRC<QbthenQ =D + (S-FRC)and S =FRC
If S>FRCandS-FRC >QbthenQ =D + Qb and S =S — Qb (in this case the
storage S exceeds the FRC, where D is the target draft and Q is the actual release).

2 The Conservation Rule Curve (CRC) is a soft boundary (it may be crossed). In this
example the CRC refers to the conservation of water for irrigation. If the storages
crosses the CRC the release from the reservoir is reduced by a certain rationing
percentage r as follows:

If S < CRC, then Q =r*D and S is recomputed with Q = r*D

In this way the effect of shortages on the water users is minimized. The application of
water rationing is also referred to as hedging. Instead of reducing the release with a
certain percentage, special rules curves (hedging rule curves) which apply in case of
water shortages, may be used.

3 The Dead Storage Curve (DSC) is a hard boundary. The storage may never drop below
this boundary as a result of releases. The dead storage requirement is often for
environmental or ecological reasons. If S drops below DSC, the release is reduced as
follows:

IfS<DSC,thenQ =S+ D-DSCand S=DCS
(Q needs to be corrected if it appears to be negative due to evaporation)
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Conser- Adjust
Full Flood vation Dead Adjust for
Target Supply  Rule Rule Storage for flood Conser- Stored Actual

Month  Qin  Qin Release Level Curve Curve Curve P-Eo control vation Shortage Spilling Volume H A Eo P Release
1965/6

6 m3/s MCM MCM MCM MCM MCM MCM  MCM MCM MCM MCM MCM MCM m ha mm/d mm/month MCM

1904 97 6972

Jan 457 1200 647 2856 2540 910 700 20.7 0 0 0 0 2477 103 7764 3.5 404 647
Feb 466 1224 647 2856 2670 1710 700 24.8 263 0 0 0 2814 107 8176 3 411 910
Mar 186 489 647 2856 2740 2250 700 5.2 0 0 0 0 2660 105 7991 4 185 647
Apr 171 449 647 2856 2856 2380 700 2.9 0 0 0 0 2463 103 7747 4.5 173 647
May 121 318 287 2856 2856 2270 700 -0.1 0 0 0 0 2493 104 7784 4.5 135 287
Jun 55 144 287 2856 2856 2350 700 -4.1 0 72 0 0 2417 103 7687 4.5 84 215
Jul 38 100 287 2856 2856 2290 700 -5.1 0 72 0 0 2295 102 7526 4.5 71 215
Aug 15 39 287 2856 2856 2120 700 -7.5 0 72 0 0 2110 100 7273 5 53 215
Sep 9 24 287 2856 2856 1940 700 8.7 0 72 0 0 1909 97 6979 5.5 48 215
Oct 15 39 287 2856 2856 1410 700 -8.3 0 0 0 0 1651 94 6574 6 64 287
Nov 75 197 287 2856 2695 960 700 -2.8 0 0 0 0 1557 93 6415 5 110 287
Dec 298 783 287 2856 2475 840 700 10.3 0 0 0 0 2062 99 7204 4 282 287
Jan 261 686 647 2856 2540 910 700 9.8 0 0 0 0 2109 99 7271 35 242 647
Feb 235 617 647 2856 2670 1710 700 9.5 0 0 0 0 2087 99 7241 3 222 647
Mar 346 909 647 2856 2740 2250 700 143 0 0 0 0 2362 102 7616 4 319 647
Apr 178 468 647 2856 2856 2380 700 3.2 0 162 0 0 2346 102 7595 4.5 179 485
May 152 399 287 2856 2856 2270 700 1.7 0 0 0 0 2459 103 7741 4.5 159 287
Jun 96 252 287 2856 2856 2350 700 -1.7 0 0 0 0 2421 103 7692 4.5 115 287
Jul 33 87 287 2856 2856 2290 700 -5.4 0 72 0 0 2286 101 7514 4.5 67 215
Aug 22 58 287 2856 2856 2120 700 -7.1 0 72 0 0 2120 100 7287 5 58 215
Sep 27 71 287 2856 2856 1940 700 6.9 0 72 0 0 1967 98 7067 5.5 73 215
Oct 167 439 287 2856 2856 1410 700 -0.1 0 0 0 0 2118 100 7284 6 181 287
Nov 202 531 287 2856 2695 960 700 4.1 0 0 0 0 2364 102 7618 5 208 287
Dec 315 827 287 2856 2475 840 700 13.2 263 0 0 0 2653 105 7984 4 295 550
Average 431.2 2.6 401.3
Reservoir capacity = 2856 MCM
Dead Storage = 700 MCM
Draft Jan - April: 3/2*Qav = 647 MCM
Draft May - Dec: 2/3*Qav = 287 MCM
Qleak 0.5 m3/s 1.3 MCM
Rationing percentage = 75 %
Capacity bottom gate 100 m3/s = 263 MCM

Table 8.6

Assignment

Example of reservoir operation rule curves

Simulate the reservoir storage for the two years assigned to you using the following rule

curves:

- The Full Supply Level (FSL) is 2856 MCM (water level of 107 m).

- The Dead Storage Curve (DSC) is horizontal and equal to a storage of 700 MCM.
- The Flood Rule Curve (FRC) and the Conservation Rule Curve (CRC) are given in the
table below in MCM.

Jan Feb Mar | Apr May | Jun Jul Aug | Sep Oct Nov Dec
FRC | 2540 | 2670 |[2740 |2856 |2856 |2856 |2856 |2856 |2856 |[2856 |2695 | 2475
CRC | 910 1710 | 2250 | 2380 |2270 (2350 |2290 |2120 | 1940 | 1410 | 960 840

The following data apply:

The leakage underneath the dam is 0.5 m%s.
- The rationing in case of water shortage is 75 %.
- The capacity of the bottom gate is 100 m*/s.
- The initial storage is 2/3 of the reservoir capacity.
- Other data (target release, precipitation, evaporation, storage - area relationships) are

the same as in the previous assignment.

Take the following steps:
e Copy the two years with inflow data to a fresh worksheet.
e Add columns with target release data,
precipitation and evaporation (using the surface area of the previous time step), similar
to table 8.6.

rule curves and the contribution from
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e Add a column to compute the
release for flood control.
e Compute in the next column

Simulated Operation 1965/1966

3000

2500 N -\,/ -\(

the reduction (1 - r)*D for the AN SN
situation that the storage is 2000 / \/ / ’\ e Food Rule
less than the CRC. g 1500 / / \ +§|Ct
e Shortage and spilling are 1000 1 = ] | " Deadstorage
computed similar to the 500 " Sorage -
previous assignment. I _
e Compute the stored volume § 883 83588358383

taking into account the
corrections made.

e The actual release is then
found as the target release plus the adjustment for flood control, minus the correction
for conservation, minus the shortage and plus the spilling.

e Make a chart similar to figure 8.7 showing the rule curves and the simulated storage.

e Check your spreadsheet as follows:

If there is spilling the storage must equal 2856 MCM
If there is shortage the storage must equal 700 MCM
Overall water balance: compute averages of Qj,, (P-Eg) and actual release Qgct-

Storage in reservoir at the end of period = 1904 + 24[Qj+(P-Eg)-Qgct-1.31.
e Save the sheet as Mnum.

Fig. 8.7 Example simulation of reservoir operation

8.5 Reservoir routing

A reservoir must contain a spillway designed such that the largest flood which is expected
to occur can pass without overtopping the dam and thus endangering the structure with
potential disastrous consequences downstream. The design flood is selected as the
maximum probable flood which could occur upstream of the reservoir. Instead of
determining the probable maximum flood, also the flood with a return period of X years is
used, where the value of X may vary from 10 to 10,000 years depending on the possible
damage and the risk of the loss of lives.
The design flood is routed through the reservoir for a given width of the spillway. The
simulation yields the maximum water level above the crest of the spillway during the
passage of the flood. To obtain the ultimate height of the dam a safety margin should be
added to the maximum water level during the passage of the flood to take into account
wave run-up and wind set-up. The routing procedure may be repeated for a different width
of the spillway resulting in a different height of the dam. The optimal dimensions are then
determined by minimizing the construction costs.

The same water balance equation as discussed earlier may be applied for reservoir routing,

but the time step is usually much smaller than for the yield analysis. With time steps in the

order of hours, the precipitation and evaporation components in the water balance equation
may be neglected, resulting in the following procedure:

1. Assume a full reservoir at the start of the design storm, or H, = Hc, where H, is the
water level in the reservoir at the start of the simulation and H is the level of the crest
of the spillway.

2. Estimate the flow across the spillway, Q, with the following formula
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Q=KB(H-H,)° (8.7)

where H is the water level in the reservoir (H = H,), K and c are parameters depending
on the type of spillway and B is the width of the spillway crest.

3. Assuming that the outflow over the crest of the spill way is constant during the time
step: Q = Q(H), a first approximation of the reservoir storage S;" at the end of the time
step is found from the water balance equation (neglecting precipitation and
evaporation) as

S, =S, +(1-Q)4t (8.8a)

where 1 is the inflow during time step t. The equation is also called the predictor.

4. This first estimate of the storage S; may be used in equation 8.5a to find the
corresponding water level H; .

5. A better estimate of the flow across the spillway Q is then found with equation 8.7
where H = (Hey + H{)/2.

6. Equation 8.8a is subsequently computed again with Q = Q"

S, =S, +(1-Q")at (8.8b)

This equation is called the corrector.

The corresponding water level H; is then found from equation 8.5a with S = S..

8. If necessary steps 5 to 7 are repeated with H; instead of H; until no more significant
change in S; occurs.

~

An example of the above procedure, given in table 8.7, shows that after two iterations the
simulated value for the outflow Q is almost constant (Q“ =~ Q). Figure 8.8 is a plot of the
inflow | and the (extended series of simulated) outflow Q. It shows that the maximum
outflow occurs at the point of intersection with the inflow hydrograph. The reason is that
the maximum water level in the reservoir (and thus the outflow Q) occurs for I = Q.

Assignment

Route a design flood through the Jatiluhur reservoir. The time step to be used is 3 hours

(0.125 days). The design flood has a triangular shape with a duration of 3 days. Each

participant is given the peak flow rate (m®s) and a maximum reservoir level. Apply the

above procedure with two iterations. Simulate the maximum water level in the reservoir for

a width of the spillway of 10 m. Repeat the simulation for different widths to find the size

of the spillway that keeps the water level in the reservoir below the given maximum. The

crest of the spillway is at a level of 107 m and at the start of the simulation the reservoir is

full. The procedure is the following (see table 8.7):

Generate in the first column 160 time steps of 3 hours (a period of 20 days).

e Compute the triangular inflow hydrograph for the given peak flow rate in the next
column.

e Set up the headings of the remaining columns and set for t = 0 the initial values for S =
2856 MCM and H = 107 m.

e Use equation 8.7 with K= 1.5 and ¢ = 1.5 and B = 10 in the third column to estimate Q
for H in the previous time step.

o Apply the predictor equation 8.8a to compute S;" in the next column.
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Level spillway crest = 107 m
L= 45 m
Max Level = 110.01
Inflow Outflow
Time I Q(H) S* H* Q* S H Q S H
Days m3/s m3/s MCM m m3/s MCM m m3/s MCM m
0.000 0 2856 107.0
0.125 250 0.0 2859 107.0 0.1 2859 107.0 0.1 2859 107.0
0.250 500 0.2 2864 107.1 0.7 2864 107.1 0.7 2864 107.1
0.375 750 1.3 2872 107.1 2.4 2872 107.1 2.4 2872 107.1
0.500 1000 37 2883 107.2 5.7 2883 107.2 5.7 2883 107.2
0.625 1250 8.0 2896 107.4 11.1 2896 107.4 11.1 2896 107.4
0.750 1500 14.6 2912 107.5 19.1 2912 1075 19.1 2912 107.5
0.875 1750 24.0 2931 107.7 30.1 2931 107.7 30.1 2931 107.7
1.000 2000 36.7 2952 107.9 447 2952 107.9 44.6 2952 107.9
1.125 2250 53.1 2976 108.1 63.0 2976 108.1 63.0 2976 108.1
1.250 2500 735 3002 108.3 85.6 3002 108.3 85.6 3002 108.3
1.375 2750 98.3 3030 108.5 112.8 3030 108.5 112.7 3030 108.5
1.500 3000 127.8 3061 108.8 144.8 3061 108.8 144.7 3061 108.8
1.625 2750 162.3 3089 109.0 178.6 3089 109.0 1785 3089 109.0
1.750 2500 195.3 3114 109.2 210.7 3113 109.2 210.6 3113 109.2
1.875 2250 226.2 3135 109.4 240.2 3135 109.4 240.1 3135 109.4
2.000 2000 254.4 3154 109.6 266.9 3154 109.6 266.8 3154 109.6
2.125 1750 279.4 3170 109.7 290.2 3170 109.7 290.2 3170 109.7
2.250 1500 301.0 3183 109.8 310.0 3183 109.8 309.9 3183 109.8
2.375 1250 319.0 3193 109.9 326.1 3193 109.9 326.0 3193 109.9
2.500 1000 333.1 3200 110.0 338.2 3200 110.0 338.2 3200 110.0
2.625 750 343.3 3204 110.0 346.5 3204 110.0 346.4 3204 110.0
2.750 500 349.6 3206 110.0 350.8 3206 110.0 350.7 3206 110.0
2.875 250 351.9 3205 110.0 351.1 3205 110.0 351.1 3205 110.0
3.000 0 350.3 3201 110.0 347.6 3201 110.0 347.6 3201 110.0
Table 8.7  Example reservoir routing

e Inthe next column H; is computed with equation 8.5a.

time step) and H (previous time step).

Apply in the next column the corrector equation 8.8b to find S;".
Repeat in the next columns the computations of H, Q, S and H in a second iteration.
Copy the first row to the other time steps.

Repeat the computations for different widths of the spillway, and determine the

The value of Q;" is estimated from equation 8.7 for using the average value of H;" (this

minimum width (with an accuracy of 5 m) that keeps the peak water level below the
given maximum.
e Make a chart with the inflow and outflow hydrograph.
e Show in a chart the change of the water level in the reservoir with time.
e Save the sheet as Nnum.
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Fig. 8.8 Example flood routing

Fig. 8.9 Simulated water level
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9 SOIL MOISTURE

9.1 Actual evapotranspiration through soil moisture accounting

In case of water stress in the root zone the actual evapotranspiration may become less than
its potential value. A simple model as shown in figure 9.1 may be used to estimate relative
evapotranspiration in relation to the available moisture. This requires that the amount of
water in the root zone is continuously monitored: soil moisture accounting.

For this workshop daily precipitation and potential evapotranspiration values of grass for
the meteorological station De Bilt (The Netherlands) are available for the period 1911 -
2002 in file i:\groupwork\hydata\P&E DeBilt.txt. Soil physical data of the international
soil series are found in file i:\groupwork\hydata\lSS.txt.

The soil moisture accounting model keeps track of the actual amount of available moisture
M stored at time t in the root zone. The (maximum) Available Moisture AM is defined as

AM = Dr(ch _0VVP) (9.1)
where Dy is the depth of the root T - 5
zone, and Orc and 6Hwp the ’
moisture content in the root zone
at Field Capacity (h = -100 cm) D, amav
and Wilting Point (h = -16000

cm), respectively. A fraction p of
AM is readily available moisture
(RAM = pAM), which means that
during the consumption of this Eact
water by the plant the actual Epot
evapotranspiration equals the
potential evapotranspiration (Eac
= Epa). Figure 9.1 shows that
water in excess of the moisture 0 (1-pAM  AM M,

content at field capacity and less

than wilting point is not available Fig. 9.1 Relative evapotranspiration in relation to
for the crop moisture availability in the root zone

The value of p depends on the type of crop and the evaporative demand Ep,: and ranges
from 0.2 to 0.8, but an average value of 0.5 is often used.

For the situation that at time t the actual available moisture content in the root zone M;
reaches a value less than (1-p)AM, it is assumed that the relative evapotranspiration then
reduces linearly from one to ultimately zero when all available moisture has been used.
Thus

for M; > (1-p)AM —at =1 (9.2a)

and for M;< (1-p)AM E“‘ = ! (9.2b)
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The water balance of the root zone may be written as
M,=M,,+P-E_,-D 9.3

where P is precipitation and D is drainage from the bottom of the root zone into the
subsoil. It should be noted that for this water balance equation capillary rise is neglected
(assume a deep water table) and that all precipitation enters into the soil (no interception,
no surface runoff). The drainage from the root zone into the subsoil is simply computed as
all water in excess of field capacity, hence

for M; > AM D=M,-AM (9.4a)

and for M;< AM D=0 (9.4b)

Assignment

The computation of the actual evapotranspiration through soil moisture accounting is to be
carried out for a calendar year. At the start of the computations the moisture content in the
root zone is assumed at field capacity. The depth of the root zone D, = 30 cm.

e Open file i:\groupwork\hydata\P&E DeBilt.txt and copy the date, precipitation and
potential evapotranspiration of the year assigned to you into an empty spreadsheet.

e Enter at the top of the spreadsheet the parameters related to the chosen soil: ¢ and
6wp, Dy, p, AM and (1-p)AM. Take p = 0.4. The soil physical data of the soil assigned to
you are are found in Appendix F.

e At the start of the simulation the root zone is assumed at field capacity (h =-100 cm).

e Take for each new time step the initial value for M.; equal to M; of the previous time
step.

e Make a first estimate of My = M1 + P - Epor. Make sure the value is not negative.

e Compute in the next column the drainage with equation 9.4.

e Compute in the next column the actual evapotranspiration with equation 9.2.

e Compute in the next column M; with equation 9.3.

e Make a chart showing the change of the actual and potential evapotranspiration over

the year assigned to you (see for example figure 9.2).

e Compute the relative evapotranspiration (Eac/Epor) for the soil chosen by you as well
for Coarse Sand (soil 1). Plot both series in a chart (see for example figure 9.3).

e Save the sheet as Vnum.

Questions:

1- For which minimum depth of the root zone is the relative evapotranspiration
always equal to one?

2- Do you think that such a depth of the root zone is realistic?

3- Why do farmers in general not prefer Coarse Sand for agricultural production?
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Potential and actual evapotranspiration of grass for De Bilt in 1973
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Fig. 9.2 Example simulated actual and potential evapotranspiration
Relative evapotranspiration of grass for De Bilt in 1973
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Fig. 9.3 Example comparison relative evapotranspiration Loess loam and Coarse sand
Loess Loam
FC= 0.34
WP= 0.11
Dr= 300.0 mm
p= 0.4
AM= 69.0 mm
(1-p)AM= 41.4 mm
Date P Ep-m  M(t-1) M*(t) Drainage Eact M(t) Eact/Epot
mm/d mm/d mm mm mm/d mm/d mm -
69.0
1-1-1973 0.0 -0.06 69.0 69.1 0.1 -0.06 69.0 1.00 1.00
2-1-1973 0.0 0.15 69.0 68.9 0.0 0.15 68.9 1.00 1.00
3-1-1973 0.0 0.15 68.9 68.7 0.0 0.15 68.7 1.00 1.00
4-1-1973 0.0 0.11 68.7 68.6 0.0 0.11 68.6 1.00 1.00
Table 9.1

Example computation soil moisture accounting
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9.2 Optimisation of the Van Genuchten parameters

In appendix F the soil physical data of twenty soils are tabulated. The data are based on a
worldwide survey. When modelling unsaturated flow, the use of soil moisture
characteristics d(h) and hydraulic conductivity relations K(h) in tabular form is rather
inconvenient. Several authors have suggested analytical expressions for these relations, e.g.
Brooks & Corey (1964), Campbell (1974) and Van Genuchten (1980). The equations
proposed by Van Genuchten are most frequently used and specified below.

The empirical Van Genuchten equation for the soil moisture characteristic reads

6,-6,

6(h)=#, +[—r (9.5)
1+|oh"

0, residual soil water content (L*/L®), water content for h— - « or non-capillary-bound
water

0s saturated soil water content or porosity (L*/L?)

h matric pressure in cm (L)

a parameter corresponding roughly with reciprocal of the air entry value in cm™ (1/L)

n dimensionless empirical shape parameter

m =1-1/n

Van Genuchten combined equation (9.5) with the statistical pose size distribution model of
Mualem (1976) resulting in the following expression for the hydraulic conductivity
relation

5[1—|ah|“‘1(1+|dn|“)”’]2

[+l ]

K(h)=kK

(9.6)

where
K hydraulic conductivity in cm/d
K saturated hydraulic conductivity in cm/d
A dimensionless parameter influencing the slope dK/dh

The parameters of the Van Genuchten relations are constrained as follows:
a>0
n>1
-10<4<10

Assignment

e Open file i:\groupwork\hydata\lSS.txt, copy the data of the soil assigned to you, and
prepare a table similar to table 9.2 in a blank workbook which is then saved as Wnum.

e Add one column ., with the computation of 8 using equation (9.5).
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Silty Clay Van Genuchten relations
a= 0.01 cm

n= 1.35

A= -3.23

m = 0.26
pF h 0 Ocalc Diff 622 K LogK LogKcalc Diff K2
0 0 0.507 0.507 13 0.11 0.11 0.0000
1.0 -10 0.492 0.504  0.0001 0.8 -0.10 -0.38 0.0802
1.3 -20 0.485 0.500  0.0002 0.498 -0.30 -0.55 0.0619
15 -31 0.482 0.495  0.0002 0.294 -0.53 -0.69 0.0255
1.7 -50 0.474 0.487  0.0002 0.118 -0.93 -0.88 0.0027
2.0 -100 0.463 0.466  0.0000 0.045 -1.35 -1.21 0.0195
2.4 -250 0.440 0.427  0.0002 0.012 -1.92 -1.74 0.0332
2.7 -500 0.422 0.396  0.0007 0.0047 -2.33 -2.18 0.0209
3.0 -1000 0.391 0.368  0.0005 0.0018 -2.74 -2.64 0.0100
3.4 -2500 0.352 0.338  0.0002 0.00049 -3.31 -3.27 0.0020
3.7 -5000 0.317 0.321  0.0000  0.00019 -3.72 -3.74 0.0003
4.0 -10000 0.280 0.307  0.0008 0.000071 -4.15 -4.21 0.0038
4.2 -16000 0.257 0.300 0.0018 0.000037 -4.43 -4.53 0.0100
0.0049 0.2700

Table 9.2 Example optimization Van Genuchten parameters for Silty Clay

e Compute in the next column the square of the difference between the given and
computed soil moisture content 6.

e Use Solver to optimise the parameters a and n.

e Copy the values of the hydraulic conductivity from appendix F into your spreadsheet
and estimate these values with equation (9.6). It is most convenient to use the logarithm
of K in the optimization procedure.

e Use the sum of the squares of the differences to optimize the parameter 1 with Solver.

e Compare the tabulated soil physical data and the optimized relations in a chart (see for
example the figures 9.4 and 9.5 which apply for Silty clay).

e Save Wnum.

Soil moisture characteristic Hydraulic conductivity relation
45 1.0
* \ & Data & Data
4 e \ Computed 0.0 * . Computed

35

X 2o
g -1.0 \
2.0

2 Y A

pF

Log K (cm/d)

15 3.
1 N
4.0

05 o \

0 T T T T 5.0 T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0 1 2 3 4 5
Moisture content theta pF
Fig. 9.4 Optimized pF curve compared with the Fig. 9.5 Optimized K - h relation compared

data with the data
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9.3 Computation of moisture profiles using the equation of Darcy

Steady vertical flow in unsaturated media q (cm/d) is described by Darcy’s law, which may
be written as

g=——9 (9.7)

1+K?h)

Writing the equation of Darcy in this form allows the computation of a relation between
the height above the water table z and the matric pressure at that height h for a steady flow
g. The pressure profile is easily changed into a moisture profile given the soil moisture
characteristic. Because the hydraulic conductivity K is a function of h, it is not possible to
compute h for a given value of z. However, dz can be computed for a change in the matric
pressure dh. Because the relation between K and h is very nonlinear, the change in dh has
to be small for values of h close to zero, and may become larger for more negative values
of h.

Assignment

e Set up a computational scheme as depicted in table (9.3) in sheet Wnum and use the
soil for which the VVan Genuchten parameters have been determined.

e Use small changes in h for wet conditions and larger steps (say -1000 cm) for dry
conditions. Extend the table for values of h up to -16000 cm.

e After a change in h the moisture content € is computed with equation (9.5) for the
average h value.

e Equation (9.6) may then be used to compute the average hydraulic conductivity K for
the average h.

e Application of the equation of Darcy yields dz, and hence the new z value
corresponding to the h value.

e Plot the moisture content up to a height of maximum 3 meters above the water table for
g=-0.1cm/d.

e Save Wnum

Question:

Compute the maximum height of capillary rise for the same eight steady flow
situations as in your lecture notes Soil-Water-Atmosphere (De Laat, 2009) and
compare these values with those in the lecture notes. Explain the difference.

Steady flow q= 0.1 Moisture profile Silt clay for g =-0.1 cm/d
300
Application Darcy's law £
h average h 0 K dh dz z < 250
0 0.507 0 %
5 25  0.507 0.68 5 5.9 5.9 g 20
-10 -7.5 0.505 0.47 -5 6.3 12.2 % 150
-15 -12.5 0.503 0.37 -5 6.8 19.0 z
-20 -17.5 0.501 0.31 -5 7.4 26.5 é 100
-25 -22.5 0.499 0.26 -5 8.1 34.6 © \
-30 275 0497 0.22 5 9.0 36| |5
-40 -35 0.493 0.18 -10 21.9 65.5 T \
-50 -45 0.489 0.15 -10 31.3 96.8 0 ; ; ; )
-60 -55 0.484 0.12 -10 57.9 154.7 0.3 0.35 0.4 0.45 05 0.55
-80 70 0.478 0.09 20  1000.0  1154.7 Moisture content theta
-100 -90 0.470 0.07 -20 1000.0 2154.7

Table 9.3 Example computation moisture profile Fig. 9.6 Moisture profile forq =-.1 cm/d
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APPENDICES
A Statistical backgrounds

Al Terminology

Quantitative scientific data may be classified as either experimental or historical. The
experimental data are measured through experiments and can usually be obtained
repeatedly by experiments. The historical data, however, are collected from natural
phenomena that can be observed only once and then will not occur again. Most
hydrological data are historical data and can be treated as statistical variables. In their
simplest form, statistical data will consist of a set of values of a variable, say the maximum
seasonal floods observed during 30 years.

The following basic statistical terms may be noted:

e a population is the whole collection of values under consideration. It may be finite or
infinite.

e asample is a set of observed values, more or less representative of the population from
which it is drawn.

e avariable (X) is the characteristic of a sample, for example the depth of rainfall.
e avariate (x) is an individual observation or the value of any variable.

e a discrete variable can contain only a finite number of values (or as many values as
there are whole numbers), for example the number of rainy days.

e a continuous variable can contain all values within a certain range, for example the
depth of rainfall.

A 30-year continuous record of flow at a hydrological station is only a sample of the
stream flow history at that point. The population will be the set of all possible records at
the station, under a fixed set of conditions. In order to draw conclusions about the
population, the data in the sample must be random, independent and homogeneous.

A random sample is a sample where every value in the population has an equal chance of
being included. In hydrology this is difficult to obtain since we have very little control over
the selection of the sample. We will have to use the set of data being sampled over a period
of time.

The assumption of having independent data in our sample may also be difficult to obtain in
hydrology. The degree of independence varies with the nature of the data. Successive daily
discharges are clearly not independent. Monthly flow data are much more independent of
each other. A set of data representing the maximum seasonal floods for a 30-year period
may be safely considered independent.

Homogeneous data belong to the same population; they have originated in the same way.
Construction of a reservoir upstream of a station will cause a break in a homogeneous
series of flow data from the station. A sample consisting of maximum floods where some
are caused by snowmelt and some by heavy rain is another example of non-homogeneous
data.

A2 Frequency
For discrete random variables, the number of occurrences of a variate is generally called
frequency. When the number of occurrences of a variate, or the frequency, is plotted
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against the variate as the abscissa, a pattern of distribution is obtained. This pattern is
called the frequency distribution. It may be practicable to divide the range of values of the
variate into equal class-intervals and then count the frequency in each interval. The
frequency in any class-interval can be expressed as a fraction of the total frequency, and
this fraction is called the relative frequency of the values in the interval. In the following
example we have 75 observations of a variable with values between 2 and 12:

Variable  Frequency  Relative Cumulative
()] Frequency frequency(X)

% %

2 1 1.3 1.3

3 3 4.0 53

4 7 9.3 14.6

5 15 20.1 34.7

6 20 26.7 61.4

7 13 17.4 78.8

8 8 10.6 89.4

9 4 53 94.7

10 2 2.7 97.4

11 1 1.3 98.7

12 1 1.3 100.0

Total 75 100.0

The first column gives the value of X, the variable. The next column gives the value of f,
the frequency, showing how many times each particular value of X occurs. The third
column gives the relative frequency in percent, and the last column shows the cumulative
frequency.

A frequency table may be represented graphically by a histogram, which is a "bar-graph™.
With each class-interval as a base, a rectangle is constructed whose area represents the
frequency in the interval. If the class-intervals are equal, as is usually the case, the heights
of the rectangles will be
proportional to the frequencies
represented. The total frequency
is represented by the total area.
The pattern of distribution
produced when the frequency is
plotted against the variable is
called the frequency distribution.
The histogram for the values
above is plotted in figure A2.1

- 25

16 A Frequency distribution
7 - 20

Histogram
- 15

Frequency f
=
Relative frequency %o

g - 10

] N Another way of showing a
21 distribution in this example is by
L2031 45 6§ 7 % 9 1011 1213 a cumulative frequency curve,
Variahle X see figure A2.2. The curve is

drawn from the lowest value, x;

Fig. A2.1  Histogram and frequency distribution
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to the highest value x, and

w{--1---=-=-=--=--=---= - 1.0 illustrates how the total
2 90 0.9 ‘g frequency is built up. It is
B 80 0.8 5 useful in estimating the
§ S ! L 0.7 = proportion of the
S 60 : 0.6 g' distribution between set
(=1 - .
= - 12---- : 05 2, limits. Th_e graded \_/a_lues
£ 40 o L 0.4 £ of the variable are divided
3 20 1 Lo _OS‘E into two groups by the
5 - =14 ==+ 1 : 0'2 - median M. We may
c 21 Lo - further bisect these groups
101 QM Q X 0.1 § of values of the variate
———— © called the quartiles Q,
1 234567 8910111213 and Q. Thus half of the
Variable x .

total frequency will occur

Fig. A2.2  Cumulative frequency curve between the quartiles.

A3 Statistical parameters
A great number of parameters are used to describe the characteristics of a statistical
distribution. Some of the most important will be defined in what follows.

Measures of location
The arithmetic mean is the average most frequently used. It is obtained by adding together
all the variates, Zx and dividing by the total number of variates, N. This is expressed by

- s

The median is the middle value of the variate which divides the frequencies in a
distribution into two equal portions. This is illustrated in figure A2.2. The arithmetic mean
is more commonly used than the median. For skew distributions, however, the mean may
be misleading. In such cases, the median will provide a better indication, because all
variates greater or less than the median always occur half the time.

The mode is the variate which occurs most frequently. It corresponds to the peak of the
frequency curve. For a grouped distribution the modal class can be defined as the class
with the greatest frequency. The weighted mean of a set of numbers X1, Xz, X3...X, Whose
relative importance is expressed numerically by some numbers wi, w,, ws...w, called the
weight, is defined as

X, = ZZ::WWX (A2)

This formula can be used, for example, in calculating the mean areal rainfall (Thiessen
method) where the rain-gauge stations represent different portions of the total area.

Measures of variability
The mean deviation is defined as the mean of the absolute deviations of values from their
mean, or
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md.= w (A3)

The standard deviation is the measure of variability, or spread, which is most adaptable to
statistical analysis. It is the square root of the mean-squared deviation of individual
observations from their mean, or

M (A.4)

N

o=

which represents the standard deviation of the population. An estimate of this parameter
from the sample is denoted by s and computed by

5= ,/zg__f)z — \/E (x> - x) (A5)

where X2 =(Zx2)/ N

The variance is the square of the standard deviation which is denoted by o or the

population. The unbiased estimate of the sample variance is s2.

The coefficient of variation is a measure of spread of the sample in relative terms:
(A.6)

Quartiles and percentiles may be considered as measures of spread about the median (the
50-percentile value). With the variates arranged in ascending order of magnitude, the lower
quartile is the value at the first quarter of the data series (25 percentile). The upper quartile
marks the beginning of the top quarter of the data (the 75-percentile).

A4 Normal Distribution

The normal or Gaussian frequency distribution is the most important in statistical theory. It
is a bell-shaped symmetrical distribution of a variate which may range from - to +oo (see
figure A4.1). An important property of the normal curve is that it is completely determined
if we are given its mean () and standard deviation (o), the only two statistical parameters
included in the mathematical equation for the curve:

y=f(x)= 0\/12_” e_E(%] (A7)

where y or f(x) is the frequency of occurrence of x. Most hydrological data are not
normally distributed, but they can sometimes be normalized by various methods, such as
using the logarithms or cube root of the random variates of the sample. For purposes of
comparison, it is convenient to take the value of the mean (1) as the origin of coordinates
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and measure along the horizontal axis in intervals of the standard deviation (o) as shown in
figure A4.1. In this distribution the mean, median and mode are the same. It can be shown
that:

50 % of the observations lie within +£0.67¢
68 % of the observations lie within + 1o
95 % of the observations lie within + 26
99 % of the observations lie within + 3¢

This means that if a distribution is
closely approximated by a normal
curve, roughly 68 % of the cases will
fall within one standard deviation from
the mean, and 95 % of the cases will
fall within two standard deviations. It is
an aid to drawing the normal curve to
6% 7779 know that it has inflexions at x = o,
the mean being taken as origin, and that

the tangents at these inflexions meet the

X-axis at = 26. The curve can hardly be

‘we— 20 -O M pa 20 —». Dlotted over a wider range than +3c

x from the mean.

N
=

b

68.

.

Fig. A4.1  Normal frequency distribution

Probability and the standard normal distribution

What do we mean by expressions such as ‘nine times out of ten’, or ‘odds of four to one’?
How does an insurance firm calculate its premiums? How can a builder estimate the
chance of wet weather delaying certain stages of a construction project? All these are
aspects of probability, i.e. the branch of mathematics which enables us to calculate the
likelihood of any particular outcome.

In any problem or experiment, each separate result is called an outcome. The particular
happening we are looking for will be called the event. If n is the number of observations
and the event we are looking for is the outcome on m occasions, we define the probability
of the event

p= % =the probability of success (A.8)
and
n—-m - .
q= = 1— p =the probability of failure (A.9)

thusp +q=1.
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The extreme values of p are 0
and 1, corresponding to certain
failure and certain success (if n
is finite). When a probability is
expressed in the form of odds,
the ratio used is of favourable to
unfavourable occurrences or vice
versa. To say that the odds
against an event are 7 to 2 means
that the probability of its
occurrence is 2/9.

0.3
0.2

0.1;

e - -
v
w

1
1
1
1
3 2 1 0

The area between the normal
frequency distribution curve (see
figure A4.1) and the x-axis is
equal to the total number of
observations. For probability estimations a standardized form is used for the normal
probability distribution curve in which the total area bounded by the curve and the x-axis is
equal to unity.

Fig. A4.2  Standard normal distribution curve

Values of the variable are standardized to give a series of values (t):

{=2X"H (A.10)

and the curve is defined by the equation

y=f(t)= %e_ztz (A.11)

In such case we say that t is normally distributed with the mean, x= 0 and a variance and
standard deviation, ¢;° and o both equal to one (see figure A4.2).

Since the total area is one, the area under the curve between two ordinates a and b
represents the probability that the variable lies between a and b. The table in appendix D
gives the areas under this curve bounded by any positive value of t and 1 — «. From this
table the area between any two ordinates can be found by using the symmetry of the curve
about t = 0. Example, the table gives an area of 0.242 for ¢ > 0.70. This figure represents
the probability that t is greater than 0.70. The probability that t lies between 0.0 and 0.70 is
than the probability that z > 0 minus the probability that > 0.7, thus 0.5 - 0.242 = 0.258.

Linearization

The probability distribution, also known as the probability density function (PDF), may be
expressed as

p(asxsb)=if(x)dx ; Tf(x)dx:l (A.12)
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where X is a specified value of the variable x, f(x) is the frequency of occurrence of x, and
p() is the probability that X lies between the values a and b. The same information can also
be written in the form of the cumulative distribution function (CDF)

10

Frequency

M = S 08
. . 1 L
g
[y
th =

0.2

0.4 - B

e

< 0.6
0.8
1.0

=x)

0.01

0.1

0.2 1

0.4
0.6

0.95-

PX =X

0.999
0 20 40 60 80 100

Variable X

Fig. A4.3 Linearization of probability distribution.
A - Frequency or probability density function (PDF),
B - Cumulative distribution function (CDF),

C - Linearized CDF on probability paper

Probability

f(x)dx (A.13)

where p() is the probability of non-
exceedance. The principle of
linearization of a probability
distribution is shown in figure
A4.3. A variety of different
distributions is used in hydrology
and some of these are considered
in these notes. The cumulative
probability of a distribution may
be represented graphically on
probability  paper  which s
specially  designed  for the
distribution (e.g. Gumbel paper,
normal- or lognormal distribution
paper). The ordinate and the
abscissa are so designed that the
distribution plots as a straight line
and the data to be fitted appear
close to the straight line. The
object of using the probability
paper is to linearize the
distribution so that the plotted data
can be easily analysed for
purposes of extrapolation or
comparison. If we want to plot the
cumulative distribution function
using a spreadsheet, we cannot
make use of the special designed
plotting paper. Instead we plot the
variable x against the reduced
variate t, according to the equation

t=a(x—b) (A14)

where a and b are constants depending on the type of distribution (see for the Gumbel
distribution page 10 and for the normal distribution equation 2.5). We then plot in the
same graph the observed data and compare these with the linear relation. The disadvantage
of this approach is that the graph is more difficult to read than the graph on special paper,
since the reduced variate is to be ‘translated’ in the probability through an equation (e.g.
equation 1.7 for Gumbel) or a table (e.g. appendix D for the normal distribution).
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A5 Correlations

Through correlations the interrelationship between two or more variables is measured,
therefore it is an example of a statistical association method. A correlation coefficient, p
explains the degree of the association as a linear dependence. Correlation coefficients
measure only the degree of linear association and for example the correlation of a parabola
iS zero, because it has no linear term in it.

There are several types of correlation coefficients used in statistics. For hydrologic
purposes the most commonly used correlation coefficient is the Pearson Product-Moment
correlation coefficient. This coefficient of linear correlation (-1 < p < +1), between two
variables X and Y is defined as

:;Z((Xi - )_()* (yi - )_/)) _ Z((Xi _ Y)* (yi 3 )_/))
Em Ry e

p= (A.15)

where n total number of observations
i 1, 2, 3, etc.
Xj,yj 1" observation of series x and y

In the first part of this equation, the numerator is called the covariance, sy, and the two
terms in the denominator are the standard deviations of variables x and y respectively.
Then the equation can be written as

SX
p=—22 (A.16)

S, *S,

A6 Tests for stationarity and homogeneity

A6.1 Principles

In tests on stationarity and homogeneity of
time series, basic statistical tests are
performed, which are generally used for the
comparison of samples. For the analysis it is
often necessary that the original series is split
into two or more parts.

A certain parameter of the series will be
analysed. This can be the mean, variance or
another parameter like the correlation
coefficient. In order to carry out the analysis
a parameter is defined, which is known as the —

test-statistic. This parameter can be the mean X1 Hox;
or variance itself, a derivative of the mean or
variance or another defined parameter. Fig. A6.1 Scatter of sample means

around the true mean
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When analysing the values of test-
statistics, the problem arises to qualify a
comparison. For instance for absence of n,
trends in a time series we want to prove
that the mean of the first 10 years of a
series is not significantly different from
the last 10 years. However, both values
will never be equal. But what difference
is accepted and what is not? Obviously,
the larger the series, the closer will be
the two values of the mean. Both values
will also come closer to the true mean
(1) when the number of years increases.

In case one takes several samples (all

with equal number of years) from the Fig. A6.2 Distributions as a function of the
infinite  time  series  (called the number of elements in a sample
population), the values of the mean of

these samples may differ in magnitude, thus X, # X, # X; #..... etc. A histogram of these

values can be represented by a smooth curve, defining the scatter of the values around the
true mean (p), see figure A6.1.

The number of elements, n in a sample has influence on the shape of the curve, see figure
A6.2. The curves are distributions, which are mathematically defined and often tabulated.
Such a curve can be a normal distribution. Other distributions are Student's-t or Fisher-F
distributions.

Often we have a situation where the real mean, p is not known. From the sample a mean,
X can be calculated. We may now assume a certain real mean, o and test on the basis of
our sample whether there is ground to reject the assumption. The statistical procedure
introduces a null hypothesis, Ho and an alternative hypothesis, Hj, thus

Hy - =14
H, T pu<>u,

On the basis of a sample it will never
be possible to prove with 100%
certainty that Ho nor H; is correct. One
should realize that even when
accepting one of the two hypotheses
there is a chance of making the error
that it is still not the correct one. When
Ho is always stated in the way that it is
the hypothesis we wish to prove, the ¢ ¢

. . critical region of critical
worst Fha'\t can happen Is to reject Hp, region acceptance of Hg region
while it is true (like the judge who is

con_vu;tmg .ap innocent  suspect).  In Fig. A6.3 Critical regions and critical values
statistics this is called a type | error. (confidence level 95%)
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normal distribution standard normal distribution
(= ik
o
95/%
2.5% 2.5% l 2.5%
-C p il c t tCI‘
Fig. A6.4  Normal distribution Fig. A6.5  Standard Normal distribution

The region representing the area of rejecting Ho must be minimized to an acceptable level.
This area is called the critical region, bordered by critical values, or confidence limits (xc),
see figure A6.3.

According to the distribution of x (for instance Normal, Students-t, Fisher-F) the critical
values mark the probability of a type I error. The probability of a type | error is called the
significance level a, while 1- « is the confidence level. A confidence level of 95% is often
applied (o = 0.05).

One can use the theory of a normal distribution, in case it is valid, and its relation with the
standard normal distribution to calculate the critical values (confidence limits +c and -c),
see figures A6.4 and A6.5.

For a level of significance of 5%, the confidence limits, t., for the standard normal

distribution are: t,, = +1.96. The confidence limits +c for the real distribution are then
calculated using its relation with the standard normal distribution as follows

{ =STH (A17)

where [ true mean of the population
o true standard deviation of the population

For ¢ is known that

o= (A.18)

where s standard deviation of the sample means
n number of elements in the sample

Now we conclude that, in case p is known, it can be verified whether a certain calculated
mean is accepted as representing the population with a confidence level of 95%. In case u
is unknown we can verify an assumption i = po with a certain confidence level.
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What we did until now in fact was comparing one sample with its population, through the
test statistic mean. However, in general the population parameters L and o are not known.

It is also possible to compare statistics of samples drawn from two different populations. In
case both are normal distributions, the difference of the means d = X, — X, is also a normal

distribution with

My =H—H (A19)
and
O'2 O'2
ol=—14+-2 (A.20)
nl n2

Assuming that o1 ~ a5, the pooled variance o4° may as follows be estimated from the
sample variances s;% and s,”

o _ (0 —1)s?+(n, - 1)s7 [i . i] (A21)

o, =
‘ n,+n,—2 n, n,

In case the two samples belong to the same population, p; = pz and pg = 0.
Again according to the principles of a standard normal distribution, transformation from
the normal distribution is by (also see Figure A6.6)

t= 4= A (A.22)

To test now whether the two samples are from the same population is testing py = p (the
null hypothesis, Hp) against iy < > |, (the alternative hypothesis, Hj).

As indicated above this is done by defining the confidence limits under assumption of Ho,
while not committing a type | error.
Assuming Ho: ug =0

standard normal distribution d
t=— (A.23)
t=
%
For the confidence limits this means

C
t,=t— (A.24)

Oy
_ NS For —ty< t < tor it is accepted with a confidence
“t, t O +top level according the confidence limits that the

averages X, and X, originate from the same

Fig. A6.6 Standard Normal distribution . .
population and that there is no trend.
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Note that the test statistic for the standard normal distribution is the variable

t, -4 (A.25)
gy
or
t = 47 % _ (A.26)
2 2 '
(nl_l)*sl+(n2_1)*32 + i+i
n+n,-2 n n,

With small samples (n < 30) the standard normal distribution does not any longer give
satisfactory results. Then one can better use the so-called Student's-t distribution. For the
comparison of means, the test statistic remains as given above.

Also for other parameters acceptance within predefined levels of significance can be
defined. In all cases a test statistic must be defined as well as its distribution. This
distribution is not necessarily always a normal distribution or the Students-t distribution.
For instance for significance of variance the Fisher distribution is applied. In a Spearman
rank test the significance of a correlation coefficient is tested through a Students-t test.

A6.2 The spearman’s rank test; test for absence of trend

The hypothesis is tested that there is no correlation between the order in which the data are
observed and the increase (or decrease) in magnitude of those data. The test is usually
performed on the whole data series but it is possible to select specific periods.

Two series are compared related to the rank of the data. Kx; is the rank of the data as it was
measured. Ky; is the series of the rank of the same data in ascending or descending order.

The Spearman coefficient of rank correlation Ry is then defined as

6%y D’
Ry =1-— = (A.27)

D, = Kx; — Ky, (A.28)

where

When two or more observations have the same value, the average rank Kyj; is calculated.
A test-statistic t; is used to test the null hypothesis Ho: Ry, = O against the alternative
hypothesis Hi: Rgy <> 0. The test statistic is defined as

05
n-2
tt:RSp*[l_Rszp] (A29)

The test statistic t; has Student's t-distribution with v = n - 2 degrees of freedom, where n is
the number of elements in a sample. Appendix B contains a table of the Student's-t
distribution for a level of significance of 5% (two-tailed). The two sided critical region U
of the test statistic t; for a level of significance of 5% is bounded by
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o0, (v,2.5%)}U {t (v,97.5%),+00} (A.30)

and the hypothesis Hy is accepted when the computed t; is not contained in the critical
region. In other words, one concludes that there is no trend when

t(v,2.5%) < t, < t(v,97.5%) (A.31)

A6.3 F-test for the stability of the variance

The appropriate test statistic is the ratio of the variances of two non-overlapping sub-sets of
a series. The distribution of the variance ratio of samples from a normal distribution is
known as the F-distribution or Fisher distribution. Even in the absence of the normal
distribution it is generally accepted that the F-test provides a useful indication for the
stability of the variance.

The number of data n in the test series should be equal to or greater than 10.
The test statistic is thus

2 2
F="1 5_12 A.32)
o, S

The null hypothesis for the F-test is the equality of variances, Ho: s1° = s,° and the
alternative hypothesis is Hy: s;2 <> s,°. The rejection region is bounded by

f.F(v,,v,,2.5%)}U {F(v,,v,,97.5%),+oc} (A.33)

where v; and v, are the respective numbers of degrees of freedom of the numerator and
dominator. It should be noted that v; = n;-1 and v, = n,-1 where n; and n; are the number
of observations in each sub-set.

In other words, the variability of the data is considered to be stable and the standard
deviation s can be used as an estimate for the population standard deviation, when

F(v,,v,,2.5%)< F, < F(v,,v,,97.5%) (A.34)

The F-distribution is not symmetrical for the number of degrees of freedom of the
numerator and dominator. Tables should therefore be applied properly with usually v;
horizontally and v, vertically. See appendix C for a condensed table of the F-distribution
with a confidence level of 5%.

The procedure to apply the F-test on data series is to subdivide the series in two or three
(approximately) equal non-overlapping sub-sets. The standard deviation is computed for
each subset. The limits of a sub-set can also be selected in such a way that the set will
cover a suspect period. Such a period is then compared with a non-suspect period or
periods.
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A6.4 t-test for stability of the mean
The t-test is only valid if the variance of the time series is stable. Hence, the F-test for the
stability of the variance has to be performed before this test.

The means of the same subsets can be compared to verify whether the mean is stable
during the whole period of observations. A suitable test statistic for testing the null

hypothesis H, : X, = X, against the alternative hypothesis H, : X, <> X, is

X, —X
t = 1= % (A.35)
t ((nl—l)*sf +(n, —1)*s? _{1+ 1 DQS

n+n,-2 n, n,

where
n; the number of data in subset i
X; the mean of the subset i

s the variance of the subset
The test statistic, t; has Student's-t distribution for a sample which is normally distributed.
The test may also be applied for non-normal distributions, best for approximately equal
lengths of subsets.
The two sided critical region U for the test statistic is defined as
- o0,1(v,2.5%)}U {t(v,97.5%),4-o0} (A.36)

and the number of degrees of freedomisv=n; +n, -2

The null-hypothesis Hg is accepted when the computed t; is not contained in the critical
region. In other words, one concludes that X, = X, when

t(v,2.5%) < t, < t(v,97.5%) (A.37)
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B Student t-distribution
Percentile points of Student t-distribution for a 5% level of significance

p= P(tstp): 0.025 0.975
\'
4 -2.78 2.78
5 -2.57 2.57
6 -2.54 2.54
7 -2.36 2.36
8 -2.31 2.31
9 -2.26 2.26
10 -2.23 2.23
11 -2.20 2.20
12 -2.18 2.18
14 -2.14 2.14
16 -2.12 2.12
18 -2.10 2.10
20 -2.09 2.09
24 -2.06 2.06
30 -2.04 2.04
40 -2.02 2.02
60 -2.00 2.00
100 -1.98 1.98
160 -1.97 1.97
-1.96 1.96

Remark: Take the next higher value for v if the required number of degrees of freedom is

not listed.
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for 5% level of significance

C Percentile points of the Fischer-F distribution

Appendices
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D Table of STANDARD NORMAL distribution

Probability of exceedance (P)

0 t

t 0 1 2 k3 4 5 6 7 8 9
0,0 5000 4960 4920 4880 LBYO 4801 4761 K721 LEBL WeLl
0,1 LED?2 4562 4522 LLB3 WhL3 LLDY 4364 41325 4284 247
0,2 4207 4168 4129 4090 5052 4013 397y 31936 3897 3859
0,3 3821 37813 3745 3707 3669 3632 1594 1557 31520 jLas
0,4 448 3409 3372 333a 3300 3264 az2s8 3192 3158 3121
0,5 1085 30590 3015 2981 2946 2912 2877 2843 2810 2776
0,6 2743 270% 2676 2643 2611 2578 2546 2514 2483 245]
0,7 2520 2389 23548 2327 2296 2266 2238 22086 2177 2148
0,8 2119 2090 2061 20133 2005 1977 1949 1922 189y 1867

,9 1841 1814 1788 1762 1736 1711 1685 1660 1635 1611

1587 1562 1539 1515 1492 1469 1446 1423 1401 1379
1357 1339 1314 1292 1271 1251 1230 1219 11490 1170
1151 1131 1112 093 1075 1056 1038 1020 1003 0985
0968 0951 0934 0918 090! D885 086% 0853 Dg3ae 0823
0808 £7913 0778 0764 0749 4735 0721 0708 0694 0681
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E Parameters for Gumbel Type I distribution

N yN Iy N YN Iy N YN oy

8 10.48430 | 0.90430 35 ] 0.54034 | 1.12847 64 | 0.55330( 1.17930
9 10.45020 | 0.92880 36| 0.54100 {1.13130 66 | 0.55380 [ 1.18140
10 | 0.49520 (| 0.9497C 37 1 0.54180 {1.13350 68 | 0.55430 | 1.18340
11 1 0.49960 | 0.96760 38§ 0.54240 | 1.13630 70 | 0.55477 | 1.18536
12 | 6.50350 | 0,98330 39| 0.54300 |1,13880 72| 0.55520 | 1.18730
13 : ¢.50700 | 0.99720 40} 0.54362 11.14132 74 | 0.55570 | 1.18900
14 | 0.51000 | 1.00950 41 | 0.54420 [1.14360 76 | 0.55610 | 1.19060
15 [ 0.51280¢{ 1.02057 421 0.54480 |1.14580 78 | 0.55650 | 1.19230
16 | 0.51570 ] 1.03160 43| 0.54530 (1.14800 80 | 0.55688 | 1.19382
17 | 0.51810 ) 1.04110 44 1 0.54580 |1.145990 82| 0.55720| 1.19530
18 [ 0.52020 ) 1.04930 45§ 0,54630 [1.15185 84 | 0.55760 | 1.19670
19 1 0.52200 i 1.05660 46 1 0.54680 (1.15380 86 | 0.55800 | 1.19800
20 1 0.52355 | 1.06283 47 |1 0.54730 }1.15570 88 [ 0.55830 | 1.19940
21 | 0.52520 | 1.06960 48 | 0.54770 [1.15740 90 [ 0.55860 ! 1.20073
22 | 0.52680 | 1.07540 49 | 0.54810 |1.15900 © 921 0.55890 1.20200
23 | 0.52830 | 1.08110 S0 | 0.54854 | 1.16066 94 | 0.55920 | 1.20320
24 | 0.52960 | 1.08640 S1 | 0.54890 |1.16230 96 | 0.55950 | 1.20440
25 | 0.53086 | 1.09145 52 | 0.54930 | 1.16380 98 | 0.55980 ( 1.20550
26 | 0.53200 | 1.09610 53| 0.54970 [1.16530 100 | 0.56002 ;| 1.20649
27 | 0.53320 | 1.10040 54 | 0.55010 {1.16670 150 | 0.56461 | 1,22534
28 | 0.53430 | 1.10470 55 | 0.55040 {1.16810 200 ) 0.56715} 1,23598
29 | 0.53530 | 1.10860 56 { 0,55080 {1.16960 250 | 0.56878 | 1.23292
30 | 0.53622] 1.11238 57 | 0.55110 | 1.17080 300 | 0.56993] 1.24786
31 [ 0.537106 1.11590 58 [ 0.55150 |1.17210 400 | 0.57144 | 1,25450
32 {0.53800 | 1.11930 59 [ 0.55180 |1.17340 S00 | 0.57240 | 1.25880
33 10.53880 | 1.12260 60 [ 0.55208 | 1.17467 750 | 0.57377 | 1.26506
34 10,53960 ] 1.12550 62 | 0.55270 |1.17700 1000 | 0.57450 | 1,26851
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F Soil Physical Data International Soil Series
Reference: Rijtema(1969)

-20 -31  -50
0.145 0.107 0.066
19.000 10.100 0.144
nd

0.300 0.274 0.160
19.000 4.160 0.302
0.316 0.305 0.260
21.200 8.600 1.800
0.335 0.328 0.292
18.400 10.600 4.100

5. Humous loamy medium coarse sand

Pressure
head(cm) 0 -10
1. Coarse sand
0.395 0.215
1120.0 1100.00 1
2. Medium coarse sa
0.365 0.331
300.0 75.50
3. Medium fine sand
0.350 0.325
110.0 48.30
4. Fine sand
0.365 0.352
50.0 30.30
0.470 0.460
1.0 0.76

6. Light loamy medium

0.394
2.3

0.374
1.31

0.
0.

0.
0.

7. Loamy medium coarse sand

0.301
0.4

0.282
0.27

8. Loamy fine sand

0.439
26.5

0.399
17.80

9. Sandy loam

0.465
16.5

0.442
7.90

10. Loess loam

0.455
14.5

0.436
8.88

11. Fine sandy loam

0.504
12.0

0.488
11.90

12. Silt loam

0.509
6.5

13. Loam
0.503
5.0

0.497
5.32

0.486
3.97

14. Sandy clay loam

0.432
23.5

0.407
16.50

15. Silty clay loam

0.475
1.5

0.438
1.18

16. Clay loam

0.445
1.0

0.429
0.78

17. Light clay

0.453
3.5

0.435
2.94

18. Silty clay

0.507
1.3

0.492
0.80

19. Basin clay

0.540
0.2

20. Peat
0.863
5.3

0.533
0.14

0.832
1.86

0.
0.

0.448
0.584
coarse
0.363
0.747
0.272
0.188
0.355 0
12.000 7
0.426 O
3.780 1
0.410 O
5.440 3
0.486 0
9.360 7
0.487 0
4.360 3
0.483 0
3.150 2
0.387 0
11.600 7
0.421 0
0.934 0
0.424 0
0.609 0
0.418 0
2.470 2
0.485 0
0.498 0
0.529 0
0.094 0
0.824 0
0.656 0

.307 0.
.720 3.

.419 0.
.680 0.

.385 0.
.170 1.

.482 0.
.130 4.

.484 0.
.500 2.

.480 0.
.440 1.

.376 0.
.870 4.

.410 0.
.719 0.

.421 0.
.464 0.

.405 0.
.040 1.

.482 0.
.294 0.

.527 0.
.062 0.

.816 0.
.208 0.
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434 0.

424
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353 0.
403 0.
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138

265 0.
124 0.
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249
620
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414
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250

468
450

474
390

467
580

359
020

394
459

415
289

390
470

474
118

526
030

796
029
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0.032
0.0001

0.095
0.0010

0.155
0.0300

0.196
0.3370

0.405
0.0680

0.280
0.0083

0.209
0.0091

0.179
0.4950

0.260
0.0100

0.340
0.1080

0.423
1.2900

0.461
0.8800

0.420
0.4960

0.338
0.6890

0.372
0.1400

0.411
0.0840

0.360
0.6140

0.463
0.0450

0.519
0.0077

0.763
0.0110

-500

0.024

.00004

0.062

.00028

0.077

.00140

0.147

.00480

0.336

.00660

0.232

.00230

0.171

.00092

0.140

.00720

0.180

.00011

0.269

.00990

0.255

.03100

0.400

.04400

0.281

.01600

0.309

.01500

0.335

.01600

0.385

.00200

0.336

.04500

0.440

.01200

0.493

.00210

0.704

.00300

-1000

0.018

.000013

0.052

.000100

0.061

.000550

0.129

.001800

0.293

.002500

0.205

.000870

0.141

.000350

0.115

.002700

0.142

.000040

0.232

.003800

0.224

.004400

0.279

.007900

0.248

.002400

0.288

.005600

0.305

.006000

0.366

.000280

0.315

.009300

0.422

.004700

0.470

.000810

0.649

.001100

-2500

0.016

.000005

0.038

.000040

0.050

.000210

0.092

.000680

0.233

.000950

0.180

.000330

0.100

.000130

0.099

.001000

0.118

.000015

0.203

.001400

0.175

.001700

0.205

.003000

0.213

.000910

0.263

.002100

0.279

.002300

0.344

.000110

0.294

.003500

0.391

.001800

0.443

.000310

0.505

.000430
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0.015

.000001

0.031

.000011

0.043

.000058

0.065

.000190

0.174

.000260

0.151

.000092

0.056

.000037

0.085

.000290

0.092

.000004

0.170

.000390

0.132

.000460

0.150

.000830

0.167

.000250

0.240

.000590

0.250

.000630

0.342

.000030

0.270

.000970

0.352

.000490

0.402

.000085

0.356

.000120

-10000

0.014

.0000005

0.025
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0.032

.0000220

0.053

.0000720

0.140

.0000990

0.130

.0000350

0.043

.0000140

0.072

.0001100

0.079

.0000016

0.143

.0001500

0.112

.0001800

0.125

.0003100

0.142

.0000950

0.215

.0002200

0.222
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0.286
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0.245

.0003700

0.317

.0001900
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.0000450
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0.013
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0.020
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0.025
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0.047
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0.117
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0.111
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0.030
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0.065
0000410

0.068
0000006

0.122
0000570

0.096
0000670

0.103
0001200

0.116
0000360

0.194
0000840

0.195
0000900

0.265
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0.224
0001400

0.280
0000710

0.344
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0.289
0000170

0.012

.0000001

0.017
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0.023
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0.042

.0000140

0.105

.0000190
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0.021
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.0000210

0.061

.0000003
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.0000290

0.087

.0000340

0.092

.0000620
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.0000190

0.180

.0000440

0.185

.0000470

0.255
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0.215
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0.257
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