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PREFACE 

 

 

 

This workshop includes rainfall data processing exercises, assignments on the computation 

of evaporation, composition of rating curves, flood routing, aspects of rainfall-runoff 

modelling, reservoir operation, computation of unsaturated flow and actual 

evapotranspiration. All applications use Microsoft Excel spreadsheet software. 

 

The use of spreadsheet software for data screening and analyses has an advantage over 

specialized hydrological software because 1) spreadsheet software is widely available and 

2) the participants have to write the algorithms themselves and go through the underlying 

theories and practises of data processing and analyses while designing there own 

calculation spreadsheets and graphs.     

 

Data of hydrologic phenomena form the basis of most hydrological work. Through data, 

theories are verified and phenomena quantified. It should be realized that hydrological and 

meteorological data, even from renowned institutes, may contain large errors. Therefore, 

data from observations need cautious treatment. Data screening is a first step in the process 

of applying data. A simple procedure, such as plotting the time series is a powerful tool to 

spot suspicious data in a glance. Some well-known screening techniques are exercised in 

these notes. 

 

Data analysis techniques are often used for data screening, but the purpose of data analysis 

is much wider: to describe or present a hydrological phenomenon in other terms than the 

basic observations. Statistical analyses are in this sense important. The analyses described 

in these notes are spatial homogeneity, K-day rainfall, analysis of extremes, double mass, 

cumulated residuals, frequency distributions and homogeneity tests. In the application of 

the techniques a distinction is made between daily, monthly or annual rainfall data. Special 

attention is given to techniques for data completion.  

 

Participants are supposed to have some background of statistics for successful 

understanding of the exercises. In data screening and analysis use is made of statistic 

parameters (means, moments) and theories for fitting distributions (Normal, Lognormal, 

Gumbel) on observed data. For data completion the principles of regression and correlation 

are applied. The statistical background for some special topics related to homogeneity tests 

is dealt with in the appendices. Each assignment is accompanied by an explanatory text on 

the principles of application of the technique.  

 

In most water balances evaporation plays a dominant role. Calculating reference 

evaporation from meteorological data using the Equation of Penman-Monteith or the 

Radiation Method is often the most reliable basis for estimating potential and actual 

evapotranspiration. These computations are easily carried out with spreadsheets. In the 

workshop attention is given to a comparison of different methods. 

 

Rating curves are an important link in processing hydrological data. Most discharge data 

are obtained via the rating curve. The water level-discharge relation is, however, by no 

means time-invariant. Re-establishment of the rating curve is to be carried out regularly. 

This activity is easily done with the help of a spreadsheet. 

 



 
  

There are several methods for hydrological flood routing in a river of which the 

Muskingum method is probably the best known. The required parameters can be optimised 

from a repeated regression analysis. 

 

In the field of rainfall-runoff modelling, concepts such as hydrograph separation, unit 

hydrograph derivation and convolution are often used. One assignment involves a more 

complicated analysis of the rainfall-runoff relation of the Umbeluzi River which runs from 

Swaziland into Mozambique. The mentioned concepts as well as flood routing are applied 

to compute the effective precipitation and the surface water unit hydrograph. 

 

Data from the Jatiluhur reservoir on Java, Indonesia are used for various assignments on 

reservoir operation. First the reservoir capacity will be determined using the cumulative 

mass curve or Rippl diagram and the Sequent Peak Algorithm. The storage in the reservoir 

will be simulated using monthly data and the effect of rainfall and evaporation on the 

reservoir is taken into account. The use of rule curves will also be exercised. Finally, the 

size of the spillway has to be determined by routing a design flood through the reservoir. 

 

Estimation of actual evapotranspiration is important in, for example water balance studies 

and irrigation water management. A simple approach for estimating actual 

evapotranspiration from the potential values is based on soil moisture accounting. In these 

notes use will be made of soil physical data of an international soil series to estimate the 

soil parameters. The same data are used for an assignment of the derivation of the Van 

Genuchten model parameters and the derivation of soil pressure and soil moisture profiles 

using the equation of Darcy. 

 

The theoretical background of the exercises in this workshop is not, or only briefly, 

discussed in these notes. This workshop is linked to the lecture notes on Hydrology (De 

Laat & Savenije, 2008) and Soil-Water-Atmosphere (De Laat, 2009). For a more elaborate 

discussion on the principles of hydrology the reader is referred to text books such a Shaw 

et al. (2010). 

 

Pieter de Laat
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1 DAILY RAINFALL DATA  
 

This chapter deals with screening of daily data. For this workshop rainfall data are used, 

but the same procedures are also applicable to other types of daily data. The screening of 

these data is restricted to identifying suspicious values. No attempt will be made correcting 

the data, because additional information on how these values were obtained and processed 

is lacking. The homogeneity of time series will be dealt with in the next chapter. Some 

analyses do not require daily rainfall data, but k-day values, where k usually varies from 2 

to 30. Ranking k-day rainfall data over at least one year may result in Depth-Duration 

curves, which give the percentage of time a certain rainfall depth is exceeded. If a long 

time series, say at least 20 years of daily rainfall data are available, an extreme value 

analysis may be carried out, giving the probability that an extreme daily rainfall event will 

be exceeded. In these notes the extreme value distribution of Gumbel (1941) will be used. 

 

In this workshop use will be made of daily rainfall data of four stations in the Umbeluzi 

catchment area in Mozambique. The length of the records varies, but the period 1958/59 - 

1981/82 is always included. 

 

Station code    Period of records  File name 
P5 1945/46 - 1981/82   i:\groupwork\hydata\p5_dr.txt 

P6 1951/52 - 1988/89  i:\groupwork\hydata\p6_dr.txt 

P119 1913/14 - 1986/87  i:\groupwork\hydata\p119_dr.txt 

P425 1958/59 - 1984/85  i:\groupwork\hydata\p425_dr.txt 

 

A map of the catchment and location of the stations is provided in figure 1.1. The 

computations will be carried out with the "Microsoft Excel Spreadsheet Program". 

1.1 Tabular comparison 

In the first assignment rainfall data of four stations in the Umbeluzi catchment of the same 

year will be screened through tabular comparison. For this purpose the data have to be 

entered into an empty worksheet. The original (rough) data are available in text files. The 

files may be retrieved from the IHE network using the names given above. Missing data 

are indicated by the value -1.0. 

 

Assignment  

For each of the four rainfall stations the data for the year assigned to you is to be copied to 

your own spreadsheet file. The procedure is as follows. 

 Start the Microsoft Excel software and open the first file P5_dr.txt in the directory 

groupwork/hydata on the i-drive. Make sure that you have selected in the menu Files of 

type: All files (*,*) otherwise the directory looks empty. Select: next and finish. 

 Select the range of cells containing the year assigned to you (including the two lines on 

top with the station number and year) and copy to clipboard. 

 Paste contents clipboard into blank workbook and close file P5_dr.txt 

 Open file P6_dr.txt, copy required data and paste in cell Q1 

 Open file P119_dr.txt, copy required data and paste in cell AG1 

 Open file P425_dr.txt, copy required data and paste in cell AW1 

 Save this spreadsheet in your own directory on the H-drive under the name Anum, 

where num is your (three digit) locker number (e.g. A063.xlsx if your locker number is 

63).  
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Fig. 1.1 Map of catchment and location of stations 
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The spreadsheet now contains 4 tables, each of which represents one year of daily rainfall 

data. The format of each table is as follows: 

Rows are day numbers from 1 to 31. 

Columns are months. 

The first data column is for the month of October (month X), which corresponds to the 

start of the hydrological year in Mozambique.  

 

 Insert a row (Click with right mouse button in cell A3, and select: Insert, Entire row).  

 Write in this row above each column the name of the month (starting with October). 

Right align and change letter type to bold. Copy this heading to the other three tables.  

 Freeze titles (Click in cell A4 and select: View, Freeze panes, Freeze Panes).  

 Delete at the end of the each column data for non-existing days (mind leap years during 

which 29 February does exist). Repeat this for each of the four stations.  

 Save the spreadsheet under the same name. (It is advisable to make a copy on your 

memory stick). 

 Have a close look at the daily values in the table. Check for strange values, long 

sequences of rainfall, long sequences of 0.0, extreme high values. At the same time 

compare the data of one station with the other. Do not change any of the values when 

they are correctly copied from the original files, just be alert for suspicious values. 

 Make rows at the bottom of your table for the monthly minimum and maximum rainfall 

value (Mmin and Mmax). Use the functions MIN(range) and MAX(range). Also make 

a row for the monthly total (Mtot), using the function SUM(range).  

 Finally fill a row by hand (Missing) indicating the number of missing days. An example 

of the result is given in table 1.1. 

 Compute the year total as the sum of all monthly values. Copy all 4 lines at the bottom 

of the table to each of the other tables. Compute missing values by hand in the other 

tables. Note: exclude months with missing values in your calculations. A monthly or 

yearly total in this case is left blank. 

 By comparing the monthly totals, minima and maxima of the four stations, suspicious 

data are easily detected. 

 

1.2 Graphical comparison 

Comparison of data between the 4 stations is facilitated by the graphical features of Excel. 

We could create stacked-column graphs for daily rainfall data. It is expected that the daily 

rainfall data are closely correlated so any suspicious data are easily spotted. 

In this exercise we will not compare daily values but monthly totals of the 4 stations using 

a stacked-column graph. As an example of the graph to create, see figure 1.2. 

 

Assignment 
Make sure you have opened your spreadsheet Anum with the daily data of four stations of 

one and the same year. 

 

 Select: View, Freeze Panes, Unfreeze Panes and click on an empty cell (not close to an 

array of values) where you want the chart to appear. 

 Select: Insert, Column and choose the middle icon of the first row of 2-D column charts. 
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119

1960 1961

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep

1 0 0 0 3.4 0 0 0 0 0.3 1.6 5.3 0

2 0 0 0.8 6 0 0 8.7 0 0.3 0 0 0

3 0 0 7.9 1 0 0.3 0 0 0 0 8.6 0

4 0 0 7.7 0 0 7.3 0 0.9 0 0 13 0.5

5 0 0 21.3 0 0 0 0 0 0 0 0 0

6 2 0 71.2 0.3 3.2 0 4.8 0 7 0 0 0

7 1.3 0.4 4 0 0 0 18.2 0 0 0 0 0

8 0 0 16.2 0 0 1 0 0 1.7 0 0 0

9 0 50.7 2 0 0 5.1 2.2 0 0 0 0.3 0

10 0.2 0.7 0.2 0 0.4 0 0.5 0 0 0 0 0

11 0 1.8 7.3 0 53.1 0 0 0 0 0 0 0

12 0.2 22.2 2.2 0 38.2 0 12.5 0 0 0 0 0

13 6.2 0 0 0 11.3 1 0 2.6 0 0 0.3 0

14 7.6 0 0 0 0 0 0 0 0 0 0.2 0.3

15 0 2.7 0 30.8 0 0 0 0 0 0 0.1 0

16 0 4.5 0 0 0 0 0 0 0 3.6 0 0

17 0 0 0 0 1.8 0 0 0 0 5.3 0 0

18 0 2.3 0 0 0 0 0 1.4 0 0 2.7 7.1

19 0 0 2.6 0 0 0 0 0 10 0.1 0 0.1

20 0 0 0 1.8 0 0 0 0 7.1 0 0 0

21 0.2 2.2 0 0 0 0 0.5 0 0 0 0 0

22 0 33.5 1.2 0 0 0 0 0.4 0 0 0 0

23 0 0 67.4 0 0 2.2 0 0.3 0 0 0 0

24 30.4 3.4 1.6 0 0 0 0 0 0 0 4.8 0

25 1.3 0 0 0 0 64.1 0 0 0 0 0.2 31.1

26 0 0.4 7.7 0 0 47.7 0 0 15 0 0 0

27 0 1.5 0 0 0 7.1 0 0 7.1 0 0 0

28 0 4.3 3.1 0 0 0 0 0 0 0 0 0

29 0 13.2 3.4 1.3 10.8 0 0 0 0 0 4.2

30 0 0.5 42.6 4.5 8.9 0 0 0 0 0 12

31 0 25.7 0 0 0.3 0 0

Mmin 0 0 0 0 0 0 0 0 0 0 0 0

Mmax 30.4 50.7 71.2 30.8 53.1 64.1 18.2 2.6 15 5.3 13 31.1

Mtot 49.4 144.3 296.1 49.1 108 155.5 47.4 5.9 48.5 10.6 35.5 55.3 1005.6 Yeartot

Missing 0 0 0 0 0 0 0 0 0 0 0 0

Table 1.1 Example of tabulation of one year of daily rainfall data 

Fig. 1.2 Chart (stacked-column) of monthly rainfall values for 4 different stations 
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 Select: Select data, Add, Series Name: type P5, Series values: highlight the monthly 

totals of station P5, repeat this for the other three stations. Click edit in Horizontal 

(Category) Axis labels and highlight the names of the months of one of the stations. 

Click OK OK 

 Select an appropriate chart layout and fill in the title and legends.  

 The properties of the chart are easily changed by double clicking on the appropriate 

item. 

 Save the spreadsheet.  
 

1.3 Spatial homogeneity 

In spatial homogeneity tests data of a base station are related to data of surrounding 

stations. In principle good correlations are expected with stations nearby. This can be 

expressed by a negative exponential function (see lecture notes Hydrology) 

 

 









 

0r

r

0r e =              (1.1) 

where 

 ρr  correlation at distance r 

 ρ0  correlation at distance 0 

 r   distance between stations 

 r0  coefficient 

 

The correlation of monthly data will generally be better than daily data. Apart from the 

time period and distance, a third parameter affecting the correlation is the type of rainfall 

that can be expected (convective, orographic, or depression type of rainfall). 

 

For the Umbeluzi catchment with mixed convective, orographic and depression type of 

rainfall, values for the coefficients are taken as follows: ρ0 = 0.94 and r0 = 300 km. A 

maximum distance rmax between the base station and neighbouring stations is defined as 

the limit where correlation becomes insignificant (ρ < 0.75).   

 

Assignment 

 Find the distances between P5 and the other stations from figure 1.1 and compute the 

correlation coefficients for these three distances.  

 Compute the maximum correlation distance rmax, assuming a minimum value of the 

correlation coefficient of ρ = 0.75. 

 Are there distances between stations that fall beyond this limit? 

 

To investigate the reliability of point observations, the measurements, Pmeas(t), of one 

station are compared with estimated values, Pest(t), based on a weighted calculation using 

the rainfall at neighbouring stations. Only stations with a correlation distance smaller than 

rmax are taken into consideration. The weights are inversely proportional to some power of 

the distance between the base station and the neighbouring stations. 

 

The estimated daily rainfall is calculated with 
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tP           (1.2) 

where   

Pest(t) estimated rainfall of base station at time t 

Pi(t) measured rainfall of station i at time t 

ri   distance to station i 

b   power of distance (usually b = 2) 
 

The difference between the observed value Pmeas(t) and the estimated value Pest(t) is 

considered to be insignificant if the following conditions are met 

 

1 Absolute criterium 

 X  |(t)P - (t)P| absestmeas          (1.3) 

2 Relative criterium 

 s . X  |(t)P  -(t)P| Pmeas(t)relestmeas        (1.4) 

 

where 

Xabs admissible absolute difference 

Xrel  multiplier of standard deviation 

Spmeas(t) standard deviation of values of neighbouring stations at time t within rmax  

 

The calculation of SPmeas(t) does not yield a realistic value if only a few stations are 

involved.  

For this situation an alternative relative criterium can be used 

 

 F  
) (t P

) (t P
  F 2

meas

est
1           (1.5) 

 

where Fi is the admissible relative difference coefficient. 

 

Assignment 
Make sure you are in spreadsheet Anum with the tables of daily rainfall data for the four 

stations. Spatial correlation will be performed between the utmost left table (base station 

P5) and the others as neighbouring stations. Assume that the parameter b equals 2. 

 Make a small table with in the first column the distances ri and in the next column the 

correlation coefficient according to equation 1.1. In the last column appear values for 

1/ri
2
 and the sum of these values at the bottom. 

 Create a new table below the table with daily values for station P5 with values for Pest. 

Write in the first cell of this table the equation using absolute cell references for 1/ri
2
 

and the sum, and relative cell references for the values Pi of the neighbouring stations. 

Copy this equation to create a table with 12 x 31 Pest(t) values. 

 Create another table below this one with absolute differences between the measured 

rainfall of station P5 and the estimated values, thus |Pmeas(t) - Pest(t)|. 

 Finally create a table with the ratio of estimated over observed rainfall values for P5, 

thus Pest(t)/Pmeas(t). You may use an IF-function to avoid dividing by zero, e.g. 

IF(b4=0,””,b54/b4). 
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From the last two tables it is possible to inspect in a glance the suspected values, i.e. those 

values that are out of the admissible range, say greater than Xabs = 50 mm or values for 

which the ratio is not between F1 = 0.1 and F2 = 5. (You may use the formatting function 

of Excel to give these values a different colour. Select:  Home, Conditional formatting, 

etc.). 

 

Question: Please write in the top left corner of your spreadsheet a brief assessment of 

the quality of your data set. 

 

Save the sheet Anum. 

 

1.4 Duration curves for k-day values 

Duration curves, which give the percentage of time a certain average discharge or rainfall 

amount is exceeded, are frequently used in hydrology. In this assignment the construction 

of a rainfall duration curve for different rainfall durations (k-day rainfall, where k = 1, 3, 

10 and 30 days) will be practised. In this context k-day rainfall values refer to the sum of 

rainfall over the previous k days, including the day under consideration. If the duration 

curve is based on one year of data, it gives information on that particular year. It is obvious 

that if the data include many years, say more than 20 or 30 years, the curve obtains the 

character of a probability curve that has a more general use. In this assignment we will 

derive a duration curve based on ten years.  
 

Assignment 
Each participant will be assigned one hydrological year for station P119 to carry out the 

analysis of k-day rainfall data. Retrieve this specific year from the data file and prepare the 

tables as follows. 

 Open file i:\groupwork\hydata\p119_dr.txt and select the year assigned to you. Copy the 

data of this year to the clipboard. 

 Open a new workbook, click cell G1 and paste clipboard contents. 

 Delete non-existing days. 

 Fill A5 to A370 with values from 1 to 365 or 366 (Put in A5 the value 1 and in A6 the 

value 2.  Select both cells.  Put the cursor in the small black square and drag downwards 

with the left or right mouse button pressed until cell A370. (If you drag over the range 

with the right mouse button pressed a small menu will appear from which you may 

choose an option).  Delete cell A370 if this is not a leap year. 

 Move the daily rainfall data into column B. (It is convenient to use the keyboard keys 

END and the arrow keys ↑↓ to move to the beginning and end of a column. The 

combination Ctr-Home moves the cursor to A1).  Put above this column the title: 1k. 

 For safety reasons it is better to already save the worksheet now as Bnum. 

 Click in P119_dr.txt in the taskbar at the bottom of your screen and copy from this 

spreadsheet the data for the remaining nine years into cell G1.  

 Move the daily rainfall data into column B as done earlier for the months of the year 

assigned to you. 

 Extend the values in column A to 3650 + 3 or 4 (depending on the number of leap 

years). 

 Compute in column C, D, and E respectively, the 3, 10 and 30 k-day rainfall data, make 

use of the function SUM(range). Save again for safety reasons your worksheet. 
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Table 1.2 Example computation k-day duration curves for 1951-1961 

1K 3K 10K 30K 1K 3K 10K 30K

0 3653 3651 3644 3624 0 100.0 100.0 100.0 100.0

10 285 782 2007 3111 10 7.8 21.4 55.1 85.8

20 152 480 1532 2779 20 4.2 13.1 42.0 76.7

30 90 306 1165 2560 30 2.5 8.4 32.0 70.6

40 48 197 819 2335 40 1.3 5.4 22.5 64.4

50 23 137 628 2077 50 0.6 3.8 17.2 57.3

60 15 102 527 1922 60 0.4 2.8 14.5 53.0

70 11 68 409 1735 70 0.3 1.9 11.2 47.9

80 8 43 314 1537 80 0.2 1.2 8.6 42.4

90 5 34 236 1390 90 0.1 0.9 6.5 38.4

100 3 25 180 1215 100 0.1 0.7 4.9 33.5

110 2 18 148 1051 110 0.1 0.5 4.1 29.0

120 2 14 119 871 120 0.1 0.4 3.3 24.0

130 2 12 97 740 130 0.1 0.3 2.7 20.4

140 2 9 87 628 140 0.1 0.2 2.4 17.3

150 2 8 63 579 150 0.1 0.2 1.7 16.0

160 0 6 55 514 160 0.0 0.2 1.5 14.2

170 0 2 37 446 170 0.0 0.1 1.0 12.3

180 0 1 29 371 180 0.0 0.0 0.8 10.2

190 0 0 23 322 190 0.0 0.0 0.6 8.9

200 0 0 22 246 200 0.0 0.0 0.6 6.8

210 0 0 21 203 210 0.0 0.0 0.6 5.6

220 0 0 19 181 220 0.0 0.0 0.5 5.0

230 0 0 19 159 230 0.0 0.0 0.5 4.4

240 0 0 16 135 240 0.0 0.0 0.4 3.7

250 0 0 9 130 250 0.0 0.0 0.2 3.6

260 0 0 7 124 260 0.0 0.0 0.2 3.4

270 0 0 6 118 270 0.0 0.0 0.2 3.3

280 0 0 1 111 280 0.0 0.0 0.0 3.1

290 0 0 0 107 290 0.0 0.0 0.0 3.0

300 0 0 0 74 300 0.0 0.0 0.0 2.0

310 0 0 0 55 310 0.0 0.0 0.0 1.5

320 0 0 0 44 320 0.0 0.0 0.0 1.2

330 0 0 0 37 330 0.0 0.0 0.0 1.0

340 0 0 0 36 340 0.0 0.0 0.0 1.0

350 0 0 0 35 350 0.0 0.0 0.0 1.0

360 0 0 0 35 360 0.0 0.0 0.0 1.0

370 0 0 0 33 370 0.0 0.0 0.0 0.9

380 0 0 0 28 380 0.0 0.0 0.0 0.8

390 0 0 0 22 390 0.0 0.0 0.0 0.6

400 0 0 0 15 400 0.0 0.0 0.0 0.4

Cumulative number of occurrences greater than or 

equal to the class bottom
Percentage of time the k-day rainfall depth is exceeded   

Fig. 1.3 Rainfall duration curves for 1951-1961 
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 Create a table similar to table 1.2, with in the first column the class bottom (use class 

intervals of 10 mm, or if your data range is very large use 20 mm) and in the subsequent 

columns the number of intervals greater or equal to the class bottom. To count the 

number of intervals greater than or equal to the class bottom us the function 

COUNTIF(range;”condition”). 

 Compute in the next table (see also table 1.2, right hand side) the percentage of time the 

rainfall depth is exceeded. 

 Make a chart similar to figure 1.3, with on the horizontal axis the percentage of time the 

rainfall depth is exceeded and on the vertical axis the rainfall depth. (Click in a cell 

some distance away from the table, Select: Insert, Scatter, Select data, Add, etc.). 

 

Please write in the left top corner of your spreadsheet answers to the following two 

questions: 

1. How many percent of the time is 20 mm or more rainfall in a 30 day period 

exceeded? 

2. Is this chart useful to estimate the rainfall depth that will be exceeded once in 100 

years? 

Save the worksheet Bnum.  

 

1.5 Analyses of extremes and exceedances 

The following two methods will be used for analysing extreme daily rainfall events 

 

1 Analysis of extremes (annual series) 

From each (hydrological) year the maximum value is registered. The extremes for a 

large number of years are fitted into a distribution, for example Gumbel type I. 

 

2 Analysis of exceedances (partial duration series) 

All the values exceeding a certain level (threshold) of daily rainfall are registered, 

regardless the number of times in a year they occur. This method, also known as 

‘Peaks Over Threshold’ (POT), is more correct as all values above a certain 

threshold are included, but it involves more work. Moreover, there is a greater risk 

that the extreme values are not independent of each other. The method is most 

easily compared with the annual series if the threshold is selected in such a way that 

the number of values above the threshold equals the number of years of data. 

 

Langbein (see Chow, 1964) has shown that the following relation exists between the two 

methods 

 












 

pT

1

exp  -1=  
T

1
          (1.6) 

 

where T is the return period of annual extremes and Tp the return period for the partial 

duration series (exceedances). The relation, which is summarized in table 1.3, shows that 

for rare events, say T > 10 years, the difference between the two methods is very small. 

 

In this workshop both methods will be applied and the results will be plotted in a chart. 

About 30 years of data from file P119_dr.txt will be used for this analysis. 
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Analysis of extremes (annual series) 
In this workshop the well-known Extreme Value Distribution developed by Gumbel (1941) 

will be applied. This distribution has been used with success to describe the populations of 

many hydrological events. When applied to extreme values, the fundamental theorem can 

be stated as follows. 

 

If X1, X2, X3, ....... XN are independent extreme values observed in N samples of equal size n 

(e.g. years), and if X is an unlimited exponentially-distributed variable, then as n and N 

approach infinity, the cumulative probability q that any of the extremes will be less than a 

given value Xi is given by 

 

 (-y))(-=  q expexp             (1.7) 

 

where q is the probability of non-exceedance, y is the reduced variate. If the probability 

that X will be exceeded is defined as p = 1 - q, then (1.7) yields 

 

 1/T))-(1(-= - p))-(1(-= - y lnlnlnln         (1.8) 

 

where T is the return period measured in sample sizes N (e.g. years). 

 

According to Gumbel, there is a linear relation between X and y 

 

 ) b  -(X   a=  y            (1.9) 

 

where a is the dispersion factor and b is the mode.  

 

If the samples are finite, which they always are (already a series of 30 years (N = 30) is 

large), the coefficients a and b are computed according to the following equations 

 

 
N

N
extext

y
sXb


            (1.10) 

 

 
ext

N

s
a


             (1.11) 

 

        Return period  Xexc/Xext 

 

          2 years  1.090 

          5 years  1.023 

         10 years  1.009 

where 

Xext = rainfall depth referring to annual extremes 

Xexc = rainfall depth referring to exceedances 

 

Table 1.3 Relation between annual extremes and exceedances 
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where extX  is the mean of X and sext the standard deviation of the sample. Values for yN 

(the mean of the reduced variate) and σN (the standard deviation of the reduced variate) are 

tabulated as a function of N in appendix E. With X = XGum equation (1.9) modifies to 

 

  
N

N

ext
extGum yy

s
 XX 


        (1.12) 

 

On probability paper where the horizontal axis is linear in y, (1.12) plots a straight line. To 

plot the data points on the horizontal axis a, so-called, plotting position, or estimator of the 

probability of non-exceedance q is required. The following plotting position is used 

 

 




   2 -1 + N

  -m
  -1=  p  -1  q          (1.13) 

 

where m is the rank number of the maximum occurrences in decreasing order, N is the total 

number of years of observations and α = 0.44 as proposed by Gringerton for Gumbel 

distributions. For α = 0 equation (1.13) yields the well-known Weibull formula. 
 

Assignment 

 Create a table similar to table 1.4 as follows. 

 Open file P119_dr.txt and copy years assigned to you into a new spreadsheet. Close file 

P119_dr.txt. 

 Compute for each year the maximum and minimum daily rainfall in columns N and O, 

respectively (use the functions MAX and MIN). 

 Delete years with missing data (delete all rows of years with minimum rainfall equal to 

-1).  

 Save the file in your own directory as Cnum. 

 Copy the annual extremes (only the values) in column N to column S (Copy to 

Clipboard, Paste, Paste Special, Values, OK).  

 Sort data in column S in descending order (Select with mouse data range, Select: Data, 

Sort, Largest to smallest, OK) 

 Rank the values in column R similar to table 1.4 (Put the values 1 and 2 in the first and 

second cell, select both cells and drag the square dot to end of the column with the left 

mouse button pressed). There should be about 30 values. 

 In the next column the plotting position p (the probability of exceedance), is calculated 

for each value of Xext using the formula of Gringorten (see Cunnane, 1978) 

 

 
0.12+  N

0.44  -m
=  p            (1.14) 

 

 The log of the return period T = 1/p is computed in the next column. Sometimes a near 

linear relation may be found between log T and the annual extreme rainfall depth. 

 Create a graph of the XY(scatter)-type, similar to figure 1.4, showing this relation. 

(Select: Insert, Scatter, etc.). Add a straight regression line as follows: Click right 

mouse button on one of the dots in the chart of the series, Select: Add Trendline, Linear, 

Close.  

 Create a column next to the column of logarithmic values for the computation of the 

reduced variate y using equation 1.8.  
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Table 1.4 Example computation of Gumbel distribution 

Rank p=(m-0.44) LogT= Y=-Ln Lower Upper

(m) Xext /(N+0.12) Log (1/p) (-Ln(1-p)) Xgum Conf level Conf level Xexc

1 221.7 0.018 1.745 4.01 229.6 165.4 293.7 221.7

2 183.2 0.050 1.300 2.97 187.6 139.1 236.2 183.2

3 182.9 0.082 1.085 2.46 167.0 126.0 208.0 182.9

4 142.9 0.114 0.942 2.11 153.0 117.0 189.0 142.9

5 138.1 0.147 0.834 1.84 142.3 110.1 174.6 138.1

6 130.3 0.179 0.748 1.63 133.6 104.3 162.8 135.2

7 110.0 0.211 0.676 1.44 126.1 99.4 152.9 130.3

8 107.5 0.243 0.615 1.28 119.6 95.0 144.3 110.0

9 104.0 0.275 0.561 1.13 113.8 91.0 136.6 107.5

10 100.9 0.307 0.513 1.00 108.5 87.2 129.7 104.0

11 100.0 0.339 0.469 0.88 103.6 83.7 123.5 101.5

12 95.0 0.371 0.430 0.77 99.0 80.4 117.7 100.9

13 78.1 0.404 0.394 0.66 94.7 77.1 112.3 100.0

14 76.3 0.436 0.361 0.56 90.6 74.0 107.2 100.0

15 75.0 0.468 0.330 0.46 86.7 70.8 102.5 99.3

16 74.6 0.500 0.301 0.37 82.9 67.7 98.1 95.0

17 73.5 0.532 0.274 0.27 79.2 64.5 93.9 92.4

18 73.4 0.564 0.249 0.19 75.6 61.3 89.8 92.4

19 69.0 0.596 0.224 0.10 72.0 58.1 86.0 88.6

20 65.4 0.629 0.202 0.01 68.5 54.7 82.4 81.6

21 62.5 0.661 0.180 -0.08 65.0 51.2 78.8 78.1

22 60.2 0.693 0.159 -0.17 61.4 47.5 75.4 76.5

23 58.3 0.725 0.140 -0.26 57.8 43.6 72.1 76.3

24 55.9 0.757 0.121 -0.35 54.1 39.5 68.8 75.0

25 54.9 0.789 0.103 -0.44 50.3 35.1 65.4 74.8

26 54.0 0.821 0.085 -0.54 46.2 30.4 62.1 74.6

27 50.5 0.853 0.069 -0.65 41.8 25.1 58.6 73.5

28 48.4 0.886 0.053 -0.77 37.0 19.1 54.8 73.4

29 47.8 0.918 0.037 -0.92 31.3 11.9 50.6 69.0

30 46.5 0.950 0.022 -1.10 24.0 2.6 45.4 67.5

31 41.5 0.982 0.008 -1.39 12.1 -12.9 37.2 67.5

Xavg= 89.8

Std= 44.9

 Calculate the average 

extX  with function 

AVERAGE and 

standard deviation sext 

with function STDEV 

of the sample. 

 Given the number of 

years N, values for yN 

and σN may be found in 

appendix E and copied 

to cells somewhere in 

the spreadsheet for 

later use. 

 For each value of y 

calculate the 

corresponding rainfall 

value XGum according 

to Gumbel (equation 

1.12). 

 Make another chart 

similar to figure 1.5 

with on the horizontal 

axis the y values and 

on the vertical axis the 

series Xext and XGum.  

 

 

 

 

Adding confidence limits 

The longer the time series the more confidence we have in the derived extreme value 

distribution. In particular for short series it may be wise to indicate the level of confidence 

for the data we have used. The procedure is the following. 

First the standard error of estimate SEX is computed in terms of the reduced variate y. The 

equation varies with the type of probability distribution used, and may be written for 

Gumbel as 

 

   
5.0 

2

N2

N

N

N

ext
X yy

10.1
yy

14.1
1

N

s
SE 











      (1.15) 

 

From the Student’s t-distribution the critical values for a 95 % confidence interval may be 

found given the degree of freedom , which equals the sample size minus one, or 

 

1 N            (1.16) 

 

The confidence limits tc are read from appendix B. For the example data set in table 1.4 the 

degree of freedom is 30 and the critical t-values are tc = ±2.04. 
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Assuming that the errors of the estimated extremes XGum are normally distributed, the upper 

and lower limit of the confidence interval Xc is as follows related to the standardized values 

tc  

 

X

Gumc
c

SE

XX
t


           (1.17) 

or 

XcGumc SE tXX           (1.18) 

 

 

Assignment 

 Find the critical t-values from Appendix B for the degree of freedom . 

 Add two more columns for the lower and upper confidence limits (see table 1.4) and 

use equation (1.17) for the computation.  

 Add the confidence limits to the chart (see figure 1.5). 

 

 

 

Analysis of exceedances (partial duration series or POT) 
 

Assignment 
Compute for the same series as used above the N largest daily rainfall values (Xexc). This is 

most easily done by sorting the columns with N years of original data in descending order. 

Copy all values larger than a set limit to a column in the same table that you used for 

analysis of extremes. The lower limit should be such that the number of values larger than 

this limit is larger than N. Sort these Xexc values in descending order. See table 1.4.  

According to the Langbein theory we only analyze the number of highest values equal to 

the number of years of the data series. You can erase now all lower values. Indicate Xexc in 

the Gumbel graph by filling an additional plot range with the column Xexc. See figure 1.5. 

Fig. 1.5 Analyses of extremes and exceedances 
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Compare the results and notice that in particular for low return periods Xexc/Xext > 1. 

 

 

Remark 

It should be noted that sometimes a procedure is used for the computation of the extreme 

value distribution according to Gumbel that does not take into account the sample size. 

This applies for example for the Time Series Analysis software (TSA) developed by 

Guzman and Chu (2003). The difference between the two methods can be significant for 

small sample sizes. 

 

Question: Please write in the top left corner of your spreadsheet a brief assessment of 

how well your data fit the Gumbel distribution. 

Use both distributions (Gumbel and Logarithmic) to compute the 50 year annual 

extreme rainfall. 

 

Save the file as Cnum. 
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Table 2.1 Monthly rainfall data sheet for station P119 

Station_code: P119

Yearly

Month X XI XII I II III IV V VI VII VIII IX Total

Year

51/52 127.6 8.8 91.4 108.8 109.6 50.9 22.2 19.1 40.9 82.9 9.5 1.6 673.3

52/53 43.2 194.2 119.6 305.4 188.1 78.8 23.2 11.7 0.0 14.1 2.4 50.4 1,031.1

53/54 76.3 144.5 28.1 84.2 95.4 115.1 85.7 30.5 12.3 1.5 30.1 198.5 902.2

54/55 155.9 187.4 94.1 293.8 292.6 183.1 76.1 73.5 24.7 0.0 0.0 2.0 1,383.2

55/56 193.9 297.5 114.3 123.0 375.7 172.1 6.6 56.4 19.0 7.6 2.0 125.5 1,493.6

56/57 18.0 78.5 160.7 87.4 95.1 132.0 151.5 15.7 33.5 99.3 68.3 104.9 1,044.9

57/58 132.4 30.9 152.7 253.1 133.9 82.7 60.0 0.0 25.1 4.0 5.3 45.3 925.4

58/59 34.8 68.9 136.8 123.7 92.6 60.9 8.5 133.3 14.0 10.4 5.5 70.3 759.7

59/60 85.2 41.5 102.0 63.5 85.8 70.8 179.8 7.2 21.0 10.0 23.3 63.0 753.1

60/61 49.4 144.3 296.1 49.1 108.0 155.5 47.4 5.9 48.5 10.6 35.5 55.3 1,005.6

61/62 140.3 62.2 49.2 118.1 26.3 57.8 81.6 1.6 22.7 3.0 54.7 7.5 625.0

62/63 67.4 127.8 97.8 115.8 204.6 95.6 31.3 32.1 69.0 152.4 15.0 6.2 1,015.0

63/64 51.6 72.4 52.0 173.2 42.2 7.5 96.9 5.0 2.9 3.1 1.8 3.4 512.0

64/65 107.4 63.0 163.8 56.2 69.0 139.1 33.6 4.1 13.5 4.7 31.5 59.7 745.6

65/66 48.7 131.5 62.7 672.2 124.9 9.0 15.3 51.1 41.4 9.9 31.3 22.2 1,220.2

66/67 75.8 36.3 99.2 190.1 353.6 174.0 114.4 2.1 12.3 8.3 2.5 2.0 1,070.6

67/68 89.3 113.4 52.0 113.7 227.9 112.7 32.6 14.1 25.5 58.4 37.1 19.6 896.3

68/69 33.1 114.6 57.7 188.7 58.2 154.3 110.0 56.2 0.0 22.0 -1 31.1

69/70 236.4 43.1 117.5 13.0 47.2 52.9 9.5 37.1 9.5 4.0 7.5 17.7 595.4

70/71 89.3 96.0 84.7 98.6 63.4 147.4 95.9 53.7 13.8 0.6 4.6 20.5 768.5

71/72 96.3 104.3 236.5 320.6 327.1 176.6 74.5 171.7 5.0 14.0 1.0 5.0 1,532.6

72/73 86.6 122.7 96.8 57.2 141.8 52.2 98.0 11.7 12.1 0.3 22.0 217.5 918.9

73/74 85.5 122.9 379.2 209.6 107.7 70.6 115.3 10.8 0.0 54.8 3.5 11.3 1,171.2

74/75 44.6 118.0 70.3 183.8 356.5 114.8 107.4 12.9 36.1 1.6 5.6 37.4 1,089.0

75/76 35.8 71.4 200.3 416.7 255.4 141.0 76.1 21.4 8.5 0.6 0.4 3.5 1,231.1

76/77 42.3 157.3 104.9 150.9 580.5 228.6 22.6 21.2 3.3 0.0 43.5 89.4 1,444.5

77/78 34.8 27.4 114.8 354.0 86.9 205.0 76.5 19.7 24.8 61.7 3.5 151.6 1,160.7

78/79 85.1 168.5 153.4 171.2 25.1 122.1 125.4 15.7 15.3 2.6 16.1 21.4 921.9

79/80 51.6 56.6 75.7 157.7 237.4 54.2 104.1 17.7 0.0 6.2 30.8 113.1 905.1

80/81 10.3 142.2 71.9 112.5 229.3 141.9 26.6 48.1 7.5 18.6 32.5 120.7 962.1

81/82 115.0 175.3 156.1 96.1 36.2 57.1 139.6 4.6 5.0 0.0 5.4 23.8 814.2

MIS 0 0 0 0 0 0 0 0 0 0 1 0 1

AVG 82.1 107.2 122.3 176.2 167.0 110.2 72.5 31.2 18.3 21.5 54.9

STD 51.3 61.5 74.6 133.3 130.5 56.8 46.6 38.0 16.2 35.5 58.8

MIN 10.3 8.8 28.1 13.0 25.1 7.5 6.6 0.0 0.0 0.0 1.6

MAX 236.4 297.5 379.2 672.2 580.5 228.6 179.8 171.7 69.0 152.4 217.5

P20 39.0 55.5 59.7 64.2 57.4 62.5 33.4 -0.8 4.7 -8.3 5.5

P80 125.2 158.9 185.0 288.2 276.6 157.9 111.7 63.1 31.9 51.3 104.3

2 MONTHLY RAINFALL DATA 
 

In a previous exercise monthly data have been generated through aggregation of daily data. 

Each participant performed this for each of the four stations over a particular year. 

Through combining all the years, tables can be generated with monthly data over the years 

of observation per station. As an example see Table 2.1. A worksheet file containing the 

monthly rainfall values of all four stations is named i:\groupwork\hydata\month_31.txt. 

The period of observations is 1951/52 until 1981/82.   

 

2.1 Tabular comparison 

Assignment 
Retrieve the file with tables of monthly data over the period 1951/52 - 1981/82 of the 4 

stations into the spreadsheet program. Each participant will be assigned a particular month 

for which a statistical analysis is to be carried out. 

In order to retrieve the data file and to establish the table with monthly data of the 4 

stations the following procedure could be applied. 
    

 Open the file with monthly data of the 4 stations: i:\groupwork\hydata\month_31.txt 

 Prepare a table (starting in cell A45) with columns for the year numbers and monthly 

values of the stations P425, P119, P5 and P6 (in this order). Fill the columns with 

values over the years 51/52 - 81/82 for the month assigned to you. 
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 Erase the original data of the four stations (erase the rows A1..A43). Your table is now 

at the left top of the spreadsheet. 

 It is better to save the file now as Dnum.  

 Copy the table to a place right of the original table. 

 Delete in the original table all missing data (-1) in order to carry out the following 

calculations at the bottom of each column (see also table 2.1): 

1) Number of missing values 

2) Monthly average (use function AVERAGE) 

3) Standard deviation (use STDEV) 

4) Calculate the minimum value (MIN) 

5) Calculate the maximum value (MAX) 

6) Probability of non-exceedance with 20% by 

   P20 = AVERAGE - 0.84*STDEV (assuming a normal distribution)
1
 

7) Probability of non-exceedance with 80% by 

     P80 = AVERAGE + 0.84*STDEV (assuming a normal distribution) 

If the data are normally distributed 60 % of the values are between  P20 and P80. 

 

 

2.2 Data completion through linear regression 

One way of data completion is through linear regression.  

With linear regressions a mathematical relation is defined between data of a base station 

and other stations of the form: 

 

.etcXCXC XC  CY 332211          (2.1) 

where 

 Y a series of values of the base station (dependent variable) 

 Xi a series of values of neighbouring station i (independent variable) 

 C the equation's constant  

 Ci the equation's coefficients 

 

Multiple regression means that more than one neighbouring station (independent variable) 

is regarded. In case of a base station and one neighbouring station, the equation reduces to 

 

 
11XCCY             (2.2) 

 

The method is based on fitting the 'best' straight line through observations. In general there 

always will be a difference between a calculated value, Y' according to this line and a 

measured value. In linear regression this difference (Y-Y') is minimized using the method 

of 'least squares'. The quality of the fit obtained can be investigated by calculating the 

coefficient of determination ρ
2
. The coefficient of determination is a number between 0 

and 1, where 1 represents perfect fit. A minimum value of ρ
2
 should be applied giving the 

limit of a realistic regression (minimum of ρ
2
 should be around 0.5). This is also a criterion 

for the selection of stations to be included in the regression analysis.  

                                                 
1
If you were assigned data from the dry period, the mean value is very low and the standard deviation 

high. Consequently P20 may be calculated as a negative value, indicating that the normal distribution is not very 

suitable for this set of data. 
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The square root of the coefficient of determination is the correlation coefficient ρ which 

value varies between -1 and +1. The correlation coefficient ρ is related to the differences 

between measured and calculated values of the dependent variable (Y-Y') and defined as 

(see also appendix A5)  














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) Y-(Y 

) Y-Y( 
=  

2

2
0.5

           (2.3) 

 

Among the statistical applications of the Excel spreadsheet program is the option of 

multiple linear regression.  This provides directly the coefficient of determination ρ
2
 (in the 

spreadsheet known as R Square), as well as the coefficients and the Intercept of the 

regression equation. 

 

Assignment 

Open the file Dnum with the monthly data of the four stations. The (multiple) regression 

analysis will be performed between P425 (dependent variable) and P119, P5 and P6 as 

neighbouring stations (independent variables). A worked out example as a reference for the 

exercise is provided in table 2.2. The correlation analysis will be carried out for only those 

years in which all 4 stations have data. 

 Copy the table in the sheet to an area below the original table and delete all rows in 

which not all stations have data (see e.g. table 2.2, notice that some years are missing).  

 

This table will be used to calculate the constant (intercept) and coefficients of the 

regression. 

First the individual correlation coefficients between P6 (independent X) station and each of 

the other (dependent Y) stations will be investigated. 

January P425 P119 P5 P6 SUMMARY OUTPUT

58/59 175.3 123.7 162.9 79.5 P425 - P6

59/60 79.5 63.5 76.4 84.3 Regression Statistics

60/61 56.0 49.1 110.0 84.5 Multiple R 0.8564737

61/62 142.4 118.1 93.1 188.6 R Square 0.7335473

62/63 95.7 115.8 111.8 84.7 Adjusted R Square 0.7202246

63/64 249.0 173.2 210.3 215.5 Standard Error 60.297187

64/65 12.3 56.2 14.3 40.4 Observations 22

65/66 546.8 672.2 625.1 587.6

66/67 76.6 190.1 48.5 162.1 Coefficients

67/68 121.5 113.7 92.0 71.4 Intercept 10.380164

68/69 157.7 188.7 125.5 111.4 X Variable 1 0.7697746

69/70 4.7 13.0 98.4 9.6

70/71 51.8 98.6 87.9 53.1 SUMMARY OUTPUT

71/72 218.0 320.6 156.8 210.4 P425 and P119, P5, P6

72/73 56.7 57.2 79.1 63.3 Regression Statistics

73/74 108.6 209.6 151.7 299.5 Multiple R 0.9044524

74/75 81.3 183.8 138.7 232.3 R Square 0.8180341

75/76 210.2 416.7 311.4 275.0 Adjusted R Square 0.7877065

76/77 44.3 150.9 77.0 115.5 Standard Error 52.524354

77/78 122.0 354.0 305.6 202.9 Observations 22

78/79 122.5 171.2 60.5 129.0

79/80 62.2 157.7 52.9 33.8 Coefficients

Intercept 3.821143

X Variable 1 0.0918169

X Variable 2 0.4495039

X Variable 3 0.2729471

Table 2.2 Example of (multiple) linear regression between 2 and 4 stations 
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Perform linear regression between P6 and P425 as follows. 

 Select: Data, Data Analysis
2
, Regression, OK, Input Y-Range, (use mouse to select 

P425 data), X-Range (use mouse to select P6 data), Output Range (click cell for 

output), OK. 

 Repeat the analysis for P6 and P119 and also for P6 and P5 

 The multiple regression is carried out in the same way except that a range covering 

three columns has to be specified for the independent (X) data. If the intercept appears 

to be negative, values estimated with this equation may also be negative. In that case 

the regression is to be repeated with the intercept forced to zero (Click: Constant is 

zero). 

 

The results of the correlation analysis may now be used to complete missing data, provided 

the coefficient of determination (R Square) is larger than 0.5. 

 Use the result of the individual regressions with station P6 to complete missing data 

(cells with the value -1) in the right hand side table at the top, of the spreadsheet. 

 Use the results of the multiple regression analysis to complete data for station P425 in 

the years 1951/52 - 1957/58. 

 Calculate from the completed time series the mean, standard deviation, P20 and P80 

(assuming a normal distribution) and compare the result with the values you have been 

calculating for the uncompleted series. Look for suspicious values. 

 Save sheet Dnum. 

2.3 Double mass analysis 

The principle of double mass analysis is to plot accumulated values of the station under 

investigation against accumulated values of another station, or accumulated values of the 

average of other stations, over the same period of time. 

Through a double mass curve inhomogeneities in the time series (gradual changes and 

jumps) can be investigated. The series may be not homogeneous if, for example, there was 

a change in the type of instrument, the position of the instrument, the observer, or due to 

the growth of trees, etc. This is indicated in the curve of a double mass plot, showing an 

inflection point in the straight line. 

The principle of double mass curve analysis will be exercised through plotting 

accumulated monthly rainfall of station P425 against the mean of the other three stations. 

A worked out example is provided in table 2.3 and figure 2.1. 

 

Assignment 

 The completed data for the years 1951/52 - 1981/82, as obtained in the previous 

exercise, will be used for the double mass analysis. Make sure you are in spreadsheet 

Dnum.  

 Create a table in the area to the right of the table with completed data (see e.g. table 

2.3). The new table will contain 4 columns with accumulated values of the 4 stations.  

 Compute in the next column the average of the stations P119, P5 and P6.  

 Insert an XY-chart with the average values of the stations P119, P5 and P6 as X, 

against the accumulated values of P425 as Y (see e.g. figure 2.1). A straight line 

indicates that the data of station P425 may be considered homogeneous. 

                                                 
2
If Data Analysis does not appear in the ‘Data’ task bar, this Add-In has to be installed. Click: Office 

button, Excel Options, Add-Ins, Go, Select: Analysis toolpak, OK. Installation may take some time. 
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 In order to asses the homogeneity, the relation is compared with a straight line, the 

average linear increase AL, which is computed in the next column as follows 

 







i

1

jn

1

j

n

1

j

i X

X

Y

AL          (2.4) 

where 

   ALi Average Linear increase at year i 

   Xj Monthly rainfall in year j of station X 

   Yj Monthly rainfall in year j of station Y 

   i,j 1,...,n where n is the total number of years considered 

 

 Add the average linear increase to the XY-chart. Click in the chart, Chart tools, Select 

data, Add, select for the X-values the average of the 3 stations and for the Y-values the 

average linear increase AL. The line you have now plotted connects the total 

accumulated P425 values with the origin. 

 Add one more column with the difference between the accumulated P425 values and 

the average linear increase AL. These differences are known as the residuals. 

 Insert another XY-chart with on the horizontal axis the accumulated P425 values and 

the residuals on the Y-axis. As an example see figure 2.2. This chart is known as the 

residual mass curve.  

 

The residual mass curve shows more clearly the deviations of station Y from the mean 

(indicated as inflection points in the double mass analysis). The curve can be interpreted as 

follows: 

Table 2.3 Double mass analysis 

January P425 P119 P5 P6 P425 P119 P5 P6 Average Average Residual

sum sum sum sumP119,P5,P6 Linear mass

0 0 0 0 0 0 0

51/52 84.5 108.8 114.2 70.8 84.5 108.8 114.2 70.8 97.9 78.1 6.4

52/53 162.6 305.4 186.2 172.3 247.1 414.2 300.4 243.1 319.2 254.4 -7.4

53/54 62.9 84.2 87.4 44.3 310.0 498.4 387.8 287.4 391.2 311.8 -1.8

54/55 164.2 293.8 154.1 235.0 474.2 792.2 541.9 522.4 618.8 493.2 -19.0

55/56 68.6 123.0 85.6 54.9 542.8 915.2 627.5 577.3 706.7 563.2 -20.4

56/57 57.9 87.4 66.2 59.8 600.7 1002.6 693.7 637.1 777.8 619.9 -19.2

57/58 171.1 253.1 216.2 171.7 771.8 1255.7 909.9 808.8 991.5 790.2 -18.4

58/59 175.3 123.7 162.9 79.5 947.1 1379.4 1072.8 888.3 1113.5 887.5 59.6

59/60 79.5 63.5 76.4 84.3 1026.6 1442.9 1149.2 972.6 1188.2 947.0 79.6

60/61 56.0 49.1 110.0 84.5 1082.6 1492.0 1259.2 1057.1 1269.4 1011.7 70.9

61/62 142.4 118.1 93.1 188.6 1225.0 1610.1 1352.3 1245.7 1402.7 1117.9 107.1

62/63 95.7 115.8 111.8 84.7 1320.7 1725.9 1464.1 1330.4 1506.8 1200.9 119.8

63/64 249.0 173.2 210.3 215.5 1569.7 1899.1 1674.4 1545.9 1706.5 1360.1 209.7

64/65 12.3 56.2 14.3 40.4 1582.0 1955.3 1688.7 1586.3 1743.4 1389.5 192.5

65/66 546.8 672.2 625.1 587.6 2128.8 2627.5 2313.8 2173.9 2371.7 1890.3 238.5

66/67 76.6 190.1 48.5 162.1 2205.4 2817.6 2362.3 2336.0 2505.3 1996.7 208.7

67/68 121.5 113.7 92.0 71.4 2326.9 2931.3 2454.3 2407.4 2597.7 2070.3 256.6

68/69 157.7 188.7 125.5 111.4 2484.6 3120.0 2579.8 2518.8 2739.5 2183.4 301.2

69/70 4.7 13.0 98.4 9.6 2489.3 3133.0 2678.2 2528.4 2779.9 2215.5 273.8

70/71 51.8 98.6 87.9 53.1 2541.1 3231.6 2766.1 2581.5 2859.7 2279.2 261.9

71/72 218.0 320.6 156.8 210.4 2759.1 3552.2 2922.9 2791.9 3089.0 2461.9 297.2

72/73 56.7 57.2 79.1 63.3 2815.8 3609.4 3002.0 2855.2 3155.5 2515.0 300.9

73/74 108.6 209.6 151.7 299.5 2924.4 3819.0 3153.7 3154.7 3375.8 2690.5 233.9

74/75 81.3 183.8 138.7 232.3 3005.7 4002.8 3292.4 3387.0 3560.7 2837.9 167.8

75/76 210.2 416.7 311.4 275.0 3215.9 4419.5 3603.8 3662.0 3895.1 3104.4 111.5

76/77 44.3 150.9 77.0 115.5 3260.2 4570.4 3680.8 3777.5 4009.6 3195.6 64.6

77/78 122.0 354.0 305.6 202.9 3382.2 4924.4 3986.4 3980.4 4297.1 3424.8 -42.5

78/79 122.5 171.2 60.5 129.0 3504.7 5095.6 4046.9 4109.4 4417.3 3520.6 -15.9

79/80 62.2 157.7 52.9 33.8 3566.9 5253.3 4099.8 4143.2 4498.8 3585.5 -18.6

80/81 160.0 112.5 183.2 194.4 3726.9 5365.8 4283.0 4337.6 4662.1 3715.7 11.2

81/82 29.2 96.1 31.7 24.5 3756.2 5461.9 4314.7 4362.1 4712.9 3756.2 0.0
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 an upward deviation from the linear relation indicates relative high values of station Y 

 a parallel line indicates a constant relation between station X and Y 

 a downward deviation from the linear relation indicates relative low values of station Y 

 

Question: Please write in the top left corner of your spreadsheet the largest 

accumulated difference as a percentage and in which year it occurs.  

 

Save Dnum. 

 

Fig. 2.1 Double mass analysis of monthly rainfall 
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Fig. 2.2 Residual mass curve 
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2.4 Method of cumulative residuals 

Application of the double mass technique provides an opportunity to visually inspect the 

homogeneity of a time series. The method does, however, not give a criterion for accepting 

or rejecting the hypothesis of homogeneity. For this purpose the method of Cumulative 

Residuals may be used (Allen et al., 1998). The method of cumulative residuals makes use 

of the original series (not the accumulated values). In this analysis we will test the 

homogeneity of the 31 values of station P425 against the average of the 3 other stations 

(P5, P6 and P119).  

 

Assignment 

Retrieve the file Dnum with the double mass analysis of the completed monthly data of the 

four stations. 

 Copy the column with 'filled-in' monthly data of station P425 to the right hand side of 

your sheet (e.g. to column AA). Use Paste Special, Values! 

 Compute in the next column the average of the monthly values of the stations P119, P5 

and P6. The series to be tested is P425 and these data are the Y values, while X refers to 

the average of the other three stations. 

 Plot the monthly rainfall of P425 against the mean of the other stations (see e.g. figure 

2.3) and show the regression line including the equation and the coefficient of 

determination, R
2
 (Click on a data point in the chart with the right mouse button, 

choose: Add Trendline, click: Display equation on chart and Display R-squared value 

on chart). 

 Use the regression equation to compute in the next column the values estimated for Y 

(P425) from the other three stations. The estimated values are known as Yest. 

 Compute in the next column the residuals of the observed Y values to the regression 

line, thus Y-Yest. 

 Compute in the next column the cumulated residuals Ei. 

 Select a probability for accepting the hypothesis of homogeneity. The value of non-

exceedance q = 0.8 (or 80 %) is commonly utilized. The relation between the 

probability of exceedance p (p = 1-q) and the standardized or reduced variate t is given 

in appendix D and summarized here in a table 2.5. 

 Compute the parameters α and β as follows: 

 

2

n
  

1n

stn x,y




  
  

 

 where n is the number of years and sy,x is the standard 

deviation of the residuals. 

 Add a column with the values 0 to 31 and another with values 

varying from 0 to 2π. 

 The equation of the ellipse is then 

)cos( x   

)(sin y   

with θ varying from 0 to 2π. 

q % t

60 0.25

70 0.52

80 0.84

85 1.04

90 1.28

95 1.64

Table 2.5  

The reduced variate t 

for the probability of 

non-exceedance q 
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 Add an extra column with values for x+α which causes the ellipse to be shifted. 

 Plot Ei against time (0 to 31) and add to this chart the ellipse (plot (x+α) against y). 

 If the Ei values lie inside the ellipse, the hypothesis of homogeneity is accepted at the 

80 % level of confidence or any other level that was selected.  

 

Question: Do you think that the results of the homogeneity test for P425 will be better 

if less data were missing? Why? 

Save worksheet Dnum. 

Table 2.4 Method of cumulative residuals 

P425 Average Yest Residual Ei Year Theta

P119,P5,P6 x y x-shifted

Y X 0 0 0.00 15.5 0.0 31.0

84.5 97.9 78.7 5.8 5.8 1 0.20 15.2 40.5 30.7

162.6 221.3 175.6 -13.0 -7.2 2 0.41 14.2 79.4 29.7

62.9 72.0 58.3 4.6 -2.6 3 0.61 12.7 115.0 28.2

164.2 227.6 180.5 -16.3 -18.9 4 0.81 10.7 145.9 26.2

68.6 87.8 70.8 -2.2 -21.1 5 1.01 8.2 170.9 23.7

57.9 71.1 57.7 0.3 -20.8 6 1.22 5.4 188.8 20.9

171.1 213.7 169.6 1.5 -19.3 7 1.42 2.3 199.0 17.8

175.3 122.0 97.6 77.7 58.4 8 1.62 -0.8 201.1 14.7

79.5 74.7 60.5 19.0 77.4 9 1.82 -3.9 194.9 11.6

56.0 81.2 65.6 -9.6 67.9 10 2.03 -6.8 180.7 8.7

142.4 133.3 106.4 36.0 103.8 11 2.23 -9.5 159.2 6.0

95.7 104.1 83.5 12.2 116.0 12 2.43 -11.8 131.1 3.7

249.0 199.7 158.6 90.4 206.4 13 2.63 -13.6 97.7 1.9

12.3 37.0 30.8 -18.5 187.9 14 2.84 -14.8 60.3 0.7

546.8 628.3 495.1 51.7 239.6 15 3.04 -15.4 20.4 0.1

76.6 133.6 106.7 -30.1 209.5 16 3.24 -15.4 -20.4 0.1

121.5 92.4 74.3 47.2 256.7 17 3.45 -14.8 -60.3 0.7

157.7 141.9 113.2 44.5 301.2 18 3.65 -13.6 -97.7 1.9

4.7 40.3 33.5 -28.8 272.4 19 3.85 -11.8 -131.1 3.7

51.8 79.9 64.5 -12.7 259.7 20 4.05 -9.5 -159.2 6.0

218.0 229.3 181.8 36.2 295.9 21 4.26 -6.8 -180.7 8.7

56.7 66.5 54.0 2.7 298.5 22 4.46 -3.9 -194.9 11.6

108.6 220.3 174.8 -66.2 232.4 23 4.66 -0.8 -201.1 14.7

81.3 184.9 147.0 -65.7 166.7 24 4.86 2.3 -199.0 17.8

210.2 334.4 264.3 -54.1 112.6 25 5.07 5.4 -188.8 20.9

44.3 114.5 91.7 -47.4 65.2 26 5.27 8.2 -170.9 23.7

122.0 287.5 227.5 -105.5 -40.4 27 5.47 10.7 -145.9 26.2

122.5 120.2 96.2 26.3 -14.1 28 5.68 12.7 -115.0 28.2

62.2 81.5 65.8 -3.6 -17.6 29 5.88 14.2 -79.4 29.7

160.0 163.4 130.1 30.0 12.3 30 6.08 15.2 -40.5 30.7

29.2 50.8 41.7 -12.4 -0.1 31 6.28 15.5 0.0 31.0

Stdev = 42.3

n = 31

Alpha = 15.5

Intercept = 1.7969 t = 0.84

X-coefficient = 0.7852 Beta = 201.3

Fig. 2.3 Regression between P425 and 

average of other 3 stations 

y = 0.7852x + 1.7969

R² = 0.8214
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2.5 Frequency distribution 

The purpose of this exercise is to present data by a statistical distribution. The monthly 

rainfall totals of a particular month over a large number of years are used. 

 

 Two distributions will be considered: 

 normal distribution 

 log-normal distribution 

 

The monthly rainfall data of station P119 are used for this exercise. Each participant will 

be assigned a particular month containing approximately 70 years of monthly values. 

 

A normal distribution assumes a symmetrical distribution around the mean where also 

negative values are possible. Since negative rainfall values do not exist, a normal 

distribution does not seem very suitable. However, if the logarithm of the rainfall data are 

considered, the values may be approximately normally distributed. This is known as a log-

normal distribution.  

 

Assignment 
Create a table similar to the example table 2.5 using the month assigned to you and the 

monthly data of station P119. 

 Open file i:groupwork\hydata\p119_mr.txt  

 Copy the values in the column of the month assigned to you to the clipboard. 

 Close the data file and open a new workbook, click in cell B3 and paste the data. 

 Rank the data in descending order (Select with the mouse the data to be sorted, Select: 

Data, Sort, Select: Largest to Smallest, OK) 

 Delete the negative values at the bottom. 

 Fill the first column with the rank values (Put the values 1 and 2 in the first two cells, 

select both cells with the mouse, double click square dot in bottom right corner). 

Table 2.5 Application of Normal and Log-normal distribution 

Rank X LnX p=(m-0.375) t X LnX

(m) /(N+0.25) cal cal

1 297.5 5.70 0.01 2.370 199.7 5.80

2 236.4 5.47 0.02 1.993 178.8 5.50

3 193.9 5.27 0.04 1.782 167.1 5.33

4 188.1 5.24 0.05 1.630 158.7 5.21

5 183.3 5.21 0.07 1.508 151.9 5.12

6 155.9 5.05 0.08 1.405 146.2 5.04

-    -    -    -    -    -    -    

-    -    -    -    -    -    -    

65 14.8 2.69 0.92 -1.405 -9.3 2.84

66 13.6 2.61 0.93 -1.508 -15.0 2.76

67 11.2 2.42 0.95 -1.630 -21.8 2.66

68 11.1 2.41 0.96 -1.782 -30.2 2.54

69 10.3 2.33 0.98 -1.993 -41.9 2.38

70 10.0 2.30 0.99 -2.370 -62.8 2.08

AVG = 68.5 3.94

STD = 55.4 0.78
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 Compute in the third column the natural logarithm of X, Ln(X) 

 Save the sheet in your own directory as Enum 

 Make another table (as an example see table 2.6) with columns for classes and the 

number of elements within each class interval. Fill this table with classes from 0 to an 

upper limit that can include your maximum value with class-width of 10 or 20. Count 

the number of values within each class.  

 Make a histogram of the frequency distribution similar to figure 2.5 with on the 

horizontal axis the classes and vertical axis the number of elements. (Insert, Column, 

choose first type, Select data, Add, highlight column with number of values (n) in each 

class interval in table 2.6, OK, in Horizontal axis (category) labels click: Edit, highlight 

class intervals, OK, OK). 

 Extend the table with ln(X) class values and plot the frequencies into another 

histogram. 
 

As you have noticed now, the 

frequency distribution of monthly 

rainfall values is (right) skewed and 

the one with the logarithm of the 

monthly rainfall values is not. The 

frequency distribution of ln(X) looks 

more like a normal distribution. 

Therefore, it is expected that a 

normal distribution applied on ln(X) 

values gives more satisfactory results 

in representing the data. 

 

A characteristic of a normal 

distribution is that data represented 

by this distribution on probability 

paper plot a straight line. The 

horizontal axis of this paper 

expresses probability of exceedance 

p, or non-exceedance q, on a non-

linear scale and the vertical axis the 

Table 2.6 Distribution of the (log of) monthly 

values over the class intervals 

Monthly values Monthly Ln-values

class interval n class interval n

0 - 20 9 0 - 0.5

20 - 40 17 0.5 - 1.0

40 - 60 15 1.0 - 1.5

60 - 80 5 1.5 - 2.0

80 - 100 12 2.0 - 2.5 4

100 - 120 3 2.5 - 3.0 6

120 - 140 2 3.0 - 3.5 11

140 - 160 2 3.5 - 4.0 18

160 - 180 0 4.0 - 4.5 17

180 - 200 3 4.5 - 5.0 9

200 - 220 0 5.0 - 5.5 4

220 - 240 1 5.5 - 6.0 1

240 - 260 0 6.0 - 6.5

260 - 280 0 6.5 - 7.0

280 - 300 1 7.0 - 7.5

300 - 320 0 7.5 - 8.0

320 - 340 0 8.0 - 8.5
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values analyzed.  In order to plot the distribution in a spreadsheet the scale of the 

horizontal axis has to be linear. A linear scale is obtained in terms of the normalized value 

t, derived from a normal distribution which is related to the probability of exceedance (or 

non-exceedance). The relation between t and p is read from a table of the normal 

distribution, see appendix D. 

 

The relation between the standardized or reduced variate t and X in the normal distribution 

is given as 

 

 
Xs

XX
t


            (2.5) 

 

where 

 X  average value of series X 

 
Xs  standard deviation of series X 

 

Next the theoretical line of the normal distribution will be fitted through the monthly 

values of your series and subsequently through the ln-values of the same series, after which 

the results will be compared.  

 

Assignment 

 Create in your table of ranked values for X and ln(X) a column for the probability of 

exceedance p, using the formula of Blom (see Cunnane, 1978) 

 

 
0.25+  N

0.375  -m
=  p            (2.6) 

 

 where m is the rank and N the sample size. 

 Use the table of the normal distribution to find for each value of p the related t-value or 

use the spreadsheet function NORMSINV, which returns the inverse of the standard 

normal distribution, i.e. the value for t for P(X<x). 

 Create columns for Xcal and ln(Xcal) and calculate for each t-value the theoretical 

corresponding Xcal and Ycal, where Ycal = ln(Xcal) using 

 

 Xs tXXcal              (2.7) 

 

 Ys tYYcal            (2.8) 

 

 Make a graph which plots t (X-axis) against X (Y-axis) and the line Xcal, similar to 

figure 2.7. 

 Make another graph which plots t (X-axis) against ln(X) (Y-axis) and the line ln(Xcal), 

similar to figure 2.8. 

 Do not forget to save sheet Enum. 

 

Question: Please write in the top left corner of your spreadsheet which distribution 

(Normal or Lognormal) is most appropriate for a series of monthly minimum flows? 
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Fig. 2.7 Normal distribution of monthly 

rainfall 
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Fig. 2.8 Log-normal distribution of monthly 
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3 YEARLY RAINFALL DATA 
 

This chapter is about homogeneity tests. Hydrological time series may exhibit trends 

referred to as inconsistencies or non-homogeneities. Inconsistencies result from changes in 

the amount of systematic errors associated with recording of data, such as those arising 

from changes in instrumentation or observational practises. Non-homogeneity is defined as 

a change in the statistics of the data set which are caused by natural or man-made changes 

(e.g. change in landuse (deforestation!), water use, climatic change, etc.). Split record tests 

on variances and means are applied to detect the presence of inconsistencies or non-

homogeneities. These tests are referred to as the F-test for stability of the variances and t-

test for stability of the mean. These two tests can be reinforced by a third test, Spearman's 

rank correlation test, for indicating absence of trends. 

 

All three tests determine the presence or absence of 'absolute' consistency or homogeneity, 

as they are performed on an individual data series without comparison with other series. 

The theoretical background of these tests is explained in appendix A. 

 

3.1 Spearman's rank correlation method 

Assignment 

 Time series of 39 years of annual rainfall data of 4 stations are found in file 

i:\groupwork\hydata\yeartot.txt. Open this file and delete the columns with data except 

for the station assigned to you. Save the sheet as Fnum. 

 Prepare a table with columns for: 

 

  Xobs yearly rainfall in order of observation 

  Xrank yearly rainfall in ascending order 

  Kxi  the rank of the data as observed 

  Kyi  the rank of the same data in ascending order. 

  Di  Kxi - Kyi 

  Di
2
  square of Di 

 

 Fill the columns Kxi and Kyi with the rank (the values 1 to 39). 

 Copy the values in column Xobs into the column Xranked. 

 To rank the data in ascending order, select with the mouse data in the columns D and E, 

Select: Data, Sort, Sort by column D, Smallest to Largest, OK.  

 Compute Di = Kxi – Kyi and in the last column the square of Di. 

 Then calculate in the spreadsheet the Spearman's rank correlation coefficient Rsp and the 

test statistics t, as 

  1nn

D6
1R

2

2

i

sp





           (3.1) 
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2
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




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








sp

sp
R

n
Rt            (3.2) 

 

where n represents the number of observations. An example is presented in table 3.1. 
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The test variable t has a Student's t-distribution with v = n - 2 degrees of freedom. Use a 

table of the Student's-t distribution (appendix B) to define with a level of significance of 

5% the critical region (see Appendix A6.2) 

 

 }+  ),  97.5%  ,  v  (  t  { U )}    2.5%,  (v  t  ,  {-       (3.3) 

 

Thus the time series does not have a trend if 

 

 }  97.5%  ,  v  {  t<  t<  }    2.5%,  v  {  t        (3.4) 

 

Based on your results specify the absence or presence of a trend. 

Table 3.1 Spearman's rank correlation test 

Year Xobs Kxi Xranked Kyi Di Di^2

46/47 521.2 1 473.3 18 -17 289

47/48 524.7 2 475.4 25 -23 529

48/49 770.8 3 502.4 19 -16 256

49/50 801.8 4 502.7 37 -33 1089

50/51 633.7 5 508.2 16 -11 121

51/52 528.6 6 521.2 1 5 25

52/53 850.9 7 524.7 2 5 25

53/54 597.9 8 528.6 6 2 4

54/55 921.0 9 529.6 24 -15 225

55/56 828.9 10 537.1 34 -24 576

56/57 734.2 11 570.2 14 -3 9

57/58 593.8 12 593.8 12 0 0

58/59 594.2 13 594.2 13 0 0

59/60 570.2 14 597.9 8 6 36

60/61 836.0 15 619.5 33 -18 324

61/62 508.2 16 626.7 27 -11 121

62/63 830.7 17 633.7 5 12 144

63/64 473.3 18 638.5 36 -18 324

64/65 502.4 19 657.3 22 -3 9

65/66 971.9 20 702.7 32 -12 144

66/67 768.0 21 721.3 39 -18 324

67/68 657.3 22 734.2 11 11 121

68/69 800.1 23 768.0 21 2 4

69/70 529.6 24 770.8 3 21 441

70/71 475.4 25 786.7 38 -13 169

71/72 988.2 26 800.1 23 3 9

72/73 626.7 27 801.8 4 23 529

73/74 830.9 28 828.9 10 18 324

74/75 896.1 29 830.7 17 12 144

75/76 839.9 30 830.9 28 2 4

76/77 1179.8 31 836.0 15 16 256

77/78 702.7 32 839.9 30 2 4

78/79 619.5 33 850.9 7 26 676

79/80 537.1 34 896.1 29 5 25

80/81 954.8 35 921.0 9 26 676

81/82 638.5 36 954.8 35 1 1

82/83 502.7 37 971.9 20 17 289

83/84 786.7 38 988.2 26 12 144

84/85 721.3 39 1179.8 31 8 64

Sum Di^2 = 8454

Rsp = 0.14

t = 0.89

tcr = +,-2.02
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3.2 F-test for the stability of the variance 

Assignment 

The same series that was investigated for the presence of a trend will be subjected to an F-

test. Make sure you are in the right spreadsheet. Make a quick investigation on the spread 

of the variance by plotting the years against the yearly rainfall data. Is there any suspicious 

period? 

 

An investigation will now be carried out to see whether there is prove for a significant 

difference between the variance of the first half of the series and the second half. 

Create a table with two columns X1 and X2 with yearly rainfall data from the original series 

of approximately equal length, where 

 

X1 yearly rainfall first half of the series 

X2 yearly rainfall second half of the series 

 

Calculate for each series the variances s1
2
 and s2

2
 and the test statistic 

 

 
2

2

2

1

s

s
Ft              (3.5) 

 

Use a table of the Fisher-F distribution (appendix C) to define with a level of significance 

of 5% the critical region (see Appendix A6.3) 

 

 )} ,  ) 97.5% , v , v (   F{ U )}   2,5%, v , v (   F,0  { 2121     (3.6) 

 

where v1 and v2 are the respective numbers of degrees of freedom of the numerator and 

dominator. v1 = n1-1 and v2 = n2-1 where n1 and n2 are the number of observations in each 

sub-set. 

 

Based on your results specify the stability or non-stability of the variance of the series. 

 

3.3 Students-t test for stability of the mean 

Assignment 

The same series that was investigated for the presence of a trend and the stability of the 

variance will be subjected to a test for stability of the mean. Make sure you are in sheet 

Fnum. 

You will investigate now whether there is prove for a significant difference between the 

mean of the first half of the series and the second half. 

 

Use the same subsets X1 and X2  as used in the F-test. 

 

Calculate for each subset the averages 1X  and 2X  and the test statistic t. 
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where 

 in  the number of data in subset i 

 iX  the mean of subset i 

 2

is  the variance of subset i 

 

Use a table of the Student's-t distribution (appendix B) to define with a level of 

significance of 5% the critical region (see Appendix A6.4) 

 

 }  +  , ) 97.5%  ,  v (  t  { U } )   2.5%,  v (  t  ,     -{       (3.8) 

 

where v is the number of degrees of freedom, v = n1 + n2 - 2  

 

Based on your results indicate if the mean of the time series is stable. 

 

Save the sheet as Fnum. 

 
 

Question: Please write in the top left corner of your spreadsheet answers to the 

following questions. 

1 Can you apply the students-t test to a series for which the variance is not stable? 

2 Can you apply the split record test to more than 2 subsets (e.g. 3 or 4)? 

3 If the series shows a linear trend, does that also mean that the mean is not stable?
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4 EVAPORATION 
 

Evapotranspiration rates will be calculated for the meteorological station Lelystad, The 

Netherlands. For a period of 20 years (1961 - 1980) meteorological data are available in 

file i:\groupwork\hydata\MeteoData.txt. The data are specified as an average value per 

decade. With decades the month is divided into three parts: 1 - 10, 11 - 20 and 21 - end of 

month. Thus the third decade in the month consists of 8, 9, 10 or 11 days. 

 

The first computation concerns the evapotranspiration according to the Penman-Monteith 

equation. This quantity is often used as reference evaporation ETref for estimating the 

potential evapotranspiration of crops ETpot as follows 

 

 refcpot ETkET               (4.1) 

 

where kc is the crop coefficient. The reference evapotranspiration according to Penman-

Monteith, using the FAO defined constants, yields the evapotranspiration rate of grass with 

a length of 12 cm (see lecture notes on Hydrology). 

 

An alternative for the equation of Penman-Monteith is the Radiation Method, a more 

simple approach proposed by Makkink (1957), which formula also computes the potential 

evapotranspiration of grass, using only global radiation and temperature data. In this 

assignment both methods are applied and compared. 

 

4.1 Penman-Monteith 

The Penman-Monteith formula is written as 

 

 
 

 
ac

adaapN

MP
rr1s

r/eecsR

L

C
ET




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


         (4.2) 

where  

ETP-M potential evapotranspiration of grass in mm.d
-1

 

C constant to convert units from kg.m
-2

.s
-1

 to mm.d
-1

 (C = 86400) 

RN net radiation at the earth's surface in W.m
-2

 

L latent heat of vaporization (L = 2.45*10
6
 J.kg

-1
) 

s slope of the temperature-saturation vapour pressure curve (kPa.K
-1

) 

cp specific heat of air at constant pressure (cp = 1004.6 J.kg
-1

.K
-1

) 

ρa density of air (ρa = 1.2047 kg.m
-3

 at sea level) 

ed actual vapour pressure of the air at 2 m height in kPa 

ea saturation vapour pressure for the air temperature at 2 m height in kPa 

γ psychrometric constant (γ = 0.067 kPa.K
-1

 at sea level) 

ra aerodynamic resistance in s.m
-1

 

rc crop resistance in s.m
-1

 (FAO takes for grass rc = 70 s.m
-1

) 

 

The aerodynamic resistance ra is a function of the wind speed. The following expression 

for ra (s.m
-1

) is used by the FAO for wind velocities, U2 (m.s
-1

), observed at a height of 2 m 

over grass 

 



4  Evaporation   32 Workshop on  Hydrology 

 
  

 
2

208

U
ra               (4.3) 

 

Values for ea (kPa) and s (kPa.K
-1

) may be obtained from 

 

 a

a

T  237.3

T 17.27

a e 6108.0e


            (4.4) 
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T3.237

e 4098
s


             (4.5) 

 

where Ta is the 24 hour mean temperature of the air in 
o
C. 

 

The actual or dewpoint vapour pressure ed (kPa) is calculated from measurements of the 

relative humidity RH, thus 

  

 
100

RH
 ee ad              (4.6) 

 

The net outgoing long wave radiation RnL (W.m
-2

) is estimated with the empirical equation 

 

    Nn9.01.0e139.034.0T273106745.5R d

4

a

8

nL      (4.7) 

 

and the short wave or global radiation RS (W.m
-2

) with 

 

 
AS R Nn60.020.0R            (4.8) 

 

where N is the day length (hours) and n the actual number of hours of sunshine during the 

day. 

 

 The net radiation RN is calculated as the incoming short wave radiation at the earth's 

surface (or global radiation) RS minus the fraction that is reflected and minus the net 

outgoing long wave radiation RnL, hence 

 

  
nLSN R  -R r1R             (4.9) 

 

where r is the reflection coefficient ( FAO uses r = 0.23 for grass) 

 

Values for radiation received at the outer limits of the atmosphere RA are read for a given 

date and latitude from table 4.1 and values for the day length N from table 4.2. 

 

Assignment 

 Retrieve file i:\groupwork\hydata\Meteo.txt. Delete all data except for the year assigned 

to you and save the sheet as Gnum. The meteorological data are observed at a height of 

2 m and refer to 24-hour totals or means, which are averaged over a decade. 

 Extend the columns in the spreadsheet similar to table 4.3 and compute the Penman-

Monteith evapotranspiration ETP-M. Read values for N and RA from tables 4.1 and 4.2 
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respectively, for a northern latitude of 52 degrees which applies to The Netherlands. A 

more accurate approach (see table 4.5) is the computation of N and RA for given latitude 

and Julian day number, using the algorithms specified in the text boxes in this chapter. 

 

It is interesting to compare the global radiation flux and the evapotranspiration rate. To do 

this RS (W.m
-2

 = J.s
-1

.m
-2

) has to be converted into the unit mm/d, which is accomplished 

through dividing RS by the latent heat of vaporization L (J.kg
-1

), giving kg.s
-1

.m
-2

, which is 

approximately mm.s
-1

. Multiplying by C = 86400 s yields mm.d
-1

, thus 

 

 S

*

S R 
L

C
R              (4.10) 

 

 Make a separate column to compute the global radiation *

SR in mm.d
-1

. 

 Plot in one graph the global radiation flux and the evapotranspiration rate according to 

Penman-Monteith (see e.g. figure 4.1). 
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Table 4.1   Mean daily duration of maximum possible sunshine hours (N) 

 

 

 
Lat Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

NORTHERN HEMISPHERE 

 

 

 

 

 

 

 

 
Equator 

 

 

 

60 

52 

50 

40 

30 

20 

10 

0 

10 

20 

30 

40 

50 

60 

40 

91 

106 

177 

232 

309 

366 

415 

455 

489 

492 

495 

483 

472 

103 

157 

172 

240 

300 

354 

397 

429 

449 

457 

452 

432 

403 

360 

200 

252 

263 

317 

366 

400 

423 

435 

432 

415 

386 

349 

297 

237 

317 

357 

363 

395 

420 

435 

435 

420 

397 

357 

312 

254 

192 

123 

417 

440 

443 

455 

460 

449 

429 

397 

357 

306 

246 

183 

117 

51 

469 

475 

475 

477 

472 

452 

423 

383 

334 

277 

214 

149 

83 

26 

446 

457 

460 

466 

463 

452 

426 

389 

343 

289 

226 

160 

97 

37 

360 

389 

392 

420 

435 

440 

429 

409 

375 

332 

277 

217 

154 

89 

243 

292 

297 

346 

386 

412 

423 

426 

412 

389 

352 

306 

249 

186 

134 

192 

203 

266 

320 

369 

406 

429 

440 

437 

423 

395 

357 

309 

57 

111 

126 

194 

260 

323 

375 

417 

449 

469 

477 

472 

457 

432 

26 

74 

89 

160 

226 

297 

357 

409 

452 

483 

500 

509 

503 

500 

 SOUTHERN HEMISPHERE 

 

Table 4.2   Short wave radiation RA received at the outer limits of the atmosphere expressed in W.m
-2 
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1971 U n RH Ta N n/N ea s ed ra RA RS RS RnL RN EP-M EMak

m/s Hours % oC Hours - kPa kPa/K kPa s/m W/m2 W/m2 mm/d W/m2 W/m2 mm/d mm/d

1 2.5 1.8 91 -1.8 8.3 0.22 0.54 0.04 0.49 83 91 30 1.06 22 1 0.16 0.26

2 3.5 2.3 90 2.0 8.3 0.28 0.71 0.05 0.64 59 91 33 1.18 26 0 0.26 0.33

3 5.5 0.5 90 5.2 8.3 0.06 0.88 0.06 0.80 38 91 21 0.76 11 5 0.44 0.24

4 3.0 0.7 89 4.0 9.9 0.07 0.81 0.06 0.72 69 157 38 1.34 12 17 0.47 0.40

5 4.0 2.9 88 3.6 9.9 0.29 0.79 0.06 0.70 52 157 59 2.08 27 18 0.54 0.61

6 3.5 3.4 83 3.4 9.9 0.34 0.78 0.06 0.65 59 157 64 2.25 31 18 0.65 0.66

7 3.0 3.7 85 -2.4 11.8 0.31 0.51 0.04 0.44 69 252 98 3.45 29 46 0.63 0.81

8 4.0 3.0 85 5.3 11.8 0.25 0.89 0.06 0.76 52 252 89 3.13 25 44 0.94 0.98

9 3.5 3.7 81 5.0 11.8 0.31 0.87 0.06 0.71 59 252 98 3.45 29 46 1.06 1.07

10 3.5 4.1 86 6.8 13.8 0.30 0.99 0.07 0.85 59 357 135 4.76 27 77 1.33 1.56

11 3.5 4.9 83 7.4 13.8 0.36 1.03 0.07 0.85 59 357 147 5.20 31 82 1.53 1.73

12 3.5 7.6 70 8.5 13.8 0.55 1.11 0.08 0.78 59 357 189 6.68 46 100 2.28 2.30

13 3.0 9.6 70 11.4 15.6 0.62 1.35 0.09 0.94 69 440 250 8.83 50 143 3.12 3.28

14 3.0 7.9 82 14.0 15.6 0.51 1.60 0.10 1.31 69 440 222 7.82 39 132 2.77 3.09

15 2.5 5.8 80 12.9 15.6 0.37 1.49 0.10 1.19 83 440 186 6.56 31 112 2.44 2.53

16 3.5 6.2 81 15.3 16.5 0.38 1.74 0.11 1.41 59 475 202 7.13 30 126 2.84 2.90

17 3.5 3.6 82 12.3 16.5 0.22 1.43 0.09 1.17 59 475 157 5.54 21 100 2.15 2.10

18 3.0 7.0 79 14.0 16.5 0.42 1.60 0.10 1.26 69 475 216 7.61 34 132 2.90 3.01

19 2.5 12.0 79 18.1 16.1 0.75 2.08 0.13 1.64 83 457 296 10.43 51 177 4.09 4.48

20 3.0 7.5 71 16.1 16.1 0.47 1.83 0.12 1.30 69 457 219 7.73 37 131 3.45 3.19

21 3.5 4.3 84 17.6 16.1 0.27 2.01 0.13 1.69 59 457 165 5.81 22 105 2.57 2.47

22 3.0 5.5 80 17.5 14.6 0.38 2.00 0.13 1.60 69 389 166 5.84 29 98 2.62 2.48

23 2.5 4.7 78 17.2 14.6 0.32 1.96 0.12 1.53 83 389 153 5.39 26 91 2.51 2.28

24 3.0 5.0 79 16.3 14.6 0.34 1.85 0.12 1.46 69 389 158 5.56 28 94 2.49 2.31

25 2.5 8.1 75 15.5 12.7 0.64 1.76 0.11 1.32 83 292 170 6.00 48 83 2.36 2.45

26 1.5 5.6 78 13.0 12.7 0.44 1.50 0.10 1.17 139 292 136 4.78 36 69 1.70 1.85

27 1.5 3.2 85 12.8 12.7 0.25 1.48 0.10 1.26 139 292 103 3.62 23 56 1.32 1.39

28 2.0 6.9 85 11.8 10.6 0.65 1.38 0.09 1.18 104 192 113 4.00 48 39 1.03 1.50

29 4.5 2.6 80 10.2 10.6 0.25 1.24 0.08 1.00 46 192 67 2.35 24 28 1.24 0.85

30 3.0 4.6 84 9.0 10.6 0.43 1.15 0.08 0.96 69 192 88 3.12 36 32 0.95 1.09

31 4.0 3.5 84 9.0 8.8 0.40 1.15 0.08 0.96 52 111 49 1.72 33 4 0.69 0.60

32 3.0 1.4 84 5.2 8.8 0.16 0.88 0.06 0.74 69 111 33 1.16 18 7 0.52 0.36

33 4.0 0.5 91 4.5 8.8 0.06 0.84 0.06 0.77 52 111 26 0.92 11 9 0.37 0.28

34 2.5 0.6 92 4.9 7.8 0.08 0.87 0.06 0.80 83 74 18 0.64 12 2 0.21 0.20

35 4.5 0.8 90 6.3 7.8 0.10 0.95 0.07 0.86 46 74 19 0.68 14 1 0.38 0.22

36 4.0 1.7 88 4.8 7.8 0.22 0.86 0.06 0.76 52 74 24 0.86 22 -3 0.36 0.27

Table 4.3 Computation of reference evapotranspiration for Lelystad, 1971, using decades 

Algorithm for the computation of the day length N (hours) 

given the Latitude in degrees and the number of the day in the year DAYN 

 
A = LATITUDE*PI/180 

IF(A<0) B = 0.4014*SIN(2*PI*(DAYN-259)/365) 

IF(A>=0) B = 0.4014*SIN(2*PI*(DAYN-77)/365) 

X1 = 1-(-SIN(A)/COS(A)*B)^2 

X2 = -SIN(A)/COS(A)*SIN(B)/COS(B) 

Y1 = ASIN(SQRT(X1/(X1+X2*X2))) 

IF(B>0) Y2 = PI-Y1 

IF(B<=0) Y2 = Y1 

N = 24*Y2/PI 

Algorithm for the computation of the extraterrestrial radiation RA (W.m
-2

) 

given the Latitude in degrees and the number of the day in the year DAYN 
 

A = LATITUDE*PI/180 

X1 = 0.0172*(DAYN-2.5) 

X2 = X1 - 1.35512 + 0.0335*SIN(X1) + 0.00035*SIN(2*X1) 

X3 = ASIN(0.397949*SIN(X2)) 

X4 = -TAN(A)*TAN(X3) 

IF(ABS(X4)<1.0) X5 = ACOS(X4) 

IF(X4>=1.0) X5 = 0.0 

IF(X4<=-1.0) X5 = PI 

X6 = 1.00028 + 0.0167547*COS(X2+1.35512) 

RA=430.673*X6*X6*(X5*SIN(X3)*SIN(A)+COS(A)*COS(X3)*SIN(X5)) 
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4.2 Radiation Method 

It may be seen from figure 4.1 that the global radiation 

and the evapotranspiration are closely related. This was 

reason for Makkink (1957) to propose a simplified 

equation for the computation of evaporation, based on 

radiation and temperature data alone. The method is 

known as the Radiation Method. 

 

The Makkink formula is written as 

 

 
L

R
 

  s

s
 C CET S

MMakkink


     (4.11) 

 

where for grass in The Netherlands CM = 0.65. Equation 

(4.11) with CM = 0.80 may be used to estimate the 

evaporation of open water. 

 

Assignment 

 Compute the potential evapotranspiration of grass 

according to the Makkink formula. 

 Compare in one figure (see e.g. figure 4.2) the 

results of the Radiation method with Penman-Monteith. 

 Compute for both methods the annual total, similar 

to the example given in table 4.4. The difference 

between the totals should not be more than 10 %. 

 Carry out a sensitivity analysis by changing the 

meteorological data by 10 %. 

 Save the sheet Gnum 

 

 

Question: Show which of the meteorological parameters (data) is most sensitive to the 

computation of EP-M and EMakkink. 

Table 4.4 Comparison of EP-M 

and EMakkink 

Decade EP-M EMak

days mm/dec mm/dec

10 1.6 2.6

10 2.6 3.3

11 4.8 2.6

10 4.7 4.0

10 5.4 6.1

8 5.2 5.3

10 6.3 8.1

10 9.4 9.8

11 11.6 11.7

10 13.3 15.6

10 15.3 17.3

10 22.8 23.0

10 31.2 32.8

10 27.7 30.9

11 26.8 27.8

10 28.4 29.0

10 21.5 21.0

10 29.0 30.1

10 40.9 44.8

10 34.5 31.9

11 28.2 27.2

10 26.2 24.8

10 25.1 22.8

11 27.4 25.4

10 23.6 24.5

10 17.0 18.5

10 13.2 13.9

10 10.3 15.0

10 12.4 8.5

11 10.4 12.0

10 6.9 6.0

10 5.2 3.6

10 3.7 2.8

10 2.1 2.0

10 3.8 2.2

11 4.0 2.9

365 563 570

Fig. 4.1 Comparison of evapotranspiration 

and global radiation 
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5 COMPOSITION OF A RATING CURVE 
 

A rating curve gives the relation between the discharge and the gauge reading (also 

referred to as stage or water level reading) in a certain cross section at a fixed geographical 

location (gauging station). The water level-discharge relation is often approximated with 

the following formula 

 

 b
0H-H aQ             (5.1) 

where 

 Q discharge in m3/s 

 H gauge reading in m 

 H0 gauge reading for zero discharge 

 a,b coefficients 

 

This equation is compatible with the Chézy formula where the cross sectional area A and 

the hydraulic radius R are functions of (H-H0). Assuming a wide river, where 

approximately A = B*(H-H0) and R = H-H0 it can be shown that 

 

  SH-H B CQ
5.1

0          (5.2) 

where 

 C Chézy roughness coefficient 

 S bed slope 

 

The coefficient b has a value of 1.67 in a rectangular channel for which B>>H, and a value 

of 2.67 in a triangular channel. When the coefficients a and b are fixed, plotting Q against 

H-H0 produces a straight line on double logarithmic paper as can be seen from the 

transformed equation of the rating curve 

 

)H-Log(H bLog(a)Log(Q) 0         (5.3) 

 

In reality a cross section of a riverbed is a composite of sections. Consequently a rating 

curve on double logarithmic paper also can be a composite of several straight lines, each 

with its own values for a and b. Often one distinguishes between conditions under normal 

and bankfull flow. 

 

Once a rating curve is established, regular measurements of water level can be converted to 

discharges. It should be realized that a rating curve is only valid over the range of 

discharges or water levels that were used for its establishment. Moreover, a rating curve 

has to be updated regularly, since sedimentation and scour changes the cross sectional 

profile and slope of the river. 

 

In this workshop data will be used from the gauging station ‘Boane’ in the lower part of 

the Umbeluzi catchment (see figure 1.1). Discharge measurements are available from the 

period 1951 until 1989, as well as water level readings over the same period. Each 

participant will establish a rating curve for the year assigned to him/her.  

 

The average bed slope of the river Boane is 0.0005. The cross sectional profile is depicted 

in figure 5.1. 
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Table 5.1 Discharge measurements and regression analysis for 1981 

Ho = 0.5

Date H Q LOG(H-Ho) LOG(Q) LOG(Qcal)

10-01-81 1.47 7.652 -0.013 0.884 0.946

10-02-81 4.67 89.284 0.620 1.951 1.917 Ho R Square

11-02-81 4.67 88.339 0.620 1.946 1.917 0.9 0.9672

18-02-81 3.35 35.599 0.455 1.551 1.663 0.8 0.9747

17-03-81 2.77 27.450 0.356 1.439 1.512 0.7 0.9778

18-03-81 2.77 28.395 0.356 1.453 1.512 0.6 0.9789

21-03-81 2.43 23.536 0.286 1.372 1.404 0.5 0.9791

27-03-81 2.28 26.916 0.250 1.430 1.350 0.4 0.9787

28-03-81 2.28 27.861 0.250 1.445 1.350 0.3 0.9780

31-03-81 3.16 37.279 0.425 1.571 1.618 0.2 0.9772

03-04-81 2.49 26.302 0.299 1.420 1.424 0.1 0.9762

04-04-81 2.49 27.247 0.299 1.435 1.424 0.0 0.9752

15-04-81 1.69 10.865 0.076 1.036 1.082

18-04-81 1.64 12.505 0.057 1.097 1.053

29-04-81 1.44 8.700 -0.027 0.940 0.925

30-04-81 1.43 8.383 -0.032 0.923 0.918

05-05-81 1.67 12.338 0.068 1.091 1.070 SUMMARY OUTPUT

15-05-81 1.37 8.057 -0.060 0.906 0.873

16-05-81 1.37 8.175 -0.060 0.912 0.873 Regression Statistics

20-05-81 1.77 14.857 0.104 1.172 1.125 Multiple R 0.989478

21-05-81 1.79 15.879 0.111 1.201 1.135 R Square 0.979066

10-06-81 1.40 6.539 -0.046 0.816 0.896 Adjusted R Square0.978432

15-06-81 1.26 6.381 -0.119 0.805 0.783 Standard Error0.054187

23-06-81 1.28 6.617 -0.108 0.821 0.800 Observations 35

06-07-81 1.33 7.231 -0.081 0.859 0.842

22-07-81 1.26 5.881 -0.119 0.769 0.783 ANOVA

24-08-81 1.22 5.344 -0.143 0.728 0.747 df

28-08-81 1.24 6.529 -0.131 0.815 0.765 Regression 1

07-09-81 1.22 6.075 -0.143 0.784 0.747 Residual 33

29-10-81 1.20 4.853 -0.155 0.686 0.728 Total 34

11-11-81 1.08 3.931 -0.237 0.595 0.603

23-11-81 1.38 5.479 -0.056 0.739 0.881 Coefficients

27-11-81 1.44 8.545 -0.027 0.932 0.925 Intercept 0.965892

03-12-81 3.70 62.297 0.505 1.794 1.741 X Variable 11.533624

15-12-81 1.44 8.693 -0.027 0.939 0.925

Fig. 5.1 Cross section of the Umbeluzi at Boane Fig. 5.2 First estimate of Ho 
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Assignment  

Create a table similar to table 5.1 with level and discharge data for the year that is assigned 

to you. 

 Open file i:\groupwork\hydata\umb_e8.txt 

 Select cells in the columns A-C for the year assigned to you and copy to clipboard. 

 Open New Blank Workbook, Click in cell A4 and paste. 

 Save file as Hnum. 

 Complete table similar to table 5.1. 

 Insert a Scatter Chart showing the data of Q (horizontal axis) in relation to H.   

 Sketch a line through the lower data points and estimate H0 similar to figure 5.2 (Insert, 

Shapes, click on the line icon and draw line). Write the estimate of H0 in an empty cell. 

 Make two columns with values for Log (H-H0) and Log(Q). 

 Perform linear regression between Log (H-H0) as the independent X-variable and 

Log(Q) as the dependent Y-variable (Select: Data, Data Analysis, Regression, etc.) 

 Follow the procedure below to optimize H0. 

 

Make a note of the value of the regression coefficient R
2
 and repeat the regression for a 

different value of H0. Make a table in the spreadsheet with H0-values and the 

corresponding values for R
2
 that are obtained from these regressions. Determine the H0-

value for which the correlation coefficient is maximum. This is the best estimate of H0. 

Repeat the regression analysis for the best estimate of H0 and take the regression constant 

(Intercept) as Log(a) and the X-Variable as parameter b in the rating curve equation 5.3. 

 

In general there are plenty of low flow measurements available 

and only few flood events. Since the rating curve is often used 

for extreme floods or even for extrapolation to events for 

which no observations exist, as many flood events as possible 

should be considered in the establishment of the rating curve. 

The flood events in the period 1951 to 1989 in the Umbeluzi 

catchment are separately listed in the same file umb_e8.txt 

(see also table 5.2). 

 

Assignment 

 Copy the list with flood events in file 

i:\groupwork\hydata\umb_e8.txt to the clipboard and paste 

it to the bottom of the columns with the data of the year 

assigned to you in your sheet Hnum. 

 Extend also the columns with Log(H-H0) and Log(Q) 

values. 

 Compute in the next column the Log(Qcal) according to 

equation 5.3, where Log(a) is the Intercept and b the X-

Variable as computed with the regression analysis after 

optimization of H0.  

 Make a chart similar to figure 5.3.  

 

This graph clearly shows that extreme events do not fit well 

the flood relation that was derived for the low flows. This does 

not come as a surprise in view of the shape of the cross section 

of the river Boane as presented in figure 5.1. The cross section 

DATE H    Q

24-2-1972 8.29 656.3

11-2-1985 7.48 633.8

6-10-1989 7.07 620.7

18-2-1975 7.57 513.4

11-2-1977 7.13 486.0

12-2-1985 7.20 446.6

23-3-1972 6.48 355.9

22-12-1973 6.13 328.4

20-2-1975 5.99 321.7

1-2-1979 5.75 245.7

1-2-1974 5.75 244.7

12-2-1977 5.77 208.9

23-12-1973 5.76 208.7

7-12-1989 5.94 208.7

22-2-1967 5.14 207.9

14-12-1989 5.60 207.9

22-3-1972 5.66 207.6

5-10-1989 5.54 202.0

19-2-1975 5.38 201.8

4-1-1978 5.45 174.2

2-2-1974 5.50 174.2

28-2-1967 5.48 170.8

1-3-1967 5.48 169.8

18-2-1955 5.38 168.2

6-2-1955 5.48 168.1

7-2-1955 5.55 162.3

Table 5.2 Recorded  

   flood flows 
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shows a dramatic change for a value of H approximately equal to 4.5 m. The rating curve 

could, therefore best be presented by two straight lines intersecting for H = +4.5 m. 

Consequently, linear regression is to be performed on two sets of data, with stage values 

below and above 4.5 m. The procedure is explained below. 

 

Assignment 

 Copy the table with data to another place in the spreadsheet. 

 Sort the table for H in ascending order: highlight with the mouse all columns of copied 

data, Select: Data, Sort, Sort by (select column with H-data), Smallest to largest, OK. 

 Some of these flood events may be from the same date in the year that is assigned to 

you. Check for double dates and delete rows with flood events that are already listed in 

the same column. 

 Perform a regression analysis for the Log(H- H0) as the independent X-variable and 

Log(Q) as the dependent Y-variable for all values for which H < 4.5. 

 Do the same for the lower part of the table for which H > 4.5. 

 The regression analysis results in two sets of parameters for equation 5.3. Compute (by 

hand) the point of intersection Log(H-Ho) of the two linear approximations of the 

rating curve and add this point to your table so that it can be plotted. 

 Extend the table with another column for the computation of Log(Qcal) using equation 

5.3. 

 Apply one set of parameter values for the H-values less than the point of intersection 

and the other set for the levels larger than the point of intersection. 

 Make a chart similar to figure 5.4. 

 Save the sheet Hnum. 

 
 

Question: Please write in the top left corner of your spreadsheet for which range of 

discharges your rating curve applies. 

 

 

 

Fig. 5.4 Rating curve represented by two 

straight lines 
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Fig. 5.3 Rating curve represented by a 
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6. FLOOD ROUTING 

6.1 Introduction 

The shape of a hydrograph changes when it 

travels along the river from point A to point B 

(see figure 6.1). If lateral in- and outflows 

between A and B are negligible, the peak of 

the hydrograph arriving in B will be lower 

(attenuation) and the time of arrival later 

(translation).  

Lateral or tributary flow, however is seldom 

negligible. The map of the Umbeluzi 

catchment (figure 1.1) indicates that a 

recorded flood hydrograph at Goba (E10) 

when propagating to Boane (E8) is increased 

by hydrographs resulting from tributaries 

draining the Mozambican part of the 

catchment. The hydrographs of tributaries are 

superimposed on the flood wave coming from 

Goba resulting in a composite hydrograph in 

Boane. Consequently peak flow and flood volume in Boane can exceed peak flow and 

flood volume in Goba. As an example, a flood hydrograph as recorded in January 1971 at 

Boane (E8) is shown in figure 6.2. On the same time axis the hydrograph as registered at 

Goba (E10) at the Mozambican border with Swaziland is presented. 

 

In this chapter the movement of a flood wave through a channel reach without lateral in- 

and outflows will be 

analyzed, using the 

Muskingum method for 

flood routing.  

 

In the next chapter the 

contribution of the 

intermediate catchment 

between Goba and Boane 

(completely within the 

Mozambican part of the 

catchment) is studied with 

the aid of the unit 

hydrograph method. 

Finally the combination of 

these methods enables us to 

predict quantitatively flood 

waves at the location of the 

river at Boane on the basis 

of river flow at Goba 

taking into account the 

rainfall in the catchment in 

between these two locations. 

Fig. 6.1 Hydrograph translation and 

attenuation 

Fig. 6.2 Flood hydrographs at Goba and Boane 
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Fig. 6.3 Trial plots for obtaining the Muskingum parameters K and x 

6.2 Muskingum method 

A procedure for the routing of floods which is based on the continuity equation and the 

assumption of wedge storage in the river reach, is known as the Muskingum method. The 

storage S is as follows defined as a function of the inflow I and the outflow Q in the 

considered reach of the river 

 

  Qx1xI KS            (6.1) 

 

In the Muskingum formula the parameter x is a dimensionless weighing factor indicating 

the relative importance of I and Q in determining the storage in the reach. The value of x is 

limited between 0 and 0.5. The parameter K has the dimension of time. Both K and x are 

constants for a certain river reach. Neglecting lateral inflow, K and x can be determined if 

the input and output hydrographs of the river reach are known. 

 

One method of obtaining values for K and x is by plotting values of S against [xI + (1-x)Q] 

for different trial values of x. Theoretically for a correct value of x the result will plot a 

straight line with K as the tangent as demonstrated in figure 6.3.  

 

Values for the storage S are derived from continuity. Using the finite difference notation 

the continuity equation over a time interval Δt from t = iΔt to t = (i+1)Δt is written as 

 

2

QQ

2

II

t 

SS i1ii1ii1i 





 


        (6.2) 

and 

 


 
t

1i

i1i0t SSSS          (6.3) 

 

It should be noted that for the solution of K and x the initial storage S0 is irrelevant. 

 

For the purpose of predicting outflow at time t = (i+1)Δt, rearrangement and substitution 

of the value of S according to equation 6.2 and the Muskingum equation 6.1 into the 

continuity equation 6.3 yields the following routing equation 
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Table 6.1 Recorded flood 

hydrographs 

Date E10 E8

26-Nov-70 4.96 4.22

27-Nov-70 6.35 5.43

28-Nov-70 7.91 5.43

29-Nov-70 12.40 7.51

30-Nov-70 27.90 11.10

1-Dec-70 36.12 22.20

2-Dec-70 29.87 28.08

3-Dec-70 16.40 28.98

4-Dec-70 10.90 24.32

5-Dec-70 7.98 15.87

6-Dec-70 6.62 11.34

7-Dec-70 5.72 8.23

8-Dec-70 5.32 6.98

9-Dec-70 4.91 4.75

 

i31i2i11i QcIcIcQ             (6.4) 

where 

 
Kx2K2t 

Kx2t 
c1








           (6.5a) 

 

Kx2K2t 

Kx2t 
c2








           (6.5b) 

 

Kx2K2t 

Kx2K2t 
c3









          (6.5c) 

 

It should be noted that the sum of the parameters c1, c2 and c3 equals 1. 

 

Table 6.1 gives the data of a flood recorded in Goba (E10) and Boane (E8) in 

November/December 1970.  The flood occurred in a period that it was very dry in 

Mozambique. Consequently, the inflow in the river reach between Goba and Boane was 

negligible. In file i:\groupwork\hydata\flood.txt floods for similar situations are found. The 

flood in table 6.1 is plotted in figure 6.4 and used in this text as an example. 

 

Assignment 

 Open the text file i:\groupwork\hydata\flood.txt with MS Excel software, copy the year 

assigned to you and paste it into an empty worksheet. Save the file with the name 

Inum. 

 You may now plot the two hydrographs, select: Insert, Line, Select Data, Add, etc. The 

flood originated from rainfall in Swaziland as no rainfall was recorded in the part of the 

catchment situated in Mozambique. The data are 24 hour mean values of the discharge 

specified in m
3
/s. 

 Create columns for the computation of 

 Iav = (Ii + Ii+1)/2, the average input over two consecutive days 

 Qav = (Qi + Qi+1)/2, the average output over two consecutive days 

 ΔS = Iav - Qav, the change in storage over two consecutive days 

 S, accumulated storage as from the start of the flood wave at E10. Add a zero value 

at the top of the column 

 [xI + (1-x)Q], where the reference for x is an 

absolute cell address (set x equal to 0.2) 

 Make a graph similar to figure 6.3 with [xI + (1-x)Q] 

on the X-axis and S on the Y-axis. 

 Carry out a regression analysis (Data, Data Analysis, 

etc.) on the last two columns with [xI + (1-x)Q] as the 

independent X-value and S as the dependent Y-value.  

 Optimize the parameter x by repeating the regression 

analysis for values of x ranging from 0.2 to 0.5. 

 The parameter x is selected from the regression analysis 

that has the lowest R
2
 value. The parameter K is found 

from the same regression analysis as the X-Variable. 

 Use equations 6.5 to compute the parameters c1, c2 and 

c3. Take the time step Δt = 1 day. Check if the three 

parameters add up to exactly 1. 
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 Copy the first two columns of the spreadsheet to another location and add one column, 

using equation 6.4 to calculate the discharge in Boane from observed discharge in 

Goba. Take the first value equal to the observed discharge. 

 Compare in a graph the calculated and observed discharges in Boane similar to figure 

6.5 (Use as graph type Line). 

 Save sheet Inum. 

 

 

Question: Please write in the top left corner of your spreadsheet the last value of S in 

the unit m
3
 and explain why it is not equal to zero. 

 

 

 

 

 

Fig. 6.4 Observed flood hydrographs in 

Goba and Boane 
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7 RAINFALL RUNOFF MODELLING 
 

7.1 Introduction 

In this chapter a unit hydrograph will be derived which applies to the part of the Umbeluzi 

catchment that is situated in Mozambique. A map of the catchment in the Mozambican part 

is shown in figure 7.1. There are two gauging stations.  One station is at the boarder with 

Swaziland in Goba (station E10), where the river enters Mozambique. In Boane is another 

gauging station. The procedure for the derivation of the unit hydrograph is the following. 

 

 The Muskingum method will be used to route the discharge at Goba to Boane.  

 The hydrograph representing the runoff from the Mozambican part of the catchment is 

the difference between the measured discharge in Boane and the contribution from 

Goba as routed with the Muskingum method to Boane. 

 The Mozambican hydrograph is subject the further analysis. Base flow and surface 

runoff will be separated. 

 The surface hydrograph will then be used to estimate the effective rainfall. 

 Precipitation data from 4 stations are used to determine the areal rainfall. 

Fig. 7.1 Mozambican part of the Umbeluzi catchment 
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 The difference between the areal rainfall and the effective rainfall yields the losses 

from which the Φ-index can be determined. 

 From a multiple regression analysis the unit hydrograph is finally derived. 

 The method will be validated for a storm occurring in a different period. 

7.2 Flood routing 

The observed hydrograph in Boane will be decomposed into two components. Part of the 

hydrograph consists of discharge entering Mozambique in Goba and the other part 

originates from the rainfall excess in the Mozambican part of the catchment. The 

hydrograph observed in Goba (E10) is first routed to Boane (E8) and then subtracted from 

the hydrograph as observed in E8. Table 7.1 shows the data of the observed hydrographs in 

Goba and Boane as well as Qmus, the hydrograph routed with the Muskingum method from 

Goba to Boane, using K = 1.24 and x = 0.40. The three hydrographs are plotted in figure 

7.2. 

Subtracting Qmus from the observed hydrograph in Boane yields the hydrograph QMoz, 

which represents the runoff from the tributaries draining the Mozambican part of the 

catchment (see table 7.1 and figure 7.4). 

7.3 Base flow separation 

In order to separate the base flow from the hydrograph QMoz it is assumed that the depletion 

curve may be represented by the following equation 

 
 

K

t-t-

0t

0

e QQ              (7.1) 

 

The parameter K can be found from a logarithmic plot of the depletion curve (Log Q 

against time). The best approach is to find the average K-value from the master depletion 

curve which may be derived from a plot of many depletion curves. Since there is only one 

such curve available for this problem, the K-value is found from plotting QMoz in a semi-

logarithmic chart as shown in figure 7.3. Our interest is not so much the K-value, but the 

date at which the depletion curve actually starts. Depletion starts after a dry period when 

the contribution of the fast runoff component has ceased. The depletion curve ends when 

the next rainstorm causes surface runoff. In this example the rain stops on 26 December 
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Table 7.1 Derivation effective rainfall (see text) 

E10 E8 E8 E8

GOBA BOANE Surface Areal Effective

Qm Qm Qmusk Qmoz Baseflow flow rainfall rainfall

m3/s m3/s m3/s m3/s m3/s m3/s mm mm

19-dec-73 12.7 17.1 17.1 0.00 0.00 0.00 40 0

20-dec-73 49.1 25.0 13.8 11.20 1 5.89 5.31 103 56

21-dec-73 135.0 278.0 42.9 235.10 2 11.78 223.32 62 15

22-dec-73 114.0 286.5 117.2 169.30 3 17.67 151.63 15 0

23-dec-73 104.0 244.7 114.5 130.20 4 23.56 106.64 0 0

24-dec-73 75.3 209.9 105.8 104.10 5 29.45 74.65 5 0

25-dec-73 57.5 172.0 81.1 90.90 6 35.34 55.56 11 0

26-dec-73 57.8 142.4 62.0 80.40 7 41.23 39.17 0 0

27-dec-73 47.1 130.8 58.5 72.30 8 47.12 25.18 0 0

28-dec-73 36.0 114.8 49.2 65.60 9 53.01 12.59 0 0

29-dec-73 33.5 97.4 38.5 58.90 10 58.90 0.00 0 0

30-dec-73 33.5 90.7 34.5 56.20

31-dec-73 28.2 88.0 33.7 54.30 236 71

1-jan-74 18.1 81.3 29.2 52.10

2-jan-74 23.5 71.0 20.3 50.70

3-jan-74 23.4 71.7 22.9 48.80 Total = 6.0E+07 m3

4-jan-74 30.1 69.6 23.3 46.30 Total = 71 mm

5-jan-74 25.9 73.0 28.8 44.20

6-jan-74 25.4 72.8 26.4 46.40

7-jan-74 23.4 75.8 25.6 50.20 47

8-jan-74 20.7 84.5 23.8 60.70

9-jan-74 19.8 87.1 21.3 65.80

10-jan-74 19.1 78.3 20.1 58.20

11-jan-74 17.3 73.3 19.3 54.00

Constant loss rate (Φ-index) =

and starts again on 1 January in Swaziland and 5 January in Mozambique. So the dry 

period is rather short. The discharge observations in this dry period are used to determine 

the date, t0 at which the depletion curve is starting. From the graph (figure 7.3) this appears 

to be 29 December 

1973, since on 28 

December and earlier 

the runoff is larger than 

is found from the 

extrapolated linear 

semi-log plot of the 

depletion curve. The 

base flow is now 

assumed to increase 

linearly from the start 

of the storm on 19 

December (QMoz = 0 

m
3
/s) to 29 December 

when QMoz = 58.90 

m
3
/s. The computation 

is shown in table 7.1 

and the separation line 

between base flow and surface runoff is plotted in figure 7.4.    

Fig. 7.4 Discharge from the Mozambican part and the 

base flow separation 
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7.4 Estimating effective precipitation 

Subtracting the base flow hydrograph from QMoz yields the surface hydrograph of the 

Mozambican part of the catchment (see table 7.1). The surface runoff in m
3
 divided by the 

catchment area (850 km
2
) gives the effective precipitation (Pe). In this example Pe = 71 

mm.  

 

Part of the areal rainfall P that does not belong to the fast runoff component (the surface 

hydrograph) is know as the losses, thus 

 

eP  -P  Losses             (7.2) 

where P is the areal rainfall. 

 

The precipitation that caused the surface hydrograph fell in the period 19 - 25 December 

1973. The daily rainfall data in the four gauging stations in the area are presented in table 

7.2. For each day an isohyetal map was drawn, taking into consideration the orographic 

effect related to the mountain range of the Libombos and Pequeno Libombos (see for 

example figure 7.5). The areal rainfall expressed in millimetres over the total catchment of 

850 km
2
 is then calculated for each day (see table 7.2). The areal rainfall over the entire 

Fig. 7.5 Isohyets Mozambican part of the Umbeluzi catchment for 20 December 1973 
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Fig. 7.6 Example of unit hydrograph 

Date P119 P5 P425 P6 Areal 

Rainfall

19-12-73 52.8 40.0 0.0 48.7 40

20-12-73 103.5 124.3 104.2 29.8 103

21-12-73 87.6 54.0 40.6 13.5 62

22-12-73 22.0 0.0 6.0 3.0 15

23-12-73 0.0 0.0 0.0 0.0 0

24-12-73 4.5 12.0 8.1 84.0 5

25-12-73 17.9 9.0 5.2 11.1 11

236

Table 7.2 Computation areal rainfall Mozambican 

part of the Umbeluzi catchment 

period of 7 days is P = 236 mm. The 

total losses are thus 236 - 71 = 165 

mm. In this workshop use will be 

made of the Φ-index, which assumes 

a constant loss rate during the 

duration of the rainstorm. A first 

estimate of the Φ-index of 45 mm/d 

brings the total losses to 2 x 45 + 40 

+ 15 + 5 + 11 = 161 mm. Increasing 

the Φ-index to 47 mm/d yields a loss 

of exactly 165 mm over the entire 

storm period. Subtracting the loss from the areal rainfall gives the effective rainfall Pe as 

shown in table 7.1. 

 

7.5 Derivation of the unit hydrograph 

The theory of the unit hydrograph was introduced by Sherman in 1932. The method is 

based on the assumption that the physical characteristics within a river basin (such as 

slope, size, drainage network, etc.) do not change significantly, and consequently there 

should be a great similarity in the shape of the hydrographs resulting from similar high 

intensity rainfalls. The unit hydrograph is defined as the runoff of a catchment to a unit 

depth of effective rainfall (e.g. 1 mm) falling uniformly in space and time during a period T 

(minute, hour, day). It should be noted that the intensity of the rainfall during this period T 

is equal to 1/T in order to obtain unit depth. The requirement of an effective precipitation 

falling uniformly in space limits the application of the unit hydrograph theory to 

catchments smaller than 500 - 1000 km
2
, since for larger basins the assumption of a 

uniform distribution of the rainfall is hardly ever valid. 

 

The specific period of time for the excess rainfall T is known as the ‘unit storm period’. 

For small to medium sized drainage basins there is a certain unit storm period for which 

the shape of the hydrograph is not significantly 

affected by changes in the time distribution of the 

excess rainfall over this unit storm period. This 

means that equal depths of excess rainfall with 

different time-intensity patterns produce hydrographs 

of direct runoff which are the same when the 

duration of this excess rainfall is equal to or shorter 

than the unit storm period. 

 

An example of a unit hydrograph is given in figure 

7.6, where the effective rainfall, Pe and the unit 

hydrograph, DUH (Distribution Unit Hydrograph) 

are expressed in the same units: mm/d. The unit 

hydrograph has a length of 4 days. The memory of 

the rainfall-runoff system is 3 days, since 3 days after 

the rain has stopped, the last rainfall excess comes to 

runoff. If the ordinates of the DUH are expressed in 

the same unit as the rainfall excess, they should sum 

to one. This will not be so if the ordinates convert 

unites from e.g. mm/d to m
3
/s. 
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Fig. 7.7 The process of convolution 

The unit hydrograph theory is based on the 

following assumptions: 

 

 The rainfall-runoff system is linear. This 

means that the duration of the surface runoff 

is constant for a given unit storm period, and 

the runoff is proportional to the effective 

rainfall depth. Thus, for a rainfall intensity 

twice the unit depth, the ordinates of the unit 

hydrograph have to be multiplied by two in 

order to obtain the corresponding surface 

runoff. 

 The principle of superposition applies. This 

is demonstrated with an example in figure 7.7 

for a rainstorm that lasts 3 days. The effective 

rainfall on these three days is 1, 3 and 2 mm, 

respectively. The rainfall of the first day 

produces a runoff Q1 equal to the unit 

hydrograph (DUH in figure 7.6). The rain of 

3 mm on the second day produces a runoff Q2 

starting on the second day and with ordinates 

three times the unit hydrograph (principle of 

linearity above). Finally the 2 mm rain on the 

third day results in a hydrograph Q3 with 

ordinates twice as large as the DUH and 

starting on day 3. The principle of 

superposition means that the rainfall-runoff 

relation of each day is independent of events 

on other days, so that the combined effect of 

the three day rainstorm may be found by 

adding the runoff (Q1 + Q2 + Q3) produced by 

each single day as shown on the bottom of 

figure 7.7. This process of computing the 

runoff for each time step and the subsequent 

shifting and adding is known as convolution. The process of convolution shown in 

figure 7.7 is numerically worked out in table 7.3. 

 Time-invariance. This means that the unit hydrograph does not change with time. So, 

in summer and winter, dry or wet season, the same direct runoff response to rainfall 

excess applies. 

 

 

Time 1 2 3 4 5 6 7 

DUH 0.1 0.5 0.3 0.1    

P 1 3 2     

Q1 0.1 0.5 0.3 0.1    

Q2  0.3 1.5 0.9 0.3   

Q3   0.2 1.0 0.6 0.2  

Q 0.1 0.8 2.0 2.0 0.9 0.2 0.0 

    Table 7.3 Numerical example of the convolution procedure 
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Thus if the rainfall-runoff system may be assumed linear and time-invariant, the unit 

hydrograph may be convoluted with the effective rainfall to yield the surface hydrograph, 

as demonstrated with an example in table 7.3. The convolution procedure is 

mathematically described below. 

 

Consider a rain storm lasting three 3 time steps (say days) for which the effective rainfall is 

given by P1, P2 and P3. The unit hydrograph consists of 4 ordinates, U1, U2, U3 and U4. The 

convolution procedure as explained in table 7.3 may be written as follows. 

 

  Q1 = P1U1 

  Q2 = P2U1 + P1U2 

  Q3 = P3U1 + P2U2  + P1U3 

  Q4 = 0       + P3U2 + P2U3 + P1U4 

  Q5 = 0       + 0       + P3U3 + P2U4  

  Q6 = 0       + 0       + 0       + P3U4  

   

Since ΣUi = 1 it follows that ΣQi = ΣPi, thus the total of effective rainfall equals the 

surface runoff. (The convolution procedure does not account for losses). The set of 

equations shows that if M is the total number of rainfall ordinates and J the length of the 

unit hydrograph, the total number of runoff ordinates N is found from 

 

1-JMN              (7.3) 

 

The general expression for the set of equations may be written as 

 

 



n

1i

1inin PUQ            (7.4) 

 

where Ui = 0 for i > J and Pi = 0 for i > M. 

 

The set of equations may also be written in matrix form 
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         (7.5) 

or 

U PQ              (7.6) 

 

from which U could be solved as QP
-1

. However, the inverse of matrix P can only be 

obtained if P is a square matrix. Multiplying both sides of equation 7.6 by the transpose P
T
 

yields a square matrix (P
T
P) for which the inverse exists. Hence 

 

PUPQP
TT              (7.7) 
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and the unknown vector U is found from 

 

  QPPPU
T1T 

            (7.8) 

 

The matrix inversion method is one of the methods to solve the unit hydrograph from a set 

of rainfall-runoff data. Other solutions to this problem are discussed in various text books. 

In the spreadsheet the matrix inversion method is available in the form of a multiple linear 

regression. The above problem is considered to consist of 6 linear equations of the type 

 

44332211 XcXcXcXcY          (7.9) 

 

 where the dependent Y-variable is the discharge, the X-coefficients the ordinates of the 

unit hydrograph and the independent X-variables the precipitation values. The procedure is 

worked out for the storm derived in table 7.1. The surface hydrograph is reproduced in 

table 7.4. The units (m
3
/s) are first changed to mm/d, so they are compatible to the 

precipitation units. The precipitation matrix is set up according to the procedure as 

explained above. The effective rainstorm for this example consists of two rainfall 

ordinates. The result of the multi-linear regression analysis is also shown in table 7.4. The 

unit hydrograph (the X-variables) is plotted in figure 7.6. The shape of the unit hydrograph 

should show a 

continuous rising limb 

and after the peak a 

continuous decreasing 

recession curve. It 

may be seen from 

figure 7.6 that the unit 

hydrograph obtained 

from the analysis has 

a reasonable shape. 

Moreover, table 7.4 

shows that ΣU is very 

close to one (ΣU = 

0.996). If sufficient 

data are available it is 

advisable to repeat the 

procedure for a 

number of flood 

events in order to 

obtain an ‘average’ 

unit hydrograph.  

 

Figure 7.7 finally 

shows the effective 

rainfall and the 

surface runoff from 

the Mozambican part 

of the Umbeluzi 

catchment.  
Table 7.4  Derivation of the unit hydrograph 

Qobs Qobs

m3/s mm/d Matrix P

5.31 0.54 56 0 0 0 0 0 0 0 0

223.32 22.70 15 56 0 0 0 0 0 0 0

151.63 15.41 0 15 56 0 0 0 0 0 0

106.64 10.84 0 0 15 56 0 0 0 0 0

74.65 7.59 0 0 0 15 56 0 0 0 0

55.56 5.65 0 0 0 0 15 56 0 0 0

39.17 3.98 0 0 0 0 0 15 56 0 0

25.18 2.56 0 0 0 0 0 0 15 56 0

12.59 1.28 0 0 0 0 0 0 0 15 56

0.00 0.00 0 0 0 0 0 0 0 0 15

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.9999784

R Square 0.9999568

Adjusted R Square -0.000389

Standard Error 0.2061633

Observations 10

Coefficients

Intercept 0.000

X Variable 1 0.010

X Variable 2 0.403

X Variable 3 0.167

X Variable 4 0.149

X Variable 5 0.096

X Variable 6 0.075

X Variable 7 0.051

X Variable 8 0.032

X Variable 9 0.013

Total 0.996
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Assignment  
Derive the surface unit hydrograph for the Mozambican part of the Umbeluzi catchment 

using data shown in table 7.5. The data may be retrieved from file 

i:groupwork\hydata\uh.txt. Follow the procedure as described above, consisting of the 

following steps. 

 

 Open file i:groupwork\hydata\uh.txt and save it in your own directory as Jnum. 

 Use the Muskingum method to route the discharge from Goba (E10) to Boane (E8). 

Use the following parameters: K = 1.24 and x = 0.40. 

E10 E8

GOBA BOANE Rainfall

Date Qm Qm P119 P5 P425 P6

m3/s m3/s (mm) (mm) (mm) (mm)

26-Jan-75 20.7 20.60 0.0 0.0 0.0 0.0

27-Jan-75 24.2 20.71 2.2 3.8 0.0 0.0

28-Jan-75 36.0 23.53 3.1 10.7 4.3 0.0

29-Jan-75 256.0 34.27 73.4 79.0 75.7 39.2

30-Jan-75 315.0 239.17 104.5 129.3 98.1 63.0

31-Jan-75 362.0 476.65 53.0 62.2 43.3 20.6

1-Feb-75 477.0 761.36 8.3 19.7 1.8 0.0

2-Feb-75 275.0 742.04 0.0 7.2 0.0 1.0

3-Feb-75 168.0 494.48 0.0 0.0 3.0 2.0

4-Feb-75 394.0 322.91 0.0 0.0 0.0 0.0

5-Feb-75 145.0 446.56 0.0 0.0 0.0 0.0

6-Feb-75 81.4 255.53 0.0 0.0 0.0 0.0

7-Feb-75 61.5 152.89 0.0 0.0 0.0 0.0

8-Feb-75 55.3 115.59 0.0 0.0 0.0 0.0

9-Feb-75 49.8 99.85 0.0 0.0 0.0 0.0

10-Feb-75 48.0 89.24 0.0 0.0 0.0 0.0

11-Feb-75 46.8 82.9 0.0 0.0 0.0 0.0

12-Feb-75 45.9 78.1 0.0 0.0 0.0 0.0

13-Feb-75 44.3 74.2 0.0 0.0 0.0 0.0

14-Feb-75 43.7 70.0 0.0 0.0 0.0 0.0

15-Feb-75 49.3 72.3 8.7 9.3 7.6 2.1

16-Feb-75 56.7 83.3 16.9 18.1 12.9 6.4

17-Feb-75 55.4 87.7 11.1 12.6 7.3 1.9

Table 7.5 Rainfall and discharge data Umbeluzi catchment for January/February 1975 

Fig. 7.6  Derived unit hydrograph 

0.0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8 9 10

D
is

c
h

a
rg

e
 (
m

m
/d

)

Time interval (days)

Surface Unit Hydrograph
Mozambican part Umbeluzi catchmnet

Fig. 7.7 Effective rainfall and surface runoff of the 

Mozambican part of the Umbeluzi 

catchment 

0

10

20

30

40

50

600

5

10

15

20

25

2
0

-d
e

c

2
1

-d
e

c

2
2

-d
e

c

2
3

-d
e

c

2
4

-d
e

c

2
5

-d
e

c

2
6

-d
e

c

2
7

-d
e

c

2
8

-d
e

c

2
9

-d
e

c

3
0

-d
e

c

P
e

 (
m

m
/d

)

Q
s

 (
m

m
/d

)

Rainfall-Runoff 
Mozambican part Umbeluzi catchment

Effective precipitation Surface runoff



7  Rainfall Runoff Modelling   54 Workshop on  Hydrology 

 
  

 Plot the observed hydrographs in Goba and Boane as well as the routed hydrograph in 

one figure. 

 Subtract the routed hydrograph from the observed hydrograph in Boane. 

 Plot the resulting hydrograph QMoz in a chart with the vertical axis in a log-scale and 

determine the start of the depletion curve. 

 Compute the base flow as a linear increase of the discharge from the start of QMoz to the 

start of the depletion curve and plot the base flow separation with QMoz in a chart (see 

e.g. figure 7.4). 

 Subtract the base flow from QMoz to obtain the surface hydrograph from the 

Mozambican part of the Umbeluzi catchment. 

 Draw isohyets on the maps (which are found in the back of these notes) and compute 

for each day the areal rainfall, using the data in table 7.5. 

 Compute the total surface runoff from the Mozambican part of the Umbeluzi catchment 

in m
3
 as well as in mm. 

 Make a chart showing the effective precipitation and the surface runoff in mm/d. 

Compute the  Φ-index and determine the effective rainfall in the Mozambican part of 

the Umbeluzi catchment. 

 

Derivation of the unit hydrograph: 

 Construct a matrix with effective precipitation values similar to table 7.4. 

 Find the unit hydrograph from a multiple-linear regression on the surface runoff 

(values in mm) as the Y-dependent variable and the effective precipitation as the X-

independent variable. Put the Y-intercept to zero. 

 Check if the sum of the ordinates of the unit hydrograph sum to approximately one. 

 Make a chart showing the unit hydrograph. 

 

Validation procedure: 

 Use the validation data, which apply for the period 14-25 Dec 1975. 

 Use Muskingum to route the 

discharge from Goba to 

Boane. 

 Convolute effective areal 

rainfall with the derived unit 

hydrograph (equation 7.5). 

 Add the computed surface 

runoff from Mozambique to 

the discharge from Swaziland. 

 Compare the observed and 

computed hydrograph in a 

chart. See e.g. figure 7.8. 

 Save the sheet as Jnum. 

 

 

Question: Please write in the top left corner of your spreadsheet your opinion on the 

“goodness of fit”, in particular with regard to the recession curve. 

Fig. 7.8 Example validation 
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8 RESERVOIR OPERATION 

8.1 Introduction 

The spreadsheet exercises presented below are developed to illustrate the role of the mass 

balance calculations in the design and operation of a reservoir. They aim to give insight in 

the determination of the reservoir capacity, the dimension of the spillway and the use of 

rule curves. It should be realized that reservoir design and operation is a rather complex 

matter which cannot be dealt with in a few exercises. This applies in particular if the 

reservoir is to serve more than one purpose and if the socio-economical aspects are taken 

into consideration.  

The exercises make use of a long time series (1920 - 1980) of monthly rainfall and runoff 

data. The data refer to the Jatiluhur reservoir in the Citarum river basin on Java 

(Indonesia). Part of the data (in particular the rainfall data) is synthetic. The size of the 

catchment upstream the dam site is 4550 km
2
. The rainfall in the catchment varies from 

1500 to 3500 mm/a, with a monthly average at the reservoir site of 187 mm. The average 

monthly runoff in Jatiluhur varies from 6 to 610 m
3
/s with a long-term average of 183 

m
3
/s. 

8.2 Determination of the reservoir capacity 

There are two basic methods to determine the capacity of a reservoir: the graphical 

approach (Rippl method) and the numerical approach (Sequent Peak Algorithm). Both 

methods make use of the critical period, which is the period when the outflow (demand, 

yield or draft) from the reservoir is larger than the inflow. The difference in the 

accumulated draft and the accumulated inflow during the critical period is the storage that 

is required to supply the requested draft in the critical period (or to assure safe yield). If the 

considered time includes more than one critical period, the largest reservoir storage is 

taken as the reservoir capacity. It is obvious that if the computation of the reservoir 

capacity is based on one year of data, it may not be representative, since the considered 

year may be more dry or more wet than normal. A long time series, say 20 years or more 

is, therefore, recommended as the design period. In this assignment only one year is 

considered in order to reduce the computational effort. 

 

The Graphical Approach (Rippl method) 

The graphical approach can only be applied to a constant draft from the reservoir. The 

method requires that the inflow is accumulated and plotted, which is usually done on a 

monthly basis. The required storage is then obtained by drawing tangents forward in time 

from the start of the critical period and from the end of the critical period. The critical 

period includes those months during which the inflow is less than the draft. Table 8.1 gives 

an example for the Jatiluhur reservoir for the year 1965. It may be noticed that the 

computations are carried out for 24 months. The series for1965 is repeated, because the 

critical period may not be terminated before the end of the year. The incoming flow is first 

converted from m
3
/s to MCM (10

6
 m

3
) per month, where a month is taken to have a length 

of 30.4 days. The draft is taken constant and equal to the average inflow, which is known 

as the ideal reservoir case. The example shows that from May onwards the draft is larger 

than the inflow. From that time the reservoir is depleting to reach a minimum level in 

November after which the inflow is larger than the draft. The difference between the 

cumulative inflow in November and the tangent to the cumulative inflow in April is the 

required storage to sustain the constant draft. The computed mass curves and tangents are 

plotted in figure 8.1. 
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Draft D = Qav "Ideal Reservoir case''

Month Qin Qin cum Qin cum Qout cum Qout Capacity

(m3/s) (MCM) (MCM) (MCM) (MCM) (MCM)

1965 0

Jan 457 1200 1200

Feb 466 1224 2424

Mar 186 489 2913

Apr 171 449 3362 3362

May 121 318 3680 3779

Jun 55 144 3824 4196

Jul 38 100 3924 4614

Aug 15 39 3963 5031

Sep 9 24 3987 5448

Oct 15 39 4027 5865

Nov 75 197 4224 6282 4224 2059

Dec 298 783 5006 6699 4641 2059

Jan 457 1200 6207 5058

Feb 466 1224 7431 5475

Mar 186 489 7919 5892

Apr 171 449 8368 8368

May 121 318 8686 8785

Jun 55 144 8830 9203

Jul 38 100 8930 9620

Aug 15 39 8970 10037

Sep 9 24 8993 10454

Oct 15 39 9033 10871

Nov 75 197 9230 11289 9230 2059

Dec 298 783 10012 11706 9647 2059

Qav= 159 417

Table 8.1 The graphical approach (Rippl 

diagram) Ideal Reservoir Case 

Rippl diagram / Cumulative Mass Curve
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Fig. 8.1 The Ideal Reservoir Case: Example of the graphical 

approach (Rippl diagram) 

The draft is generally taken smaller than the average inflow in order to reduce the height 

and thus the cost of the dam. If the draft is taken equal to 2/3 of the average inflow the 

required reservoir capacity reduces to approximately half of the value that was computed 

for the ideal reservoir case (see table 8.2 and figure 8.2). As a consequence 1/3 of the 

inflow leaves the reservoir through the spillway and is lost for e.g. energy production. 

 

The Numerical Approach (Sequent Peak Algorithm) 

The numerical approach is particularly suitable for a draft which is not constant in time. 

The procedure computes for each month t the storage deficit K in the reservoir as follows 

 

otherwise0K

0KQDKK

t

ttt1tt



 
       (8.1) 

 

where D is the draft and Q is the inflow. To illustrate the flexibility of the method, the 

previous set of data is used with a variable demand as follows: 

Table 8.2  Rippl method with D = 2/3  

Qav 

Constant Draft D = 2/3*Qav

Reservoir

Month Qin Qin cum Qin cum Qout cum Qout Capacity

(m3/s) (MCM) (MCM) (MCM) (MCM) (MCM)

1965 0

Jan 457 1200 1200

Feb 466 1224 2424

Mar 186 489 2913

Apr 171 449 3362

May 121 318 3680 3680

Jun 55 144 3824 3958

Jul 38 100 3924 4236

Aug 15 39 3963 4514

Sep 9 24 3987 4792

Oct 15 39 4027 5070

Nov 75 197 4224 5349 4224 1125

Dec 298 783 5006 5627 4502

Jan 457 1200 6207 5905 4780

Feb 466 1224 7431 6183 5058

Mar 186 489 7919 5336

Apr 171 449 8368 5614

May 121 318 8686 8686

Jun 55 144 8830 8964

Jul 38 100 8930 9242

Aug 15 39 8970 9520

Sep 9 24 8993 9799

Oct 15 39 9033 10077

Nov 75 197 9230 10355 9230 1125

Dec 298 783 10012 10633 9508

Qav= 159 417

2/3*Qav 278

Fig. 8.2  Graphical Approach, Rippl method with D = 2/3 

Qav 

Rippl diagram / Cumulative Mass Curve 
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for the first eight months the draft equals 0.5 Qav 

and in the last four months D = 2 Qav. It should 

be noted that the average annual draft equals 2/3 

Qav, similar as in the previous example. 

  

Assignment 

Use both methods (Graphical Approach/Rippl 

Diagram and the Sequent Peak Algorithm) to 

determine the minimum reservoir capacity for 

the year with inflow data that has been assigned 

to you. The Graphical Approach /Rippl Diagram 

will be used for a constant draft D equal to the 

average inflow Qav and subsequently for a draft 

D = 2/3 Qav. The Sequent Peak Algorithm will 

be applied for a variable draft, such that Dav = 

2/3 Qav. The inflow data are found in file 

i:\groupwork\hydata\jatiluhur.txt 

 Copy the inflow data of only the first year 

assigned to you into a new spreadsheet. 

 Copy and paste these data below, to yield a time series of 24 months. 

 Complete a table similar to table 8.1. 

 Make a chart with the cumulative mass curves and the tangents (see figure 8.1). 

 Repeat the Cumulative Mass Approach for a draft equal to 2/3 of the average inflow 

(see table 8.2 and figure 8.2). 

 Notice the large difference in reservoir capacity for a relatively small decrease in 

demand. 

 Make a third table similar to table 8.3 for the Sequent Peak Algorithm. 

 Use a variable demand as follows: the first 8 months D = 1/3 Qav and the last four 

months D = 4/3 Qav. 

 Compute the reservoir capacity and compare with the Rippl method. 

 Save the worksheet as Knum. 

8.3 Reservoir simulation 

When simulating the water balance of a reservoir, the most important components are the 

inflow and the draft, as used in the previous exercise. If the storage capacity of the 

reservoir is fixed, the reservoir may run dry or become full and start to spill. Taking these 

aspects into account the water balance may be written as follows: 

 

  t  ShSpDQleakQSS 1tt          (8.2) 

 

St-1  Storage in the reservoir at the beginning of the time step (m
3
) 

 St  Storage in the reservoir at the end of the time step (m
3
) 

 Q  Inflow into the reservoir during the time step (m
3
/time) 

 Qleak Leakage underneath the dam site (m
3
/time) 

 D  Target release from the reservoir during the time step (m
3
/time) 

 Sp  Spill from reservoir during the time step (m
3
/time) 

 Sh  Shortage during the time step (m
3
/time) 

 Δt  Length of time step (time) 

Table 8.3 Example Sequent Peak Algorithm 

Sequent Peak Algorithm

Variable Draft D where average Dav = 2/3*Qav

Month Qin Qin D K

(m3/s) (MCM) (MCM) (MCM)

1965 0

Jan 457 1200 139 0

Feb 466 1224 139 0

Mar 186 489 139 0

Apr 171 449 139 0

May 121 318 139 0

Jun 55 144 139 0

Jul 38 100 139 39

Aug 15 39 139 139

Sep 9 24 556 672

Oct 15 39 556 1188

Nov 75 197 556 1548 Maximum

Dec 298 783 556 1321

Jan 457 1200 139 260

Feb 466 1224 139 0

Mar 186 489 139 0

Apr 171 449 139 0

May 121 318 139 0

Jun 55 144 139 0

Jul 38 100 139 39

Aug 15 39 139 139

Sep 9 24 556 672

Oct 15 39 556 1188

Nov 75 197 556 1548 Maximum

Dec 298 783 556 1321

Qav= 159 417 278
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Equation 8.2 is first applied with D taken equal to the target release. The actual release is 

found after comparing St with the maximum and minimum storage in the reservoir. 

 

The length of the time interval may vary from 1 hour to 1 month, depending on the size of 

the reservoir and the purpose of the simulation. For a study of flood control problems a 

small time step (1 hour or 1 day) is required, but for the simulation of reservoir operation 

steps of one week or one month may be more appropriate. In general, the larger the 

reservoir, the larger the time step to be used. 

 

Assignment 

Simulate the water balance of a reservoir for the two years assigned to you, using a time 

step of one month. The following data are applicable: 

The reservoir capacity equals the storage determined in the previous exercise with the 

Rippl diagram. 

Minimum required storage in the reservoir (dead storage) = 20% of the reservoir capacity. 

Target release:  during January - April:  1.5 Qav 

     during May - December:  2/3 Qav 

There is a constant leakage under the dam site Qleak = 0.5 m3/s 

The storage at the start of the simulation is two third of its maximum value. 

The procedure includes the following steps: 

 Copy the inflow data of the two years assigned to you to an empty spreadsheet. 

 Complete the next two columns, similar to table 8.4. 

 Compute in the next column the volume in the reservoir as follows: 

St = St-1 + Q - Qleak - D and limit this value with IF-statements to the maximum and 

minimum reservoir storage. 

 Spilling occurs if St is larger than the reservoir capacity. 

 Shortage occurs if St is smaller than the dead storage. 

 The actual release equals the target release minus the shortage and plus the spilling. 

 Make a chart similar to figure 8.3 with the target and the actual release. 

 Save the worksheet as Lnum. 

Fig. 8.3 Target and actual release 

0

200

400

600

800

1000

1200

1400

Ja
n

M
ar

M
ay Ju

l

Se
p

N
o

v

Ja
n

M
ar

M
ay Ju

l

Se
p

N
o

v

M
C

M
/m

o
n

th

Target and Actual Release

Target Release Actual Release



8  Reservoir Operation   59 Workshop on  Hydrology 

 

 

 
  

Month Qin Qin

Target 

Release

Stored 

Volume Spilling Shortage

Actual 

Release

1965/66 (m3/s) (MCM) (MCM) (MCM) (MCM) (MCM) (MCM)

787

Jan 457 1200 647 1181 159 0 805

Feb 466 1224 647 1181 576 0 1223

Mar 186 489 647 1021 0 0 647

Apr 171 449 647 822 0 0 647

May 121 318 287 852 0 0 287

Jun 55 144 287 707 0 0 287

Jul 38 100 287 518 0 0 287

Aug 15 39 287 269 0 0 287

Sep 9 24 287 236 0 232 55

Oct 15 39 287 236 0 249 38

Nov 75 197 287 236 0 92 196

Dec 298 783 287 730 0 0 287

Jan 261 686 647 768 0 0 647

Feb 235 617 647 737 0 0 647

Mar 346 909 647 997 0 0 647

Apr 178 468 647 817 0 0 647

May 152 399 287 927 0 0 287

Jun 96 252 287 891 0 0 287

Jul 33 87 287 689 0 0 287

Aug 22 58 287 458 0 0 287

Sep 27 71 287 240 0 0 287

Oct 167 439 287 390 0 0 287

Nov 202 531 287 631 0 0 287

Dec 315 827 287 1170 0 0 287

Average 164.2 431.2 407.2 413.9

Reservoir capacity = 1181 MCM

Dead Storage = 236 MCM

Draft Jan - April:3/2*Qav = 647 MCM

Draft May - Dec: 2/3*Qav = 287 MCM

Qleak 0.50 m3/s 1.3 MCM

Table 8.4 Example of reservoir simulation 

So far the effect of 

evaporation from 

and precipitation on 

the reservoir has not 

been taken into 

consideration. These 

components are 

generally neglected 

in case of flood 

routing, using small 

time steps. 

However, when 

simulating large 

time periods these 

contributions may 

be significant, in 

particular if the 

surface area of the 

reservoir is large in 

relation to the 

storage. 

If the flow series 

used for simulation 

were obtained at the 

dam site, before the 

dam was built, the 

discharge values 

include the 

precipitation on the 

area occupied by the 

reservoir. With regard to the evaporation losses, only the increase due to changing the land 

use from a vegetated area with actual evapotranspiration Ea to open water with an 

evaporation rate Eo has to be considered. Hence the water balance equation may be written 

as 

 

   t  AEaEoDQleakQSS
'

1tt         (8.3a) 

where 

 

 D’ Actual release (m
3
/time) 

 Eo Open water evaporation (m/time) 

 Ea Actual evapotranspiration before the dam was built (m/time) 

 A Surface area of the reservoir (m
2
) 

 

In this workshop the flow series is considered as inflow into the reservoir after the 

construction of the dam, hence equation 8.3 takes the form 

 

   t  AEaPDQleakQSS
'

1tt          (8.3b) 

 

where P is the precipitation measured at the dam site in m/time. 
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The surface area of the reservoir changes with the amount of water stored. The solution of 

equation 8.3, therefore, requires a relation between A and S. The average value of A for 

time step Δt may then be found as the mean of A for the storages St-1 and St.  Since St is 

unknown, equation 8.3 has to be solved by iteration. 

 

The following analytical equations approximate the relations between storage, area and 

water level for the Jatiluhur reservoir reasonably well. 

 

2165-H 65H 3.0A
2           (8.4) 

 
2.1Slog24.0

10H
             (8.5a) 

 
5Hlog1667.4

10S
            (8.5b) 

where 

 A area of the reservoir in ha 

 H water level in the reservoir in m 

 S storage in the reservoir in MCM (= 10
6
 m

3
) 

 

Equation 8.5b is the inverse of equation 8.5a. This equation is required in some 

assignments. The relationships are also depicted in figures 8.4 and 8.5. 

 

Assignment 

Extend the table in worksheet Lnum to include in the water balance computation the 

precipitation on and the open water evaporation from the reservoir.  Precipitation and 

evaporation data may be found in file i:\groupwork\hydata\jatiluhur.txt. The computations 

include the following steps: 

 Make a first estimate of St neglecting precipitation and evaporation (Use the water 

balance equation with St-1 equal to the third (last) estimate of the previous time step). 

 Compute in the next columns estimates for Ht and At using equations 8.5 and 8.4. 

 The water balance component (P - Eo) is estimated as (P - Eo*30.4)*(At + At-1)/2*10
-5

 

MCM, where P is in mm/month, Eo in mm/d and the area A in ha. 

 Apply equation 8.2b to compute a second estimate of St and limit this value with IF-

statements to the maximum and minimum reservoir storage. 

 Table 8.5 shows that a third estimate is not required (the values of the third and second 

estimate are exactly the same). 

Fig. 8.4 Storage-Elevation curve Jatiluhur 
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Fig. 8.5 Area-Elevation curve Jatiluhur 
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 Compute in the next columns the Spilling, Shortage and Actual release as done 

previously. 

 Save sheet Lnum. 

 

8.4 Rule curves 

In the reservoir simulation for yield analysis the routing of the inflow followed the 

Standard Operating Rule (SOR), which may be summarized as follows: 

 

1 the target demand is not released if the storage at the end of the time period will 

be less than the dead storage; 

2 if at the end of the time interval the reservoir is full, the actual release equals the 

target value plus the amount that is spilling. 

 

In the analysis of reservoir yield, the time series of inflow, precipitation and evaporation 

are known values. This allows the computation of the unknown parameters, such as the 

variation of the storage over time and the actual release or outflow of the reservoir. From 

the yield analysis the target release may be approximated as a function of time. After the 

construction of the reservoir the SOR is not likely to be fully applicable, because the 

reservoir may serve more than one objective, such as water conservation, power 

generation, flood retention and recreation. For multi-purpose reservoirs, the operators have 

to control the releases, taking all objectives into consideration and knowing that future 

inflows are subject to hydrological uncertainty. For this purpose series of reservoir water 

levels (rule curves) are established that vary throughout the year. The rule curves are used 

First 

estimate H A P-Eo

Second 

estimate H A P-Eo

Third 

estimate Spilling Shortage

Actual 

Release Eo P

(MCM) m ha MCM (MCM) m ha MCM (MCM) (MCM) (MCM) (MCM) mm/d mm/month

787 79 4790 787 79 4790 787

1181 87 5710 15.6 1181 87 5710 15.6 1181 174 0 821 3.5 404

1181 87 5710 18.3 1181 87 5710 18.3 1181 594 0 1241 3 411

1021 84 5366 3.5 1025 84 5374 3.5 1025 0 0 647 4 185

826 79 4893 1.9 828 79 4897 1.9 828 0 0 647 4.5 173

857 80 4972 -0.1 857 80 4972 -0.1 857 0 0 287 4.5 135

712 77 4583 -2.5 710 77 4576 -2.5 710 0 0 287 4.5 84

521 71 3976 -2.8 518 71 3966 -2.8 518 0 0 287 4.5 71

269 61 2884 -3.4 265 60 2865 -3.4 265 0 0 287 5 53

236 59 2697 -3.3 236 59 2697 -3.3 236 0 239 48 5.5 48

236 59 2697 -3.2 236 59 2697 -3.2 236 0 253 35 6 64

236 59 2697 -1.1 236 59 2697 -1.1 236 0 93 195 5 110

730 77 4633 5.9 736 77 4650 5.9 736 0 0 287 4 282

773 78 4753 6.4 780 78 4770 6.4 780 0 0 647 3.5 242

749 78 4686 6.2 755 78 4703 6.2 755 0 0 647 3 222

1016 83 5353 9.9 1026 84 5376 9.9 1026 0 0 647 4 319

845 80 4942 2.2 847 80 4948 2.2 847 0 0 647 4.5 179

958 82 5219 1.1 959 82 5222 1.1 959 0 0 287 4.5 159

922 82 5134 -1.1 921 82 5131 -1.1 921 0 0 287 4.5 115

719 77 4602 -3.4 716 77 4592 -3.4 716 0 0 287 4.5 67

485 70 3845 -4.0 481 70 3830 -4.0 481 0 0 287 5 58

263 60 2852 -3.2 260 60 2834 -3.1 260 0 0 287 5.5 73

410 67 3551 0.0 410 67 3551 0.0 410 0 0 287 6 181

651 75 4403 2.2 654 75 4409 2.2 654 0 0 287 5 208

1181 87 5710 8.8 1181 87 5710 8.8 1181 20 0 307 4 295

Average P - Eo = 2.2 MCM Average release = 415.7 MCM

With rainfall and evaporation

Table 8.5 Example reservoir simulation including rainfall and evaporation 
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by the operators as guidelines for the actions to be taken. In the example in this workshop 

the Jatiluhur reservoir serves two purposes: water conservation (for irrigation) and flood 

retention (the rule curves are given in figure 8.6).  

The following operation rules generally apply for this situation: 

 

1 The Flood Rule Curve (FRC) represents the maximum storage levels necessary to store 

large floods. It is usually considered a hard boundary, meaning that the level may not 

be crossed. The operator may not always succeed in obeying this rule, in particular on a 

day-to-day basis. The success depends on the means of the operator to release water. If 

the reservoir e.g. uses a bottom gate with a maximum capacity Qb, the operation rule is 

as follows: 

  If S > FRC and S - FRC < Qb then Q = D + (S - FRC) and S = FRC 

 If S > FRC and S - FRC > Qb then Q = D + Qb and S = S – Qb (in this case the 

storage S exceeds the FRC, where D is the target draft and Q is the actual release). 

 

2 The Conservation Rule Curve (CRC) is a soft boundary (it may be crossed). In this 

example the CRC refers to the conservation of water for irrigation. If the storages 

crosses the CRC the release from the reservoir is reduced by a certain rationing 

percentage r as follows: 

  If S < CRC, then Q = r*D and S is recomputed with Q = r*D 

 

In this way the effect of shortages on the water users is minimized. The application of 

water rationing is also referred to as hedging. Instead of reducing the release with a 

certain percentage, special rules curves (hedging rule curves) which apply in case of 

water shortages, may be used. 

 

3 The Dead Storage Curve (DSC) is a hard boundary. The storage may never drop below 

this boundary as a result of releases. The dead storage requirement is often for 

environmental or ecological reasons. If S drops below DSC, the release is reduced as 

follows: 

 

If S < DSC, then Q = S + D - DSC and S = DCS 

  (Q needs to be corrected if it appears to be negative due to evaporation) 

Fig. 8.6 Example rule curves 
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Assignment 

Simulate the reservoir storage for the two years assigned to you using the following rule 

curves: 

- The Full Supply Level (FSL) is 2856 MCM (water level of 107 m). 

- The Dead Storage Curve (DSC) is horizontal and equal to a storage of 700 MCM. 

- The Flood Rule Curve (FRC) and the Conservation Rule Curve (CRC) are given in the 

table below in MCM. 

 
 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

FRC 2540 2670 2740 2856 2856 2856 2856 2856 2856 2856 2695 2475 

CRC 910 1710 2250 2380 2270 2350 2290 2120 1940 1410 960 840 

 

The following data apply: 

- The leakage underneath the dam is 0.5 m
3
/s. 

- The rationing in case of water shortage is 75 %. 

- The capacity of the bottom gate is 100 m
3
/s. 

- The initial storage is 2/3 of the reservoir capacity. 

- Other data (target release, precipitation, evaporation, storage - area relationships) are 

the same as in the previous assignment. 
 

Take the following steps: 

 Copy the two years with inflow data to a fresh worksheet. 

 Add columns with target release data, rule curves and the contribution from 

precipitation and evaporation (using the surface area of the previous time step), similar 

to table 8.6. 

Month Qin Qin

Target 

Release

Full 

Supply 

Level

Flood 

Rule 

Curve

Conser-

vation 

Rule 

Curve

Dead 

Storage 

Curve P - Eo

Adjust 

for flood 

control

Adjust 

for 

Conser-

vation Shortage Spilling

Stored 

Volume H A Eo P

Actual 

Release

1965/6

6 m3/s MCM MCM MCM MCM MCM MCM MCM MCM MCM MCM MCM MCM m ha mm/d mm/month MCM

1904 97 6972

Jan 457 1200 647 2856 2540 910 700 20.7 0 0 0 0 2477 103 7764 3.5 404 647

Feb 466 1224 647 2856 2670 1710 700 24.8 263 0 0 0 2814 107 8176 3 411 910

Mar 186 489 647 2856 2740 2250 700 5.2 0 0 0 0 2660 105 7991 4 185 647

Apr 171 449 647 2856 2856 2380 700 2.9 0 0 0 0 2463 103 7747 4.5 173 647

May 121 318 287 2856 2856 2270 700 -0.1 0 0 0 0 2493 104 7784 4.5 135 287

Jun 55 144 287 2856 2856 2350 700 -4.1 0 72 0 0 2417 103 7687 4.5 84 215

Jul 38 100 287 2856 2856 2290 700 -5.1 0 72 0 0 2295 102 7526 4.5 71 215

Aug 15 39 287 2856 2856 2120 700 -7.5 0 72 0 0 2110 100 7273 5 53 215

Sep 9 24 287 2856 2856 1940 700 -8.7 0 72 0 0 1909 97 6979 5.5 48 215

Oct 15 39 287 2856 2856 1410 700 -8.3 0 0 0 0 1651 94 6574 6 64 287

Nov 75 197 287 2856 2695 960 700 -2.8 0 0 0 0 1557 93 6415 5 110 287

Dec 298 783 287 2856 2475 840 700 10.3 0 0 0 0 2062 99 7204 4 282 287

Jan 261 686 647 2856 2540 910 700 9.8 0 0 0 0 2109 99 7271 3.5 242 647

Feb 235 617 647 2856 2670 1710 700 9.5 0 0 0 0 2087 99 7241 3 222 647

Mar 346 909 647 2856 2740 2250 700 14.3 0 0 0 0 2362 102 7616 4 319 647

Apr 178 468 647 2856 2856 2380 700 3.2 0 162 0 0 2346 102 7595 4.5 179 485

May 152 399 287 2856 2856 2270 700 1.7 0 0 0 0 2459 103 7741 4.5 159 287

Jun 96 252 287 2856 2856 2350 700 -1.7 0 0 0 0 2421 103 7692 4.5 115 287

Jul 33 87 287 2856 2856 2290 700 -5.4 0 72 0 0 2286 101 7514 4.5 67 215

Aug 22 58 287 2856 2856 2120 700 -7.1 0 72 0 0 2120 100 7287 5 58 215

Sep 27 71 287 2856 2856 1940 700 -6.9 0 72 0 0 1967 98 7067 5.5 73 215

Oct 167 439 287 2856 2856 1410 700 -0.1 0 0 0 0 2118 100 7284 6 181 287

Nov 202 531 287 2856 2695 960 700 4.1 0 0 0 0 2364 102 7618 5 208 287

Dec 315 827 287 2856 2475 840 700 13.2 263 0 0 0 2653 105 7984 4 295 550

Average 431.2 2.6 401.3

Reservoir capacity = 2856 MCM

Dead Storage = 700 MCM

Draft Jan - April: 3/2*Qav = 647 MCM

Draft May - Dec: 2/3*Qav = 287 MCM

Qleak 0.5 m3/s 1.3 MCM

Rationing percentage = 75 %

Capacity bottom gate 100 m3/s = 263 MCM

Table 8.6 Example of reservoir operation rule curves 
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 Add a column to compute the 

release for flood control. 

 Compute in the next column 

the reduction (1 - r)*D for the 

situation that the storage is 

less than the CRC. 

 Shortage and spilling are 

computed similar to the 

previous assignment. 

 Compute the stored volume 

taking into account the 

corrections made. 

 The actual release is then 

found as the target release plus the adjustment for flood control, minus the correction 

for conservation, minus the shortage and plus the spilling. 

 Make a chart similar to figure 8.7 showing the rule curves and the simulated storage. 

 Check your spreadsheet as follows: 

 If there is spilling the storage must equal 2856 MCM 

 If there is shortage the storage must equal 700 MCM 

 Overall water balance: compute averages of Qin, (P-Eo) and actual release Qact.  

 Storage in reservoir at the end of period = 1904 + 24[Qin+(P-Eo)-Qact-1.3]. 

 Save the sheet as Mnum. 

 

8.5 Reservoir routing 

A reservoir must contain a spillway designed such that the largest flood which is expected 

to occur can pass without overtopping the dam and thus endangering the structure with 

potential disastrous consequences downstream. The design flood is selected as the 

maximum probable flood which could occur upstream of the reservoir. Instead of 

determining the probable maximum flood, also the flood with a return period of X years is 

used, where the value of X may vary from 10 to 10,000 years depending on the possible 

damage and the risk of the loss of lives.  

The design flood is routed through the reservoir for a given width of the spillway. The 

simulation yields the maximum water level above the crest of the spillway during the 

passage of the flood. To obtain the ultimate height of the dam a safety margin should be 

added to the maximum water level during the passage of the flood to take into account 

wave run-up and wind set-up. The routing procedure may be repeated for a different width 

of the spillway resulting in a different height of the dam. The optimal dimensions are then 

determined by minimizing the construction costs.  

The same water balance equation as discussed earlier may be applied for reservoir routing, 

but the time step is usually much smaller than for the yield analysis. With time steps in the 

order of hours, the precipitation and evaporation components in the water balance equation 

may be neglected, resulting in the following procedure: 

1. Assume a full reservoir at the start of the design storm, or Ho = Hc, where Ho is the 

water level in the reservoir at the start of the simulation and Hc is the level of the crest 

of the spillway. 

2. Estimate the flow across the spillway, Q, with the following formula 

 

Fig. 8.7 Example simulation of reservoir operation 
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  c 

cH-H B KQ             (8.7) 

 

where H is the water level in the reservoir (H = Ho), K and c are parameters depending 

on the type of spillway and B is the width of the spillway crest. 

3. Assuming that the outflow over the crest of the spill way is constant during the time 

step: Q = Q(H), a first approximation of the reservoir storage St
*
 at the end of the time 

step is found from the water balance equation (neglecting precipitation and 

evaporation) as 

 

  t  QISS 1t

*

t            (8.8a) 

  

 where I is the inflow during time step  t. The equation is also called the predictor. 

4. This first estimate of the storage St
*
 may be used in equation 8.5a to find the 

corresponding water level Ht
*
. 

5. A better estimate of the flow across the spillway Q is then found with equation 8.7 

where H = (Ht-1 + Ht
*
)/2. 

6. Equation 8.8a is subsequently computed again with Q = Q
*
  

 

  t  QISS
*

1tt             (8.8b) 

 

This equation is called the corrector. 

7. The corresponding water level Ht is then found from equation 8.5a with S = St. 

8. If necessary steps 5 to 7 are repeated with Ht instead of Ht
*
 until no more significant 

change in St occurs. 

 

An example of the above procedure, given in table 8.7, shows that after two iterations the 

simulated value for the outflow Q is almost constant (Q
*
 ≈  Q

**
). Figure 8.8 is a plot of the 

inflow I and the (extended series of simulated) outflow Q. It shows that the maximum 

outflow occurs at the point of intersection with the inflow hydrograph. The reason is that 

the maximum water level in the reservoir (and thus the outflow Q) occurs for I = Q. 

 

Assignment 

Route a design flood through the Jatiluhur reservoir. The time step to be used is 3 hours 

(0.125 days). The design flood has a triangular shape with a duration of 3 days. Each 

participant is given the peak flow rate (m
3
/s) and a maximum reservoir level. Apply the 

above procedure with two iterations. Simulate the maximum water level in the reservoir for 

a width of the spillway of 10 m. Repeat the simulation for different widths to find the size 

of the spillway that keeps the water level in the reservoir below the given maximum. The 

crest of the spillway is at a level of 107 m and at the start of the simulation the reservoir is 

full. The procedure is the following (see table 8.7): 

Generate in the first column 160 time steps of 3 hours (a period of 20 days). 

 Compute the triangular inflow hydrograph for the given peak flow rate in the next 

column. 

 Set up the headings of the remaining columns and set for t = 0 the initial values for S = 

2856 MCM and H = 107 m. 

 Use equation 8.7 with K = 1.5 and c = 1.5 and B = 10 in the third column to estimate Q 

for H in the previous time step. 

 Apply the predictor equation 8.8a to compute St
*
 in the next column. 
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 In the next column Ht
*
 is computed with equation 8.5a. 

 The value of Qt
*
 is estimated from equation 8.7 for using the average value of Ht

*
 (this 

time step) and H (previous time step). 

 Apply in the next column the corrector equation 8.8b to find St
**

. 

 Repeat in the next columns the computations of H, Q, S and H in a second iteration. 

 Copy the first row to the other time steps. 

 Repeat the computations for different widths of the spillway, and determine the 

minimum width  (with an accuracy of 5 m) that keeps the peak water level below the 

given maximum. 

 Make a chart with the inflow and outflow hydrograph. 

 Show in a chart the change of the water level in the reservoir with time. 

 Save the sheet as Nnum. 

Level spillway crest = 107 m

L = 45 m

Max Level = 110.01

Inflow Outflow

Time I Q(H) S* H* Q* S** H** Q** S H

Days m3/s m3/s MCM m m3/s MCM m m3/s MCM m

0.000 0 2856 107.0

0.125 250 0.0 2859 107.0 0.1 2859 107.0 0.1 2859 107.0

0.250 500 0.2 2864 107.1 0.7 2864 107.1 0.7 2864 107.1

0.375 750 1.3 2872 107.1 2.4 2872 107.1 2.4 2872 107.1

0.500 1000 3.7 2883 107.2 5.7 2883 107.2 5.7 2883 107.2

0.625 1250 8.0 2896 107.4 11.1 2896 107.4 11.1 2896 107.4

0.750 1500 14.6 2912 107.5 19.1 2912 107.5 19.1 2912 107.5

0.875 1750 24.0 2931 107.7 30.1 2931 107.7 30.1 2931 107.7

1.000 2000 36.7 2952 107.9 44.7 2952 107.9 44.6 2952 107.9

1.125 2250 53.1 2976 108.1 63.0 2976 108.1 63.0 2976 108.1

1.250 2500 73.5 3002 108.3 85.6 3002 108.3 85.6 3002 108.3

1.375 2750 98.3 3030 108.5 112.8 3030 108.5 112.7 3030 108.5

1.500 3000 127.8 3061 108.8 144.8 3061 108.8 144.7 3061 108.8

1.625 2750 162.3 3089 109.0 178.6 3089 109.0 178.5 3089 109.0

1.750 2500 195.3 3114 109.2 210.7 3113 109.2 210.6 3113 109.2

1.875 2250 226.2 3135 109.4 240.2 3135 109.4 240.1 3135 109.4

2.000 2000 254.4 3154 109.6 266.9 3154 109.6 266.8 3154 109.6

2.125 1750 279.4 3170 109.7 290.2 3170 109.7 290.2 3170 109.7

2.250 1500 301.0 3183 109.8 310.0 3183 109.8 309.9 3183 109.8

2.375 1250 319.0 3193 109.9 326.1 3193 109.9 326.0 3193 109.9

2.500 1000 333.1 3200 110.0 338.2 3200 110.0 338.2 3200 110.0

2.625 750 343.3 3204 110.0 346.5 3204 110.0 346.4 3204 110.0

2.750 500 349.6 3206 110.0 350.8 3206 110.0 350.7 3206 110.0

2.875 250 351.9 3205 110.0 351.1 3205 110.0 351.1 3205 110.0

3.000 0 350.3 3201 110.0 347.6 3201 110.0 347.6 3201 110.0

Table 8.7 Example reservoir routing 

Fig. 8.8 Example flood routing 
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9 SOIL MOISTURE 

9.1 Actual evapotranspiration through soil moisture accounting 

In case of water stress in the root zone the actual evapotranspiration may become less than 

its potential value. A simple model as shown in figure 9.1 may be used to estimate relative 

evapotranspiration in relation to the available moisture. This requires that the amount of 

water in the root zone is continuously monitored: soil moisture accounting. 

For this workshop daily precipitation and potential evapotranspiration values of grass for 

the meteorological station De Bilt (The Netherlands) are available for the period 1911 - 

2002 in file i:\groupwork\hydata\P&E DeBilt.txt. Soil physical data of the international 

soil series are found in file i:\groupwork\hydata\ISS.txt. 

 

The soil moisture accounting model keeps track of the actual amount of available moisture 

Mt stored at time t in the root zone. The (maximum) Available Moisture AM is defined as 

 

 
WPFCrDAM             (9.1) 

 

where Dr is the depth of the root 

zone, and θFC and θWP the 

moisture content in the root zone 

at Field Capacity (h = -100 cm) 

and Wilting Point (h = -16000 

cm), respectively. A fraction p of 

AM is readily available moisture 

(RAM = pAM), which means that 

during the consumption of this 

water by the plant the actual 

evapotranspiration equals the 

potential evapotranspiration (Eact 

= Epot). Figure 9.1 shows that 

water in excess of the moisture 

content at field capacity and less 

than wilting point is not available 

for the crop. 

 

The value of p depends on the type of crop and the evaporative demand Epot and ranges 

from 0.2 to 0.8, but an average value of 0.5 is often used. 

 

For the situation that at time t the actual available moisture content in the root zone Mt 

reaches a value less than (1-p)AM, it is assumed that the relative evapotranspiration then 

reduces linearly from one to ultimately zero when all available moisture has been used. 

Thus 

 

for Mt > (1-p)AM   1
E

E

pot

act            (9.2a) 

 

and for Mt < (1-p)AM   
 AMp1

M

E

E t

pot

act


         (9.2b) 

Fig. 9.1 Relative evapotranspiration in relation to 

moisture availability in the root zone 
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The water balance of the root zone may be written as 

 

DEPMM act1tt           (9.3) 

 

where P is precipitation and D is drainage from the bottom of the root zone into the 

subsoil. It should be noted that for this water balance equation capillary rise is neglected 

(assume a deep water table) and that all precipitation enters into the soil (no interception, 

no surface runoff). The drainage from the root zone into the subsoil is simply computed as 

all water in excess of field capacity, hence 

 

for Mt > AM   AMMD t        (9.4a) 

 

and for Mt < AM   0D           (9.4b) 

 

Assignment 

The computation of the actual evapotranspiration through soil moisture accounting is to be 

carried out for a calendar year. At the start of the computations the moisture content in the 

root zone is assumed at field capacity. The depth of the root zone Dr = 30 cm. 

 Open file i:\groupwork\hydata\P&E DeBilt.txt and copy the date, precipitation and 

potential evapotranspiration of the year assigned to you into an empty spreadsheet. 

 Enter at the top of the spreadsheet the parameters related to the chosen soil: θFC and 

θWP, Dr, p, AM and (1-p)AM. Take p = 0.4. The soil physical data of the soil assigned to 

you are are found in Appendix F. 

 At the start of the simulation the root zone is assumed at field capacity (h = -100 cm). 

 Take for each new time step the initial value for Mt-1 equal to Mt of the previous time 

step. 

 Make a first estimate of M
*

t = Mt-1 + P - Epot. Make sure the value is not negative. 

 Compute in the next column the drainage with equation 9.4. 

 Compute in the next column the actual evapotranspiration with equation 9.2. 

 Compute in the next column Mt with equation 9.3. 

 Make a chart showing the change of the actual and potential evapotranspiration over 

the year assigned to you (see for example figure 9.2). 

 Compute the relative evapotranspiration (Eact/Epot) for the soil chosen by you as well 

for Coarse Sand (soil 1). Plot both series in a chart (see for example figure 9.3). 

 Save the sheet as Vnum. 

 

Questions: 

1- For which minimum depth of the root zone is the relative evapotranspiration 

always equal to one? 

2- Do you think that such a depth of the root zone is realistic? 

3- Why do farmers in general not prefer Coarse Sand for agricultural production? 
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Table 9.1 Example computation soil moisture accounting 

Loess Loam

FC= 0.34

WP= 0.11

Dr= 300.0 mm

p= 0.4

AM= 69.0 mm

(1-p)AM= 41.4 mm

Date P Ep-m M(t-1) M*(t) Drainage Eact M(t) Eact/Epot

mm/d mm/d mm mm mm/d mm/d mm -

69.0

1-1-1973 0.0 -0.06 69.0 69.1 0.1 -0.06 69.0 1.00 1.00

2-1-1973 0.0 0.15 69.0 68.9 0.0 0.15 68.9 1.00 1.00

3-1-1973 0.0 0.15 68.9 68.7 0.0 0.15 68.7 1.00 1.00

4-1-1973 0.0 0.11 68.7 68.6 0.0 0.11 68.6 1.00 1.00

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9.2 Example simulated actual and potential evapotranspiration 

Fig. 9.2 Example simulated actual and potential evapotranspiration 
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9.2 Optimisation of the Van Genuchten parameters  

In appendix F the soil physical data of twenty soils are tabulated. The data are based on a 

worldwide survey. When modelling unsaturated flow, the use of soil moisture 

characteristics θ(h) and hydraulic conductivity relations K(h) in tabular form is rather 

inconvenient. Several authors have suggested analytical expressions for these relations, e.g. 

Brooks & Corey (1964), Campbell (1974) and Van Genuchten (1980). The equations 

proposed by Van Genuchten are most frequently used and specified below. 

 

The empirical Van Genuchten equation for the soil moisture characteristic reads 

 

 

 
 mn

rs
r

h1

h









          (9.5) 

 

where 

 θr  residual soil water content (L
3
/L

3
), water content for h→ -  or non-capillary-bound 

  water 

 θs  saturated soil water content or porosity (L
3
/L

3
) 

 h matric pressure in cm (L) 

 α  parameter corresponding roughly with reciprocal of the air entry value in cm
-1

 (1/L) 

 n  dimensionless empirical shape parameter 

 m  = 1 – 1/n 

 

Van Genuchten combined equation (9.5) with the statistical pose size distribution model of 

Mualem (1976) resulting in the following expression for the hydraulic conductivity 

relation 

 

 

 
 

  





m n

2
mn1n

s

h1

h1h1

KhK








 





        (9.6) 

 

where 

 K hydraulic conductivity in cm/d 

 Ks  saturated hydraulic conductivity in cm/d 

 λ  dimensionless parameter influencing the slope dK/dh 

 

The parameters of the Van Genuchten relations are constrained as follows:  

  α > 0  

  n > 1  

  -10 < λ < 10 

 

Assignment 

 Open file i:\groupwork\hydata\ISS.txt, copy the data of the soil assigned to you, and 

prepare a table similar to table 9.2 in a blank workbook which is then saved as Wnum. 

 Add one column θcalc with the computation of θ using equation (9.5). 
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 Compute in the next column the square of the difference between the given and 

computed soil moisture content θ. 

 Use Solver to optimise the parameters α and n. 

 Copy the values of the hydraulic conductivity from appendix F into your spreadsheet 

and estimate these values with equation (9.6). It is most convenient to use the logarithm 

of K in the optimization procedure.  

 Use the sum of the squares of the differences to optimize the parameter λ with Solver. 

 Compare the tabulated soil physical data and the optimized relations in a chart (see for 

example the figures 9.4 and 9.5 which apply for Silty clay). 

 Save Wnum. 
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Table 9.2 Example optimization Van Genuchten parameters for Silty Clay 

 

Silty Clay Van Genuchten relations

α = 0.01 cm

n = 1.35

λ = -3.23

m = 0.26

pF h θ θcalc Diff θ^2 K LogK LogKcalc Diff K^2

0 0 0.507 0.507 1.3 0.11 0.11 0.0000

1.0 -10 0.492 0.504 0.0001 0.8 -0.10 -0.38 0.0802

1.3 -20 0.485 0.500 0.0002 0.498 -0.30 -0.55 0.0619

1.5 -31 0.482 0.495 0.0002 0.294 -0.53 -0.69 0.0255

1.7 -50 0.474 0.487 0.0002 0.118 -0.93 -0.88 0.0027

2.0 -100 0.463 0.466 0.0000 0.045 -1.35 -1.21 0.0195

2.4 -250 0.440 0.427 0.0002 0.012 -1.92 -1.74 0.0332

2.7 -500 0.422 0.396 0.0007 0.0047 -2.33 -2.18 0.0209

3.0 -1000 0.391 0.368 0.0005 0.0018 -2.74 -2.64 0.0100

3.4 -2500 0.352 0.338 0.0002 0.00049 -3.31 -3.27 0.0020

3.7 -5000 0.317 0.321 0.0000 0.00019 -3.72 -3.74 0.0003

4.0 -10000 0.280 0.307 0.0008 0.000071 -4.15 -4.21 0.0038

4.2 -16000 0.257 0.300 0.0018 0.000037 -4.43 -4.53 0.0100

0.0049 0.2700
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9.3 Computation of moisture profiles using the equation of Darcy 

Steady vertical flow in unsaturated media q (cm/d) is described by Darcy’s law, which may 

be written as 

 hK

q
1

dh
dz




           (9.7) 

 

Writing the equation of Darcy in this form allows the computation of a relation between 

the height above the water table z and the matric pressure at that height h for a steady flow 

q. The pressure profile is easily changed into a moisture profile given the soil moisture 

characteristic. Because the hydraulic conductivity K is a function of h, it is not possible to 

compute h for a given value of z. However, dz can be computed for a change in the matric 

pressure dh. Because the relation between K and h is very nonlinear, the change in dh has 

to be small for values of h close to zero, and may become larger for more negative values 

of h.  

 

Assignment 

 Set up a computational scheme as depicted in table (9.3) in sheet Wnum and use the 

soil for which the Van Genuchten parameters have been determined. 

 Use small changes in h for wet conditions and larger steps (say -1000 cm) for dry 

conditions. Extend the table for values of h up to -16000 cm. 

 After a change in h the moisture content θ is computed with equation (9.5) for the 

average h value. 

 Equation (9.6) may then be used to compute the average hydraulic conductivity K for 

the average h. 

 Application of the equation of Darcy yields dz, and hence the new z value 

corresponding to the h value. 

 Plot the moisture content up to a height of maximum 3 meters above the water table for 

q = -0.1 cm/d. 

 Save Wnum  

 

Question: 

Compute the maximum height of capillary rise for the same eight steady flow 

situations as in your lecture notes Soil-Water-Atmosphere (De Laat, 2009) and 

compare these values with those in the lecture notes. Explain the difference.  
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Moisture profile Silt clay for q = -0.1 cm/d

Fig. 9.6 Moisture profile for q = -.1 cm/d Table 9.3 Example computation moisture profile 

Steady flow q = -0.1

Application Darcy's law
h average h θ K dh dz z

0 0.507 0

-5 -2.5 0.507 0.68 -5 5.9 5.9

-10 -7.5 0.505 0.47 -5 6.3 12.2

-15 -12.5 0.503 0.37 -5 6.8 19.0

-20 -17.5 0.501 0.31 -5 7.4 26.5

-25 -22.5 0.499 0.26 -5 8.1 34.6

-30 -27.5 0.497 0.22 -5 9.0 43.6

-40 -35 0.493 0.18 -10 21.9 65.5

-50 -45 0.489 0.15 -10 31.3 96.8

-60 -55 0.484 0.12 -10 57.9 154.7

-80 -70 0.478 0.09 -20 1000.0 1154.7

-100 -90 0.470 0.07 -20 1000.0 2154.7
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APPENDICES 

A Statistical backgrounds 

 

A1 Terminology 

Quantitative scientific data may be classified as either experimental or historical. The 

experimental data are measured through experiments and can usually be obtained 

repeatedly by experiments. The historical data, however, are collected from natural 

phenomena that can be observed only once and then will not occur again. Most 

hydrological data are historical data and can be treated as statistical variables. In their 

simplest form, statistical data will consist of a set of values of a variable, say the maximum 

seasonal floods observed during 30 years. 

The following basic statistical terms may be noted: 

 

 a population is the whole collection of values under consideration. It may be finite or 

infinite. 

 a sample is a set of observed values, more or less representative of the population from 

which it is drawn. 

 a variable (X) is the characteristic of a sample, for example the depth of rainfall. 

 a variate (x) is an individual observation or the value of any variable. 

 a discrete variable can contain only a finite number of values (or as many values as 

there are whole numbers), for example the number of rainy days. 

 a continuous variable can contain all values within a certain range, for example the 

depth of rainfall. 

 

A 30-year continuous record of flow at a hydrological station is only a sample of the 

stream flow history at that point. The population will be the set of all possible records at 

the station, under a fixed set of conditions. In order to draw conclusions about the 

population, the data in the sample must be random, independent and homogeneous. 

A random sample is a sample where every value in the population has an equal chance of 

being included. In hydrology this is difficult to obtain since we have very little control over 

the selection of the sample. We will have to use the set of data being sampled over a period 

of time. 

 

The assumption of having independent data in our sample may also be difficult to obtain in 

hydrology. The degree of independence varies with the nature of the data. Successive daily 

discharges are clearly not independent. Monthly flow data are much more independent of 

each other. A set of data representing the maximum seasonal floods for a 30-year period 

may be safely considered independent. 

Homogeneous data belong to the same population; they have originated in the same way. 

Construction of a reservoir upstream of a station will cause a break in a homogeneous 

series of flow data from the station. A sample consisting of maximum floods where some 

are caused by snowmelt and some by heavy rain is another example of non-homogeneous 

data. 

 

A2  Frequency 

For discrete random variables, the number of occurrences of a variate is generally called 

frequency. When the number of occurrences of a variate, or the frequency, is plotted 
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against the variate as the abscissa, a pattern of distribution is obtained. This pattern is 

called the frequency distribution. It may be practicable to divide the range of values of the 

variate into equal class-intervals and then count the frequency in each interval. The 

frequency in any class-interval can be expressed as a fraction of the total frequency, and 

this fraction is called the relative frequency of the values in the interval. In the following 

example we have 75 observations of a variable with values between 2 and 12: 

  

  

Variable Frequency 

(f) 

Relative 

Frequency 

% 

Cumulative 

frequency(X) 

% 

2 1 1.3 1.3 

3 3 4.0 5.3 

4 7 9.3 14.6 

5 15 20.1 34.7 

6 20 26.7 61.4 

7 13 17.4 78.8 

8 8 10.6 89.4 

9 4 5.3 94.7 

10 2 2.7 97.4 

11 1 1.3 98.7 

12 1 1.3 100.0 

    

Total 75 100.0  

 

 

The first column gives the value of X, the variable. The next column gives the value of f, 

the frequency, showing how many times each particular value of X occurs. The third 

column gives the relative frequency in percent, and the last column shows the cumulative 

frequency. 

 

A frequency table may be represented graphically by a histogram, which is a "bar-graph". 

With each class-interval as a base, a rectangle is constructed whose area represents the 

frequency in the interval. If the class-intervals are equal, as is usually the case, the heights 

of the rectangles will be 

proportional to the frequencies 

represented. The total frequency 

is represented by the total area. 

The pattern of distribution 

produced when the frequency is 

plotted against the variable is 

called the frequency distribution. 

The histogram for the values 

above is plotted in figure A2.1 

 

Another way of showing a 

distribution in this example is by 

a cumulative frequency curve, 

see figure A2.2. The curve is 

drawn from the lowest value, x1 
Fig. A2.1 Histogram and frequency distribution 
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to the highest value x2 and 

illustrates how the total 

frequency is built up. It is 

useful in estimating the 

proportion of the 

distribution between set 

limits. The graded values 

of the variable are divided 

into two groups by the 

median M.  We may 

further bisect these groups 

of values of the variate 

called the quartiles Q1, 

and Q2. Thus half of the 

total frequency will occur 

between the quartiles. 

 

A3 Statistical parameters 

A great number of parameters are used to describe the characteristics of a statistical 

distribution. Some of the most important will be defined in what follows. 

 

Measures of location  

The arithmetic mean is the average most frequently used. It is obtained by adding together 

all the variates, Σx and dividing by the total number of variates, N.  This is expressed by 

 

N

x
x


            (A.1) 

 

The median is the middle value of the variate which divides the frequencies in a 

distribution into two equal portions. This is illustrated in figure A2.2. The arithmetic mean 

is more commonly used than the median. For skew distributions, however, the mean may 

be misleading. In such cases, the median will provide a better indication, because all 

variates greater or less than the median always occur half the time. 

The mode is the variate which occurs most frequently. It corresponds to the peak of the 

frequency curve. For a grouped distribution the modal class can be defined as the class 

with the greatest frequency. The weighted mean of a set of numbers x1, x2, x3...xn whose 

relative importance is expressed numerically by some numbers w1, w2, w3...wn called the 

weight, is defined as 

 





w

x w
xw

           (A.2) 

 

This formula can be used, for example, in calculating the mean areal rainfall (Thiessen 

method) where the rain-gauge stations represent different portions of the total area. 

 

Measures of variability 

The mean deviation is defined as the mean of the absolute deviations of values from their 

mean, or 

Fig. A2.2 Cumulative frequency curve 
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N

xx
.d.m
 

            (A.3) 

 

The standard deviation is the measure of variability, or spread, which is most adaptable to 

statistical analysis. It is the square root of the mean-squared deviation of individual 

observations from their mean, or 

 

 

N

x
2

 



           (A.4) 

 

which represents the standard deviation of the population. An estimate of this parameter 

from the sample is denoted by s and computed by 
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       (A.5) 

 

where   N/xx
22    

 

The variance is the square of the standard deviation which is denoted by σ
2 or the 

population. The unbiased estimate of the sample variance is s
2
. 

 

The coefficient of variation is a measure of spread of the sample in relative terms: 

 

x

s
Cv             (A.6) 

 

Quartiles and percentiles may be considered as measures of spread about the median (the 

50-percentile value). With the variates arranged in ascending order of magnitude, the lower 

quartile is the value at the first quarter of the data series (25 percentile). The upper quartile 

marks the beginning of the top quarter of the data (the 75-percentile).  

 

A4 Normal Distribution 

The normal or Gaussian frequency distribution is the most important in statistical theory. It 

is a bell-shaped symmetrical distribution of a variate which may range from -∞  to +∞  (see 

figure A4.1). An important property of the normal curve is that it is completely determined 

if we are given its mean (µ) and standard deviation (σ), the only two statistical parameters 

included in the mathematical equation for the curve: 

 

 

2
x

2

1

e
2

1
xfy








 


 




         (A.7) 

 

where y or f(x) is the frequency of occurrence of x. Most hydrological data are not 

normally distributed, but they can sometimes be normalized by various methods, such as 

using the logarithms or cube root of the random variates of the sample. For purposes of 

comparison, it is convenient to take the value of the mean (µ) as the origin of coordinates 
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and measure along the horizontal axis in intervals of the standard deviation (σ) as shown in 

figure A4.1. In this distribution the mean, median and mode are the same. It can be shown 

that: 

 

50 % of the observations lie within ±0.67σ 

68 % of the observations lie within ± 1σ  

95 % of the observations lie within ± 2σ 

99 % of the observations lie within ± 3σ 

 

This means that if a distribution is 

closely approximated by a normal 

curve, roughly 68 % of the cases will 

fall within one standard deviation from 

the mean, and 95 % of the cases will 

fall within two standard deviations. It is 

an aid to drawing the normal curve to 

know that it has inflexions at x = ±σ, 

the mean being taken as origin, and that 

the tangents at these inflexions meet the 

x-axis at ± 2σ.  The curve can hardly be 

plotted over a wider range than ±3σ 

from the mean. 

 

 

 

 

Probability and the standard normal distribution  

What do we mean by expressions such as ‘nine times out of ten’, or ‘odds of four to one’? 

How does an insurance firm calculate its premiums? How can a builder estimate the 

chance of wet weather delaying certain stages of a construction project? All these are 

aspects of probability, i.e. the branch of mathematics which enables us to calculate the 

likelihood of any particular outcome.  

 

In any problem or experiment, each separate result is called an outcome. The particular 

happening we are looking for will be called the event. If n is the number of observations 

and the event we are looking for is the outcome on m occasions, we define the probability 

of the event  

 

success of yprobabilitthe  
n

m
p           (A.8) 

 

and 

 

failure of yprobabilitthe p1
n

mn
q 


        (A.9) 

 

thus p + q = 1.  

Fig. A4.1 Normal frequency distribution 
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The extreme values of p are 0 

and 1, corresponding to certain 

failure and certain success (if n 

is finite). When a probability is 

expressed in the form of odds, 

the ratio used is of favourable to 

unfavourable occurrences or vice 

versa. To say that the odds 

against an event are 7 to 2 means 

that the probability of its 

occurrence is 2/9.  

 

The area between the normal 

frequency distribution curve (see 

figure A4.1) and the x-axis is 

equal to the total number of 

observations. For probability estimations a standardized form is used for the normal 

probability distribution curve in which the total area bounded by the curve and the x-axis is 

equal to unity.  

 

 

Values of the variable are standardized to give a series of values (t):  

 






x
t             (A.10) 

 

and the curve is defined by the equation 

 

 
2t 

2

1

e
2

1
tfy






          (A.11) 

 

In such case we say that t is normally distributed with the mean, μt= 0 and a variance and 

standard deviation, σt
2
 and σt both equal to one (see figure A4.2). 

 

Since the total area is one, the area under the curve between two ordinates a and b 

represents the probability that the variable lies between a and b. The table in appendix D 

gives the areas under this curve bounded by any positive value of t and t → ∞.  From this 

table the area between any two ordinates can be found by using the symmetry of the curve 

about t = 0. Example, the table gives an area of 0.242 for t ≥  0.70. This figure represents 

the probability that t is greater than 0.70. The probability that t lies between 0.0 and 0.70 is 

than the probability that t ≥  0 minus the probability that t ≥  0.7, thus 0.5 - 0.242 = 0.258.  

 

Linearization 

The probability distribution, also known as the probability density function (PDF), may be 

expressed as 

 

      1dx xf   ;   dx xfbXap
-

b

a

 




       (A.12) 

 

Fig. A4.2 Standard normal distribution curve 
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where X is a specified value of the variable x, f(x) is the frequency of occurrence of x, and 

p() is the probability that X lies between the values a and b. The same information can also 

be written in the form of the cumulative distribution function (CDF) 

 

         dx xfxFxXp

x




         (A.13) 

 

 

where p() is the probability of non-

exceedance. The principle of 

linearization of a probability 

distribution is shown in figure 

A4.3. A variety of different 

distributions is used in hydrology 

and some of these are considered 

in these notes. The cumulative 

probability of a distribution may 

be represented graphically on 

probability paper which is 

specially designed for the 

distribution (e.g. Gumbel paper, 

normal- or lognormal distribution 

paper). The ordinate and the 

abscissa are so designed that the 

distribution plots as a straight line 

and the data to be fitted appear 

close to the straight line. The 

object of using the probability 

paper is to linearize the 

distribution so that the plotted data 

can be easily analysed for 

purposes of extrapolation or 

comparison. If we want to plot the 

cumulative distribution function 

using a spreadsheet, we cannot 

make use of the special designed 

plotting paper.  Instead we plot the 

variable x against the reduced 

variate t, according to the equation 

 

 bxat     (A14) 

 

where a and b are constants depending on the type of distribution (see for the Gumbel 

distribution page 10 and for the normal distribution equation 2.5).  We then plot in the 

same graph the observed data and compare these with the linear relation. The disadvantage 

of this approach is that the graph is more difficult to read than the graph on special paper, 

since the reduced variate is to be ‘translated’ in the probability through an equation (e.g. 

equation 1.7 for Gumbel) or a table (e.g. appendix D for the normal distribution). 

 

Fig. A4.3  Linearization of probability distribution. 

A - Frequency or probability density function (PDF), 

B - Cumulative distribution function (CDF),  

C - Linearized CDF on probability paper 
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A5 Correlations 

Through correlations the interrelationship between two or more variables is measured, 

therefore it is an example of a statistical association method. A correlation coefficient, ρ 

explains the degree of the association as a linear dependence. Correlation coefficients 

measure only the degree of linear association and for example the correlation of a parabola 

is zero, because it has no linear term in it. 

There are several types of correlation coefficients used in statistics. For hydrologic 

purposes the most commonly used correlation coefficient is the Pearson Product-Moment 

correlation coefficient. This coefficient of linear correlation (-1 < ρ < +1), between two 

variables X and Y is defined as 
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where  n  total number of observations 

    i  1, 2, 3, etc. 

    xi,yi i
th

 observation of series x and y 

 

In the first part of this equation, the numerator is called the covariance, sxy, and the two 

terms in the denominator are the standard deviations of variables x and y respectively. 

Then the equation can be written as 

 

yx

xy

ss

s


           (A.16) 

 

 

A6 Tests for stationarity and homogeneity 

 

 

A6.1 Principles 
 

In tests on stationarity and homogeneity of 

time series, basic statistical tests are 

performed, which are generally used for the 

comparison of samples. For the analysis it is 

often necessary that the original series is split 

into two or more parts. 

A certain parameter of the series will be 

analysed. This can be the mean, variance or 

another parameter like the correlation 

coefficient. In order to carry out the analysis 

a parameter is defined, which is known as the 

test-statistic. This parameter can be the mean 

or variance itself, a derivative of the mean or 

variance or another defined parameter. Fig. A6.1    Scatter of sample means 

around the true mean 
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When analysing the values of test-

statistics, the problem arises to qualify a 

comparison. For instance for absence of 

trends in a time series we want to prove 

that the mean of the first 10 years of a 

series is not significantly different from 

the last 10 years. However, both values 

will never be equal. But what difference 

is accepted and what is not? Obviously, 

the larger the series, the closer will be 

the two values of the mean. Both values 

will also come closer to the true mean 

(µ) when the number of years increases. 

 

In case one takes several samples (all 

with equal number of years) from the 

infinite time series (called the 

population), the values of the mean of 

these samples may differ in magnitude, thus  321 xxx ..... etc. A histogram of these 

values can be represented by a smooth curve, defining the scatter of the values around the 

true mean (µ), see figure A6.1. 

 

The number of elements, n in a sample has influence on the shape of the curve, see figure 

A6.2. The curves are distributions, which are mathematically defined and often tabulated. 

Such a curve can be a normal distribution. Other distributions are Student's-t or Fisher-F 

distributions. 

  

Often we have a situation where the real mean, µ is not known. From the sample a mean, 

x  can be calculated. We may now assume a certain real mean, µ0 and test on the basis of 

our sample whether there is ground to reject the assumption. The statistical procedure 

introduces a null hypothesis, H0 and an alternative hypothesis, H1, thus 

 

00 :H    

 

01  :H    

 

On the basis of a sample it will never 

be possible to prove with 100% 

certainty that H0 nor H1 is correct. One 

should realize that even when 

accepting one of the two hypotheses 

there is a chance of making the error 

that it is still not the correct one. When 

H0 is always stated in the way that it is 

the hypothesis we wish to prove, the 

worst that can happen is to reject H0, 

while it is true (like the judge who is 

convicting an innocent suspect). In 

statistics this is called a type I error. 
Fig. A6.3 Critical regions and critical values 

(confidence level 95%) 

Fig. A6.2 Distributions as a function of the 

number of elements in a sample 
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The region representing the area of rejecting H0 must be minimized to an acceptable level. 

This area is called the critical region, bordered by critical values, or confidence limits (±c), 

see figure A6.3. 

 

According to the distribution of x (for instance Normal, Students-t, Fisher-F) the critical 

values mark the probability of a type I error. The probability of a type I error is called the 

significance level α, while 1- α is the confidence level. A confidence level of 95% is often 

applied (α = 0.05). 

 

One can use the theory of a normal distribution, in case it is valid, and its relation with the 

standard normal distribution to calculate the critical values (confidence limits +c and -c), 

see figures A6.4 and A6.5. 

 

For a level of significance of 5%, the confidence limits, tcr, for the standard normal 

distribution are: tcr = ±1.96. The confidence limits ±c for the real distribution are then 

calculated using its relation with the standard normal distribution as follows 

 






c
tcr            (A.17) 

 

where µ true mean of the population 

 σ  true standard deviation of the population 

 

For σ  is known that 

 

n

s
            (A.18) 

 

 where s standard deviation of the sample means 

 n number of elements in the sample 

 

Now we conclude that, in case µ is known, it can be verified whether a certain calculated 

mean is accepted as representing the population with a confidence level of 95%. In case µ 

is unknown we can verify an assumption µ = µ0 with a certain confidence level. 

Fig. A6.4 Normal distribution Fig. A6.5 Standard Normal distribution 
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What we did until now in fact was comparing one sample with its population, through the 

test statistic mean. However, in general the population parameters µ and σ are not known. 

It is also possible to compare statistics of samples drawn from two different populations. In 

case both are normal distributions, the difference of the means 
21 xxd   is also a normal 

distribution with 

 

21d               (A.19) 
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Assuming that σ1 ≈ σ2, the pooled variance σd
2
 may as follows be estimated from the 

sample variances s1
2
 and s2

2 
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In case the two samples belong to the same population, µ1 = µ2 and µd = 0. 

Again according to the principles of a standard normal distribution, transformation from 

the normal distribution is by (also see Figure A6.6) 

 

d

dd
t




            (A.22) 

 

To test now whether the two samples are from the same population is testing µ1 = µ2 (the 

null hypothesis, H0) against µ1 < > µ2  (the alternative hypothesis, H1). 

 

As indicated above this is done by defining the confidence limits under assumption of H0, 

while not committing a type I error. 

Assuming H0: µd = 0  

 

d

d
t


        (A.23) 

 

For the confidence limits this means 

 

d

cr

c
t


       (A.24) 

 

For –tcr< t < tcr it is accepted with a confidence 

level according the confidence limits that the 

averages 
1x  and 

2x  originate from the same 

population and that there is no trend. 
Fig. A6.6   Standard Normal distribution 



Appendices                                                          86                                                     Workshop on  Hydrology 

 

Note that the test statistic for the standard normal distribution is the variable 
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With small samples (n < 30) the standard normal distribution does not any longer give 

satisfactory results. Then one can better use the so-called Student's-t distribution. For the 

comparison of means, the test statistic remains as given above.  

Also for other parameters acceptance within predefined levels of significance can be 

defined. In all cases a test statistic must be defined as well as its distribution. This 

distribution is not necessarily always a normal distribution or the Students-t distribution. 

For instance for significance of variance the Fisher distribution is applied. In a Spearman 

rank test the significance of a correlation coefficient is tested through a Students-t test.     

 

A6.2 The spearman's rank test; test for absence of trend 
The hypothesis is tested that there is no correlation between the order in which the data are 

observed and the increase (or decrease) in magnitude of those data. The test is usually 

performed on the whole data series but it is possible to select specific periods.  

 

Two series are compared related to the rank of the data. Kxi is the rank of the data as it was 

measured. Kyi is the series of the rank of the same data in ascending or descending order. 

 

The Spearman coefficient of rank correlation Rsp is then defined as 

 

 1nn

D6
1R

2

2

i

sp






            (A.27) 

where 

iii KyKxD              (A.28) 

 

When two or more observations have the same value, the average rank Kyi is calculated. 

A test-statistic tt is used to test the null hypothesis H0: Rsp = 0 against the alternative 

hypothesis H1: Rsp <> 0. The test statistic is defined as 
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The test statistic tt has Student's t-distribution with v = n - 2 degrees of freedom, where n is 

the number of elements in a sample. Appendix B contains a table of the Student's-t 

distribution for a level of significance of 5% (two-tailed). The two sided critical region U 

of the test statistic tt for a level of significance of 5% is bounded by 
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      ,%5.97,v t U %5.2,v t,          (A.30) 

 

and the hypothesis H0 is accepted when the computed tt is not contained in the critical 

region. In other words, one concludes that there is no trend when 

 

   %5.97,vtt%5.2,vt t            (A.31) 

 

 

A6.3 F-test for the stability of the variance 
The appropriate test statistic is the ratio of the variances of two non-overlapping sub-sets of 

a series. The distribution of the variance ratio of samples from a normal distribution is 

known as the F-distribution or Fisher distribution. Even in the absence of the normal 

distribution it is generally accepted that the F-test provides a useful indication for the 

stability of the variance. 

 

The number of data n in the test series should be equal to or greater than 10. 

The test statistic is thus 
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The null hypothesis for the F-test is the equality of variances, H0: s1
2
 = s2

2
 and the 

alternative hypothesis is H1: s1
2
 <> s2

2
. The rejection region is bounded by 

 

     ,%5.97,v,vF U %5.2,v,vF,0 2121
      (A.33) 

 

where v1 and v2 are the respective numbers of degrees of freedom of the numerator and 

dominator. It should be noted that v1 = n1-1 and v2 = n2-1 where n1 and n2 are the number 

of observations in each sub-set. 

 

In other words, the variability of the data is considered to be stable and the standard 

deviation s can be used as an estimate for the population standard deviation, when 

 

   %5.97,v,vFF%5.2,v,vF 21t21        (A.34) 

 

The F-distribution is not symmetrical for the number of degrees of freedom of the 

numerator and dominator. Tables should therefore be applied properly with usually v1 

horizontally and v2 vertically. See appendix C for a condensed table of the F-distribution 

with a confidence level of 5%. 

 

The procedure to apply the F-test on data series is to subdivide the series in two or three 

(approximately) equal non-overlapping sub-sets. The standard deviation is computed for 

each subset. The limits of a sub-set can also be selected in such a way that the set will 

cover a suspect period. Such a period is then compared with a non-suspect period or 

periods. 
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A6.4 t-test for stability of the mean 

The t-test is only valid if the variance of the time series is stable. Hence, the F-test for the 

stability of the variance has to be performed before this test.  

 

The means of the same subsets can be compared to verify whether the mean is stable 

during the whole period of observations. A suitable test statistic for testing the null 

hypothesis 210 xx:H   against the alternative hypothesis 
211 x x:H   is 

 

   
5.0

2121

2

21

2

11

21
t

n

1

n

1

2nn

s1ns1n

xx
t





























        (A.35) 

 

where 

   ni the number of data in subset i 

  ix  the mean of the subset i 

si
2
 the variance of the subset 

 

The test statistic, tt has Student's-t distribution for a sample which is normally distributed. 

The test may also be applied for non-normal distributions, best for approximately equal 

lengths of subsets. 

 

The two sided critical region U for the test statistic is defined as 

 

      ,v,97.5%t U %5.2,vt,         (A.36) 

 

and the number of degrees of freedom is v = n1 + n2 - 2 

 

The null-hypothesis H0 is accepted when the computed tt is not contained in the critical 

region. In other words, one concludes that 
21 xx   when 

 

   v,97.5%t t %5.2,vt t           (A.37) 
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B Student t-distribution 

Percentile points of Student t-distribution for a 5% level of significance 

 

p = P(t<tp): 0.025 0.975 

v   

4 -2.78 2.78 

5 -2.57 2.57 

6 -2.54 2.54 

7 -2.36 2.36 

8 -2.31 2.31 

9 -2.26 2.26 

10 -2.23 2.23 

11 -2.20 2.20 

12 -2.18 2.18 

14 -2.14 2.14 

16 -2.12 2.12 

18 -2.10 2.10 

20 -2.09 2.09 

24 -2.06 2.06 

30 -2.04 2.04 

40 -2.02 2.02 

60 -2.00 2.00 

100 -1.98 1.98 

160 -1.97 1.97 

  -1.96 1.96 

 

 

 

Remark: Take the next higher value for v if the required number of degrees of freedom is

   not listed. 
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C Percentile points of the Fischer-F distribution 

for 5% level of significance 
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D Table of STANDARD NORMAL distribution 
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E Parameters for Gumbel Type I distribution 
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F Soil Physical Data International Soil Series  

Reference: Rijtema(1969)  
 Pressure 

 head(cm)       0           -10            -20          -31       -50        -100          -250           -500           -1000          -2500            -5000           -10000          -16000 

 
  1. Coarse sand         

      0.395   0.215   0.145  0.107 0.066  0.032   0.024    0.018    0.016    0.015     0.014     0.013     0.012 

     1120.0 1100.00 119.000 10.100 0.144 0.0001 0.00004 0.000013 0.000005 0.000001 0.0000005 0.0000002 0.0000001 

 

  2. Medium coarse sand  

      0.365   0.331   0.300  0.274 0.160  0.095   0.062    0.052    0.038    0.031     0.025     0.020     0.017 

      300.0   75.50  19.000  4.160 0.302 0.0010 0.00028 0.000100 0.000040 0.000011 0.0000042 0.0000016 0.0000008 

 

  3. Medium fine sand    

      0.350   0.325   0.316  0.305 0.260  0.155   0.077    0.061    0.050    0.043     0.032     0.025     0.023 

      110.0   48.30  21.200  8.600 1.800 0.0300 0.00140 0.000550 0.000210 0.000058 0.0000220 0.0000083 0.0000043 

 

  4.  Fine sand          

      0.365   0.352   0.335  0.328 0.292  0.196   0.147    0.129    0.092    0.065     0.053     0.047     0.042 

       50.0   30.30  18.400 10.600 4.100 0.3370 0.00480 0.001800 0.000680 0.000190 0.0000720 0.0000270 0.0000140 

 

  5. Humous loamy medium coarse sand 

      0.470   0.460   0.448  0.440 0.424  0.405   0.336    0.293    0.233    0.174     0.140     0.117     0.105 

        1.0    0.76   0.584  0.434 0.261 0.0680 0.00660 0.002500 0.000950 0.000260 0.0000990 0.0000380 0.0000190 

 

  6. Light loamy medium coarse sand 

      0.394   0.374   0.363  0.353 0.326  0.280   0.232    0.205    0.180    0.151     0.130     0.111     0.100 

        2.3    1.31   0.747  0.403 0.138 0.0083 0.00230 0.000870 0.000330 0.000092 0.0000350 0.0000130 0.0000068 

 

  7. Loamy medium coarse sand 

      0.301   0.282   0.272  0.265 0.247  0.209   0.171    0.141    0.100    0.056     0.043     0.030     0.021 

        0.4    0.27   0.188  0.124 0.060 0.0091 0.00092 0.000350 0.000130 0.000037 0.0000140 0.0000053 0.0000027 

 

  8. Loamy fine sand     

      0.439   0.399   0.355  0.307 0.249  0.179   0.140    0.115    0.099    0.085     0.072     0.065     0.060 

       26.5   17.80  12.000  7.720 3.620 0.4950 0.00720 0.002700 0.001000 0.000290 0.0001100 0.0000410 0.0000210 

 

  9. Sandy loam          

      0.465   0.442   0.426  0.419 0.360  0.260   0.180    0.142    0.118    0.092     0.079     0.068     0.061 

       16.5    7.90   3.780  1.680 0.414 0.0100 0.00011 0.000040 0.000015 0.000004 0.0000016 0.0000006 0.0000003 

 

 10. Loess loam   

      0.455   0.436   0.410  0.385 0.373  0.340   0.269    0.232    0.203    0.170     0.143     0.122     0.110 

       14.5    8.88   5.440  3.170 1.250 0.1080 0.00990 0.003800 0.001400 0.000390 0.0001500 0.0000570 0.0000290 

 

 11. Fine sandy loam     

      0.504   0.488   0.486  0.482 0.468  0.423   0.255    0.224    0.175    0.132     0.112     0.096     0.087 

       12.0   11.90   9.360  7.130 4.450 1.2900 0.03100 0.004400 0.001700 0.000460 0.0001800 0.0000670 0.0000340 

 

 12. Silt loam           

      0.509   0.497   0.487  0.484 0.474  0.461   0.400    0.279    0.205    0.150     0.125     0.103     0.092 

        6.5    5.32   4.360  3.500 2.390 0.8800 0.04400 0.007900 0.003000 0.000830 0.0003100 0.0001200 0.0000620 

 

 13. Loam                

      0.503   0.486   0.483  0.480 0.467  0.420   0.281    0.248    0.213    0.167     0.142     0.116     0.098 

        5.0    3.97   3.150  2.440 1.580 0.4960 0.01600 0.002400 0.000910 0.000250 0.0000950 0.0000360 0.0000190 

 

 14. Sandy clay loam     

      0.432   0.407   0.387  0.376 0.359  0.338   0.309    0.288    0.263    0.240     0.215     0.194     0.180 

       23.5   16.50  11.600  7.870 4.020 0.6890 0.01500 0.005600 0.002100 0.000590 0.0002200 0.0000840 0.0000440 

 

 15. Silty clay loam     

      0.475   0.438   0.421  0.410 0.394  0.372   0.335    0.305    0.279    0.250     0.222     0.195     0.185 

        1.5    1.18   0.934  0.719 0.459 0.1400 0.01600 0.006000 0.002300 0.000630 0.0002400 0.0000900 0.0000470 

 

 16. Clay loam           

      0.445   0.429   0.424  0.421 0.415  0.411   0.385    0.366    0.344    0.342     0.286     0.265     0.255 

        1.0    0.78   0.609  0.464 0.289 0.0840 0.00200 0.000280 0.000110 0.000030 0.0000110 0.0000042 0.0000022 

 

 17. Light clay          

      0.453   0.435   0.418  0.405 0.390  0.360   0.336    0.315    0.294    0.270     0.245     0.224     0.215 

        3.5    2.94   2.470  2.040 1.470 0.6140 0.04500 0.009300 0.003500 0.000970 0.0003700 0.0001400 0.0000720 

 

 18. Silty clay          

      0.507   0.492   0.485  0.482 0.474  0.463   0.440    0.422    0.391    0.352     0.317     0.280     0.257 

        1.3    0.80   0.498  0.294 0.118 0.0450 0.01200 0.004700 0.001800 0.000490 0.0001900 0.0000710 0.0000370 

 

 19. Basin clay          

      0.540   0.533   0.529  0.527 0.526  0.519   0.493    0.470    0.443    0.402     0.375     0.344     0.321 

        0.2    0.14   0.094  0.062 0.030 0.0077 0.00210 0.000810 0.000310 0.000085 0.0000320 0.0000120 0.0000063 

 

 20. Peat                

      0.863   0.832   0.824  0.816 0.796  0.763   0.704    0.649    0.505    0.356     0.323     0.289     0.265 

        5.3    1.86   0.656  0.208 0.029 0.0110 0.00300 0.001100 0.000430 0.000120 0.0000450 0.0000170 0.0000089 
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