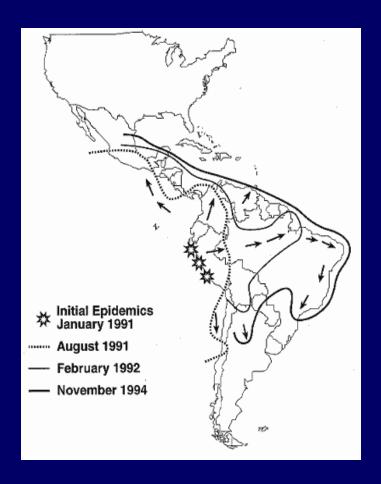
Water Microbiology

- Study of microorganisms and their communities in water environment is called *Aquatic microbiology*,
- while *Water Microbiology* relates to the study of microorganisms in potable water.
- The scope of Aquatic Microbiology is wide and includes the habitats like planktons, benthos, microbial mats and biofilm which may be found in lakes, rivers, streams, seas, groundwater, rain, snow and hail.

Drinking Water Microbiology

- Drinking or *potable water* is water that is free from pathogens and chemicals that are dangerous to human health.
- Any taste, odor and color must be absent from the water to be palatable.
- Raw water may contain many contaminants derived from sewage and nearby industries.
- Many enteric pathogens are water borne.
- Therefore water is treated and disinfected to remove chemicals and pathogens respectively.


Water-borne diseases

- An important aspect of Water Microbiology is numerous disease causing microorganisms spread through water.
- Many bacteria, viruses, fungi and protozoa are responsible for waterborne diseases.
- The recurrence of waterborne illness has led to the improvement in water purification.

Water borne pathogens

1991 Cholera Epidemic 1,000,000 cases/10,000 deaths

- Bacteria
- Virus
- Protozoa
- Helmiths
- Spirochete
- Rickettsia
- Algae

Bacteria

- Enteritis, diarrhea, and dysentery
 - Campylobacter
- Cholera

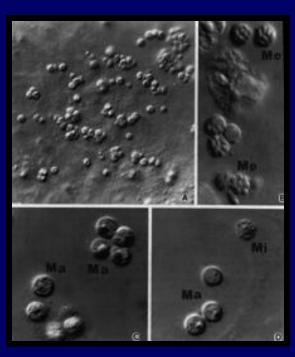
- Cholera

- E. coli 0157:H

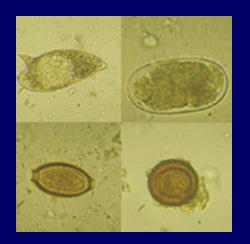
- Salmonella
- Shigella
- Enteric fever
 - Typhoid
 - Paratyphoid
- Paralysis
 - Botulism
- Eye, ear, and skin infections
 - Miscellaneous bacteria
- Urinary tract infections
 - E. coli Others

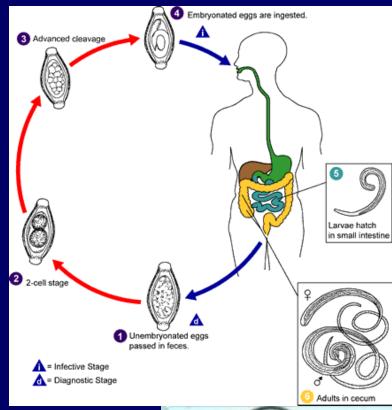

Viruses

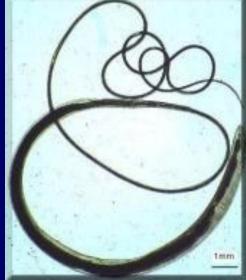
- Enteritis, diarrhea, and dysentery
 - Rotavirus
 - Norwalk
- Flu like (liver damage)
 - Hepatitis A
 - Hepatitis E
- Paralysis
 - Polio


Protozoa

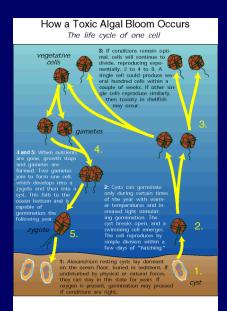
- Giardia
- Cryptosporidia
- Amoeba

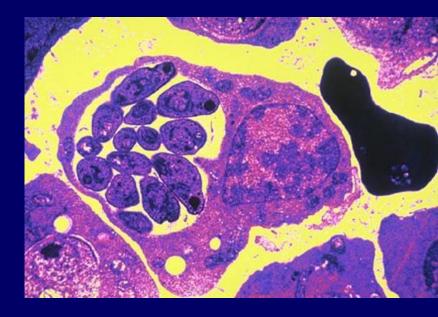





Helminthes

- Round worm
- Tape worm
- Hook worm
- Whip worm





Others

- Algae
 - Mycrocystis
 - Dinoflaggelates
- Fungi
- Water-related diseases
 - Malaria
 - Schistosomiasis
 - Yellow fever
 - Dengue fever

water-borne diseases and their causative agent

Bacteria	Disease
Salmonella typhi	Typhoid
Other Salmonella spp	Salmonellosis (gastroenteritis)
Shigella spp.	Shigellosis (bacillary dysentery)
Vibrio cholerae	cholera
Vibrio parahaemolyticus	Gastroenteritis
Escherichia coli	Gastroenteritis
Legionella pneumophila	Legionnaire's disease
Yersinia enterolitica	Gastroenteritis
Campylobacter spp.	Gastroenteritis
Leptospira spp.	Jaundice

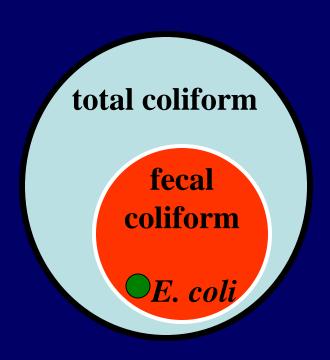
Virus	Disease
Hepatitis A virus	Hepatitis
Polio virus	Poliomyelitis
Protozoa	Diseases caused
Giardia intestinalis	Giardiasis
Balantidium coli	Balantidiasis
Entamoeba histolytica	Amoebic
	dysentery
Cryptosporidium parvum	Cryptosporidiosis
Cyclospora cagetanensis	Diarrhoea
Naegleria fowleri	Encephalitis

Microbiological Examination of Water

- Numerous water borne pathogens
- Individual pathogen numbers may be too low to detect in a reasonable sized water sample
- Isolation and detection of some pathogens can take several days, weeks, or months
- Absence of one particular pathogen does not rule out the presence of another

Indicator Organism Concept

- Correlated to the presence of pathogens
- Population large enough to isolate in small water samples (100 mL)
- Rapid
- Inexpensive
- Safety, not culturing pathogens


Coliform Group (total coliform)

- Enterobacteriaceae
 - Facultative anaerobe
 - Gram negative
 - Non-spore forming
 - Rod shaped
 - Ferment lactose
 - Produce gas and acid
 within 48 h @ 35°C

- Coliform genera
 - Enterobacter
 - Klebsiella
 - Citrobacter
 - Escherichia

Coliform Group

- Total coliform
- Fecal coliform
 - All total coliform criteria
 - Grows at 44.5°C
- Escherichia coli
 - Individual species
 - Enzyme specific

Streptococcus and Enterococcus

- Fecal Strep
 - S. faecalis
 - S. faecium
 - S. avium
 - S. bovis
 - S. equinus
 - S. gallinarum

- Enterococcus
- Fecal Streps that survive in 6.5% sodium chloride
 - S. faecalis
 - S. faecium
 - S. avium
 - S. gallinarum

Other indicator organisms

Indicator	Characteristics	Significance
organism		
Clostridium perfringens	_	protozoans and viruses.
Bifidobacterium and Bacteroids	with humans they can distinguish human and	B. bifidus survives for a short time therefore its presence suggests relatively recent pollution

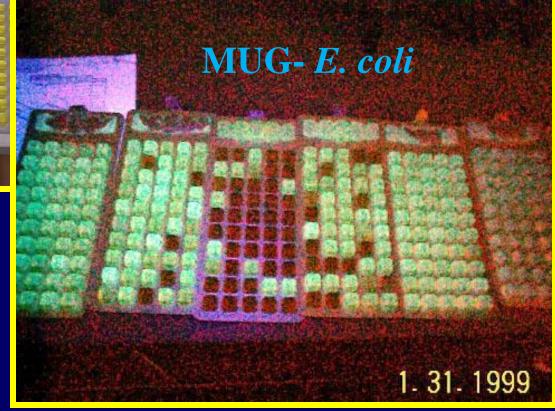
Indicator	Characteristics	Significance
organism		
F-specific RNA phage, f2, φx174, MS2, PRD-1	Coliphages, not always seen associated with fecal pollution however their presence in high numbers in wastewater and high resistance to chlorination can be an index of wastewater contamination and indicators of enteric viruses.	resistance to disinfectants, fate of enteric viruses in water treatment and surface or groundwater tracers and
Phages of Bacteroides fragilis	of human origin exclusively	An advantage over coliphage is they help to detect human fecal contamination. They do not multiply in the water and have decay rate similar to other viruses.

Indicator	Characteristics	Significance
organism		
Pseudomonas aeruginosa	associated with the diseases of eye, ear, nose and throat infections. common opportunistic pathogen, causes life threatening infection in burn patients and immunocompromised individuals. Folliculitis, dermatitis, ear and urinary infections are common in ill maintained swimming pools.	value as indicator of fecal pollution however coliforms do not suit as indictor of contamination of swimming pool water as the contamination

Indicator	Characteristics	Significance
organism		
Staphylococcus	suggests the sanitary	Useful for recreational
aureus and	quality of water because	waters.
Candida albicans	it presence is associated	
	with human activities	
	occurs in uncont-	Because of its
Aeromonas	aminated, as well as	association with
hydrophila	contaminated waters.	nutrient rich conditions
	also an opportunistic	it has been suggested as
	pathogen in humans,	an indicator of nutrient
	animals and fish.	rich status of the
		waters.

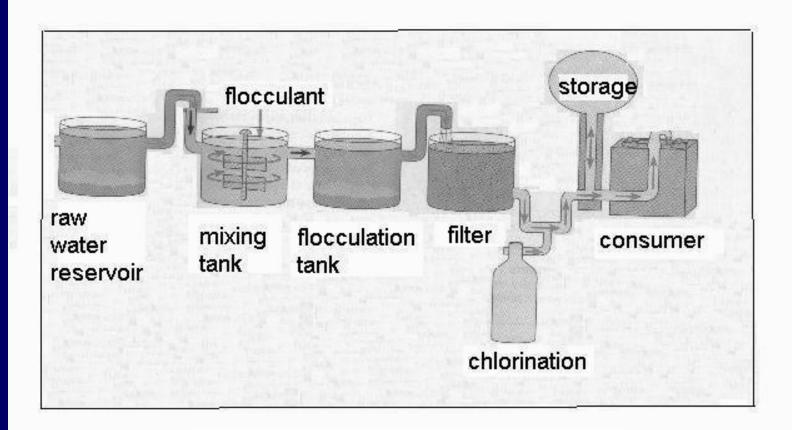
Membrane Filter Methods

- Filter water through a 0.45 µM membrane filter
- Place membrane on selective media
- Incubate
 - 35°C total coliform
 - 44.5°C fecal coliform
- Count colonies


Multiple Tube Fermentation Methods

- Serial dilution to extinction
- Inoculate multiple tubes (5 or 10) of media with across the increasing series of dilutions
- Incubate
 - 35°C or
 - -44.5°C
- Count positive growth tubes
- Use Most-Probable-Number (MPN) table to estimate density

Enzyme Substrate or Chromogenic Substrate Method


- Used with the Presence-Absence, the Multiple Tube Methods, or Quanti-TraysTM
- Total coliform have the enzyme
 - β-D-galactosidase which hydrolyses
 - ortho-nitrophenyl- β-D-galactopyranoside (ONPG)
 - Yellow when hydrolyzed
- E. coli has the enzyme
 - β-glucuronidase which hydrolyses
 - 4-methylumbelliferyl-β-glucuronide (MUG)
 - Fluoresces when hydrolyzed

Water purification

- Water purification forms a critical link in promoting public health and safety.
- It involves variety of steps which depend upon the type of impurities in the raw water source.
- The major operations done are sedimentation, flocculation, filteration and disinfection.

Unit processes and operations and specific impurities removed

	Unit Processes / operations	Effect
1	Aeration, chemical oxidation, ion	Colour and
	exchange, sedimentation	precipitate removal
2	Chemical precipitation, (dosing, mixing,	Softening (Ca, Mg
	flocculation, settling) ion exchange	removal)
3	Chemical coagulation, (dosing, mixing,	Turbidity removal
	flocculation, settling) filtration	
4	Aeration, chemical oxidation, adsorption	Taste and odour
		removal
5	Irradiation, ozonation, chlorination	Disinfection