The Drainage Basin

“vour friend, and all of 1ts secrets”
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|. Introduction
--two general relationships realized concerning drainage basins
* streams form their valleys in which they flow
* every river consists of a major stream that is fed by a
number of mutually adjusted branches that diminish in
size away from the main stem.
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11. Slope Hydrology and Runoff Generation
A. Basin Hydro. Cycle and Budget

Input = Output + change In storage

Figure 5.1B

Schematic surface components of the fluvial
system. The tributaries provide links between
lithology and climate and are adjusted to
both. Channel characteristics vary in response
10 the external variables of sediment and
water discharge (Q), which are influenced
naturally from climate, tectonic, and
lithologic factors. Human influence also
modifies these variables through land use
alterations.
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I1. Slope Hydrology and Runoff Generation Overland fiow
: Interflow
A. Basin Hydro. Cycle and Budget
Baseflow

Input = Output + change In storage
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B. The Storm Hydrograph

Rainfall
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Figure 5.8 i G o
Flood hydrograph of the Hurricane Agnes flood of June o — 1
1972 on the Conestoga River at Lancaster, Pa. Although the 0 20 40 60 80 100 120
curve is rather symmetrical, most hydrographs show ¢
significant skewness with a broader recessional limb +-Lag -+
reflecting interflow and groundwater inputs after a storm. Time (hrs) from midnight, June 21, 1972

Unit hydrograph: ‘where the runoff volume 1s adjusted to
the same unit value (e.q., one inch of rainfall spread evenly
over a basin in one day”
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Figure 5.9
Progress of flood crests caused by Hurricane Agnes in the Susquehanna River basin, June 1972. Basins of increasing size: (A) Bald

Eagle Creek; (B) Juniata River: (C) Susquehanaa River,
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Figure 5.11

Peak discharge per unit from the largest flash floods in U.S.
history. Note how the relationship indicates an increase in
discharge coincident with development and land use
alterations over the past 100 years.

(From Costa 1987)
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[11. Initiation of Channels and the Drainage Network
A. The concept

Shear stress....... T = pgds

Effects of

X v~—' Level of overland flow

No erosion

Figure 5.12

Hypothetical slope showing overland flow. No erosion occurs
until the force of overland flow (F) exceeds the resistance of
the surface material (R). Upslope from that point no erosion
occurs. X, is the distance from the divide to point where
erosion begins.

(After Horton 1945)

Vegetation. . ..
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Rills develop, and they begin to “bifurcate”

“repeated divisions of single channel segments™



Rills develop, and they begin to “bifurcate”

“repeated divisions of single channel segments”

YV Y YHYV

Figure 5.13A
Development of bifurcation angles. (A-| he onginal angle is preserved. (A-2) Ong branch becomes dominant. (A-3) Angle
) branches merge into one channel; occurs on steep slopes



Rills develop, and they begin to “bifurcate”

“repeated divisions of single channel segments”
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Figure 5.13B

View of small rilles developing a drainage network on a Texas hillslope. Note the
cross-grading and micropiracy that is occuring on the slope to the right.

(Photo by R. Craig Kochel)
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B. Basin Morphometry

refers to the geometry of the basin
Drainage Composition

refers to the distinct fabric of the drainage basin
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1. Drainage Composition
refers to the distinct fabric of the
dralinage basin

Strahler (1952)

Shreve (1967)

Shreve (1967)

Figure 5.17

Methods of ordering streams within a drainage basin.



2. Linear Morphometric Relationships

Certain linear parameters of a basin are proportionally
related to stream order.

a. Bifurcation ratio (Rb)
streams of one order
streams of the next highest order

Ex: 1 6" order stream

3 5" order

9 4" order 27 =3
27 37 order 9

81 2 order

Ratio value Is nearly constant between adjacent orders
AND....where geology is homogeneous, Rb = 3.0 - 5.0
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Relation of stream order to the number and mean lengths of streams

in the Susquehanna River basin.
(After Beush 1961)



2. Linear Morphometric Relationships

Certain linear parameters of a basin are proportionally
related to stream order.

b. Length ratio ave length of streams of one order
ave length streams of the next highest order

Can be used to determine the average length of streams in
an unmeasured order.



3. Aerial Morphometric Relationships

a. Drainage density (Dd)
total length of streams In basin
basin area

Reflects the interaction between geology and climate

In general. ...



4. Relief Morphometric Relationships

a. Relief Highest elevation — lowest elevation
Reflects the vertical dimensions of drainage basin

Includes factors of gradient and elevation



V. Basin Morphology and Flood Hydrograph
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Figure 5.21

(A) Discharge (mean annual flood, Q; 1) controlled by drainage density in 13 basins. (B) Effect of increasing
drainage density on flood hydrograph in an experimental drainage system
(AY (Carlston 1963), (B) (Zsmpler 19K2)
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Figure 5.22
Idealized flood hydrograph and generalized
responses to drainage basin characteristics.
The effect of an individual characteristic is
shown assuming the other characteristics are
held constant.

Discharge ——

Time
Characteristic Flashy Sluggish
(hydrograph 1) (hydrograph 2)
Basin area Small Large
Drainage density High Low
Basin magnitude High Low
Relief High Low
Ruggedness number High Low
Basin shape Equidimensional Elongate
Soils Thin Thick
Vegetation Sparse Dense
Storm track Down the basin Up the basin
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V. Basin Evolution and Denudation
A. Factors affecting sediment yield
* climate
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Figure 2.15
Average annual sediment yield as it varies with effective
precipitation and vegetation.

(Langbein and S. A. Schumm, Transactions of the American Geophysical Union,
vol. 39, p. 1077, 1958, copyright by the Amenican Geophysical Union.)
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V. Basin Evolution and Denudation
A. Factors affecting sediment yield

* basin size

50,000 —
< L
‘
10,000
= Ganges/
= . . Yellowe
= | .
T 1000} O
S i * Yangtze
- L
'g | Amazon e
€ 100 |- \ .
Q
: °o &
3
) o " o)
10 1
0 o
©
\
1 =
1 10 100 1000 10,000
Drainage basin area (10°km?)
Figure 5.45

Comparison of sediment yields and drainage basin areas for all
major sediment-discharging rivers (greater than 10 x

108 t yr'). Open circles represent low-yield rivers draining
Africa and the Eurasian Arctic. Smaller basins have larger
yields, although the largest rivers (Amazon, Yangtze,
Ganges/Brahmaputra, and Yellow) all have greater loads than
their basin arcas would predict.

(Milliman and Mcade 1983)
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V. Basin Evolution and Denudation
A. Factors affecting sediment yield
* rock type
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Infiltration capacity (in/hr) (Hadley and Schumm 1961)




V. Basin Evolution and Denudation
A. Factors affecting sediment yield

* Human Factor

Figure 5.51

Changes in sediment yield and channel
behavior in one area under various
types of land use.

(Wolman 1967)
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V. Basin Evolution and Denudation
A. Factors affecting sediment yield

* Human Factor

(B)
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Figure 5.46

Channel changes and disequilibriom response triggered by
land use changes upstream, Sexton Creek, southern Hlinoss
(A) Plan view map of channcl adjustments between 1973 and
1989. Note the narrow, sinsous, fine-grained channel mapped
in 1973, Major adjustments began suddenly with a flood in
1986, replacing the sinuous channel with a stright, wide
gravel-bed channel concurrent with the erosion of fine-grained
Noodplain alluvium. (B) Change in channel and floodplain
cross-section tuken normal to the axis of the 1989 channel in
(A). (C) Sexton Creek channel in 1988 after a significant
Nood. Mud from the former valley fill sediment is visible
along the cut bank on the Ieft. The channel at this location
increased width by over SO0 percent since 1986, replacing a
stnpous, fine-grained channel with a coarse-grained, cobbly
straight reach

(C) (Mo by R Crsig Koxdel



V. Basin Evolution and Denudation
A. Factors affecting sediment yield
B. How do basins erode (denute?)


















\Volume = 13, 364 m3
Area 0.398 km? or 398,000 m?

=0.034 m

=3.4cm



Summary of Basin Denudation of Blue Ridge Systems

Event

Hurricane
Camille

Hurricane
Camille

Hurricane
Camille

Rapidan
Flood

Rapidan
Flood

Basin

Willis

Cove

Ginseng
Hollow

Polly Wright
Cove

Jenkins
Hollow

Teal Hollow

Basin
Area
(km?)

4.08

1.75

2.47

0.398

0.123

\olume of

Sediment
Eroded

(m?)

173,488

88,727

87,707

13,364

2,492

Mean
Basin
Denuda-
tion (cm)

4.25

5.07

3.95

3.36

2.03
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Denudation (cm)

Long Term

Nelson County

Hurricane
Camille

and Episodic Denudation

OLong Term
@ Episodic

Madison County

Rapidan
Storm



B. How do basins erode (denute?)




V1. Basin Hydrology Hydrogeology (GEOL 460)
A. Subsurface Water M W 10:10-11, Friday Lab

—— 90 = Equipotential surfaces

- - = = = Flow lines
G § sGince Ground surface

Water table Water table

Figure 5.27

Movement of groundwater according
to distribution of potential in the
underground system. Water moves
from high to low potential and
perpendicular to the equipotential
surfaces.




Hydrogeology (GEOL 460)

VI. Basin Hydrology, ss M W 10:10-11, Th lab
A. Subsurface Water-»"

Water ———p Flow lines prior
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Figure 5.30

Development of cone of depression drawing down the water table due to the pumping of a major
irrigation well. The cone of depression can alter groundwater flow patterns significantly as indicated
here where the leachate from a landfill, which normally would move to the right, would now flow
toward the water supply well for the home. This example assumes a simple homogenous system.
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1. Terms
Discharge
Q=V*A



V1. Basin Hydrology
B. Surface Water
1. Terms
Discharge
Q=V*A
Velocity is highly variable,; depends where measured.

FIGURE 5-15

Three-dimension:
gradient curve foi
in a stream chanr




Velocity i1s highly variable; depends where measured.

and 3tage-evel
roCorder

(Photo by R, Crasg Kechel)

‘igure 5,32
Stream discharge gaging station. (A) Channel cross-section subdivided into small
compartments for discharge measurement in cach, (B) Price current meter for
measuring velocity, (C) Ventical profile of velocity in the channel, Average
velocity can be measured just below half the depeh. (D) Stream gaging station on
Antes Creek, Pa. A rotating drum chart reconder is positioned a1 the top of a stilling
well 1o monitor stage changes in the creek. The well is connected with the creek
3) via lateral pipes below the floodplain




V1. Basin Hydrology
B. Surface Water
2. Reporting discharge ooy ——
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Discharge (cfs)

3. Flood Frequency
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What does this mean???

Discharge (cfs)
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What does this mean???

the curve estimates the magnitude of a flood that can be
expected within a specified period of time
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What does this mean???

the curve estimates the magnitude of a flood that can be
expected within a specified period of time

The probability that a flow of a given magnitude will occur during a
year is P=1/RI.

EX: a 50 year flood has a 1/50, or a 2 percent chance of occurring
In any given year



For multiple years:
qg=1-(1-1/T)
where q = probability of flood with RI of T with a
specified number of years n



For multiple years:
qg=1-(1-1/R)n
where q = probability of flood with Rl with a
specified number of years n

EX: a 50 year flood has an 86% chance of occurring over 100 years

CAUTION!!T ANALYSIS GOOD FOR 1.5x length of data set
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Flood recurrence interval (R.1.)



V1. Basin Hydrology
B. Surface Water
3. Flood Frequency

Flood recurrence interval (R.1.)

use Weibull Method - calculates the R. 1.
by taking the average time between 2 floods of equal or
greater magnitude.

RI=(n+1)/m
where n Is number of years on recorda,
m Is magnituade of given flood



V1. Basin Hydrology
B. Surface Water
3. Flood Frequency

What does this mean???

the curve estimates the magnituade of a flood that can be
expected within a specified period of time

The probability that a flow of a given magnitude will occur during :
yearis P=1/R.

EX: a 50 year flood has a 2 percent chance of occurring in any giver,
year
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the curve estimates the magnituade of a flood that can be
expected within a specified period of time

The probability that a flow of a given magnitude will occur during
Any yearis P=1/RI.
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What does this mean???

the curve estimates the magnituade of a flood that can be
expected within a specified period of time

The probability that a flow of a given magnitude will occur during a
year is P=1/RI.

EX: a 50 year flood has a 1/50, or a 2 percent chance of occurring
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V1. Basin Hydrology
B. Surface Water
3. Flood Frequency

What does this mean???

the curve estimates the magnituade of a flood that can be
expected within a specified period of time

The probability that a flow of a given magnitude will occur during a
year is P=1/RI.

EX: a 50 year flood has a 1/50, or a 2 percent chance of occurring
In any given year

CAUTION!T GOOD FOR 1.5x length of data set



V1. Basin Hydrology
B. Surface Water
3. Flood Frequency

What does this mean???

For multiple years:
q=1-(1-1/T)
where q = probability of flood with RI of T with a
specified number of years n



V1. Basin Hydrology
B. Surface Water
3. Flood Frequency

What does this mean???
For multiple years:
q=1-(1-(I/T))

where q = probability of flood with RI of T with a
specified number of years n

EX: a 50 year flood has an 86%b chance of occurring over 100 years



V1. Basin Hydrology .
C. Paleoflood Hydrology Slackwater deposits......
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Figure 5.37

Schematic of on- and off-lap sequences and peak flood stage in a tributary valley for
the 1954 and 1974 floods on the Pecos River, Texas. Sections in the proximal region
(area 2) contain both floods, while distal regions (area 1) farther up the tributary
record only the larger 1954 flood. Paleostage reconstructions are based on the
elevation of the most distal sediments of each flood unit.

Kochel et al. 1982



V1. Basin Hydrology
C. Paleoflood Hydrology

Which one is right??2??
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“carbon is your friend”

Figure 5.38
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Range of potential flood frequency curves calculated using a vanety of common standard techniques applied 10 the
Pecos River flow data. Estimates of flood frequency for the 1954 flood outlier range from less than 100 years to more
than 20 million years. Slackwater paleoflood deposits were used 10 provide a more realistic estimate based on physical
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flood evidence of around 2000 yeurs.
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