

NFPA-13

STANDARD FOR INSTALLATION OF SPRINKLER SYSTEM

Chapter-1: Administration

Chapter-2: Referenced Publication

Chapter-3: Definitions

Chapter-4: General Requirements

Chapter-5: Water Supply

Chapter-8: Installation of Underground Piping

Chapter-8: Requirements for System Components

Chapter-8: System Types & Requirements

Chapter-9: Sprinkler Location Requirements

Core Chapters

- Chapter-10: Installation requirements for standard Pendant, Upright and side wall spray sprinkler
- Chapter-11- Installation requirements for Extended Coverage Pendant, Upright and side wall spray sprinkler
- Chapter 12- Installation requirements for residential Sprinklers
- Chapter 13- Installation requirements for CMSA Sprinklers
- Chapter 14- Installation requirements for ESFR Sprinklers
- Chapter 15- Installation requirements for Special Sprinklers
- Chapter 18- Installation of Piping, valves and appurtences
- Chapter 18- Installation requirement for hanging and supporting of piping.
- Chapter 18- Installation requirement for seismic Protection

Chapter 19- Design Approaches

Design

- Chapter 20- General requirement for storage
- Chapter 21- Protection of high piled storage using CMDA Sprinklers
- Chapter 22 CMSA requirement for storage applications
- Chapter 23- ESFR requirement for storage applications
- Chapter 24 Alternative sprinkler system design Ch. 20 through 25
- Chapter 25- Protection of rack storage using rack sprinklers

Chapter 28- Special Occupancy requirements

Chapter 28 – Plans & calculations.

Chapter 28 – System Acceptance

Chapter 29 – Existing System Modification

Chapter 30 – Marine System

Chapter 31 – System ITM

Special Occupancy requirements & Supporting Chapters

Annexure-A Annexure-B Annexure-C Annexure-D Annexure-E Annexure-F

Explanatory Materials- Not the part of Code

Miscellaneous Topics

Explanation of Test Data and Procedures for rack Storage

Sprinkler system Information from NFPA 101,201 edition.

Development of Design approach

Informational References-Not the part of Code

NFPA 13 Training- Mehboob Shaikh(M Tecn. | B.Eng. | AIVIIE | CFPS | CFI)

SECTION 01

CORE REQUIREMENTS

#1.1 - Scope

1.1.3* This standard is written with the assumption that the sprinkler system shall be designed to protect against a single fire originating within the building. #4.2#4.3

Classification of Hazard and Role of OC

#4.4 - Standby Hose Stations Connected to Sprinkler Systems

Table 19.3.3.1.2 Hose Stream Allowance and Water Supply Duration Requirements for Hydraulically Calculated Systems

Total Combined Inside and Inside Hose Outside Hose Duration (minutes) Occupancy L/min gpm L/min gpm Light hazard 0, 50, 0, 190, 100 380 30 OF \mathbf{or} 10038060 - 90Ordinary 0, 50, 250 950 0.190.hazard or Of 100 380Extra hazard 1900 90 - 1200, 50, 0, 190, 500 or OF 100 380

What is these hose stream

Are they standpipe demand....?

Standby Hose Stations Connected to Sprinkler Systems

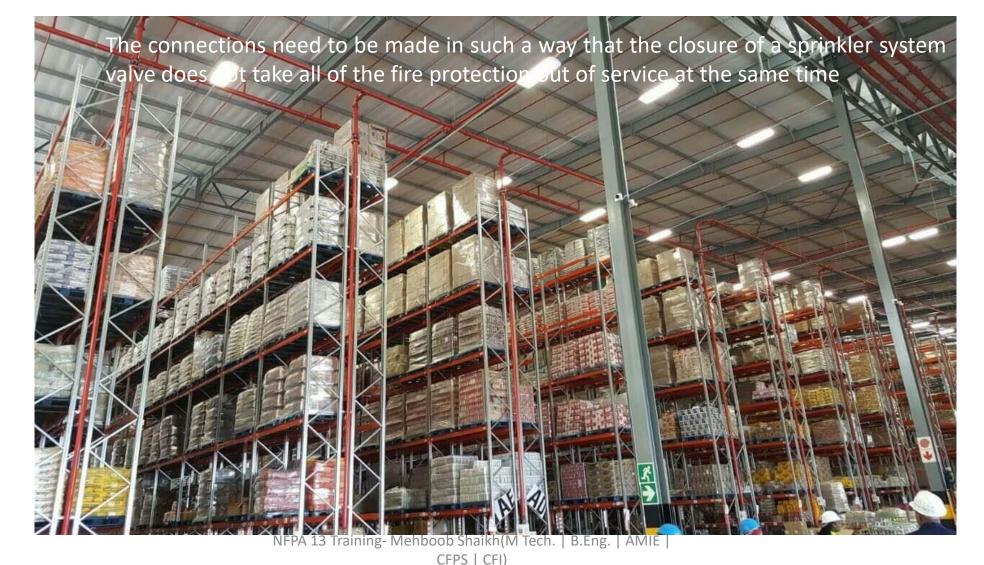
- NFPA 13 allows small (1½ in.) and large (2½ in.) hose connections to be connected to fire sprinkler systems. Such connections are considered a part of the fire sprinkler system, not a standpipe system.
- The purpose of a standby hose connection is to provide the user with some type of fire protection without providing all of the full requirements of a standpipe system. Connecting the standby hose to the fire sprinkler system allows a small amount of water to be available for firefighting (typically 50–250 gpm) without the full water supply of a standpipe system.
- There are two occupancies where standby hose connections are sometimes found: storage warehouses and assembly occupancies back stage.

How are these Standby hoses justified in Storage occupancies...?

They were justified in storage warehouses because the ceiling is very high and the fire takes some time to grow large enough to set off sprinklers, which gives the warehouse employees time to try and extinguish the fire.

Standby Hose Stations Connected to Sprinkler Systems

- Many fire protection professionals were concerned with the thought of untrained employees in a warehouse trying to use the hose to fight a fire without any protective clothing or equipment.
- In addition, the Occupational Safety and Health Administration (OSHA) started to express concerns that if the hose was placed in the warehouse for employees to use, the employees needed to be provided with protective clothing, equipment and training
- In the 2010 edition of NFPA 13, the requirement was changed to only have the hose stations installed when they were specifically required by the Authority Having Jurisdiction.


NFPA 13 Rule for Such Standby Hoses

The connections are required to be spaced around a building so that all portions of the building can be reached within 100 ft of hose and 30 ft of throw.

The connections are permitted to be made directly to wet pipe sprinkler system piping of the following sizes:

- 2.5 in. piping on a tree sprinkler system (one flow path from the water supply to the connection).
- 2 in. piping on a looped or gridded sprinkler system (more than one flow path from the water supply to the connection).
- For piping serving a single hose connection:
- Minimum 1 in. pipe for horizontal runs up to 20 ft.
- Minimum 1.25 in. pipe for horizontal runs up to 80 ft. Note that the whole run needs to be 1.25 in. pipe. You are not allowed to switch to 1 in. pipe for the last 20 ft.
- Minimum 1.5 in. pipe for horizontal runs over 80 ft. Note that the whole run needs to be 1.5 in. pipe. You are not allowed to switch to smaller pipe sizes towards the end of the run.
- Minimum of 1 in. for vertical runs

For piping serving multiple hose connections, a minimum of 1.5 in. pipe is required

The connections need to be made in such a way that the closure of a sprinkler system

· valve does not take all of the fire protection out of service at the same time

Options – 01

A separate piping system for just the hose stations. This would have its own connection to the water supply with its own control valve and closing any valve on the fire sprinkler system would have no effect on whether water could get to the hose stations

The connections need to be made in such a way that the closure of a sprinkler system

· valve does not take all of the fire protection out of service at the same time

Options – 02

A connection to the sprinkler riser upstream of the control valve. This is really the same as option 1 above.

The connections need to be made in such a way that the closure of a sprinkler system

· valve does not take all of the fire protection out of service at the same time

Options – 03

Feeding the hose stations in one part of a warehouse with the ceiling sprinkler piping from another part of the warehouse makes sure that when one valve is closed, the protection is not completely eliminated from each area of the building. Closing the valves to the ceiling sprinklers in one area will take out the hose stations in another area, but in that area the ceiling sprinklers should still be active. In the area where the ceiling sprinklers were shut down, the hoses will be fed from a different sprinkler system, so they should still be active.

The connections need to be made in such a way that the closure of a sprinkler system

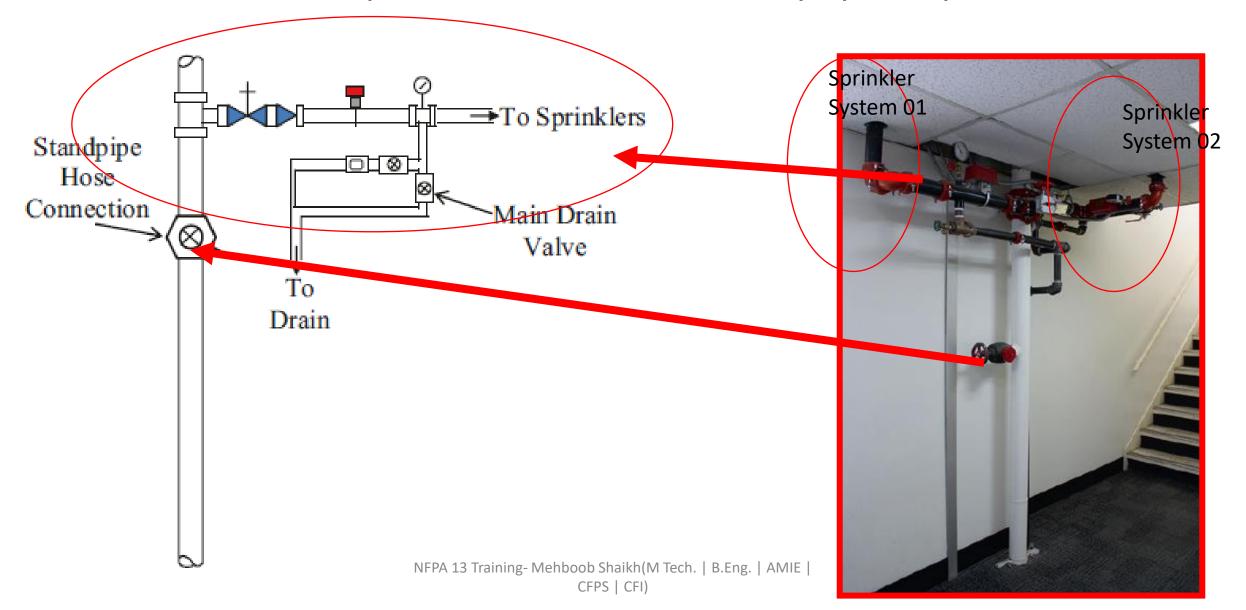
· valve does not take all of the fire protection out of service at the same time

Options – 04

In rack storage warehouses where the decision has been made to install in-rack sprinklers, the hose stations are permitted to be fed from the ceiling sprinklers in the same area as the hose stations as long as the in-rack sprinklers have a completely different control valve. In this way, at least one of the three types of fire protection in an area will be active at all times

Back stage areas of theaters & Standby Hoses

Many building and fire codes require that these areas have 1.5 in. hose stations, but the codes allow them to be directly connected to the sprinkler systems rather than have them installed as separate standpipe systems


The general rules for the installation of these hose systems is the same as discussed above for warehouses with one exception. The hose stations for non-storage situations are allowed to be directly connected to the ceiling sprinkler system in the same portion of the building as the hose stations

NFPA 13 Rule for Such Standby Hoses

- The flow demand for the inside hose stations takes the place of some of the total hose stream demand
- NFPA 13 requires a total of 100 gpm of hose stream demand for light hazard, 250 gpm for ordinary hazard and 500 gpm for extra hazard
- If there are two or more hose stations in a building, the inside hose stream demand will be 100 gpm and the outside hose stream demand becomes 0 gpm in a light hazard occupancy, 150 gpm in an ordinary hazard occupancy and 400 gpm in the extra hazard occupancy

Combined Sprinkler and Standpipe System

Few Points to Ponder About?

For a Sprinkler system we should have to have a Separate Sprinkler Riser!!!!! & Where is the Sprinkler Riser in Combined System...?

Few Points to Ponder About?

But the Risers are understood to be the Vertical pipe not the horizontal one isn't it ...?

3.3.215 System Rises. The aboveground horizontal or vertical pipe between the water supply and the mains (cross or feed) that contains a control valve (either directly or within its supply pipe), a pressure gauge, a drain, and a waterflow alarm device.

Few Points to Ponder About?

Why we have connected two Sprinkler System to this standpipe..?

- 4.5.1 The maximum floor area on any one floor to be protected by sprinklers supplied by any one sprinkler system riser or combined system riser shall be as follows:
- Light hazard 52,000 ft² (4830 m²)
- (2) Ordinary hazard 52,000 ft² (4830 m²)
- (3)* Extra hazard Hydraulically calculated 40,000 ft² (3720 m²)
- (4) High-piled Storage High-piled storage (as defined in 3.3.95) and storage covered by other NFPA standards — 40,000 ft² (3720 m²)
- (5) In-rack Storage 40,000 ft² (3720 m²)

Chapter-5: Water Supplies

Learning Objectives:

Understanding minimum requirements for the various water supply sources that provide water to sprinkler systems

Types of Water Supply Sources

- (1) A connection to an approved public or private waterworks system in accordance with 5.2.2
- (2) A connection including a fire pump in accordance with 5.2.3
- (3) A connection to a water storage tank at grade or below grade installed in accordance with NFPA 22 and filled from an approved source
- (4) A connection to a pressure tank in accordance with 5.2.4 and filled from an approved source
- (5) A connection to a gravity tank in accordance with 5.2.5 and filled from an approved source
- (8) A penstock, flume, river, lake, pond, or reservoir in accordance with 5.2.8
- (8)A source of recycled or reclaimed water where the building owner (or their agent) has analyzed the source of the water and the treatment process (if any) that the water undergoes before being made available to the sprinkler system

- Use in limited private fire protection services, such as sprinkler systems, standpipe and hose systems, and water spray fixed systems.
- Tank capacity should be approved by the authority having jurisdiction (AHJ) and is considered to be the total contents, both air and water in the cylinder.
- The pressure shall be sufficient to push all of the water out of the tank while maintaining the necessary residual pressure required by NFPA 13 at the top of the sprinkler system.
- Most pressure tanks are located above the top level of the sprinklers.
- Subject to the approval of the AHJ, tanks may be located in the basement or elsewhere

- The tank is normally kept two-thirds full of water (a water-level gauge provided and the tank plate marked "2/3 capacity line") and a gauge pressure of at least 85 psig (518 kPa) is maintained.
- A listed air pressure gauge with a maximum range equivalent to twice the normal working pressure should be installed.
- As the last of the water leaves the pressure tank, the residual pressure shown on the gauge should not be less than zero and should give at least 15 psi (103 kPa) pressure at the highest automatic discharge device under the main roof of the building.
- Air for pressure tanks should be supplied by compressors capable of delivering not less than 18 ft3/min (0.045 m3/min) of free air for tanks of 8500 gal (28.4 m3) total capacity and not less than 20 ft3/min (0.058 m3/min) for larger sizes.

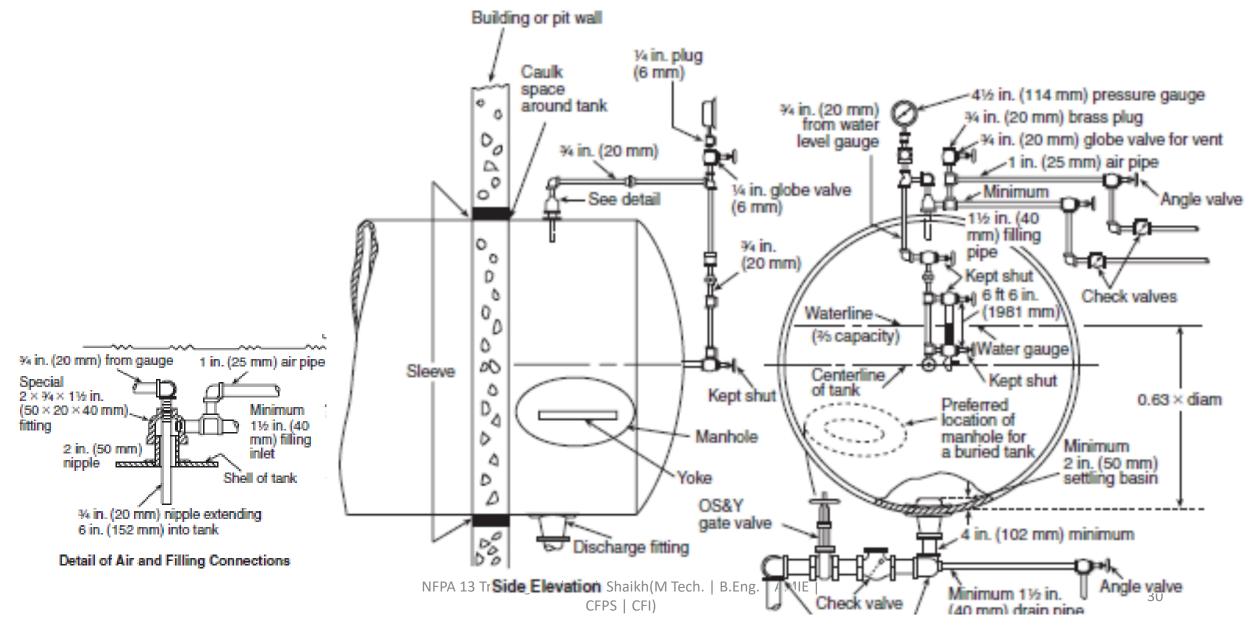


TABLE 15.1.7 Typical Dimensions of Horizontal Pressure Tanks of Standard Sizes

Approx. Gross Capacity		Approx. Net Cap. ² / ₃ Full		Inside Diam.		Inside Length			ox. Wt. r ² / ₃ Full
gal	L	gal	L	in.	m	ft	m	lbs	kg
3000	11,355	2000	7,570	60	1.5	20.2	6.2	16,670	7,568
3000	11,355	2000	7,570	66	1.7	17.0	5.2	16,670	7,568
3000	11,355	2000	7,570	72	1.8	14.2	4.3	16,670	7,568
4500	17,033	3000	11,355	66	1.7	25.4	7.7	25,000	11,350
4500	17,033	3000	11,355	72	1.8	21.3	6.5	25,000	11,350
4500	17,033	3000	11,355	78	2.0	18.2	5.5	25,000	11,350
6000	22,710	4000	15,140	72	1.8	28.2	8.6	33,340	15,136
6000	22,710	4000	15,140	78	2.0	24.2	7.4	33,340	15,136
6000	22,710	4000	15,140	84	2.1	21.0	6.4	33,340	15,136
7500	28,388	5000	18,925	78	2.0	30.3	9.2	41,670	18,918
7500	28,388	5000	18,925	84	2.1	26.2	8.0	41,670	18,918
7500	28,388	5000	18,925	90	2.3	22.7	6.9	41,670	18,918
9000	34,065	6000	22,710	84	2.1	31.4	9.6	50,000	22,700
9000	34,065	6000	22,710	90	2.3	27.3	8.3	50,000	22,700
9000	34,065	6000	22,710	96	2.4	24.0	7.3	50,000	22,700

NFPA 13 Training- Mehboob Shaikh(M Tech. | B.Eng. | AMIE | CFPS | CFI)

Pressure Tank Sizing Example

A Pressure tank is to be used to provide a 30 min water supply to a system with a hydraulically calculated demand of 140 gpm (530 L/min) at a pressure of 118 psi (8.14 bar). Due to nearby component pressure ratings, it is important that air pressure in the tank not exceed 175 psi (12.0 bar). To determine the minimum size tank.

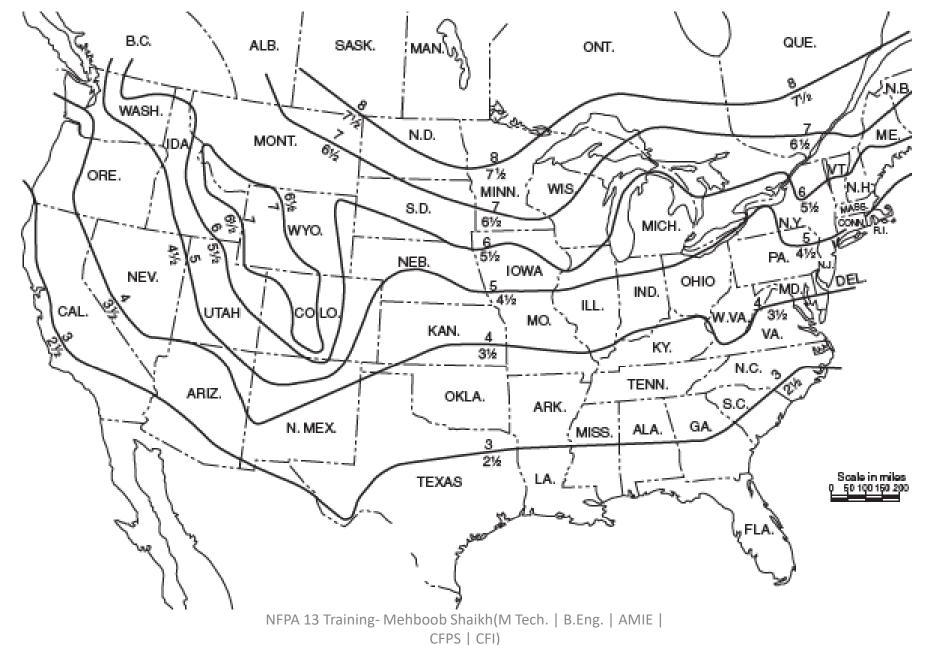
Solution

$$P_i = \frac{P_f + 15}{A} - 15$$

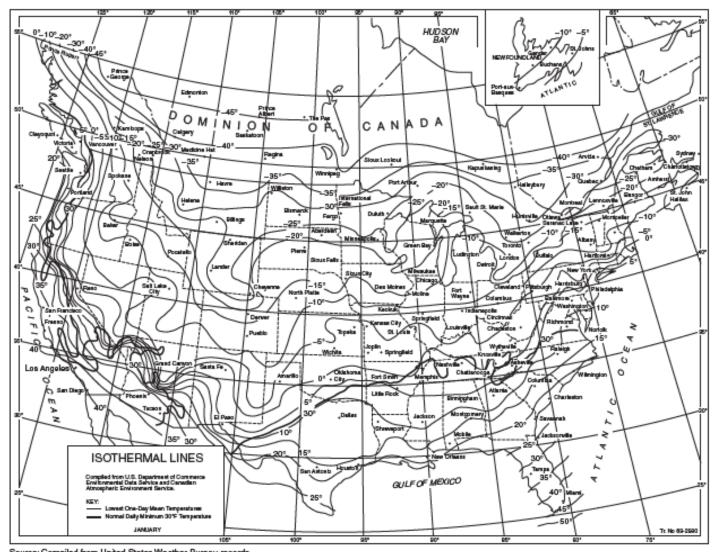
where

 P_i = Tank air pressure to be used

 P_f = System pressure required per hydraulic calculations

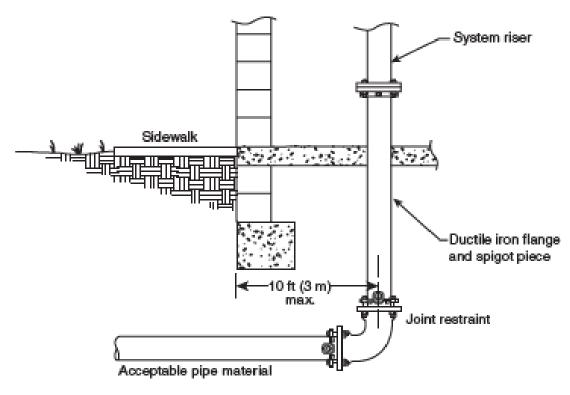

A =Proportion of air in the tank

Chapter-8: Installation of Underground Piping

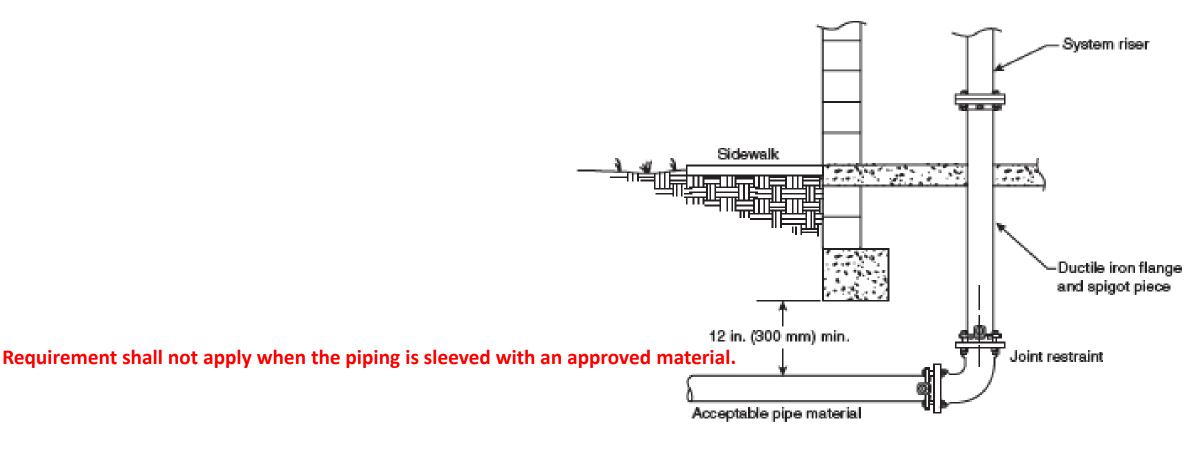

Learning Objectives:

• Understanding minimum requirements for underground piping, including piping materials, fittings, joining of pipe and fittings, depth of cover, protection against freezing, protection against damage, laying of pipe, joint restraint, backfilling, and testing and acceptance.

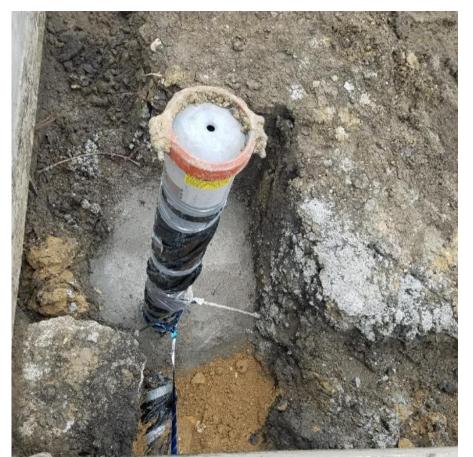
Protection of Private service Mains

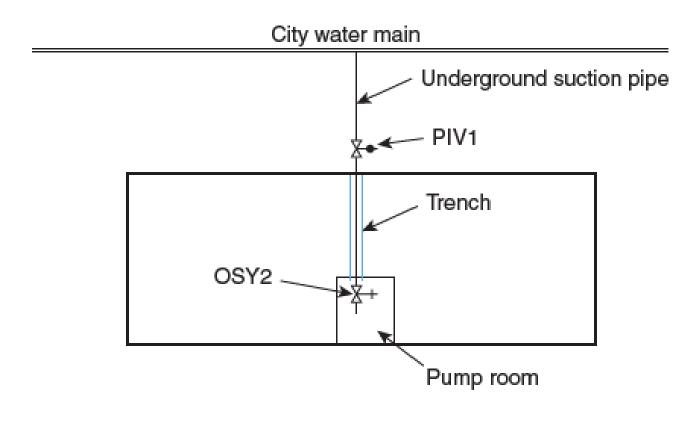

Protection of Private service Mains

Source: Compiled from United States Weather Bureau records. For SI units, °C = % (°F -32); 1 mi = 1,609 km.

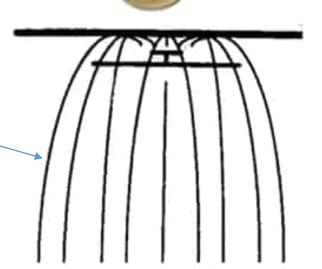

Private Service Mains under the buildings

Cl.8.4.3.1-Private fire service mains supplying fire protection systems within the building shall be permitted to extend no more than 10 ft (3.0 m), as measured from the outside of the building, under the building to the riser location.


Private Service Mains under the buildings

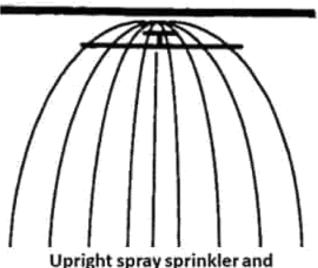

Cl. 8.4.3.1.2- Piping shall be installed a minimum of 12 in. (300 mm) below the bottom of building foundations or footers.

Private Service Mains under the buildings


Cl. 8.4.3.2- Private fire service mains shall not be permitted to extend more than 10 ft (3 m) under the building except as allowed in 8.4.3.2.1.

The Difference Between Standard Response and Quick Response Sprinklers

Until 1953, fire sprinklers had what we now call "conventional" or "old-style" deflectors, which would throw between 40 and 60% of their discharged water initially upwards rather than downwards.



Upright old-style sprinkler

NFPA 13 Training- Mehboob Stand(spray pattern) AMIE |

CFPS | CFI)

spray pattern

The Difference Between Standard Response and Quick Response Sprinklers

NFPA 13 defines "fast-response" and "standard-response" sprinklers based on these RTI values (3.3.205.4):

[•]Fast response sprinklers have RTIs of 50 or less.

[•]Standard response sprinklers have RTIs of 80 or less.

Standard vs QR vs Residential

Pendent VK1021

Quick-Response Pendent VK3021

Residential (Fast-Response) Pendent VK468

42

What is the Hydraulic Advantage of QR Spr.

Because QR sprinklers open faster and thus may control fires sooner, NFPA 13 encourages designers to use them instead of standard response sprinklers in certain conditions. Specifically, designers can employ QR sprinklers where (19.3.3.2.3.1):

- The occupancy is light or ordinary hazard (the only time QR is allowed)
- The sprinkler system is wet-pipe
- The ceiling is no more than 20 feet high
- There are no unprotected ceiling pockets covering more than 32 ft.²
- There are no unprotected areas above cloud ceilings

What is the Hydraulic Advantage of QR Spr.

Without Quick-Response	With Quick Response	
Design density: 0.15 gpm/ft.2	Design Density: 0.15 gpm/ft2	
Design area: 1500 ft.2	Design area: 900 ft.2	
Required flow in design area: 225 gpm	Required flow in design area: 135 gpm	

Pipe and Fittings

Not all pipe or tubing that meets these standards is *also* listed for fire sprinkler service. Pipes that are "listed" have been rigorously tested and found to meet the safety standards of a third-party certification agency. Metal pipes are listed to <u>UL 852</u> and thermoplastic pipes are listed to <u>UL 1821</u>.

****If listed materials differ from Table 7.3.1.1, NFPA 13 permits their use as long as installers adhere to any limitations in the listing.

NFPA 1

Table 7.3.1.1 Pipe or Tube Materials and Dimensions

Materials and Dimensions	Standard
Ferrous Piping (Welded and	
Seamless)	
Standard Specification for Black and	ASTM A795/A795M
Hot-Dipped Zinc-Coated	*
(Galvanized) Welded and Seamless	
Steel Pipe for Fire Protection Use	
Standard Specification for Pipe, Steel,	ASTM A53/A53M
Black and Hot-Dipped, Zinc-	
Coated, Welded and Seamless	
Welded and Seamless Wrought Steel	ASME B36.10M
Pipe	
Standard Specification for Electric-	ASTM A135/A135M
Resistance-Welded Steel Pitre	
Copper Tube (D, Seamless)	
Staria Specification for Seamless	ASTM B75/B75M
Copper Tube	
Standard Specification for Seamless	ASTM B88
Copper Water Tube	
Standard Specification for General	ASTM B251
Requirements for Wrought Seamless	
Copper and Copper-Alloy Tube	
Standard Specification for Liquid and	ASTM B813
Paste Fluxes for Soldering of Copper	
and Copper Alloy Tube	
Specification for Filler Metals for	AWS A5.8M/A5.8
Brazing and Braze Welding	
Standard Specification for Solder	ASTM B32
Metal, Section 1: Solder Alloys	
Containing Less Than 0.2% Lead	
and Having Solidus Temperatures	
Greater than 400°F	
Alloy Materials	ASTM B446
CPVC	
Standard Specification for	ASTM F442/F442M
Chlorinated Poly(Vinyl Chloride)	
(CPVC) Plastic Pipe (SDR-PR)	
Brass Pipe	1. CTD 4 D 40
Standard Specification for Seamless	ASTM B43
Red Brass Pipe, Standard Sizes	
Stainless Steel	
Standard Specification for Seamless,	ASTM A312/A312M
Welded, and Heavily Cold Worked	

Austenitic Stainless Steel Pibes

Table 7.4.1 Fittings Materials and Dimensions

Materials and Dimensions	Standard
Cast Iron	
Gray Iron Threaded Fittings, Classes 125 and 250	ASME B16.4
Gray Iron Pipe Flanges and Flanged Fittings, Classes 25, 125, and 250	ASME B16.1
Malleable Iron	
Malleable Iron Threaded Fittings, Classes 150 and 300 Steel	ASME B16.3
Factory-Made WroughtButtwelding Fittings	ASME B16.9
Buttwelding Ends	ASME B16.25
Standard Specification for Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High Temperature Service	ASTM A234/A234M
Pipe Flanges and Flanged Fittings, NPS ½ through NPS 24 Metric/ Inch Standard	ASME B16.5
Forged Fittings, Socket-Welding and Threaded	ASME B16.11
Copper	
Wrought Copper and Copper Alloy Solder Joint Pressure Fittings	ASME B16.22
Cast Copper Alloy Solder Joint Pressure Fittings	ASME B16.18
CPVC Standard Specification for Threaded Chlorinated Poly(Vinyl Chloride) (CPVC) Plastic Pipe Fittings, Schedule 80	ASTM F437
Standard Specification for Socket-Type Chlorinated Poly(Vinyl Chloride) (CPVC) Plastic Pipe Fittings, Schedule 40	ASTM F438
Standard Specification for Chlorinated Poly(Vinyl Chloride) (CPVC) Plastic Pipe Fittings, Schedule 80	ASTM F439
Bronze Fittings Cast Copper Alloy Threaded Fittings, Classes 125 and 250	ASME B16.15

Stainless Steel

Pipe and Fittings

The pipe schedule or type indicates the thickness of the pipe wall

Summation	of	Variables	Affecting	Fire	Sprinkler	Pipe	Selection	
				N:	- Tub - Tu			

	Pipe or Tube Type			е
Property	Steel Sch. 40	Typical lightwall steel	Copper Type M	CPVC SDR 13.5
color	black	silver	copper	bright orange
weight of the DN25 (1 in.) size (kg/m)	2.5	1.8	0.7	0.4
melting point (MP)	(MP)	(MP)	(MP)	(HDT)
or heat distortion temperature (HDT)	1427-1538°C (2600-2800°F)	1427-1538°C (2600-2800°F)	1082°C (1980°F)	103°C (217°F)
damage susceptibility	low	low	low	high with UV exposure and impacts
corrosion susceptibility design C factor	high/ 120	high/ 120	moderate/ 150	low/ 150
occupancy classification NFPA standards	not limited	not limited	not limited	NFPA 13 light hazard, 13D, 13R, concealed and restricted exposure NFPA 90A
maximum ambient temperature	not limited	not limited	not limited	66°C (150°F)
flexibility/hanger spacing for the DN25 (1 in.) size (m)	not flexible/ 3.7	not flexible/ 3.7	slightly flexible/ 2.4	flexible/ 1.8
expansion concerns/solutions	negligible	negligible	negligible	yes/offsets direction changes, loops
fitting type	threaded grooved flanged plain-type	threaded grooved flanged plain-type	soldering brazing grooved	primer/solvent cement
compatible antifreeze	not limited*	not limited*	not limited*	glycerine*
				16

ob Shaikh(

Gauges

- Pressure gauges are a small but important component of the fire sprinkler system. Some systems
 only have water gauges, but others also have air gauges. Gauges help fire fighters, sprinkler
 system contractors, and building maintenance workers to determine the available water or air
 pressure at the gauge location.
- In addition, a gauge can help to determine whether there is a problem with the system if the gauge reading is outside the normal or expected pressure readings.
- Water gauges are typically installed on the supply and system sides of the various fire sprinkler system valves and fire pumps, at the tops of standpipes, at the main drain, at each floor level when feeding a sprinkler system from a standpipe, and on each side of pressure-regulating devices. Air gauges are installed on the system side of certain fire sprinkler valves, on system air sources, on air supply lines, and on quick-opening devices.
- Gauges should not be subject to freezing temperatures, should have a shut-off valve, and should be capable of draining.

Valves

- All automatic fire sprinkler system control valves must be indicating-type valves so that a person can look at the valve and determine if the valve is open, partially open, or shut. In addition, these valves require identification with a permanent metal or rigid plastic weatherproof sign, which must identify the area of the building served by that valve (National Fire Protection Association 2019, NFPA 13, Section 16.9.12.1).
- All indicating valves must be able to handle 175 psi or carry an appropriate rating for an anticipated pressure above 175 psi. Fully open indicating valves shall not close in less than 5 seconds when operated at maximum possible speed (National Fire Protection Association 2019, NFPA 13, Section 7.6.1). Indicating valves in fire sprinkler systems are usually 2 in. or larger and include the outside screw and yoke (OS&Y) valve, butterfly indicator valve, wall post indicator valve (WPIV), and post indicator valve (PIV)

Spacing & Location – Ceiling Construction Type

Obstructed: Panel construction and other construction where beams, trusses, or other members impede heat flow or water distribution in a manner that materially affects the ability of sprinklers to control or suppress a fire.

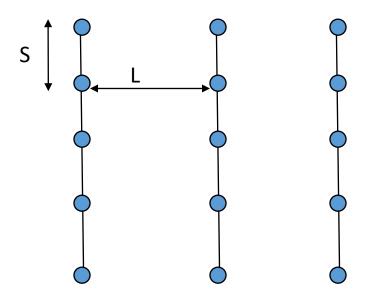
Spacing & Location – Ceiling Construction Type

Unobstructed:

- 1. Construction where beams, trusses, or other members do not impede heat flow or water distribution in a manner that materially affects the ability of sprinklers to control or suppress a fire.
- 2. Horizontal structural members are not solid and openings are at least 70% of the cross section area and the depth of the member does not exceed the least dimension of the opening.
- 3. All construction where the spacing of structural members exceeds 7.5 ft on center.

8.5: Position, Location, Spacing & use of Sprinklers

Determination of Protection area of Coverage


Along branch lines

Choose larger of

- Distance between sprinklers
- Twice distance to wall or obstruction
- This dimension is "S"

Between branch lines

- Distance between branch lines
- Twice distance to wall or obstruction
- This dimension is "L"

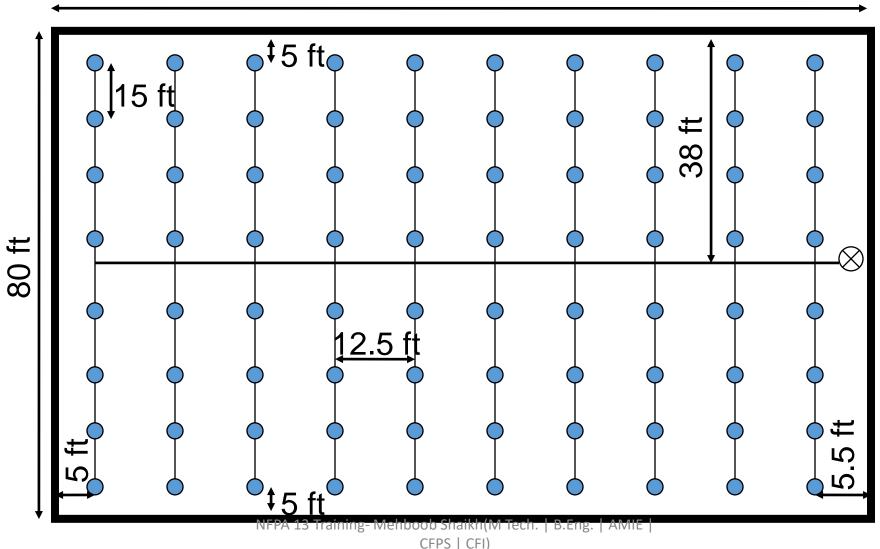
8.5: Position, Location, Spacing & use of Sprinklers

Determination of Protection area of Coverage

Area of Coverage = $S \times L$

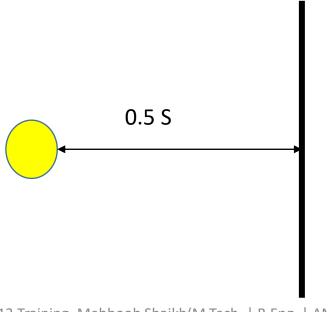
Where; S = Distance along the branch line

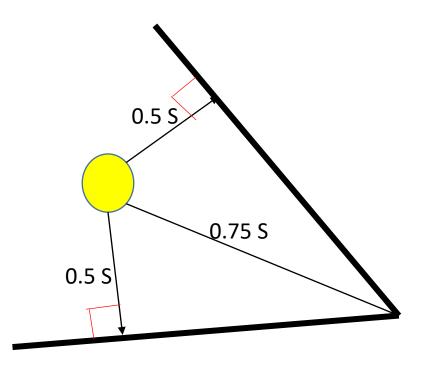
L = Distance between the branch line


The maximum area of coverage of any sprinkler shall not exceed 400 ft₂ (36 m_2).

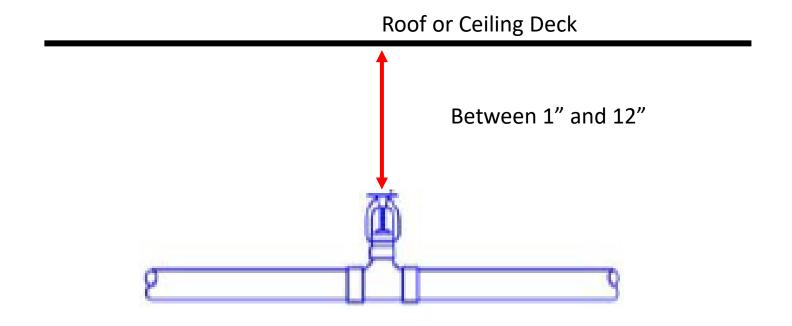
Legend If 2A > B then 2A = S# 8.5.2.1.1 (1) Fire sprinkler If B > 2A then B = SSprinkler branch line(s) Wall Finished floor sprinklers **If 2C > D then 2C = L** # 8.5.2.1.1 (2) If D > 2C then D = L

Example: Plan View

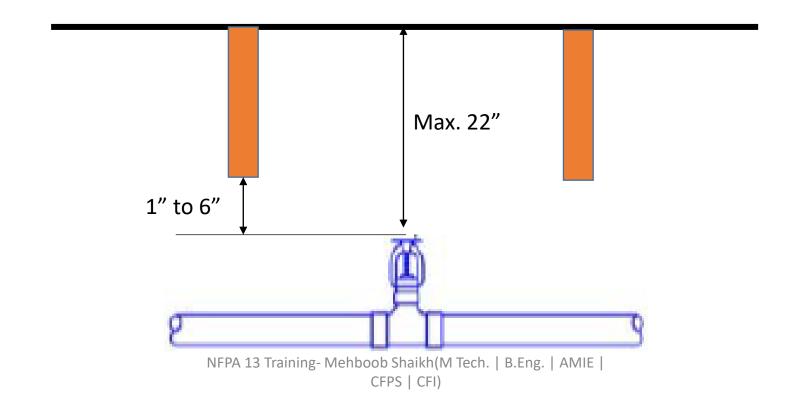

Determine area of Coverage for sprinklers

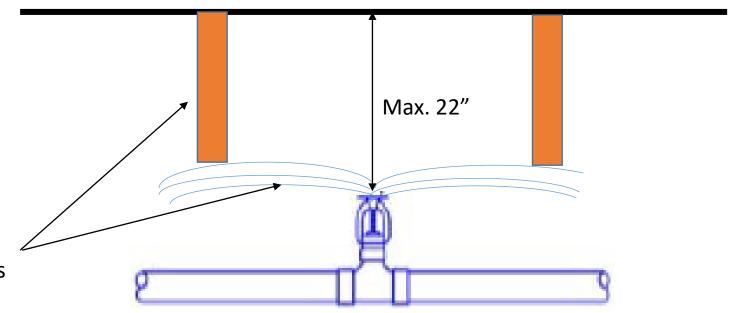

Measuring distance from wall

• Cl. 8.5.3.3.2 - Measure perpendicular distance between sprinkler and wall. This is the dimension that is not allowed to exceed ½ the allowable distance between sprinklers

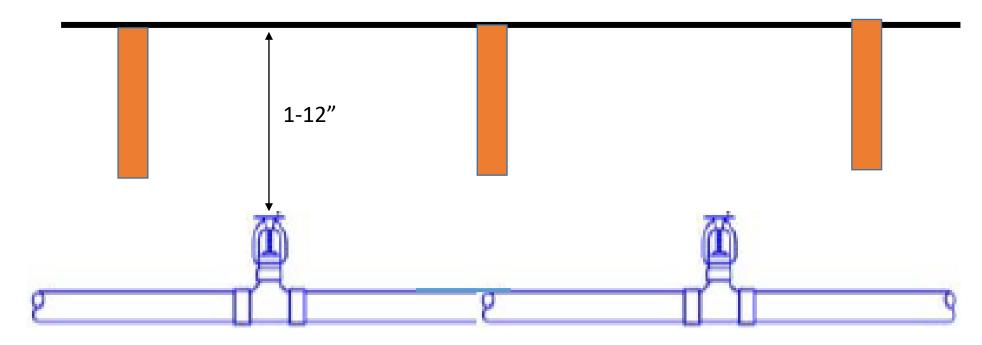


Measuring distance from wall

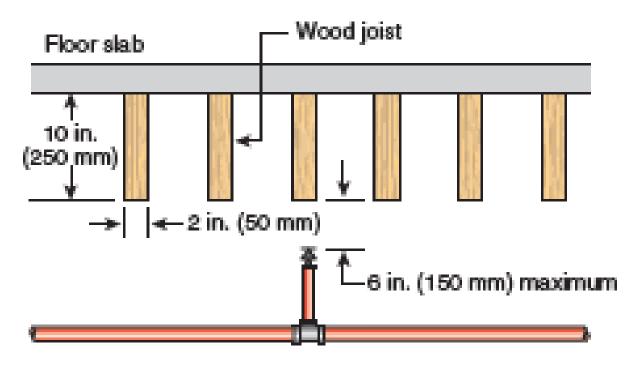

 Cl. 8.6.3.2.3 – for angled or irregular shaped walls sprinkler to corner must not exceed 0.75 allowable distance between sprinklers


- Distance below Ceiling
- Unobstructed Construction

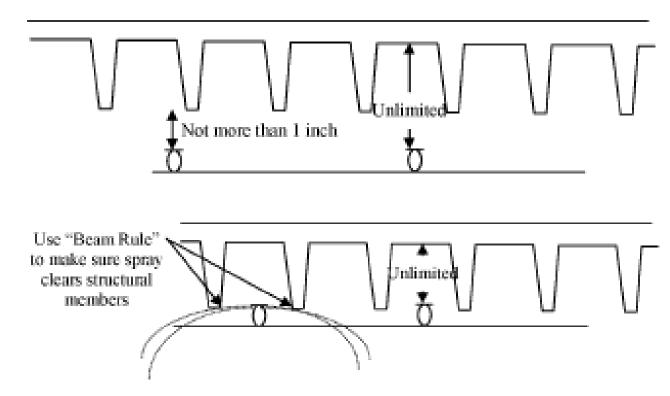
- Distance below Ceiling
- obstructed Construction- 8.6.4.1.2 (1)

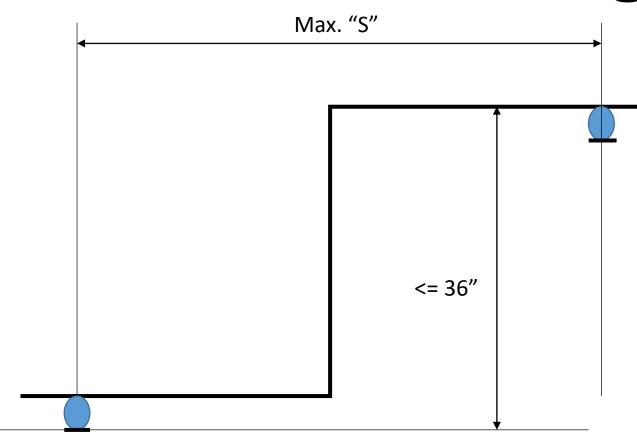


- Distance below Ceiling
- obstructed Construction- 8.6.4.1.2 (2) Beam Rule

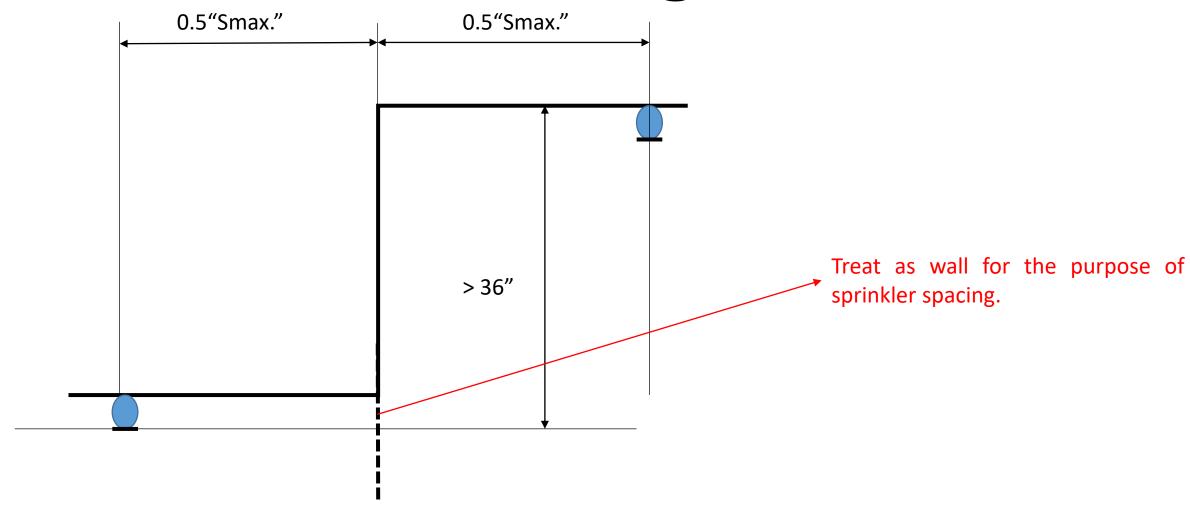


Make sure spray clears structural member.

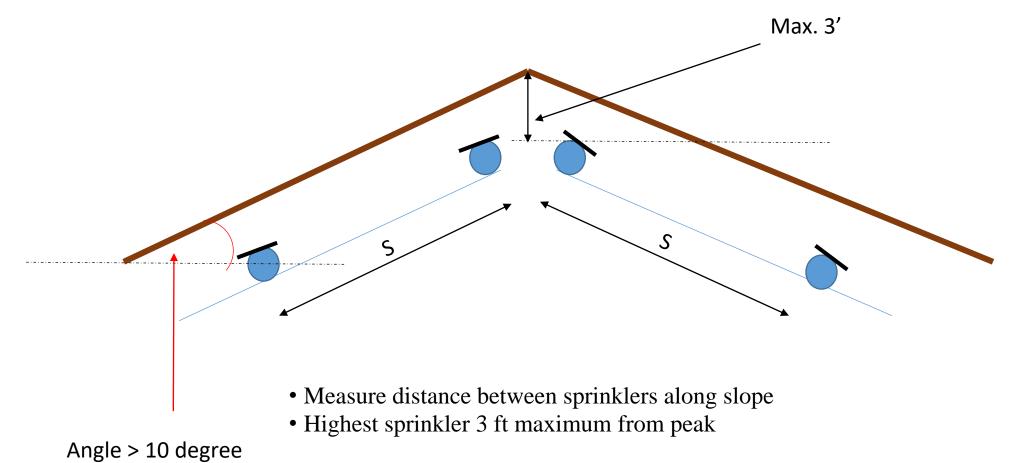

- Distance below Ceiling
- obstructed Construction- 8.6.4.1.2 (3)


- Distance below Ceiling
- obstructed Construction- 8.6.4.1.2 (4)

- Distance below Ceiling
- obstructed Construction- 8.6.4.1.2 (5)



Non Uniform Ceiling

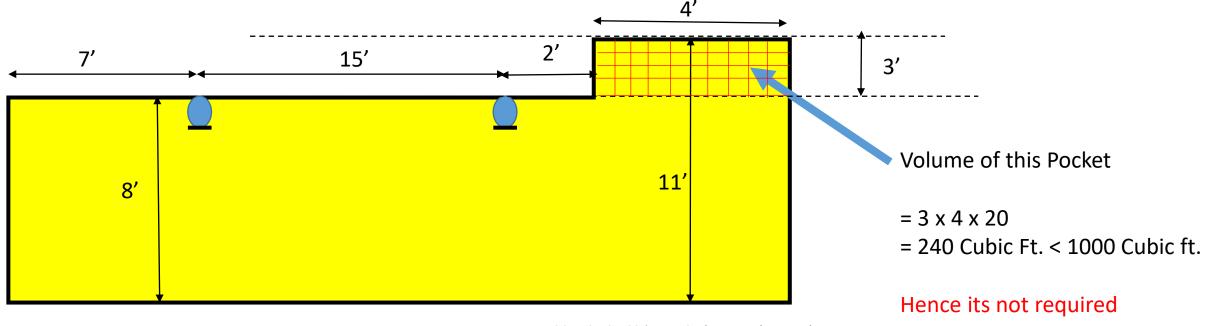


Sprinkler @ upper elevation must meet obstruction rules if protecting spaces under lower ceiling.

Non Uniform Ceiling

Sloped Ceiling

NFPA 13 Training- Mehboob Shaikh(M Tech. | B.Eng. | AMIE | CFPS | CFI)


8.6.7- Ceiling Pockets

Sprinklers can only be omitted from ceiling pockets when the following are met

- Volume does not exceed 1000 ft3
- Depth of the pocket does not exceed 36 in
- Floor space under the pocket is covered by sprinklers at the lower ceiling elevation
- Total size of all unprotected pockets within 10ft of each other does not exceed 1000 cubic feet
- Construction is noncombustible or limited combustible finish
- Quick response sprinklers are used throughout the compartment

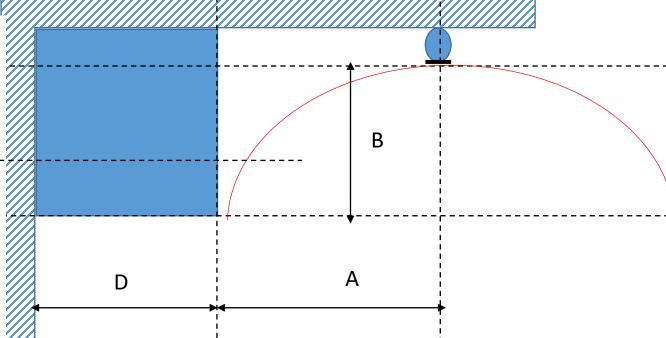
8.6.7- Ceiling Pockets

Are sprinklers required in the upper ceiling area if the occupancy is light hazard and the sprinklers are on 15 x 15 spacing? Assume room is 20 ft wide in the dimension not shown.

- 1. The Beam Rule
- 2. The Three Time Rule
- 3. The Four foot & wide obstruction Rule

The Beam Rule:

In short the "beam rule" states that there must be at least 1 foot (0.3048 m)of separation between the sprinkler and the obstruction if the deflector is any distance above the bottom of the obstruction.


As the distance (A) increases from the sprinkler to the obstruction the greater the Allowable distance from the deflector to the bottom of the obstruction (B)

Spray Umbrella should clear the beam.

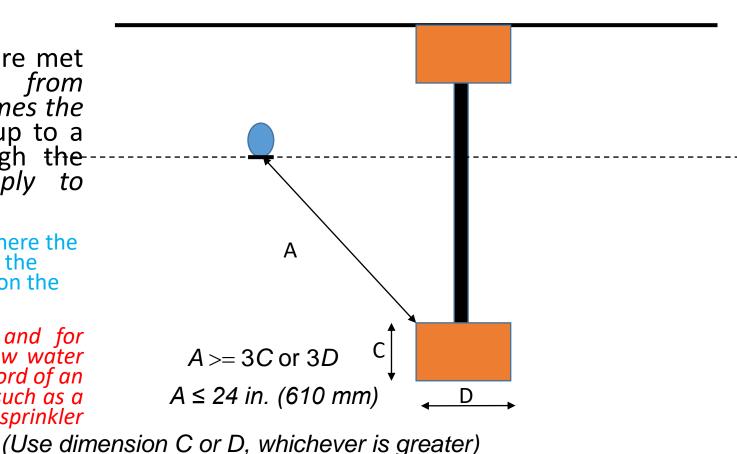
The Beam Rule:

Table 8.6.5.1.2 Positioning of Sprinklers to Avoid Obstructions to Discharge [Standard Spray Upright/Standard Spray Pendent (SSU/SSP)]

Distance from Sprinklers to Side of Obstruction (A)	Maximum
Less than 1 ft	0
1 ft to less than 1 ft 6 in.	21/2
1 ft 6 in. to less than 2 ft	31/2
2 ft to less than 2 ft 6 in.	51/2
2 ft 6 in. to less than 3 ft	71/2
3 ft to less than 3 ft 6 in.	91/2
3 ft 6 in. to less than 4 ft	12
4 ft to less than 4 ft 6 in.	14
4 ft 6 in. to less than 5 ft	161/2
5 ft to less than 5 ft 6 in.	18
5 ft 6 in. to less than 6 ft	20
6 ft to less than 6 ft 6 in.	24
6 ft 6 in. to less than 7 ft	30
7 ft to less than 7 ft 6 in.	35

The distances specified in Table 8.6.5.1.2 outline the discharge pattern of the sprinkler and define how far away from a building element a sprinkler must be positioned to allow the sprinkler discharge to extend underneath the building element rather than to hit it.

These distances are based on the discharge patterns of typical standard spray upright and pendent sprinklers at pressures from 15 psi to 100 psi (1 bar to 7 bar).


ob Shaikh(M Tech. | B.Eng. | AMIE | CFPS | CFI)

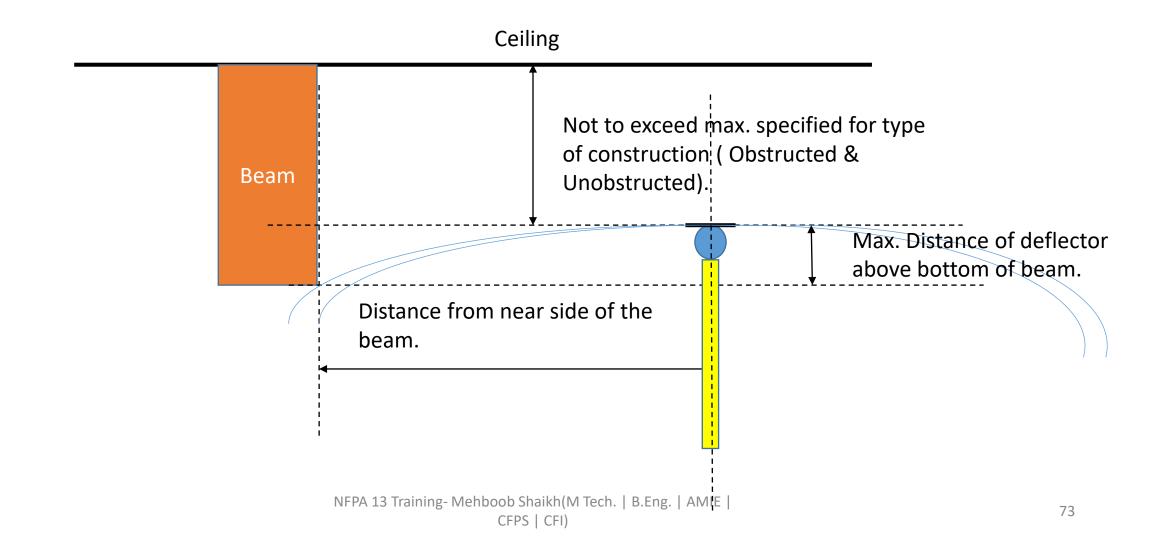
The Three Time Rule:

It states that unless specific requirements are met "sprinklers shall be positioned away from obstructions a minimum distance of three times the maximum dimensions of the obstruction", up to a maximum of 24 inches (0.6096 m) though the "maximum clear distance does not apply to obstructions in the vertical orientation

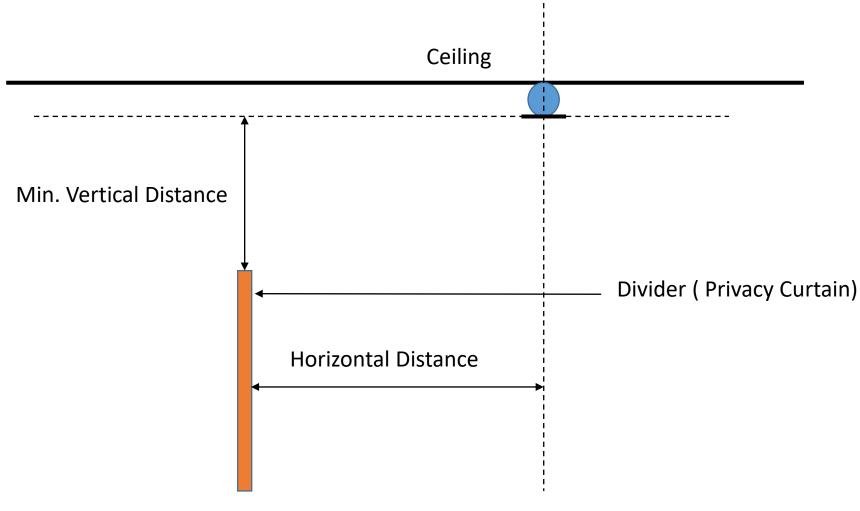
This rule have been written to apply to obstructions where the sprinkler can be expected to get water to both sides of the obstruction without allowing a significant dry shadow on the other side of the obstruction

This works for small non-continuous obstructions and for continuous obstructions where the sprinkler can throw water over and under the obstruction, such as the bottom chord of an open truss or joist. For solid continuous obstructions, such as a beam, the Three Times Rule is ineffective since the sprinkler cannot throw water over and under the obstruction (Use din

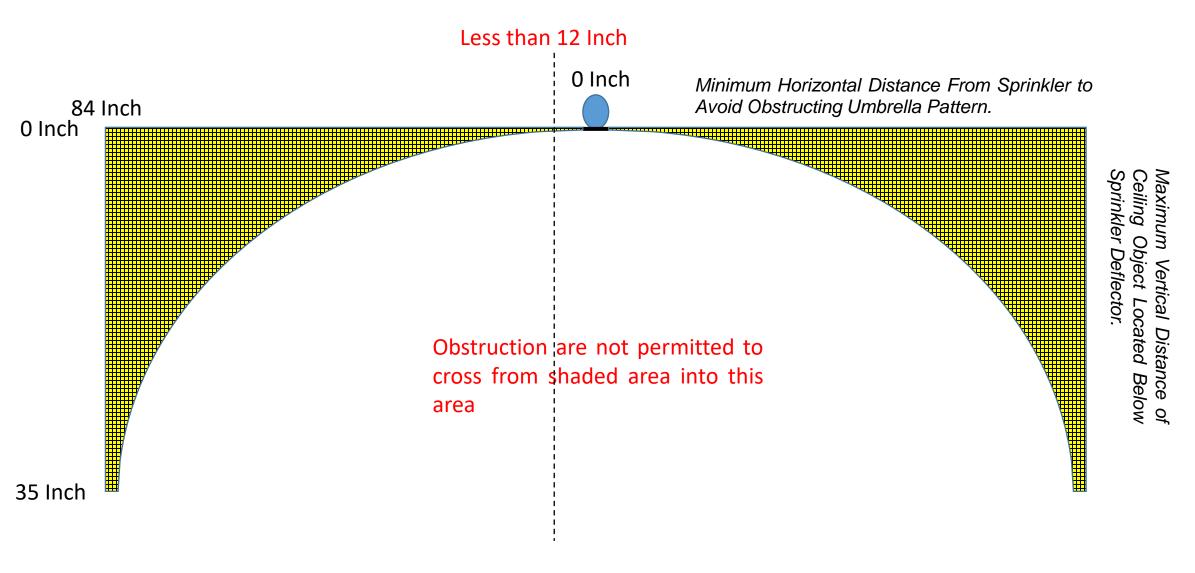
NFPA 13 Training- Mehboob Shaikh(M Tech. | B.Eng. | AMIE | CFPS | CFI)

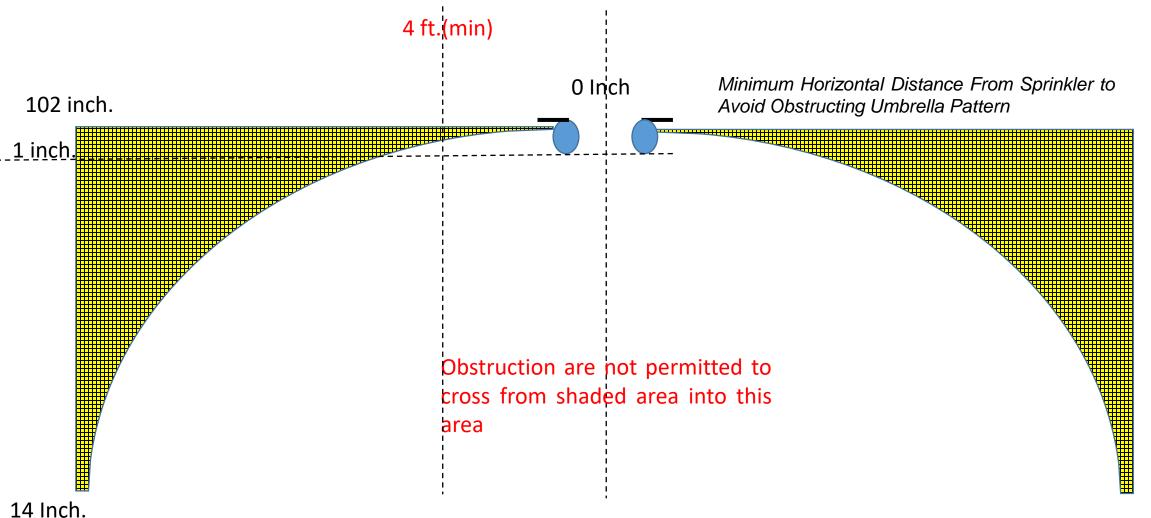

The Four-Foot and Wide Obstruction Rule

The "Four Times Rule" is really just an extension of the "three times rule" however it covers extended coverage sprinklers and the maximum clearance is 36 inches (0.9144 m).

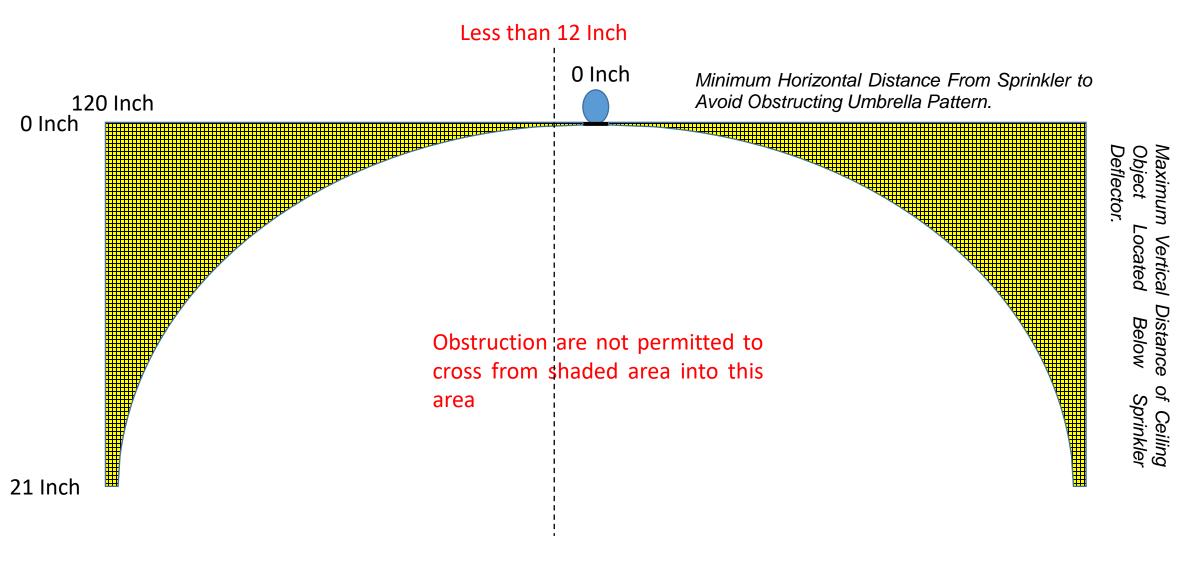

For obstructions wider than 4 feet (1.2192 m), sprinkler protection is required below the obstruction with deflectors to be located less than 12 inches (0.3048 m) from the bottom of the obstruction.

For obstructions less than 4 feet (1.2192 m) in width sprinklers may not be required underneath the obstruction

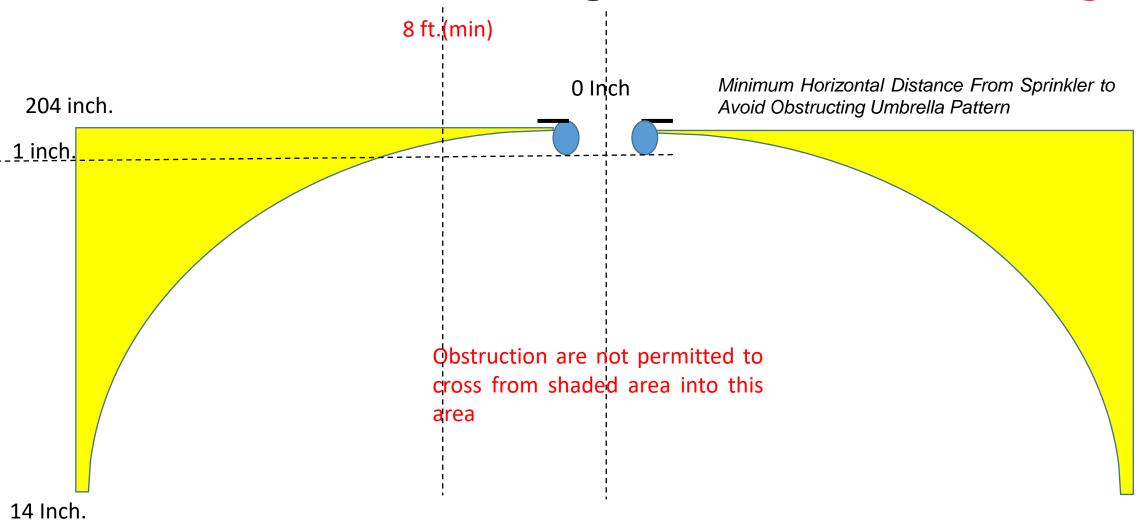

8.6.5 — Obstruction to Sprinkler Discharge


8.6.5 – Obstruction to Sprinkler Discharge

8.6.5- SSP and SSU – Non Storage

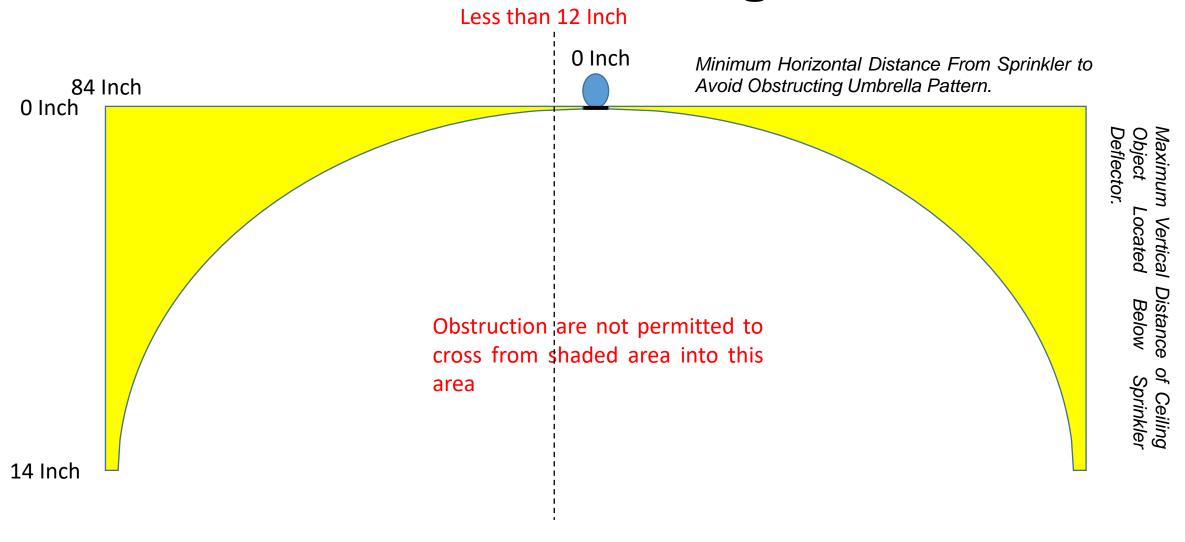


8.7.5 - Standard Coverage Sidewall - Non Storage

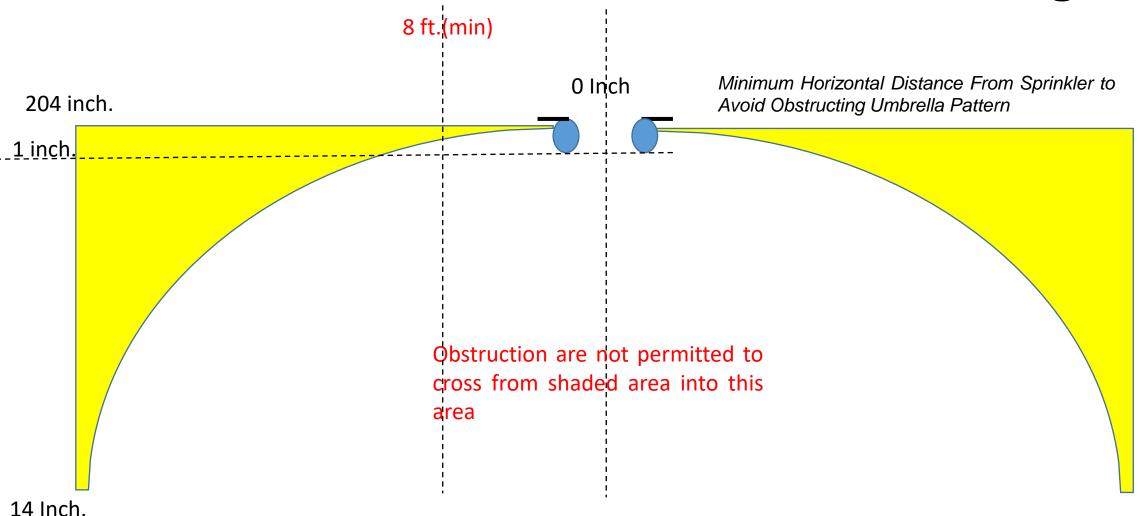


Maximum Vertical Distance of Ceiling Object Located Below Sprinkler Deflector.

8.8.5- SSP and SSU EC – Non Storage

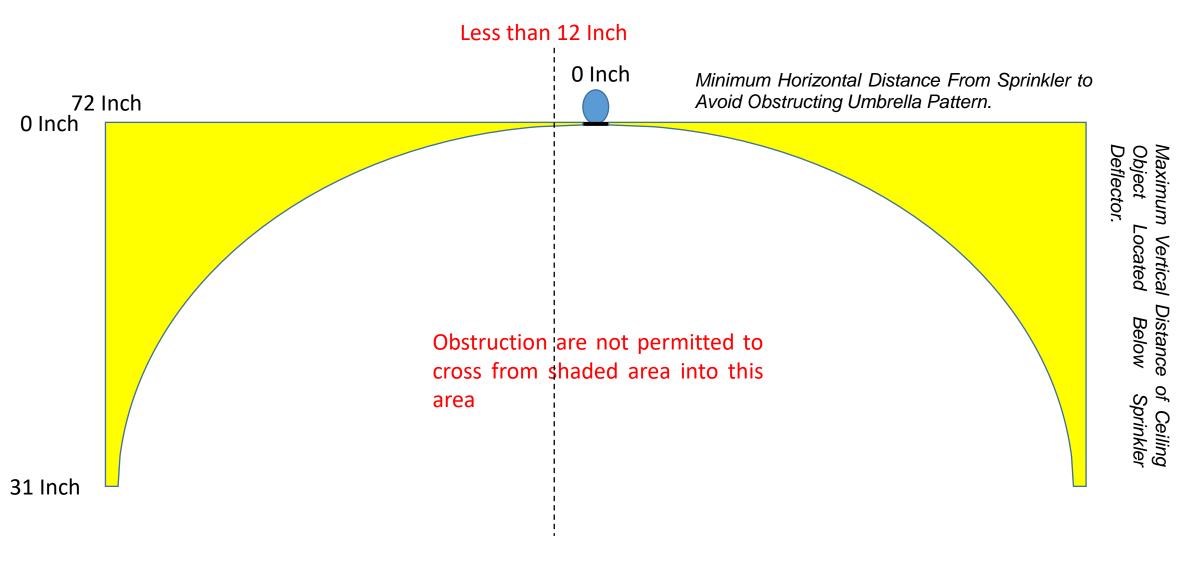


8.9.5 - Extended Coverage Sidewall - Non Storage



Maximum Vertical Distance of Ceiling Object Located Below Sprinkler Deflector.

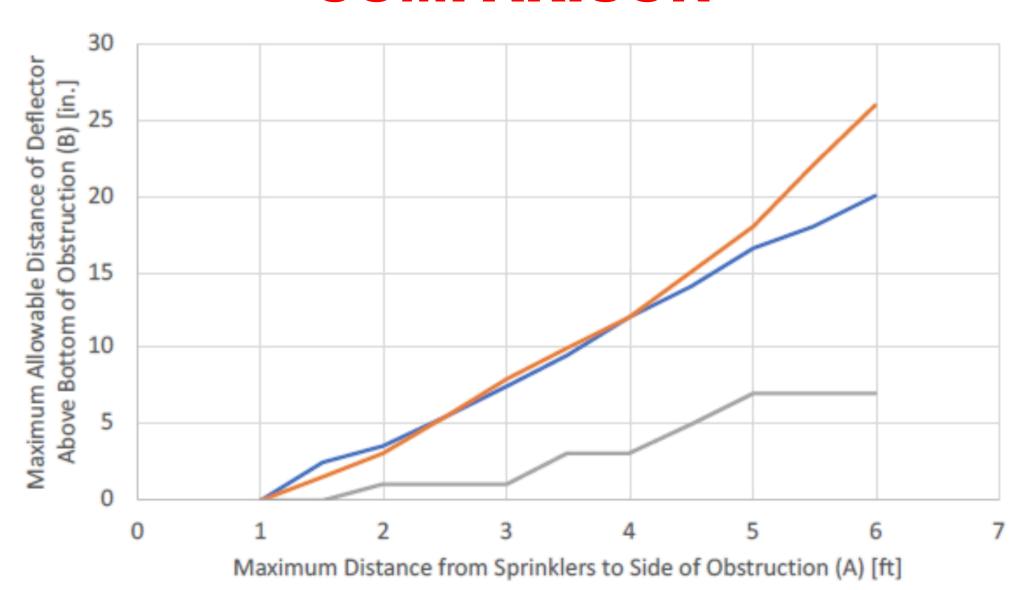
8.10.6- Residential Pendant and upright-Non Storage



8.10.7 - Residential Sidewall - Non Storage



Maximum Vertical Distance of Ceiling Object Located Below Sprinkler Deflector.


8.11.5- CMSA Sprinklers

8.12.5- ESFR Sprinklers

COMPARISON

Available Height for Storage

Max. Height at which commodities can be stored above the floor and still maintain necessary clearance from structural members and the required clearance below sprinklers

Encapsulation

A method of packaging that either consists of a plastic sheet completely enclosing the sides and top of a pallet load containing a combustible commodity, a combustible package, or a group of combustible commodities or combustible packages, or consists of combustible commodities individually wrapped in plastic sheeting and stored exposed in a pallet load.

m encapsulated does not apply to plastic-enclosed or packages inside a large, neoplastic, enclosed

Where there are holes or voids in the plastic on the top of the carton that exceed more than half of the area of the cover, the term exceed where the term

Expanded Plastics (Foamed or Cellular)

Those plastics, the density of which is reduced by the presence of numerous small cavities (cells), interconnecting or dispersed throughout their mass.

Unexpanded Plastics

Unexpanded plastics are higher density materials that may be formed into different shapes such as drums, containers, toys etc.

Free-Flowing Plastic Materials

Those plastics that fall out of their containers during a fire, fill flue spaces, and create a smothering effect on the fire.

High-Piled Storage

Solid-piled, palletized, rack storage, bin box, and shelf storage in excess of 12 ft. (3.7 m) in height.

Reinforced plastic pallet(RPP)

A plastic pallet incorporating a secondary reinforcing material (such as steel or fiberglass) within the pallet.

Hold their structure and integrity longer allowing air gaps to remain longer within the pallet, which fuels the flames and creates a more intense fire

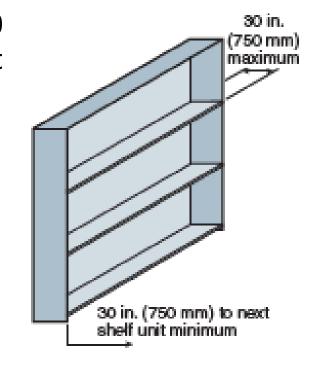
Bin Box Storage:

Storage in five-sided wood, metal, or cardboard boxes with open face on the aisles in which boxes are self-supporting or supported by a structure so designed that little or no horizontal or vertical space exists around boxes.

Should be made up of Wood, metal or Cardboard

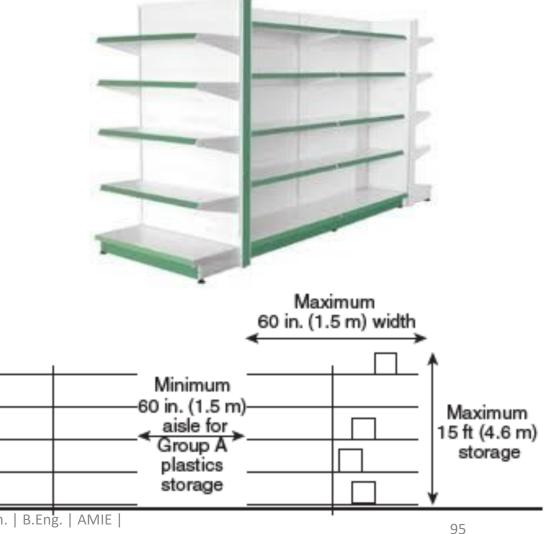
Palletized Storage:

Storage of commodities on pallets or other storage aids that form horizontal spaces between tiers of storage.

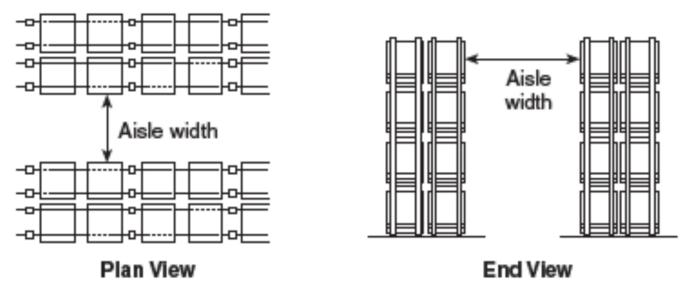

Solid Pile Storage:

Storage of commodities stacked on each other.

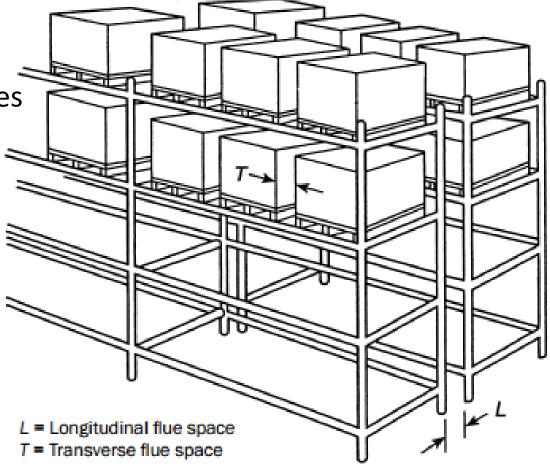
Shelf Storage:


Storage on structures up to and including 30 in. (0.76 m) deep and separated by aisles at least 30 in. (0.76 m) wide.

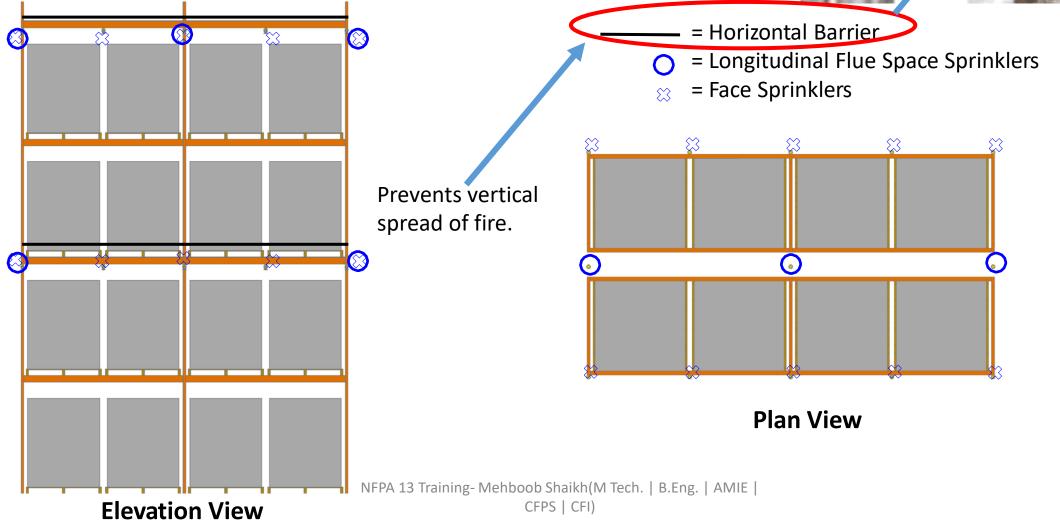
Back to Back Shelf Storage:


Two solid or perforated shelves up to 30 in. (0.76 m) in depth each, not exceeding a total depth of 60 in. (1.52 m), separated by a longitudinal vertical barrier such as plywood, particleboard, sheet metal, or equivalent, with a maximum 0.25 in. (6.4 mm) diameter penetrations and no longitudinal flue space and a maximum storage height of 15 ft (4.57 m).

Rack Storage (Can be fixed, single row, double row, multiple row)


What is an Aisle...?

The horizontal dimension between the face of the loads in racks under consideration.


Rack Storage:

What is an Longitudinal & Transverse Flue Spaces

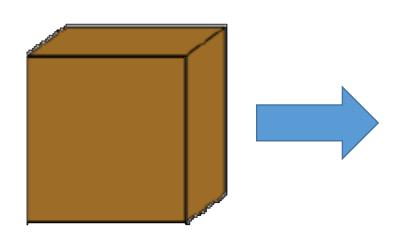
Use of Sprinkler in Racks

Pile Stability

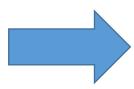
- Stable: Those arrays where collapse, spillage of content, or leaning of stacks across flue spaces is not likely to occur soon after initial fire development.
- Unstable: Those arrays where collapse, spillage of contents, or leaning of stacks across flue spaces occurs soon after initial fire development

Let's Understand the Core Concept!!!

According to survey

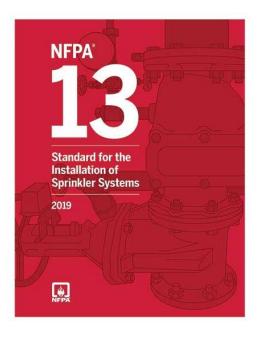

Fires in storage properties, . . . account for

- I. 15.5 percent of nonresidential structure fires,
- II. 19.5 percent of associated property damage,
- III. 11.4 percent of associated civilian deaths, and
- IV. 9.2 percent of associated civilian injuries.
- V. In storage properties, the leading occupancies in which these fires occur are agriculture products storage facilities (38%), unclassified storage facilities (23%), and general-item storage facilities (14%)


Design Checklist for Sprinkler System

- Commodity Class
- Type of Pallet
- Storage Arrangement
- Ceiling height, Storage Height, Ceiling Clerance
- If the Storage is miscellaneous?
- Other Consideration

Commodity Classification


Plastic Group A-C

Class I -IV

Warehouse commodity (Carton, packaging, plastic)

Classify grouped commodity into one of seven hazard groups (Based on

NFPA 13 Tranking) Mehboob Shaikh(M Tech. | B.Eng. | AMIE | CFPS | CFI)

Commodity Classification

Class Or Group	Class or Group Materials
Class 1	Essentially non-combustible products in corrugated cartons on combustible pallets
Class 2	Class I products in slatted wooden crates, solid wooden boxes or multiple thickness paperboard cartons with or without pallets
Class 3	Wood, paper, natural fiber cloth or Group C plastics with or without pallets. May contain a limited amount (5% by weight or volume or less) of Group A or Group B plastics
Class 4	Class I, II or III commodities in corrugated cartons with appreciable amounts (5-15% by weight, or 5-25% by volume) of Group A plastics
Plastics	Cartoned Unexpanded Group A Plastic
	Exposed Unexpanded Group A Plastic
	Cartoned Expanded Group A Plastic
	Exposed Expanded Group A Plastic

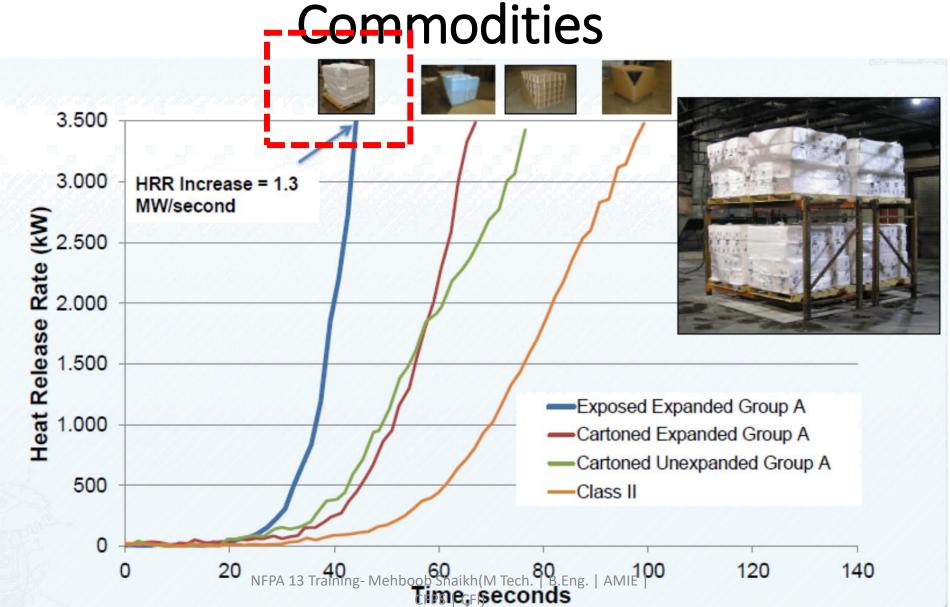
Commodity Classification -

Standardized Test Commodities

Class II Class III Class IV

Cartoned Unexpanded **Group A Plastic**

Cartoned, Expanded **Group A Plastic**


NFPA 13 Training- Me

Exposed, Expanded **Group A Plastic**

HRR Growth Curve of Standard Test

Type of Pallet

- Wood
- URPP one Class Modification
 One class upgrade for un-reinforced plastic pallets
 Class II → Class III
- Class IV \rightarrow Group A Plastics
- RPP Two Class Modification

Two class upgrade for reinforced plastic pallets

Class II \rightarrow Class IV

Class IV \rightarrow Group A Plastics

Storage Arrangement

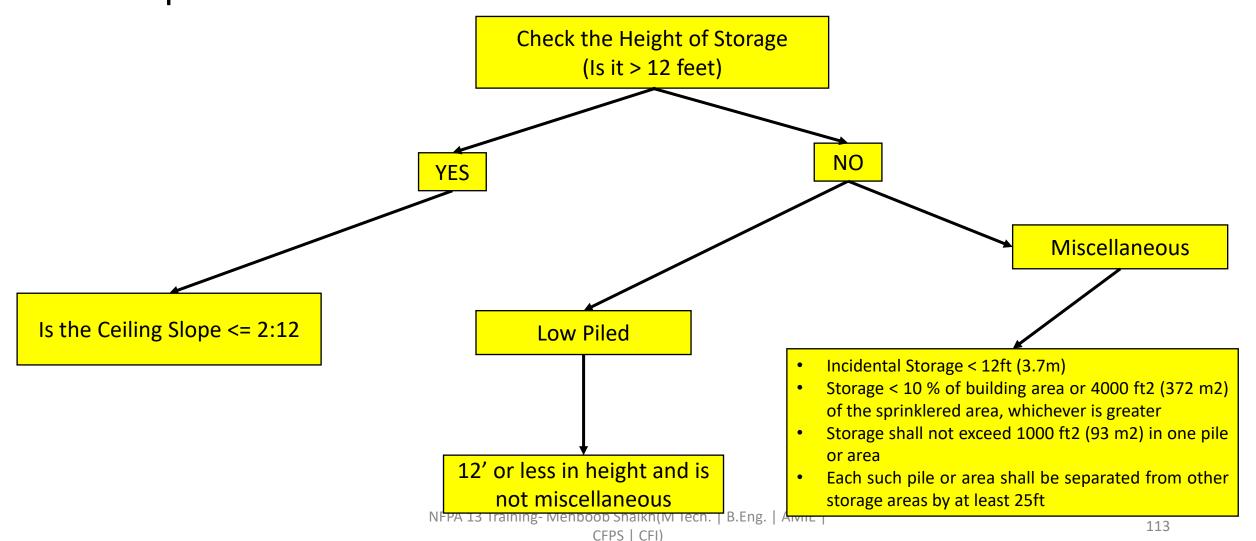
- Rack
- Single row
- Double row
- Multiple row
- Shelf
- Open rack
- Solid shelving
- Slatted shelf
- Solid Shelf
- Back to Back Shelf
- Solid pile
- Pelletized
- Bin box

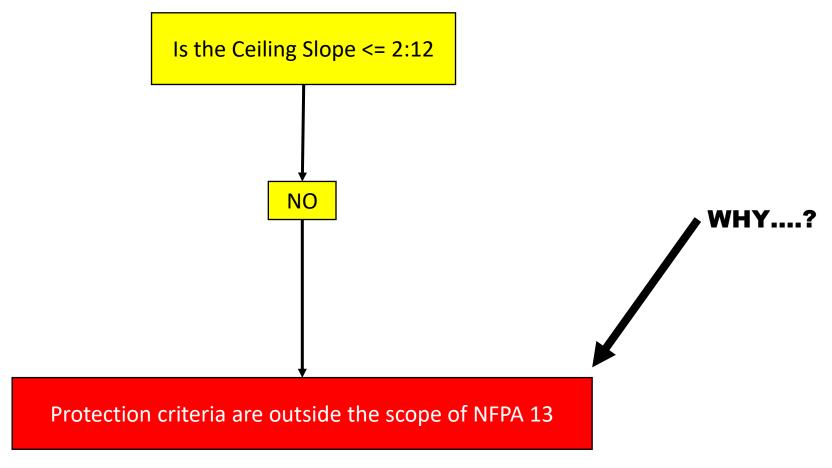
Storage Arrangements

- Bulk Storage
- Solid Pile Storage
- Palletized Pile Storage
- Rack Storage

NFPA #13 defines high-piled storage as any rack, palletized, or solid-pile storage in excess of 12' in height.

Storage Height and Clearance

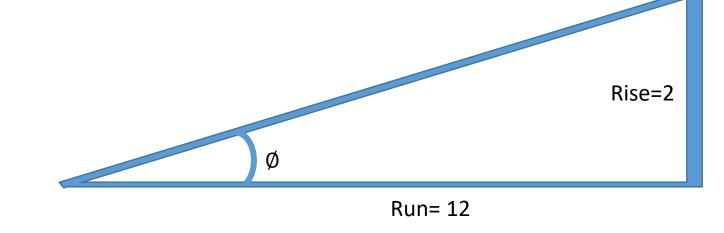

"Fire severity is a function of height. The taller the burning materials, the more rapidly the flames will accelerate"


"Materials stored twice as high will burn much more than twice as fast."

Design Height can be determined by

- (1) What the warehouse manager says the storage height will be limited to
- (2) The elevation of the bottom of the lowest *beam* or structural roof member of the building. This is also refer to by those in the commercial real estate business as the building's "clear height"
- (3) The elevation of the bottom of the lowest steel bar-joist web inside the building
- (4) 18" below the deflector of the sprinkler-heads

FOR CLASS 1 TO 4 & GROUP B & C PLASTICS



Firstly lets Understand the Slope of 2:12

$$\tan \emptyset = \frac{Opp \ side}{Adj \ Side}$$

$$\tan \emptyset = \frac{2}{12}$$

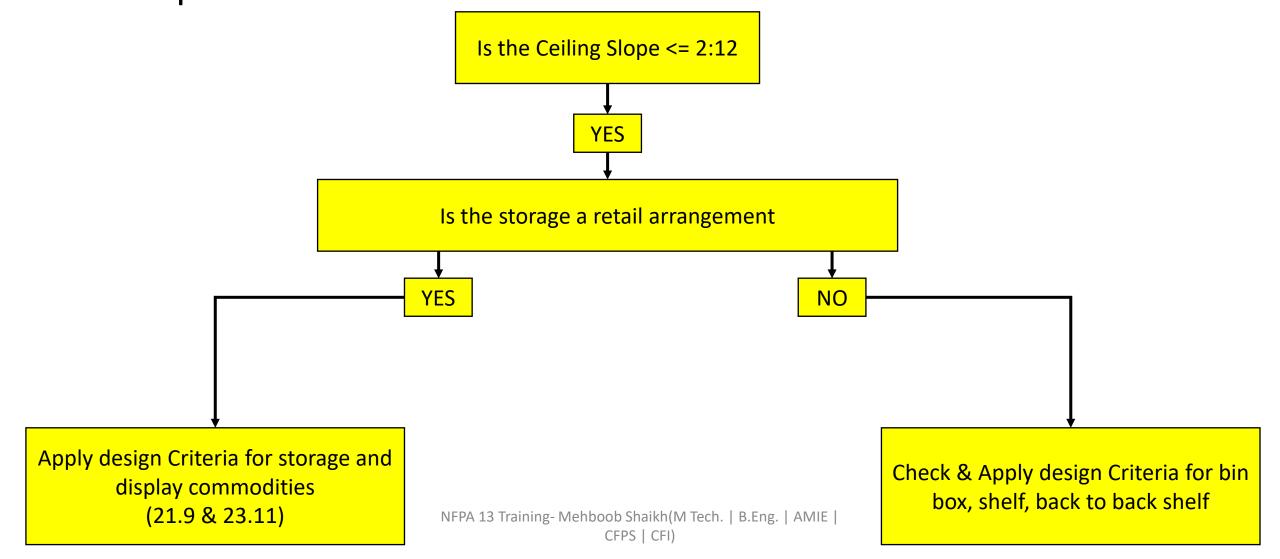
$$\emptyset = 9.42$$

Allowable Angle of inclination shall not be more than 9.42 degrees

According to a joint study Conducted by FM Global & FPRF on a numerical fire model called "FireFOAM" following conclusionS were made on the effect of Ceiling slope on sprinkler activations and spray Transport.

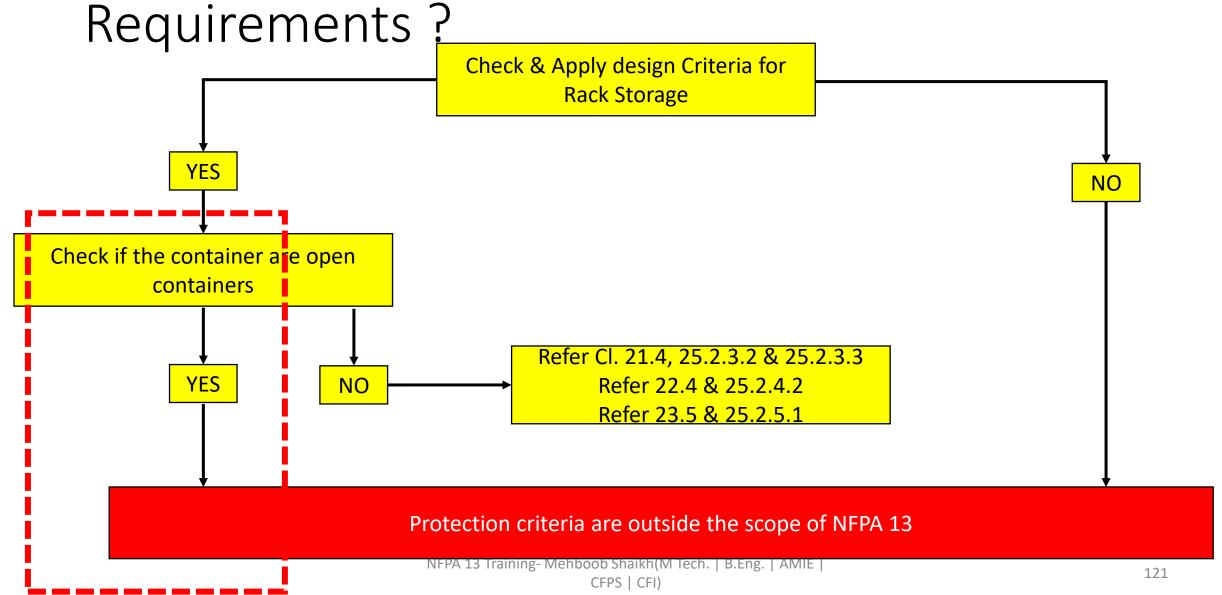
Objectives of this study:

- 1. Evaluate sprinkler activation times and patterns from ceiling jet simulations
- 2. Evaluate effect of ceiling inclination on water mass flux distributions over a rack-storage commodity.
- 3. Understand the effect of sprinkler orientation
- two sprinkler orientations: deflector parallel-to-ceiling or parallel-to-floor


Spray Result:

- For <=18.4 degrees (deflector parallel-to-ceiling)
- Water from the sprinklers on the lower side is projected towards the fire region.

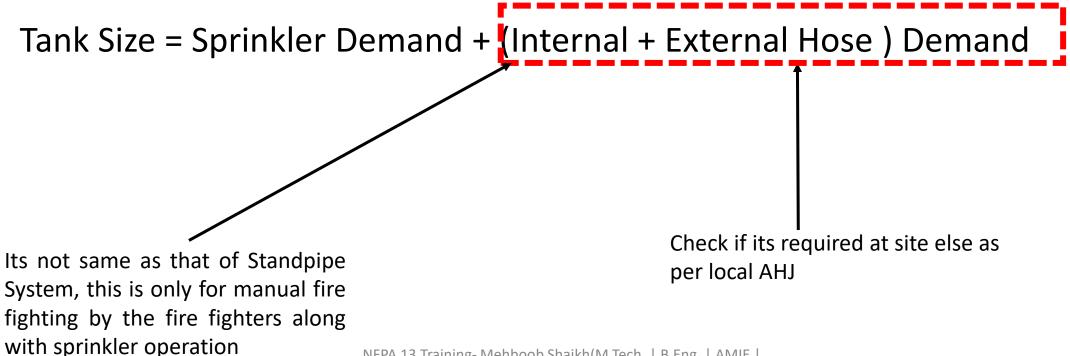
Spray Result:


For 33.7 inclination

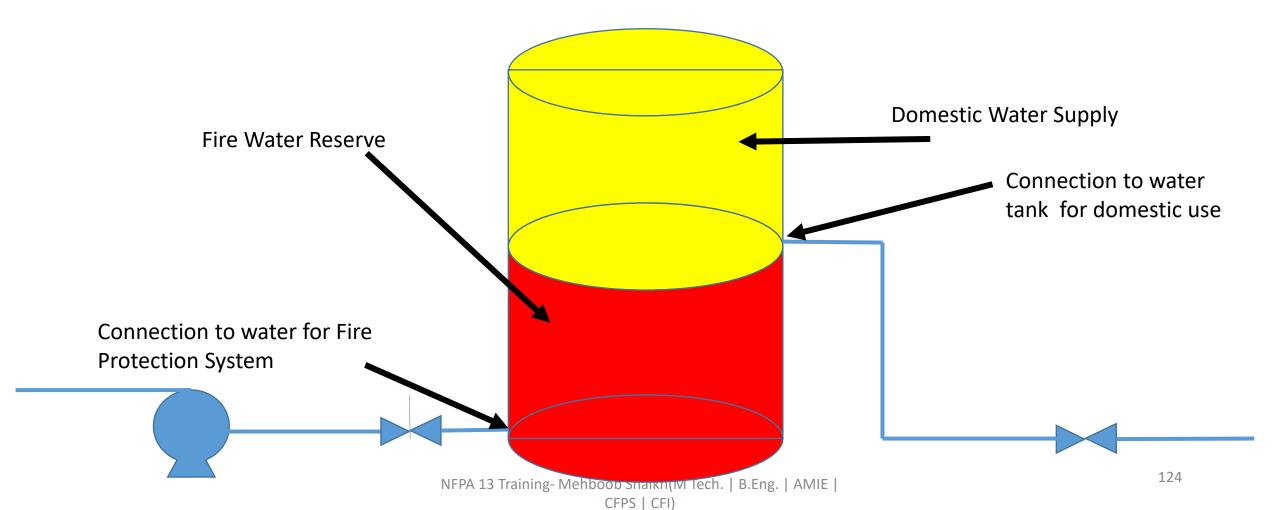
- low spray density on the fire region due to highly skewed activation pattern
- water flux to fire region reduced by 54-76% as compared to horizontal ceiling

How to Navigate through NFPA 13 for Storage Requirements? Check & Apply design Criteria for bin box, shelf, back to back shelf YES NO Refer Cl. 21.2 Check & Apply design Criteria for solid piled or palletized Refer Cl. 22.2 NO Refer Cl. 23.3 Check & Apply design Criteria for NFPA 13 Training- Mehboob Shaikh(M Tech. | B.Eng. | AMIE | Rack Storage CFPS | CFI)

How to Navigate through NFPA 13 for Storage



Why NFPA 13 Does Not Permit Open-Top Containers?


Loss experience and large-scale fire tests indicate a greater hazard with open-top combustible (paper, cardboard, or wood) containers. *The major factor appears to be the capture and retention of ceiling sprinkler discharge within the open-top container* and less water flow down the flue and aisle faces. This does not apply to open-top containers with mesh sides.

Tank Sizing

Cl. 20.12.2.1 - Tanks shall be sized to supply the equipment that they serve.

Tank Sizing - Serve both domestic and fire protection uses

Q1: Can ESFR systems protect all types of rack storage?

No.

• There is no one ESFR system available to protect all types of rack storage, rather there are several types of ESFR sprinkler heads and required water pressures, with each one of them to be applied in specific storage scenarios. It should also be noted that ESFR systems cannot be applied to open top containers. However, since the concern with open top containers relates to these containers retaining the water (like a reservoir) and not allowing the water to flow down to the lowest levels of a rack, there is no harm if open top containers are used in the lowest level of the rack (at or near the floor)

Q2 : Once an ESFR system is installed, can any business move in and store however they want?

No.

- Each type of ESFR sprinkler head can protect a different set of commodities. For example, based on the NFPA 13 standard, K-25 ESFR cannot protect cartoned expanded plastics, such as products that have >25% by volume of foam packaging in a cardboard box (FM Global Loss Prevention Data Sheet DS 8-9 does offer K-25 ESFR options for protecting cartoned expanded plastics.
- These FM protection schemes, however, need to be applied as alternative means of protection criteria to NFPA 13). For building owners or in warehouses, where the types of storage fluctuates, the best return for your ESFR dollar is the K-17 ESFR head, which protects a large variety of products, but still requires comparatively low water pressures.

Q3: Are there instances where in-rack sprinklers are required, even when the building is equipped with an ESFR system?

Yes.

• There are several instances where in-rack sprinklers are required with an ESFR system. For example, in cases where solid shelves are proposed in the racks, in-racks sprinklers will be required. Additionally, close attention must be paid to the ESFR tables in NFPA 13, especially Tables 16.2.3.1, 16.3.3.1, 17.2.3.1, and 17.3.3.1 for ceiling heights greater than 40 feet. Many of the ESFR options in these tables require in-rack sprinklers.

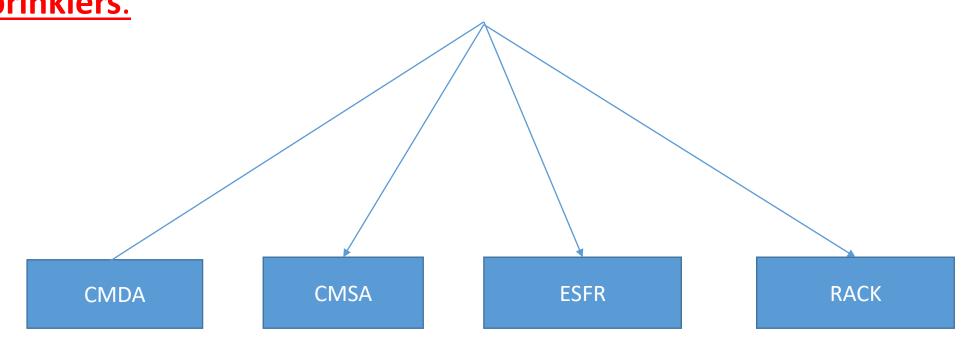
Q4: Can I store products which are not protected by the ceiling level ESFR?

Yes

There may be circumstances that an existing ceiling level ESFR sprinkler system cannot protect some of the products stored in a warehouse. This is often the case if the ESFR system was specified for Class I-IV commodities, but some of the products stored in the racks are of higher hazard, e.g. rack storage of exposed Group A plastics. In these cases, new protection schemes prescribed in the 2016 edition of NFPA 13 allow the existing ceiling level protection to remain unchanged while protecting the racks with the higher hazard commodities with an 'alternative protection' scheme, see Sections 16.1.2.4 (Class I-IV) and 17.1.2.9 (Plastics and Rubber) for more detail. These Alternative Protection schemes applied to only a few racks (with the higher hazard) can be very cost effective in these situations. These schemes can also be used in combination with solid shelves on these 'alternatively protected' racks, but in these cases will require in-rack sprinklers at every level.

Q5: Can ESFR sprinkler systems be used with solid shelving?

Yes

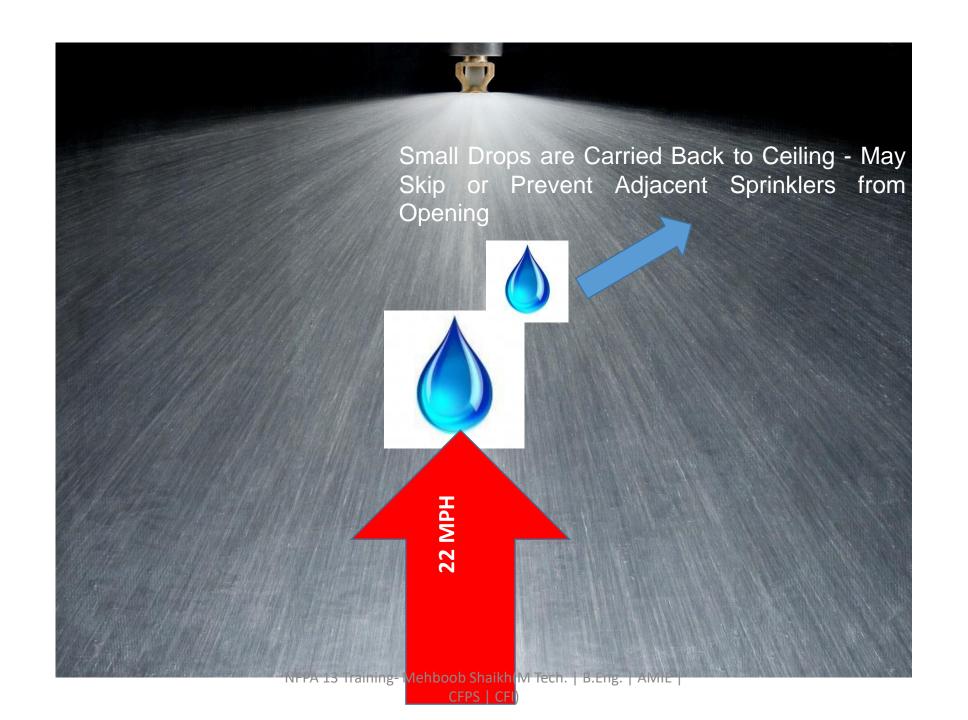

one of the biggest changes since the release of NFPA 13 2013 Edition and the protection of commodities on racks with ESFR is the allowance for ESFR sprinklers in combination with solid shelving! ESFR sprinkler are now allowed to protect racks with solid shelving if in-rack sprinkler protection is installed

Why NFPA 13 Does Not Permit Open-Top Containers?

Loss experience and large-scale fire tests indicate a greater hazard with open-top combustible (paper, cardboard, or wood) containers. *The major factor appears to be the capture and retention of ceiling sprinkler discharge within the open-top container* and less water flow down the flue and aisle faces. This does not apply to open-top containers with mesh sides.

Sprinkler Selection

• A precise design approach is necessary to meet the challenges of these occupancies, an effort that includes using storage fire sprinklers.



Standard Commercial VK3521 K=8

CMDA VK377 K=11.2 CMSA VK592 K=19.6

ESFR VK500 K=14

CMDA: control-mode density area sprinklers

- The "control-mode" in a <u>control mode density area</u> (CMDA) sprinkler refers to the fact that these heads provide wetting and cooling to control a fire until first responders can arrive. "Density-area" refers to how CMDA systems are designed.
- A set of density-area curves specifies the amount of water flow required for a given area. The system and its water source are engineered based on them to provide the necessary flow and pressure.

CMDA: control-mode density area sprinklers

- The "control-mode" in a <u>control mode density area</u> (CMDA) sprinkler refers to the fact that these heads provide wetting and cooling to control a fire until first responders can arrive. "Density-area" refers to how CMDA systems are designed.
- A set of density-area curves specifies the amount of water flow required for a given area. The system and its water source are engineered based on them to provide the necessary flow and pressure.

CMDA: control-mode density area sprinklers

- Does that mean CMDA sprinklers are almost identical to average fire sprinklers?
- Yes in Both Shape and Functions
- The two things separating a CMDA sprinkler from a regular sprinkler are larger K-factors and higher temperature ratings.

CMSA: Control-mode special application sprinklers

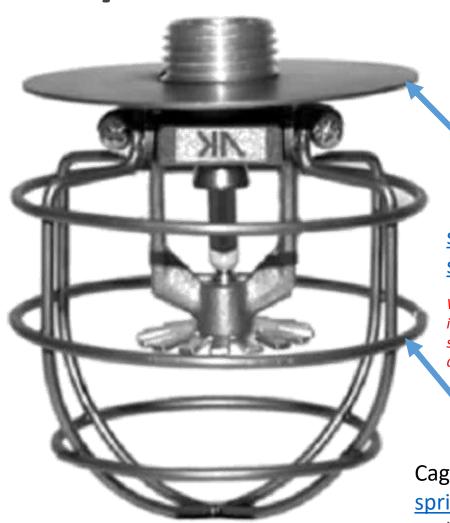
• Like CMDA sprinklers, control-mode special application (CMSA) sprinklers are designed for "control" functions: wetting and cooling to prevent fire spread. And like most storage sprinklers, CMSA sprinklers usually have large K-factors. However, they differ from CMDA sprinklers in two ways.

CMSA: Control-mode special application sprinklers

- 1.CMSA sprinklers have unique sprinkler deflectors that produce different water droplet sizes and spray patterns. This makes CMSA sprinklers suited to "special applications;" in other words, high-challenge storage occupancies. The unique deflector also requires the sprinklers to carry a different listing.
- 2.CMSA sprinklers don't use the design concepts employed by CMDA sprinklers. No density/area curves are involved. Instead, different variables are analyzed to calculate the necessary flow and pressure for a given system

ESFR: Early-suppression fast response sprinklers

Unique among fire sprinklers, early-suppression fast-response (ESFR) sprinklers provide fire suppression instead of fire control. The goal of ESFR sprinklers isn't preventing fire spread until firefighters can fully extinguish it. Rather, they are meant to activate quickly and attack a fire directly. The idea is that early fire suppression requires less total water, allows less fire spread, and ultimately makes sprinkler systems less expensive


ESFR: Early-suppression fast response sprinklers

• ESFR sprinklers have large K-factors and feature uniquely designed deflectors meant to produce large, high-momentum droplets that won't evaporate before penetrating a fire plume. Another major distinguishing characteristic of ESFR sprinklers is fast-response elements designed to operate sooner than standard sprinkler elements.

In-rack fire sprinklers

- In-rack sprinklers work just like their name suggests: sprinkler risers and branch pipes are installed with storage racks to put <u>sprinklers</u> as close to potential fires as possible. Of course, doing so creates unique infrastructure challenges for warehouses—storage racks become more permanent when plumbing is involved. But it solves the issues posed by height and obstruction.
- Various ESFR and Control Mode ceiling level sprinklers introduced since 1980 have led to ceiling-only protection dominating the storage sprinkler market. But as storage buildings have evolved, the limitations of ceiling-only sprinkler protection have become apparent

In-rack fire sprinklers

Water Shield - Protect in-rack sprinklers from the spray of other sprinklers.

Water from a ceiling-level sprinkler head (or another in-rack head) could cool the heat-sensitive element of sprinklers near it, preventing them from operating as designed.

Cage Guard Protect sprinklers from heavy loads and machinery moving around

NFPA 13 Training- Mehboob Shaikh (M Tech. | B.Eng. | AMIE |

CFPS | CFI) them

Why In Rack Sprinklers?

There are situations where tests have determined that ceiling sprinklers—no matter how large the K-factor or water pressure—can't provide adequate control or suppression. Extremely flammable commodities, high ceilings, high-piled storage, and obstructions to water are common culprits. In these cases, **in-rack fire sprinklers** are necessary.

Why In Rack Sprinklers?

- Location matters. Being located closer to a rack storage fire gives inrack sprinklers an advantage over ceiling sprinklers in terms of both activation and delivering water to the burning commodity. Thus, inrack sprinklers have the potential to activate when a fire is smaller and requires less water to control.
- A key feature of in-rack sprinklers is that they do not depend on the configuration of the building enclosure. The tallest current listing for an ESFR sprinkler without in-rack sprinklers is 48 ft. There are typically no limits on building height with in-rack sprinklers

Why In Rack Sprinklers?

Two of the biggest challenges with ESFR sprinklers which do not affect inrack sprinklers:

- (1) Sloped ceilings and
- (2) Complicated ESFR obstruction rules.

1. Height:

The original ESFR sprinkler had a Nominal K-factor of 14.0 gpm/psi1/2 and was designed with a discharge pressure of 50 psi to protect Cartoned Unexpanded Group A plastics stored up to 25 ft. high under ceilings up to 30 ft. in height

What Does NFPA 13 say?

• NFPA 13 limits K14.0 ESFR sprinklers to ceiling heights of 35 ft. when protecting rack storage, unless in-rack sprinklers are provided.

• Ceiling-only design criteria to protect rack storage under ceilings up to 45 ft. tall are available with larger orifice K22.4 and K25.2 ESFR sprinklers. Specific application criteria are also available for certain ESFR sprinklers under ceiling heights up to 48 ft.

Limitations of ESFR as a Ceiling Only Sprinkler

- To be effective, an ESFR sprinkler must operate early in the development of a storage fire. Even with a very sensitive operating element, ceiling-only ESFR sprinklers are challenged to activate prior to a fire spreading across an aisle as ceiling heights increase beyond 45 ft. The design criteria available for ESFR sprinklers under a 48 ft. ceiling require minimum 6 ft. or 8 ft. aisles. For storage buildings taller than 48 ft., in-rack sprinklers are likely to be required.
- Modern distribution facilities using either multi-level work platforms (pick modules) or automated storage and retrieval systems often gain efficiency by increasing the building height beyond the limits of ceiling-only sprinkler systems.

2. Water Demand:

Even if not required by height, the efficiency of ceiling sprinklers decreases with height. As ceiling heights increase, the water demand required for ceiling-only sprinkler systems also increases

Water Demand:

Ceiling Height (ft)	Sprinkler	Basic Sprinkler Water Demand (gpm)
30	K25.2 EC	828
35	K25.2 EC	1275
40	K16.8 ESFR	1454
45	K22.4 ESFR	1700
48	K28.0 ESFR Specific Application	1987

2. Water Demand:

Previous Table illustrates how the efficiency of ceiling-only sprinkler protection decreases with ceiling height above 30 ft. Increasing the ceiling height by just 5 ft., 17%, from 30 ft. to 35 ft. increases the basic sprinkler water demand by more than 50%. Increasing the ceiling height by 60%, from 30 ft. to 48 ft., increases the basic sprinkler water demand by 140%. Thus, even in buildings that could be protected with ceiling sprinklers, ceiling-only sprinkler protection may not be the most efficient use of water.

3. More Hazardous Commodity:

- The discussion so far has referenced protection criteria for Cartoned Unexpanded Group A plastics. More hazardous commodities such as tires, Exposed Group A plastics, and aerosols present an increased challenge to a sprinkler system.
- These commodities typically require in-rack sprinklers to be provided at lower storage heights than would be required for a Cartoned Unexpanded Group A plastic commodity.

3. More Hazardous Commodity:

- For example, NFPA 13 limits storage of rubber tires on racks to 35 ft. of storage under a 40 ft. ceiling with ESFR sprinkler protection at the ceiling. The criterion requires more than 2,600 gpm of basic sprinkler water demand from K25.2 ESFR sprinklers.
- Thus, while ceiling-only criteria are available for storage of Cartoned Unexpanded Group A plastics under ceilings up to 48 ft. tall, other commodities have lower ceiling height limits for ceiling-only protection. Even when ceiling-only protection options are available, the water demand or other required features may make the installation of in-rack sprinklers preferable.

Overview of FM Data Sheet 8-9

2.3 Protection

2.3.1 General

2.3.1.1 When determining the fire protection options for a storage facility, consider all the protection options the water supply can support. This approach will help maximize operational flexibility when considering potential future commodity changes and/or storage arrangements.

Recommended Ceiling only Sprinklers

2.3.3.2 K-Factors, Nominal Temperature Rating, RTI Rating, and the Orientation of Ceiling-Level Storage Sprinklers

2.3.3.2.1 Use only FM Approved sprinklers listed in the *Approval Guide* under the heading of Storage Sprinklers (Ceiling-Level) for any ceiling-level sprinkler options in this data sheet.

Currently, FM Approved ceiling-level Storage sprinklers have K-factor values ranging from 11.2 (160) to 33.6 (480). See Appendix A for a definition of K-factor as well as the units used for its indicated value.

Note that the following sprinklers are not FM Approved as ceiling-level Storage sprinklers:

- K8.0 (K115) and smaller
- On-Off type sprinklers
- ECLH type sprinklers
- ECOH type sprinklers

Ceiling-Level Sprinkler System Design Criteria

- Table 7: Ceiling-Level Protection Guidelines for Class 1, 2 and 3 Commodities in Open-Frame Rack Storage Arrangements
- Table 8: Ceiling-Level Protection Guidelines for Class 4 and Cartoned Unexpanded Plastic Commodities in Open-Frame Rack Storage Arrangements
- Table 9: Ceiling-Level Protection Guidelines for Cartoned Expanded Plastic Commodities in Open-Frame Rack Storage Arrangements
- Table 10: Ceiling-Level Protection Guidelines for Uncartoned Unexpanded Plastic Commodities in Open-Frame Rack Storage Arrangements
- Table 11: Ceiling-Level Protection Guidelines for Uncartoned Expanded Plastic Commodities in Open-Frame Rack Storage Arrangements

Ceiling-Level Sprinkler System Design Criteria

Table 7. Ceiling-Level Protection Guidelines for Class 1, 2 and 3 Commodities in Open-Frame Rack Storage Arrangements

Table 1. Celling-Level Protection Guidelines for Class 1, 2 and 3 Commodities in Open-1 rame Nack Storage Arrangements																						
Protection of Class 1, 2 and 3 Commodities in Open-Frame Storage Racks; No. of AS @ psi (bar)																						
Max.	Wet System, 160°F (70°C) Nominally Rated, Pendent Sprinklers										Wet System, 160°F (70°C) Nominally Rated, Upright							Dry System, 280°F				
Ceiling											Sprinklers							(140°C) Nominally				
Height,	,									·								Rated, Upright				
ft (m)																				Sprinklers		
	Quick Response Standard Res							Respons	esponse Quick Response					Standard Response			Standard Response					
	K11.2	K14.0	K16.8	K22.4	K25.2	K25.2EC	K11.2	K14.0	K19.6	K25.2	K11.2	K14.0	K16.8	K25.2EC	K11.2	K16.8	K25.2	K11.2	K16.8	K25.2		
	(K160)	(K200)	(K240)	(K320)	(K360)	(K360EC)	(K160)	(K200)	(K280)	(K360)	(K160)	(K200)	(K240)	(K360EC)	(K160)	(K240)	(K360)	(K160)	(K240)	(K360)		
10 (3.0)	12 @ 7	9@7	9@7	9@20	9@20	6@20	12 @ 7	9@7	9@16	9@7	12 @ 7	9@7	9@7	6@20	12 @ 7	9@7	9@7	16@7	16@7	16@7		
	(0.5)	(0.5)	(0.5)	(1.4)	(1.4)	(1.4)	(0.5)	(0.5)	(1.1)	(0.5)	(0.5)	(0.5)	(0.5)	(1.4)	(0.5)	(0.5)	(0.5)	(0.5)	(0.5)	(0.5)		
20 (6.0)	12 @ 10	12 @ 7	12 @ 7	9@20	9@20	6@20	12 @ 10	12 @ 7	9@16	9@10	12 @ 10	12 @ 7	12 @ 7	6@20	12 @ 10	12 @ 7	12 @ 7	16 @ 10	16@7	16@7		
	(0.7)	(0.5)	(0.5)	(1.4)	(1.4)	(1.4)	(0.7)	(0.5)	(1.1)	(0.7)	(0.7)	(0.5)	(0.5)	(1.4)	(0.7)	(0.5)	(0.5)	(0.7)	(0.5)	(0.5)		
25 (7.5)	15 @ 16	12 @ 16	12 @ 11	9@20	9@20	6@22	15 @ 16	15 @ 10	9@16	9@10	15 @ 16	12 @ 16	12 @ 11	6@22	15 @ 16	15 @ 7	10 @ 20	20 @ 16	20@7	20@7		
	(1.1)	(1.1)	(0.8)	(1.4)	(1.4)	(1.5)	(1.1)	(0.7)	(1.1)	(0.7)	(1.1)	(1.1)	(0.8)	(1.5)	(1.1)	(0.5)	(1.4)	(1.1)	(0.5)	(0.5)		
30 (9.0)	18 @ 50	12 @ 50	12 @ 35	9@20	9@20	6@30	18 @ 50	18 @ 32	9@16	9@10	18 @ 50	12 @ 50	12 @ 35	6@30	18 @ 50	18 @ 22	12 @ 20	25 @ 50	25 @ 22	25 @ 10		
	(3.5)	(3.5)	(2.4)	(1.4)	(1.4)	(2.1)	(3.5)	(2.2)	(1.1)	(0.7)	(3.5)	(3.5)	(2.4)	(2.1)	(3.5)	(1.5)	(1.4)	(3.5)	(1.5)	(0.7)		
35 (10.5)		12 @ 75	12 @ 52	12 @ 29	12 @ 23	6@60			15 @ 25	9@30				8@40				See Section 2.3.6.1		3.6.1		
		(5.2)	(3.6)	(2.0)	.6)	(4.1)a			(1.7)	(2.1)				(2.8)								
40 (12.0)		12 @ 75	12 @ 52	9@50	@ 40					9@30												
		(5.2)	(3.6)	(3.5)	(2.8)					(2.1)												

^a An acceptable alternative design is 8 @ 40 (2) when a 12 ft (3.6 m) maximum linear spacing is used

The ceiling-level protection options highlighted in green represent those for which the hose stream demand is 250 gpm (950 L/min) and the duration is 1 hour. These highlighted options have the potential result in less fire, smoke, and water damage than other acceptable options and thus may, from a sustainability standpoint, be preferable

Ceiling-Level Sprinkler System Design Criteria

The design guidelines for ceiling-level Storage sprinklers are based on five main attributes assigned to a sprinkler. They are:

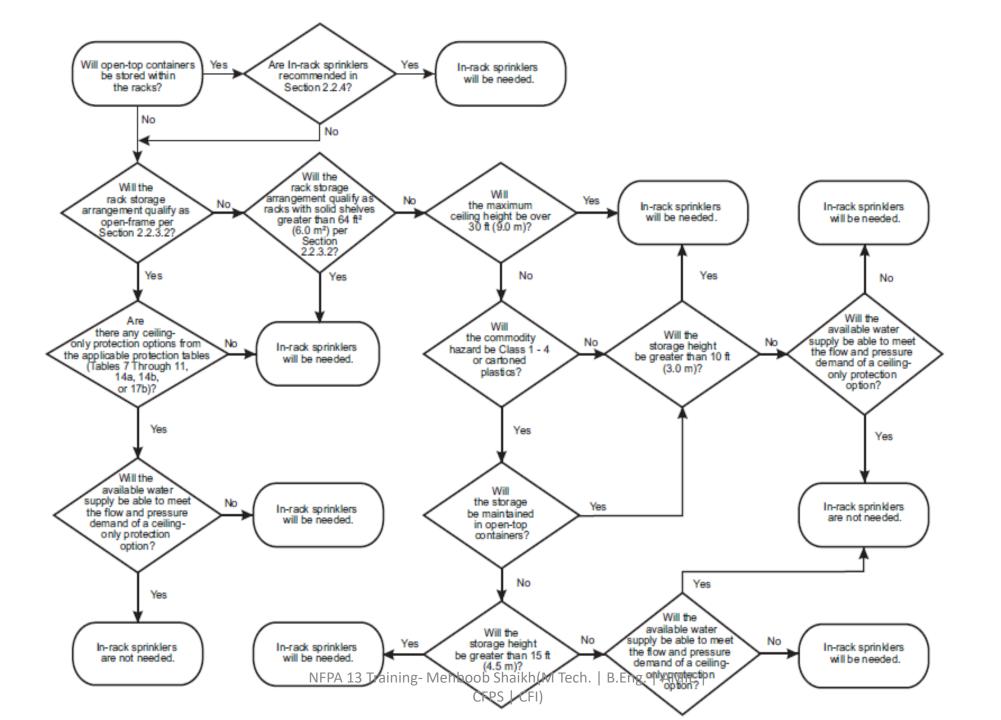
- 1) K-Factor (orifice size)
- 2) Orientation (pendent or upright)
- 3) Response time index rating (quick-response or standard-response)
- 4) Nominal temperature rating
- 5) Sprinkler spacing (standard or extended-coverage)

Once the commodity hazard, storage arrangement, and peak ceiling height for the protected area is known, the protection design options for the sprinkler system can be determined using the appropriate protection table in combination with the five sprinkler attributes

In-Rack Sprinklers (IRAS)

2.3.4 In-Rack Sprinklers (IRAS)

2.3.4.1 General


Protection options for rack storage arrangements are based on ceiling-only sprinkler systems, or a combination of ceiling-level and in-rack sprinkler systems. When in-rack sprinklers are needed, they can be used in combination with any of the ceiling sprinklers listed in the protection tables indicated for rack storage.

In-Rack Sprinklers (IRAS)

2.3.4.2 When In-Rack Sprinklers are Needed

The need for in-rack sprinklers is dependent on several parameters, including commodity hazard, ceiling height, available water supply, the presence of solid shelves or open-top containers, and the width and location of flue spaces. See Section 2.2.3.2 to determine if the storage racks meet the guidelines to be treated as open-frame racking. Use Figure 3 to determine when in-rack sprinklers are recommended.

FM Global Data Sheet 8-9 (Flowchart for evaluating the need for in-rack sprinklers)

Where In-Racks Become Mandatory Based on Ceiling Height – FM 8-9 Chapter Commodity **Building Height** Class I – IV and Cartoned Unexpanded >45 ft (13.7 m) Plastic Tables 7 - 11 Cartoned and Uncartoned Expanded Plastic >40 ft (12.1 m)

FM Global vs NFPA

- FM has eliminated all names of storage sprinklers such as ESFR, CMSA and CMDA, NFPA still uses the names to differentiate the rules
- FM has banned K5.6 (K80) and K8.0 (K115) from ceiling protection of storage, NFPA restricts the use but not a ban
- FM has banned 286 degree (high temperature) sprinklers from wet systems
- FM has eliminated density and area from design considerations, NFPA still highly dependent on density curves
- FM has eliminated storage height from design consideration of ceiling only protection, storage height and clearance a significant design consideration in NFPA
- FM and NFPA now recognize ceiling only designs with as few as 6 sprinklers in the hydraulic demand

Selecting FM Standards

- 1.5 Equivalency. Nothing in this standard is intended to prevent the use of systems, methods, or devices of equivalent or superior quality, strength, fire resistance, effectiveness, durability, and safety over those prescribed by this standard.
- 1.5.1 Technical documentation shall be submitted to the authority having jurisdiction to demonstrate equivalency.
- 1.5.2 The system, method, or device shall be approved for the intended purpose by the authority having jurisdiction.

When NFPA is the referenced code by law, Section 1.5 is used to submit a FM design.

NFPA 13 and FM 8-9 Starting Points

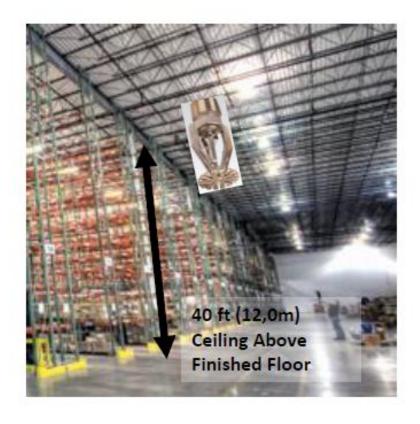
NFPA 13

- // Commodity Class
- · Building Height
- Storage
 - · Arrangement Palletized or Rack
 - Height
 - From floor
 - · Clearance to Ceiling
- Sprinkler System
 - Wet
 - ESFR
 - CMSA
 - CMDA
 - Special
 - Dry
 - CMSA
 - CMDA
 - Special

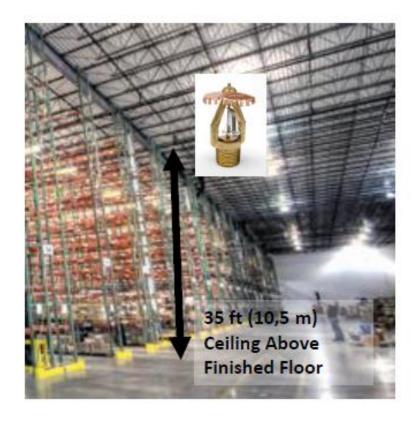
• FM 8-9

// Commodity Class

- · Building Height
- Storage
 - Arrangement Palletized or Rack
- Sprinkler System
 - Wet
 - Pendent QR or SR
 - Upright QR or SR
 - Dry
 - Upright 280°F (140C)


45 ft (13,7 m) Ceiling Recommendation Rack Storage With No In-Rack Sprinklers

- Model ESFR-25
 - K-Factor 25.2 (360)
- NFPA/FM Global Exceptions
 - No Solid Shelves
 - Open-top containers
 - Uncartoned Unexpanded
 Plastic
 - Cartoned or Uncartoned Expanded Plastic


40 ft (12,2 m) Ceiling Recommendation Rack Storage With No In-Rack Sprinklers

- Model ESFR-25
 - K-Factor 25.2 (360)
- NFPA/FM Global Exceptions
 - No Solid Shelves
 - Open Top containers
- NFPA Exceptions
 - Cartoned or Uncartoned Expanded Plastic
- Other available options include Model ESFR-17 Pendent and Model ESFR-1

35 ft (10,5 m) Ceiling Recommendation Rack Storage With No In-Rack Sprinklers

- Model EC-25
 - K-Factor 25.2 (360)
- NFPA Exceptions
 - No Solid Shelves
 - No Open Top containers
 - Cartoned or Uncartoned Expanded Plastic
- FM Global Exceptions
 - No Solid Shelves
 - Open Top containers
 - Uncartoned Unexpanded Plastic
 - Cartoned or Uncartoned Expanded Plastic
- Other available options include Model ESFR-25, Model ESFR-17 Pendent, Model ESFR-17 Upright and Model ESFR-1

Specific Application Listing Tyco Model ESFR-25

- Provide ceiling-only protection up to a
 - 48 ft (14.6 m) Ceiling
 - 43 ft (13.1 m) Storage
- Eliminates need for in-rack sprinklers NFPA 13
- Lower pressure provides flexibility wh compared to other listed sprinklers
- 10-Year Limited Warranty

Contacts

www.tyco-fire.com

Model ESFR-25 Early Suppression, Fast Response Pendent Sprinklers 25.2 K-factor

General Description

The TYCO Model ESPR-25 Pendent Sprinklant are Early Suppression, Fast nai K-factor of 25.2. (Refer to Figure 1.) They are suppression-mode sprinkiprs that are especially advantageous as a meens of eliminating the use of in-rack sprinklers when protecting high-pilled storage.

The Model ESFR-25 Sprinklers are kier protection of (but not limited to): the following storage applications:

- . Most encapsulated or non-encapsulated common materials including cartoried, unexpanded plastics.
- Uncartoned (exposed) expanded plastics in accordance with NFPA 13 and FM Slobal standards.
- . Some storage ammogenents of rubber tires, roll paper, flammable liquids, serosols, and subprotive components.

For more specific criteria, refer to Table 1 as well as the applicable design standard.

The Model ESFR-25 Pendent Eprinklars provide the system designer with hydraulic and sprinkler placement options not presently available to the traditional ESFR sprinklars having nominal K-factors of 14.0 and 16.9. In particular, the Model ESFR-05 Sprinkler has been designed operate at substantially lower and head pressures, as compared

IMPORTANT

Always rafer to Technical Data Sheet TPP700 for the "INSTALLER WARMING" that provides cauand installation of sprinkly sys ers and components. Improp or handling and installation can permanently damage a sprintier system or its components and cause the southier to be operate in a fire artuation or cause

to ESFR Sprinklers having nominal K-factors of 14.0 and 16.6. This feature offers flexibility when sizing system piping, as well as possibly reducing or eliminating the need for a system fire

Also, Model ESFR-25 Sprinklars par-nit use of a maximum deflecto/-to-celling distance of 18 inches less miniversus 14 inches (356 mm). Additionally, a storage arrangement of 43 ft (12.2 m) with a calling height of 48 ft. (15.7 m) does not regular in rack spin-klers as 00 other EBFR Sprinklers having nominal K-factors of 14.0 and 16.9.

The Model EBFR-25 Sprinklers are listed by Underwriters Laboratorice (UL) for specific applications with a maximum storage height of 43 ft. (15.1 m) with a maximum ceiling height of 46 ft. (14,6 m) without the regularment for in-rack sprinktors. Rafer to the Specific Application Listing (UL) for the design criteria.

Applications for the TYCO ESFR Sprinklers are expanding beyond currently recognized installation stan-dards, For information on research fire tests (e.g., with flammable liquids and serceols) that may be acceptable to an authority having jurisdiction, contact the Technical Bervices department.

The Allode (SSFFL:25 Sprinklers disposition) haven must be installed and representation in compliance with this document, as-well as with the applicable standards of the felational Fine Protection Association, in addition to the standards of any sytherhes taking sunscioner is a., FMI Global, Failure to do so may implier the performance of these devices.

The owner is responsible for maintaining. their fire protection system and devices in proper operating condition. The installing contractor or sprinkler manufacturer should be contacted with any questions. in all cases. The appropriate NFPA or FM installation standard, or other applicable standard, must be referenced to ensure applicability and to obtain compaigns installation guidelines. The general pushelines in this data sheet are not

Sprinkler Identification Number (SIN)

TY9006 is a re-designation for C9006.

Technical Data

UL and C-UL Listed FM and VdS Approved LPCS Approved (094b/01 and 07l/01) NYC under MSA 356-01-E CE Certified CUAP H.05/05

Maximum Working Pressure 175 psi (12.1 bar)

Pipe Thread Connections

Discharge Coefficient 360.9 LPM/bar¹⁰ Temperature Ratings

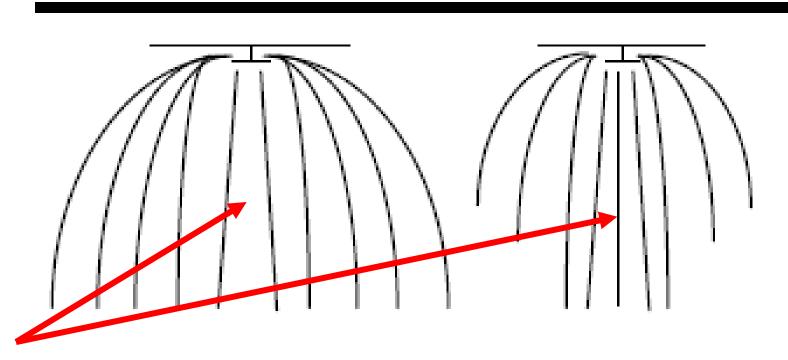
170

Specific Application Listing Tyco Model ESFR-25 — Key Design Criteria

- Temperature rating: 212° F (100° C)
- Deflector to top of storage: ≥ 36 in (914 mm)
- Deflector to ceiling distance 6 14 in (152 356 mm)
- Sprinkler system design: NFPA 13 for ESFR Sprinkler based on 45 PSI (3.1 bar)
- Minimum aisle width: 8 ft (2,4 m)

Chapter-21 Protection of High Piled Storage Using **Control Mode Density Area** (CMDA) Sprinklers

Content


- General
- Criteria for Palletized, Solid-Piled, Bin Box, Shelf, or Back-to-Back Shelf Storage of Class I Through Class IV Commodities.
- Criteria for Palletized, Solid-Piled, Bin Box, Shelf, or Back-to-Back Shelf Storage of Plastic and Rubber Commodities.
- Criteria for Rack Storage of Class I Through Class IV Commodities.
- Criteria for Single-, Double-, and Multiple-Row Racks for Group A Plastic Commodities Stored Up to and Including 25 ft (7.6 m) in Height.
- Criteria for Rack Storage Rubber Tires.
- Criteria for Roll Paper Storage.
- Special Design for Rack Storage of Class I Through Class IV Commodities and Group A Plastics Stored Up to and Including 25 ft (7.6 m) in Height.
- Sprinkler Design Criteria for Storage and Display of Class I Through Class IV Commodities, Cartoned Nonexpanded Group A Plastics and Nonexpanded Exposed Group A Plastics in Retail Stores.

Content

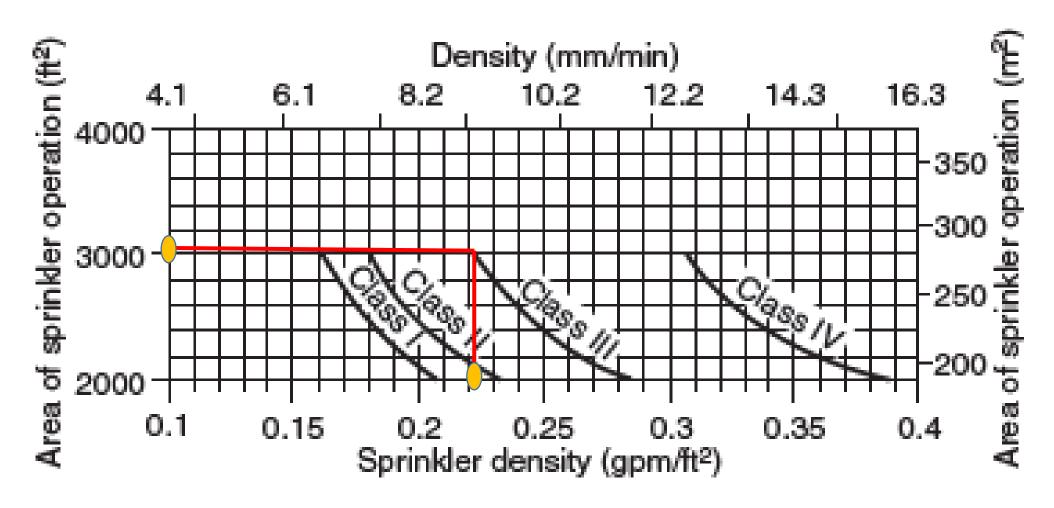
- Criteria for Baled Cotton Storage.
- Criteria for Carton Records Storage with Catwalk Access.
- Criteria for Compact Storage of Commodities Consisting of Paper Files, Magazines, Books, and Similar Documents in Folders and Miscellaneous Supplies with No More Than 5 Percent Plastics Up to 8 ft (2.4 m) High.

Use of standard- response sprinklers with a K-factor of K-5.6

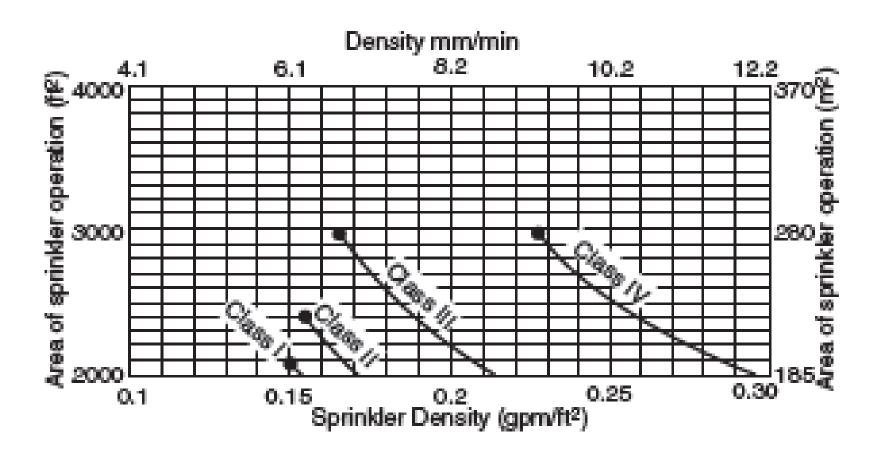
Storage situations that need a density of only 0.2 gpm per ft2 (8.2 mm/min) or less are less demanding than most storage occupancies and are valid for K-5.6 orifice size sprinklers.

It has been recognized that water droplet momentum is critical to achieving fire control or suppression.

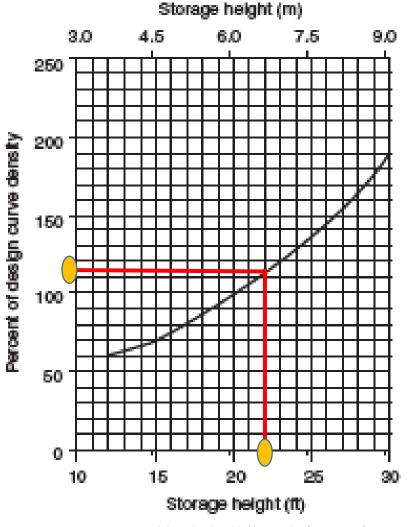
Use of Ordinary- and intermediate-temperature sprinklers using density of high-temperature sprinklers


- The original fire tests that were conducted to determine the discharge criteria for solid-piled, palletized, and rack storage were conducted with K-5.6 (80) and K-8.0 (115) sprinklers.
- During those tests, it was noticed that the use of high-temperature sprinklers could significantly reduce the number of sprinklers that opened during a fire, which has the effect of conserving the water supply.
- Density/area criteria were developed for high-temperature sprinklers with K-5.6 (80) or K-8.0 (115) to take advantage of this conservation by either allowing a reduction in sprinkler densities for the same design area or reducing the design area for the same discharge densities

Criteria for Palletized, Solid-Piled, Bin Box, Shelf, or Back-to-Back Shelf Storage of Class I Through Class IV Commodities


21.2 - Protection limits for CMDA Sprinklers

- (1) Nonencapsulated commodities that are solid-piled, palletized, or bin box storage up to 30 ft (9.1 m) in height
- (2) Nonencapsulated commodities on shelf storage up to 15 ft (4.6 m) in height
- (3)Encapsulated commodities that are solid-piled, palletized, bin box, or shelf storage up to 15 ft (4.6 m) in height
- (4) Back-to-back shelf storage up to 15 ft (4.6 m) in height
- (5) Encapsulated storage of solid-piled and palletized Class I through IV commodities permitted in accordance with 21.2.3 for storage heights over 15 ft (4.6 m) up to and including 20 ft (6.1 m)


Sprinkler System Design Curves for 20 ft (6.1 m) High Storage — Ordinary Temperature—Rated Sprinklers

Sprinkler System Design Curves for 20 ft (6.1 m) High Storage — High Temperature—Rated Sprinklers

Ceiling Sprinkler Density vs. Storage Height

Example

- Storage- greeting cards in boxes in cartons on pallets Height 22 ft. (6.7 m)
- Clearance to ceiling 6 ft (1.8 m)
- Sprinklers ordinary temperature
- System type dry

Determine the density and area of operation.

Solution

Classification of Stored Commodity: Class 3

Selection of Density area: 0.225 gpm/sf@ area of 3000 SF

Adjustment for height of storage = $1.15 \times 0.225 = 0.26 \text{ GPM/SF}$

Adjustment for Dry Pipe System = 1.3 x 3000 = 3900 SF

Confirmation of Min. Densities and area have been achieved

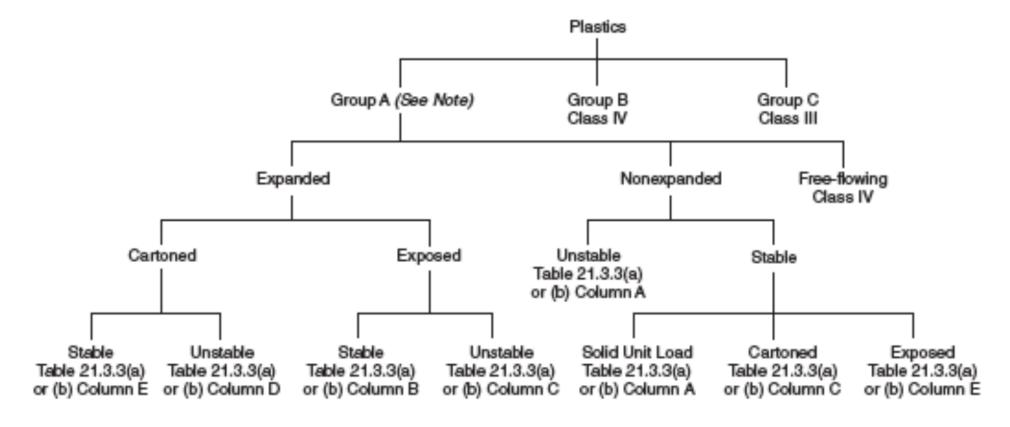
The minimum design density for a dry sprinkler system is 0.15 gpm/ft2 over 2600 ft2

Solution

The minimum design density for a dry sprinkler system is 0.15 gpm/ft2 over 2600 ft2

Corresponding density at 3000 SF will be 0.17 GPM/SF (Satisfied) Therefore,

The design density and area of application equals 0.26 gpm/ft2 over 3900 ft2 (10.6 mm/min over 360 m2).


21.3 - Protection limits for CMDA Sprinklers

- (1) Commodities that are stored palletized, solid piled, or in bin boxes up to 25 ft (7.6 m) in height.
- (2) Commodities that are stored in shelf storage up to 15 ft (4.6 m) in height.
- (3) Commodities that are stored using back-to-back shelf storage up to 15 ft (4.6 m) in height. The minimum aisle width shall be 5 ft (1.5 m).

Back-to-Back Shelf Storage of Cartoned Nonexpanded Group A Plastics

Storage Height		Ceiling Height						
ft	178	ft	m	Protection				
Over 5 up to 8	1.5/2.4	Up to 14	4.3	Ordinary Hazard Group 2				
Up to 12	3.7	Up to 15	4.6	0.45 gpm/ft2 over 2500 ft2	18.3 mm/min/230 m ²			
Up to 12	3.7	Up to 30	9.1	0.6 gpm/ft2 over 2500 ft2	24.5 mm/min/230 m ²			
Up to 15	4.6	Up to 30	9.1	0.7 gpm/ft2 over 2500 ft2	28.5 mm/min/230 m ²			

Decision Tree for plastic Commodities

Note: Cartons that contain Group A plastic material are permitted to be treated as Class IV commodities under either of the following conditions:

- (1) There are multiple layers of corrugation or equivalent outer material that would significantly delay fire involvement of the Group A plastic.
- (2) The amount and arrangement of Group A plastic material within a carton with a single layer of corrugation would not be expected to significantly increase the fire hazard.

Design Densities for Palletized, Solid-Piled, Bin Box, or Shelf Storage of Group A Plastic Commodities (S.I. Units)

TABLE 21.3.3(a) & TABLE 21.3.3(b)

Criteria for Rack Storage of Class I Through Class IV Commodities Stored Over 12 ft (3.7 m) Up to and Including 25 ft (7.6 m) in Height

Refer **TABLE 21.4.1.2 for density of** Single- or Double-Row Racks — Storage Height Over 12 ft (3.7 m) Up to and Including 25 ft

Criteria for Multiple row racks

- Multiple-Row Racks Rack Depth Up to and Including 16 ft (4.9 m) with Aisles 8 ft (2.4 m) or Wider.
- Multiple-Row Racks Rack Depth Over 16 ft (4.9 m) or Aisles More Narrow Than 8 ft (2.4 m)

Refer **TABLE 21.4.1.3.1 for density of** Rack Depth Up to and Including 16 ft (4.9 m), Aisles 8 ft (2.4 m) or Wider and Storage Height Over 12 ft (3.7 m) Up to 25 ft (7.6 m)

Refer **TABLE 21.4.1.3.2 for density of** Multiple-Row Racks — Rack Depth Over 16 ft (4.9 m) or Aisles Narrower Than 8 ft (2.4 m), Storage Height Over 12 ft (3.7 m) Up to and Including 25 ft (7.6 m)

Criteria for Rack Storage of Class I Through Class IV Commodities Stored Over 25 ft (7.6 m) in Height

Refer Chapter 25

Control Mode Density/Area Sprinkler Protection Criteria for Single-, Double-, and Multiple-Row Racks for Group A Plastic Commodities Stored Up to and Including 25 ft (7.6 m) in Height.

Refer Table 21.5.1.1 Control Mode Density/Area Sprinkler Protection Criteria for Single-, Double-, and Multiple-Row Racks for Group A Plastic Commodities in Cartons Stored Up to and Including 25 ft (7.6 m) in Height

Chapter- 22 CMSA Requirement for Storage Applications

Content

- General
- Palletized and Solid-Piled Storage of Class I Through Class IV Commodities. Table 22.2
- Palletized and Solid-Piled Storage of Non-expanded and Expanded Group A Plastic Commodities -Table 22.3
- Single-, Double-, and Multiple-Row Rack Storage for Class I Through Class IV Commodities Table 22.4
- Single-, Double-, and Multiple-Row Racks of Group A Plastic Commodities Table 22.5
- Rubber Tires Table 22.6
- Roll Paper Storage Table 22.7

Chapter- 23 ESFR Requirement for Storage Applications

Content

- General
- ESFR Design Criteria.
- Early Suppression Fast-Response (ESFR) Sprinklers for Palletized or Solid-Piled Storage of Class I Through Class IV Commodities Table 23.3.1.
- Early Suppression Fast-Response (ESFR) Sprinklers for Palletized or Solid-Piled Storage of Group A Plastic Commodities Table 23.4.2
- Early Suppression Fast-Response (ESFR) Sprinklers for Rack Storage of Class I Through Class IV Commodities Table 23.5.1
- Early Suppression Fast-Response (ESFR) Sprinklers for Rack Storage of Group A Plastic Commodities Table 23.6.1
- Protection of Exposed Expanded Group A Plastics.
- ESFR Protection of Rack Storage of Rubber Tires Table 23.8
- Early Suppression Fast-Response (ESFR) Sprinklers for Protection of Roll Paper Storage Table 23.9
- Plastic Motor Vehicle Components Table 23.10
- Sprinkler Design Criteria for Storage and Display of Class I Through Class IV Commodities, Cartoned Nonexpanded Group A Plastics and Nonexpanded Exposed Group A Plastics in Retail Stores.

Content

- Protection of High Bay Records Storage.
- Slatted Shelves.

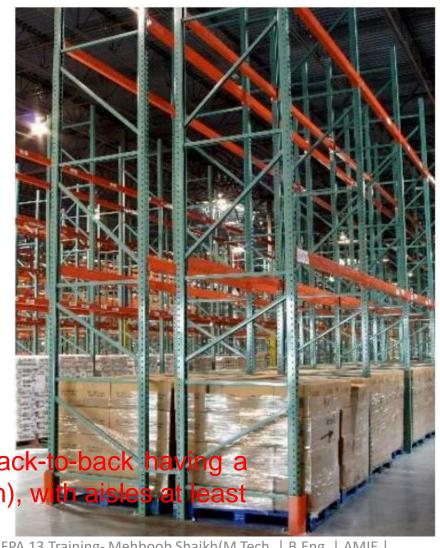
Chapter- 24 Alternative Sprinkler System Design for Ch. 20 through 25

Intent of the Chapter

• The intent of this chapter is to set a basis to allow manufacturers to conduct full-scale fire tests and then submit the results of the tests to the NFPA 13 Technical Committee on Sprinkler System Discharge Criteria. If, upon review, the committee determines that the test results are successful and that the minimum criteria have been met, the sprinkler will be added to the tables in Chapter 24

Chapter- 25 Protection of Rack Storage using In rack Sprinklers

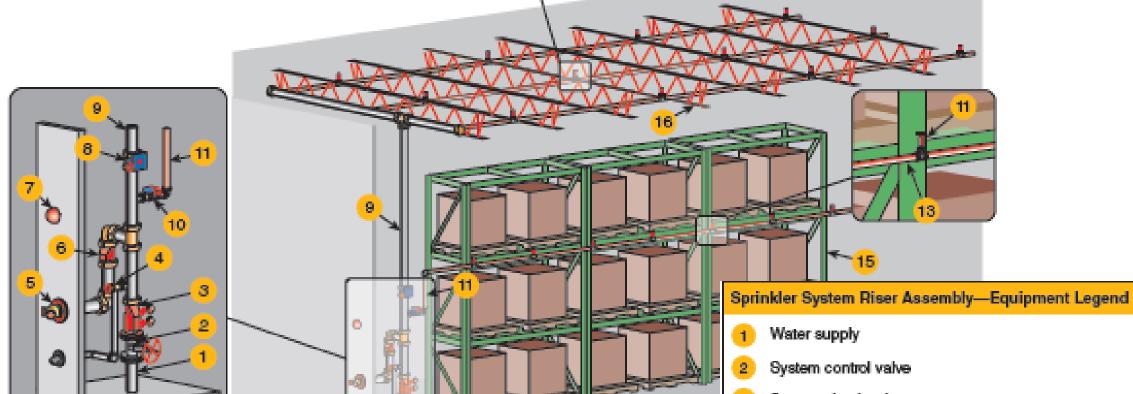
NFPA 13 Training- Mehboob Shaikh(M Tech. | B.Eng. | AMIE | CFPS | CFI)


Single Row Rack

(1.1m) from other storage.

NFPA 13 Training- Mehboob Shaikh(M Tech. | B.Eng. | AMIE | CFPS | CFI)

Double Row Rack


Two single-row racks placed back-to-back have combined width up to 12ft (3.7m), with aisles at 3.5ft (1.1m) on each side.

Multiple Row Rack

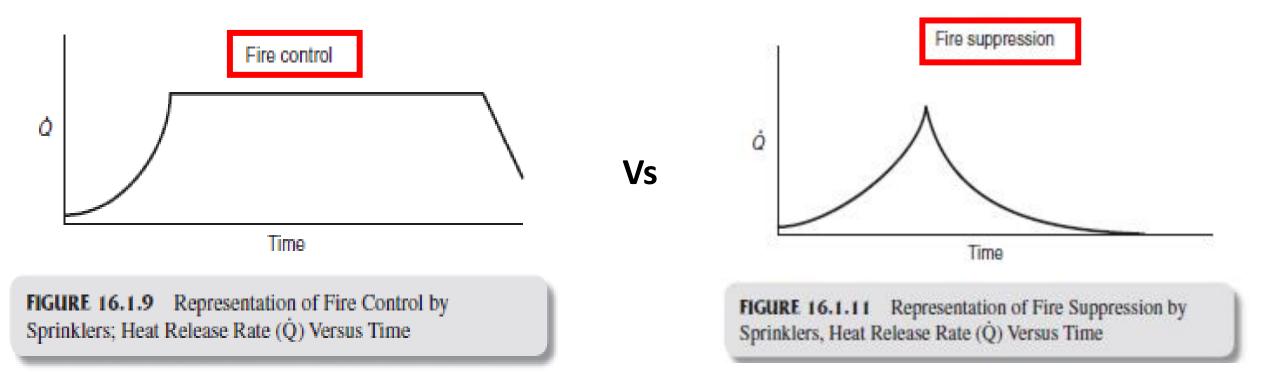
Racks greater than 12ft (3.7m) wide of single-to row racks separated by aisles less than 3.5ft (1 having an overall width greater than 12ft (3.7m).

NFPA 13 Training- Mehboob Shaikh(M Tech. | B.Eng. | AMIE | CFPS | CFI)

Sprinkler System & Building-Legend

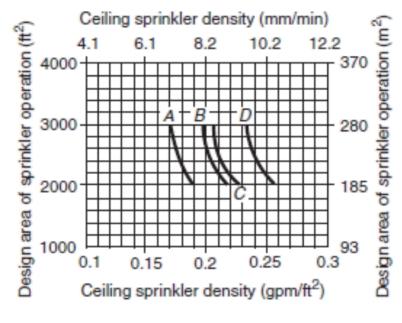
- 12 Ceiling/overhead fire sprinklers
- 13 In-rack fire sprinkler(s)
- 14 Branch line(s)
- 15 Rack structure
- 16 Roof support structure

- 3 System check valve
- 4 Main drain valve
- Fire department connection
- 6 Check valve
- 7 Local waterflow alarm
- 8 Control valve for ceiling/overhead sprinklers
- 9 Feed main to ceiling/overhead sprinklers.
- (10) Control valve for in-rack sprinklers
- 11 Feed main to in-rack sprinklers


NFPA 13 Training- Mehboob Shaikh(M Tech. | B.Eng. | AMIE | CFPS | CFI)

3 Basic Questions:

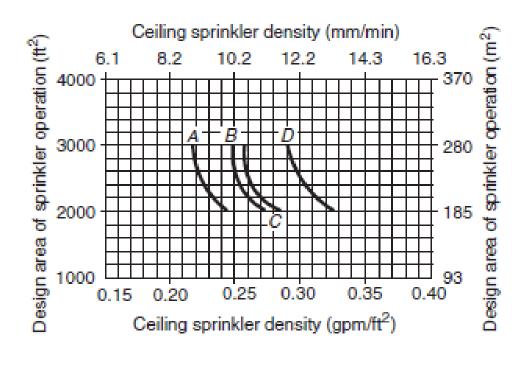
- What is stored? (Classification of Commodities)
- How is it stored? (Storage Arrangements)
- How <u>high</u> is it stored?


- ✓ < 12 feet
- ✓< = 25 feet
- ✓ > 25 feet

Fire Control Vs Fire Suppression

28 different density/area curves that apply to the rack storage of Class I through Class IV commodities stored on racks that are protected with in-rack sprinklers

A—Single- or double-row racks



- A Single- or double-row racks with 8 ft (2.4 m) aisles with high-temperature ceiling sprinklers and ordinary-temperature in-rack sprinklers
- B Single- or double-row racks with 8 ft (2.4 m) aisles with ordinarytemperature ceiling sprinklers and ordinarytemperature in-rack sprinklers
- C Single- or double-row racks with 4 ft (1.2 m) aisles or multiple-row racks with high-temperature ceiling sprinklers and ordinarytemperature in-rack sprinklers
- D Single- or double-row racks with 4 ft (1.2 m) aisles or multiple-row racks with ordinary-temperature ceiling sprinklers and ordinarytemperature in-rack sprinklers

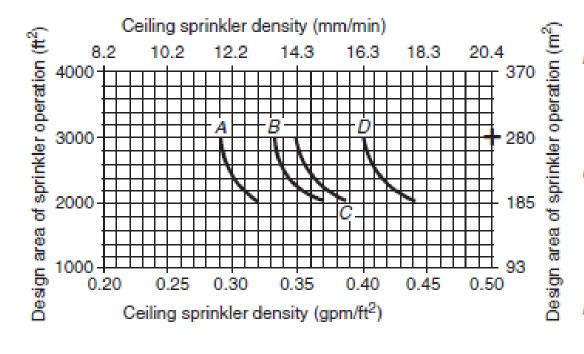

- A Single- or double-row racks with 8 ft (2.4 m) aisles with high-temperature ceiling sprinklers and ordinary-temperature in-rack sprinklers
- B Single- or double-row racks with 8 ft (2.4 m) aisles with ordinary-temperature ceiling sprinklers and ordinary-temperature in-rack sprinklers
- C Single- or double-row racks with 4 ft (1.2 m) aisles or multiple-row racks with high-temperature ceiling sprinklers and ordinarytemperature in-rack sprinklers
- D Single- or double-row racks with 4 ft (1.2 m) aisles or multiple-row racks with ordinary-temperature ceiling sprinklers and ordinary-temperature in-rack sprinklers

FIGURE 25.2.3.2.3.1(b) CMDA Sprinkler System Design Curves — 20 ft (6.1 m) High Rack Storage — Class II Nonencapsulated Commodities — Conventional Pallets.

- A Single- or double-row racks with 8 ft (2.4 m) aisles with high-temperature ceiling sprinklers and ordinary-temperature in-rack sprinklers
- B Single- or double-row racks with 8 ft (2.4 m) aisles with ordinary-temperature ceiling sprinklers and ordinary-temperature in-rack sprinklers
- C Single- or double-row racks with 4 ft (1.2 m) aisles or multiple-row racks with high-temperature ceiling sprinklers and ordinarytemperature in-rack sprinklers
- D Single- or double-row racks with 4 ft (1.2 m) aisles or multiple-row racks with ordinary-temperature ceiling sprinklers and ordinary-temperature in-rack sprinklers

FIGURE 25.2.3.2.3.1(c) CMDA Sprinkler System Design Curves — 20 ft (6.1 m) High Rack Storage — Class III Nonencapsulated Commodities — Conventional Pallets.

- A Single- or double-row racks with 8 ft (2.4 m) aisles with high-temperature ceiling sprinklers and ordinary-temperature in-rack sprinklers
- B Single- or double-row racks with 8 ft (2.4 m) aisles with ordinary-temperature ceiling sprinklers and ordinary-temperature in-rack sprinklers
- C Single- or double-row racks with 4 ft (1.2 m) aisles or multiple-row racks with high-temperature ceiling sprinklers and ordinarytemperature in-rack sprinklers
- D Single- or double-row racks with 4 ft (1.2 m) aisles or multiple-row racks with ordinary-temperature ceiling sprinklers and ordinary-temperature in-rack sprinklers

FIGURE 25.2.3.2.3.1(d) CMDA Sprinkler System Design Curves — 20 ft (6.1 m) High Rack Storage — Class IV Nonencapsulated Commodities — Conventional Pallets.

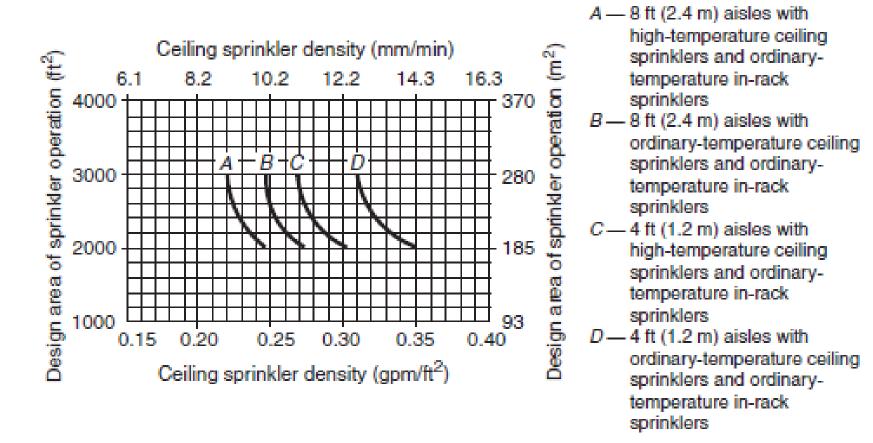
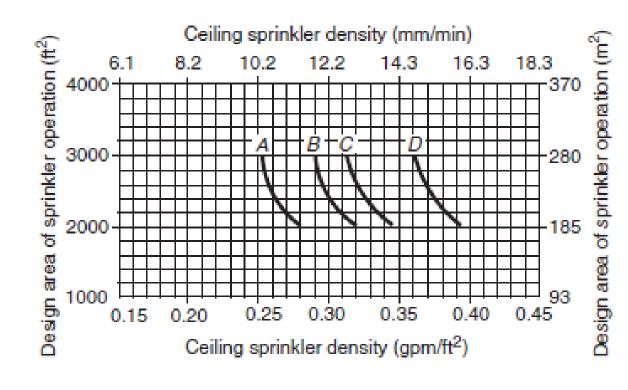



FIGURE 25.2.3.2.3.1(e) CMDA Sprinkler System Design Curves — Single- or Double-Row Racks — 20 ft (6.1 m) High Rack Storage — Class I and Class II Encapsulated Commodities — Conventional Pallets.

Curve

Legend

- A 8 ft (2.4 m) aisles with high-temperature ceiling sprinklers and ordinarytemperature in-rack sprinklers
- B 8 ft (2.4 m) aisles with ordinary-temperature ceiling sprinklers and ordinary-temperature in-rack sprinklers
- C 4 ft (1.2 m) aisles with high-temperature ceiling sprinklers and ordinarytemperature in-rack sprinklers
- D 4 ft (1.2 m) aisles with ordinary-temperature ceiling sprinklers and ordinary-temperature in-rack sprinklers

FIGURE 25.2.3.2.3.1(f) CMDA Sprinkler System Design Curves — Single- or Double-Row Racks — 20 ft (6.1 m) High Rack Storage — Class III Encapsulated Commodities — Conventional Pallets.

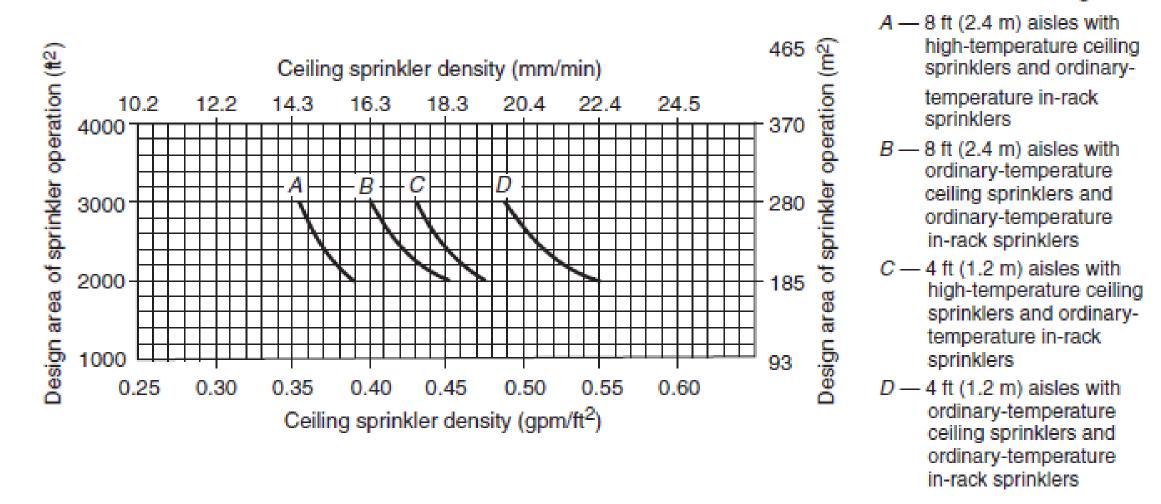


FIGURE 25.2.3.2.3.1(g) CMDA Sprinkler System Design Curves — Single- or Double-Row Racks — 20 ft (6.1 m) High Rack Storage — Class IV Encapsulated Commodities — Conventional Pallets.

Legend

Curve

Requirement of In Rack Sprinklers

Depends upon

- Type of commodity (Type 1 to 4 and plastics)
- Height of the rack (Over 12' & upto 25' / Over 25') with different aisle widths
- Arrangement of Rack (Single, Double & multiple rows)

Table 25.2.3.2.1 Determining Appropriate Ceiling-Level Protection Criteria Figure for Single- or Double-Row Racks of Class I Through Class IV Commodities — Storage Height Over 12 ft (3.7 m) Up to and Including 25 ft (7.6 m)

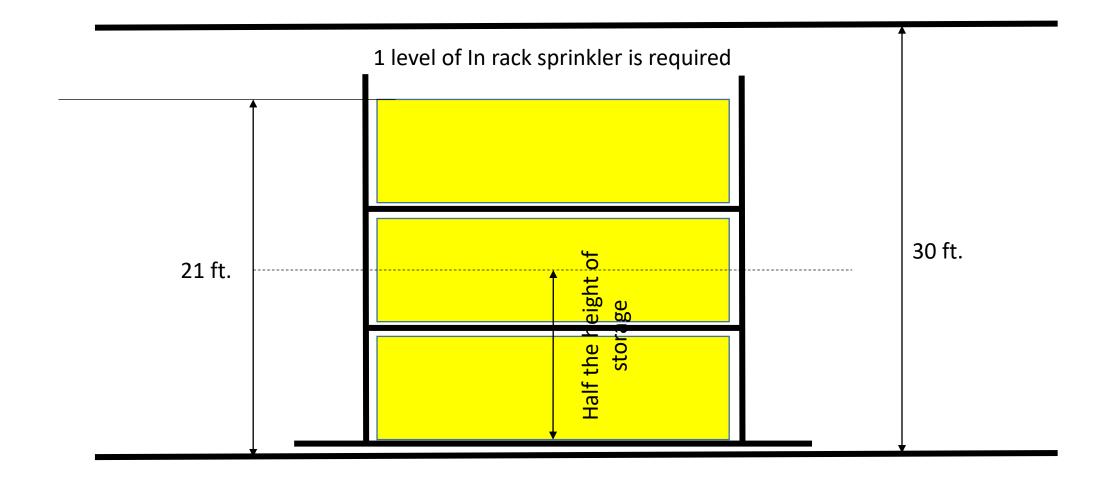
			Aisle Width*			Appropriate Figure and Curves		
Storage Height	Commodity Class	Encapsulated	ft	m	No. of In-Rack Sprinkler Levels	Figure	Curves	Apply Figure 25.2.3.2.4.1
Over 12 ft (3.7 m) and	I	No	4	1.2	1 Level	25.2.3.2.3.1(a)	C and D	Yes
up to and including 20 ft (6.1 m)			8	2.4			A and B	
25 11 (6.1 11)	//	Ye	4	1.2		25.2.3.2.3.1(e)	C and D	
			8	2.4			A and B	
	7	No	4	1.2		25.2.3.2.3.1(b)	C and D	
			8	2.4			A and B	
/		Yes	4	1.2		25.2.3.2.3.1(e)	C and D	
			8	2.4			A and B	
	III	No	4	1.2		25.2.3.2.3.1(c)	C and D	
			8	2.4			A and B	
		Yes	4	1.2		25.2.3.2.3.1(f)	C and D	
			8	2.4			A and B	
	IV	No	4	1.2		25.2.3.2.3.1(d)	C and D	
			8	2.4			A and B	
		Yes	4	1.2		25.2.3.2.3.1(g)	C and D	
		NIEDA 42 Tue	ini na na Natalala	an a la Clancilul	o/M Toch P Eng AN	415		

NFPA 13 Training- Mehboob Shaikh(M Tech. | B.Eng. | AMIE | CFPS | CFI)

- Type of Commodity: Class 4, Encapsulated
- Storage Height : 21 feet
- Building Height: 30 feet
- Type of Rack Arrangement : Double row with Aisle width 4 foot
- Type of Sprinkler System : Wet Type

 $Table~25.2.3.2.1~Determining~Appropriate~Ceiling-Level~Protection~Criteria~Figure~for~Single-~or~Double-Row~Racks~of~Class~I~Through~Class~IV~Commodities \\ --- Storage~Height~Over~12~ft~(3.7~m)~Up~to~and~Including~25~ft~(7.6~m)$

				Atelo	Width		Appropriate Educa and Curves				
	Storage Height	Commodity Class	Encapsulated	ft	m	No. of In-Rack Sprinkler Levels	Figure	Curves	Apply Figure 25.2.3.2.4.1		
	Over 12 ft (3.7 m) and	I	No	4	1.2	1 Level	25.2.3.2.3.1(a)	C and D	Yes		
	up to and including 20 ft (6.1 m)			8	2.4			A and B			
	2-1-(,		Yes	4	1.2		25.2.3.2.3.1(e)	C and D			
				8	2.4			A and B			
		II	No	4	1.2		25.2.3.2.3.1(b)	C and D			
				8	2.4			A and B			
			Yes	4	1.2		25.2.3.2.3.1(e)	C and D			
				8	2.4	1		A and B			
		III	No	4	1.2		25.2.3.2.3.1(c)	C and D			
				8	2.4			A and B			
			Yes	4	1.2		25.2.3.2.3.1(f)	C and D	C and D A and B C and D		
		8 2.4 A and B IV No 4 1.2 25.2.3.2.3.1(d) C and D									
		IV	No	4	1.2		25.2.3.2.3.1(d)	C and D			
				8	2.4			A and B			
L	7		Yes	4	1.2		25.2.3.2.3.1(g)	C and D	No		
\				8	2.4			A and B			
	Over 20 ft (6.1 m) and	I	No	4	1.2	1 Level	25.2.3.2.3.1(a)	C and D	No		
	up to and including 22 ft (6.7 m)			8	2.4			A and B			
			Yes	4	1.7		25.2.3.2.3.1(e)	C and D			
				8				A and B			
		П	No	4	1.2		25.2.3.2.3.1(b)	C and D			
				8/	2.4			A and B			
			Yes		1.2		25.2.3.2.3.1(e)	C and D			
				/8	2.4			A and B			
		III	No	4	1.2		25.2.3.2.3.1(c)	C and D			
				8	2.4			A and B			
				4	1.2		25.2.3.2.3.1(f)	C and D			
				8	2.4			A and B			
		IV	No	4	1.2		25.2.3.2.3.1(d)	C and D			
				8	2.4			A and B			
			Yes	4	1.2		25.2.3.2.3.1(g)	C and D			
			J			I	I		I		


A and B

Option-01

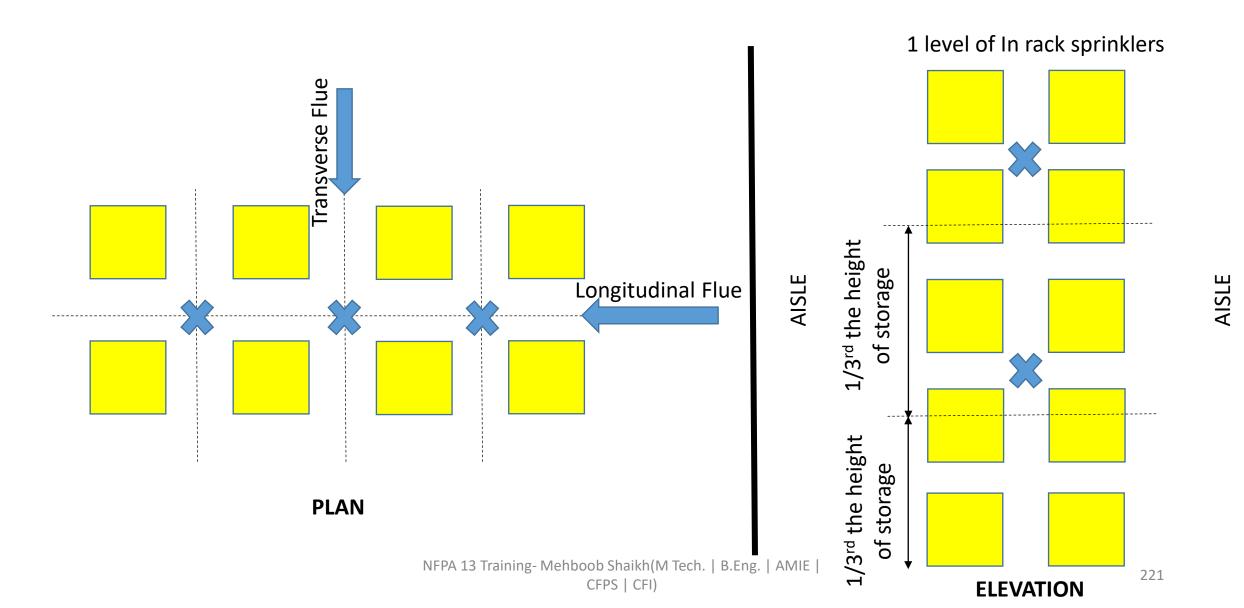
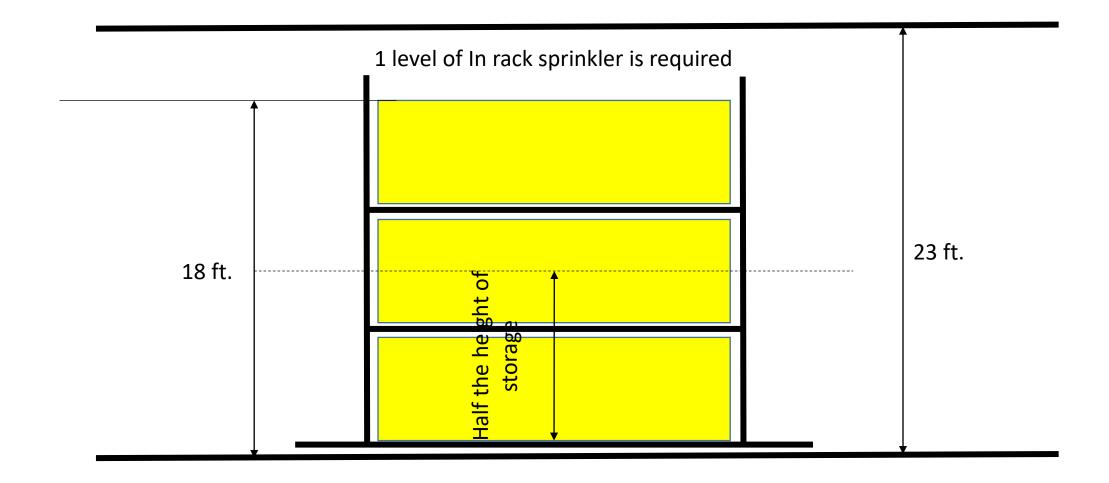

With CMDA Sprinklers

Table 25.2.4.2.1 CMSA Ceiling-Level Sprinkler Design Criteria for Rack Storage of Class I Through Class IV Commodities (Encapsulated and Nonencapsulated) Supplemented with In-Rack Sprinklers

F. F. 17.		Maximum Storage Height		Maximum Ceiling/ Roof Height		ED.	TF 6	No. of Ceiling Sprinklers	No. of Required Levels of In-	Minimum Ceiling Sprinkler Operating Pressure	
Storage Arrangement	Commodity Class	ft	m	ft	m	K-Factor/ Orientation	Type of System	in the Design	Rack Sprinklers	psi	bar
Single-,	I or II	30	9.1	35	11	11.2 (160)	Wet	20	One level	25	1.7
double-, and multiple-row						Upright	Dry	30	One level	25	1.7
racks (no						16.8 (240)	Wet	20	One level	15	25 1.7 15 1 15 1 25 1.7 25 1.7 15 1
open-top containers)						Upright	Dry	30	One level	Pressure psi ba 25 1. 25 1. 15 1 15 1 25 1. 25 1. 25 1. 25 1. 25 1. 25 1. 25 1. 25 1. 25 3.	1
	III	25	7.6	30	9.1	11.2 (160)	Wet	15	One level	25	1.7
						Upright	Dry	25	One level	25	1.7
						16.8 (240) Upright	Dry	25	One level	15	1
				35	11	11.2 (160)	Wet	15	One level	25	1.7
						Upright	Dry	25	One level	25	1.7
						16.8 (240)	Wet	15	One level	15	1
						Upright	Dry	25	One level	15	1
	IV	25	7.6	30	9.1	11.2 (160) Upright	Wet	15	One level	50	3.4
				35	11	11.2 (160)	Wet		One level	25 1.5 25 1.5 15 1 25 1.5	3.4
						Upright		15	One level		5.2
						16.8 (240)	Wet	20	One level	22	1.5
						JI,		15	One level	35	2.4

Cl. 25.5.1.2- Horizontal Location of In-Rack Sprinklers

Spacing in Rack Sprinklers


TABLE 25.5.2.2.1 In-Rack Sprinkler Horizontal Spacing for Class I, II, III, and IV Commodities Stored in Single- or Double-Row Racks Up to 25 ft (7.6 m) in Height Protected by CMDA Sprinklers at Ceiling Level

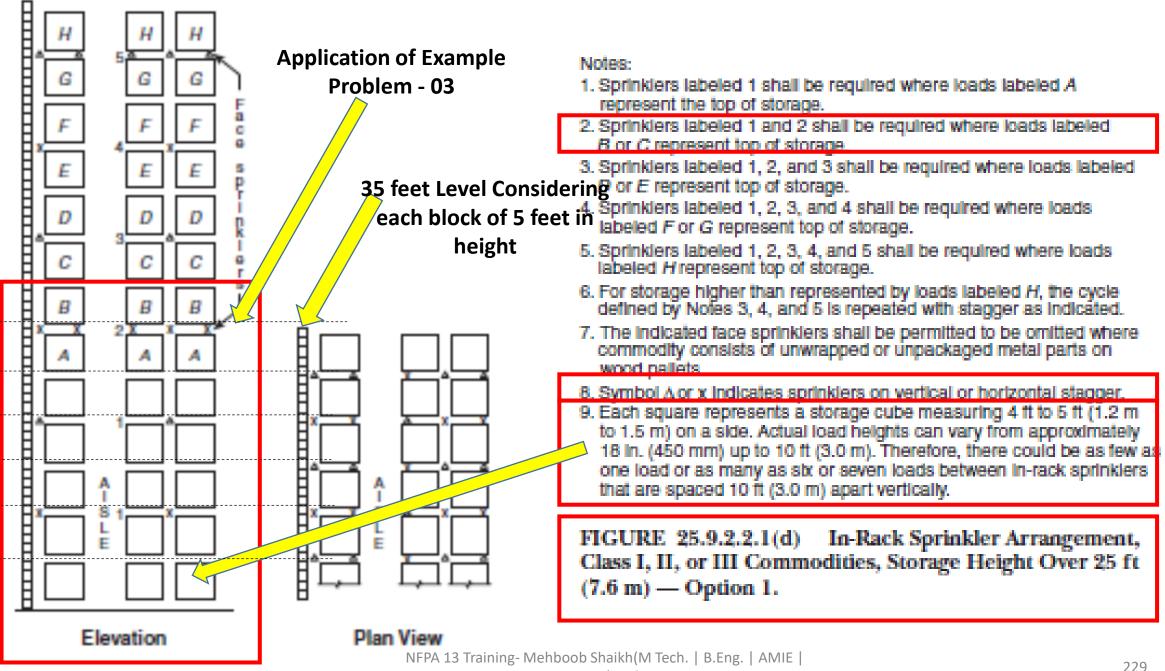
	Aisl	e Width		Maximum Allow	able Linear Spacing
Commodity Class	ft	m	Encapsulated	ft	m
		2.4	No	12	3.7
T TT	٥	2.4	Yes	8	2.4
I, II	4	1.2	No	12	3.7
	+	1.2	Yes	8	2.4
	0	2.4	No	12	3.7
Ш	٥	2.4	Yes	8	2.4
111	4	1.0	No	10	3
	4	8 2.4 No 12 3.7 Yes 8 2.4 4 1.2 No 12 3.7 Yes 8 2.4 No 12 3.7 Yes 8 2.4 No 12 3.7 Yes 8 2.4 No 12 3.7 Yes 8 2.4			
	0	2.4	No	10	3
73.7	0	2.4	Yes	8	2.4
1 *	4	1.2	No	10	3
	4	1.4	Yes	8	2.4

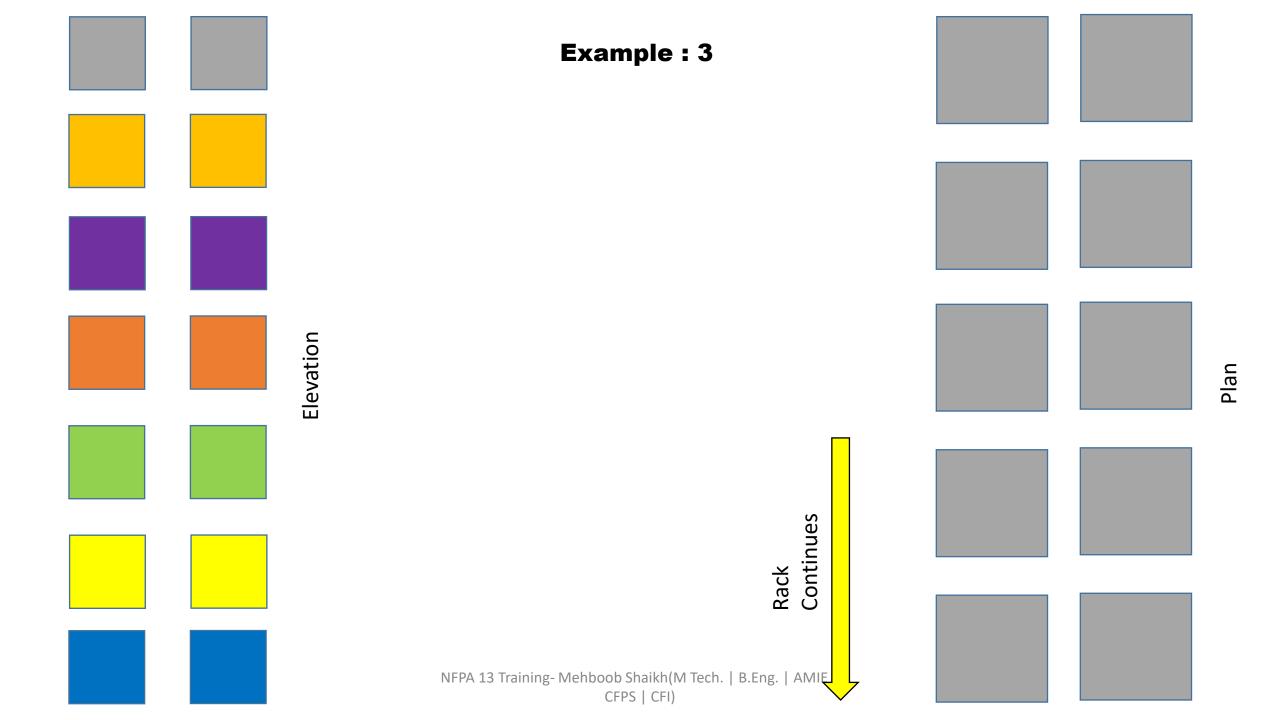
- Type of Commodity: Class 4, Encapsulated
- Storage Height: 18 feet
- Building Height: 23 feet
- Type of Rack Arrangement : Multiple row Rack with Aisle 15 feet deep
- Aisle Width: 6 feet
- Type of Sprinkler System : Wet Type

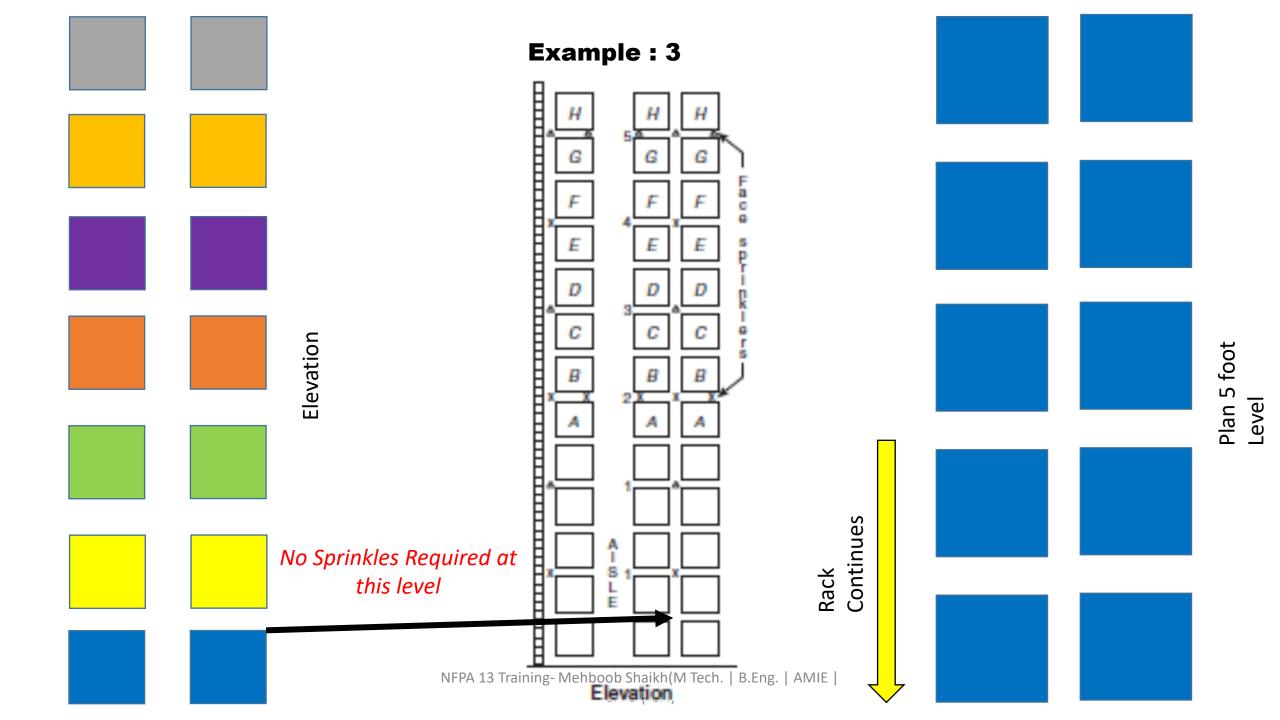
Table 25.2.3.2.2.1 Determining Appropriate Ceiling-Level Protection Criteria Figure for Multiple-Row Racks of Class I Through Class IV Commodities — Rack Depth Up to and Including 16 ft (4.9 m), Aisles 8 ft (2.4 m) or Wider, and Storage Height Over 12 ft (3.7 m) Up to 25 ft (7.6 m)

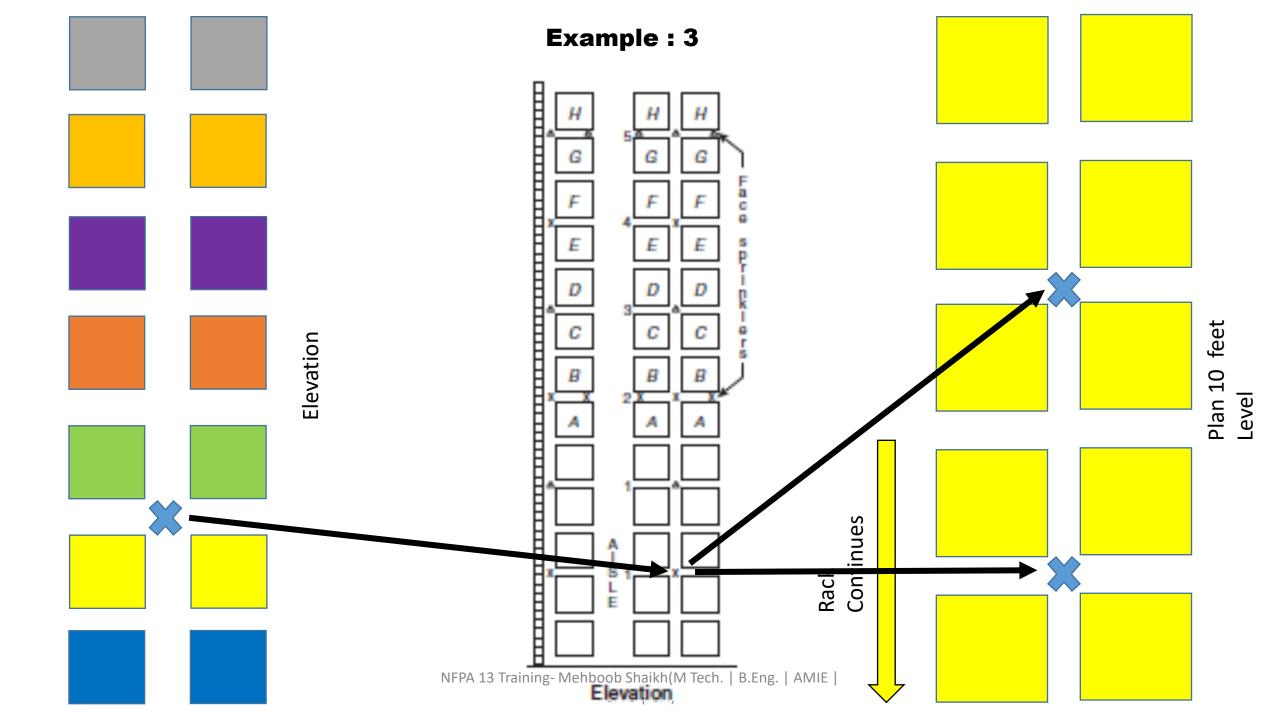
				Appropriate Figure and Curves					
Storage Height	Commodity Class	Encapsulated	No. of In-Rack Sprinkler Levels	Figure	Apply Figure 25.2.3.2.4.1	Density Multiplier			
Over 12 ft (3.7 m) and	I	No	1 Level	25.2.3.2.3.1(a)	Yes	1.0			
up to and including 15 ft (4.6 m)		Yes				1.25			
	II	No		25.2.3.2.3.1(b)		1.0			
		Yes				1.25			
	III	No		25.2.3.2.3.1(c)		1.0			
		Yes				1.25			
	IV	No		25.2.3.2.3.1(d)		1.0			
		Yes				1.5			
Over 15 ft (4.6 m) and	I	No	1 Level	25.2.3.2.3.1(a)	Yes	1.0			
up to and including 20 ft (6.1 m)		Yes				1.25			
	II	No		25.2.3.2.3.1(b)		1.0			
		Yes				1.25			
	III	No		25.2.3.2.3.1(c)		1.0			
		Yes				1.25			
<u> </u>	IV	No		25.2.3.2.3.1(d)		1.0			
		Yes				1.5			
Over 20 ft (6.1 m) and	I	No	1 Level	25.2.3.2.3.1(a)	No	1.0			
up to and including 25 ft (7.6 m)		Yes				1.25			
2-1-(-1-1-)	II	No		25.2.3.2.3.1(b)		1.0			
		Yes				1.25			
	III	No		25.2.3.2.3.1(c)		1.0			
		Yes				1.25			
	IV	No	2 Levels	25.2.3.2.3.1(d)		1.0			
		Yes	2 Levels			1.5			

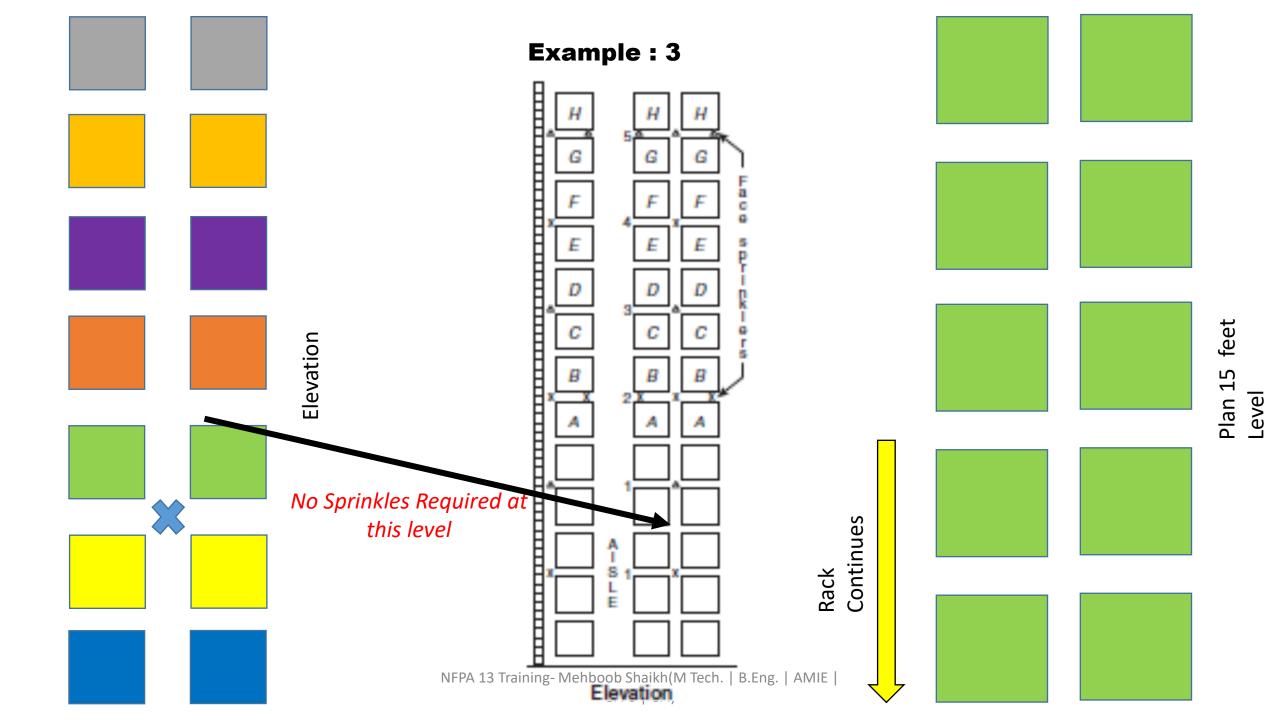
Spacing in Rack Sprinklers

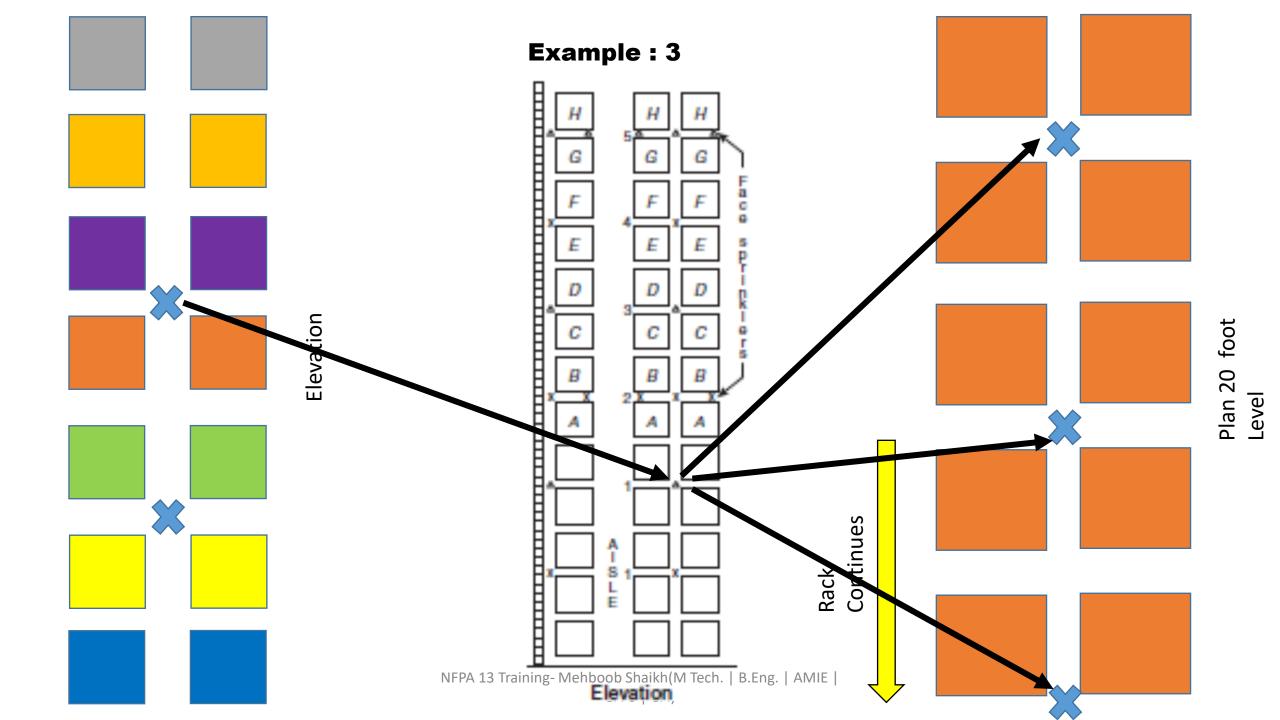

TABLE 25.5.2.2.2 In-Rack Sprinkler Horizontal Spacing for Class I, II, III, and IV Commodities Stored in Multiple-Row Racks Up to 25 ft (7.6 m) in Height Protected by Control Mode Density/Area Sprinklers at Ceiling Level

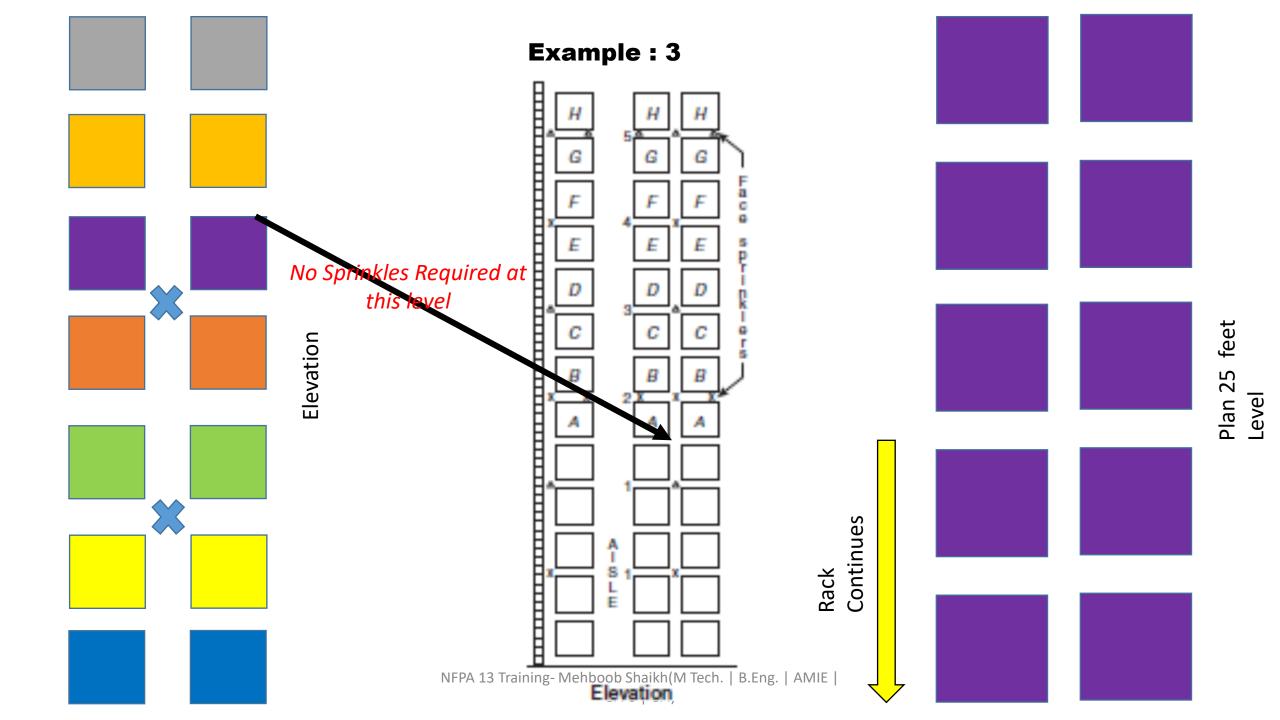

	Linear	Spacing	Area Spacing		
Commodity Class	ft	m	ft²	m^2	
I, II, III	12	3.7	100	9.3	
IV	8	2.4	80	9	

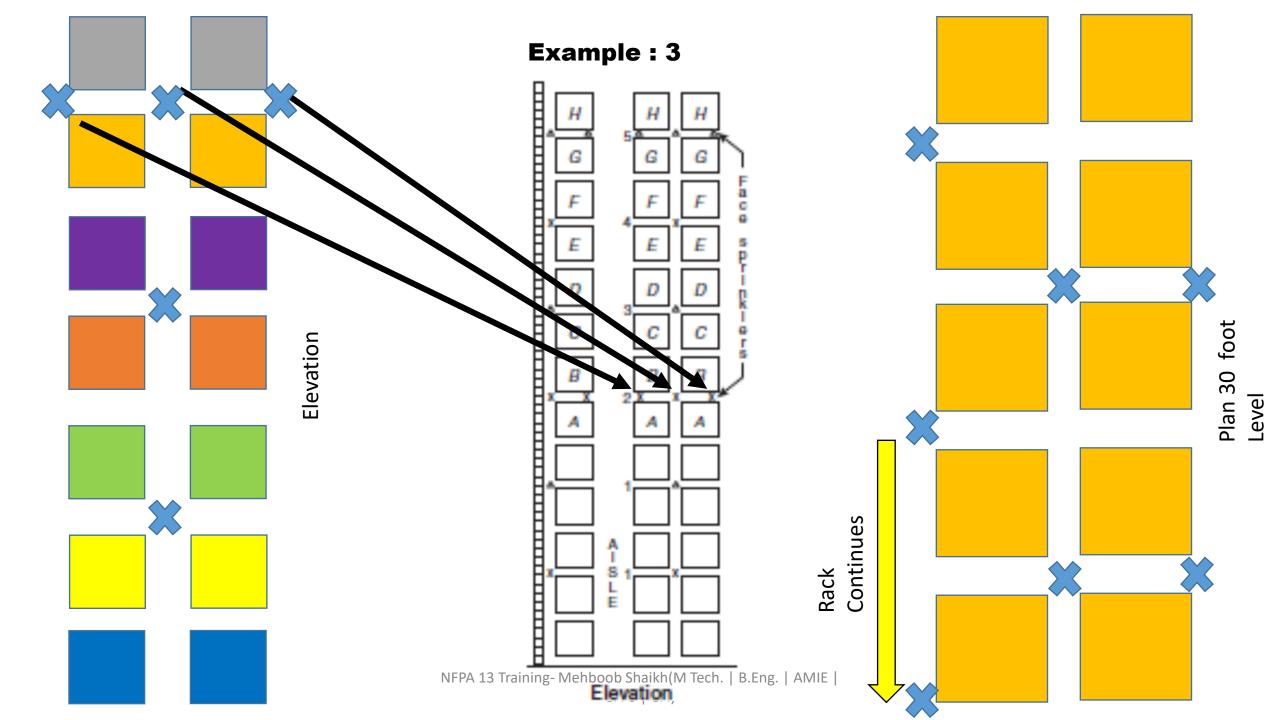

- Type of Commodity: Class 3, Encapsulated
- Storage Height: 35 feet
- Building Height: 40 feet
- Type of Rack Arrangement : Double row Rack
- Aisle Width: 4 feet
- Type of Sprinkler System : Wet Type

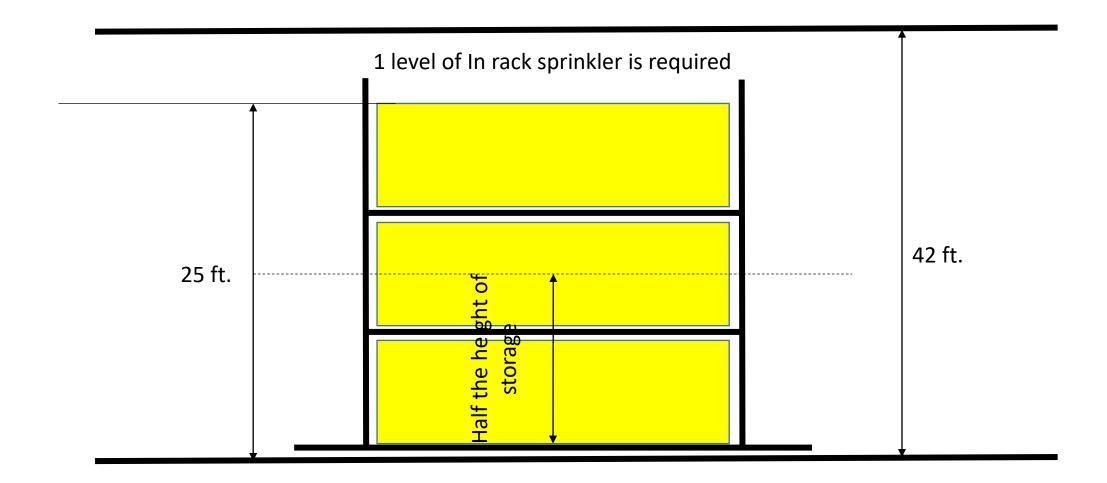

Table 25.9.2.2.1 Double-Row Racks of Class I Through Class IV Commodities Stored Over 25 ft (7.6 m) in Height with Aisles 4 ft (1.2 m) or More in Width Protected by CMDA Sprinklers at Ceiling Level

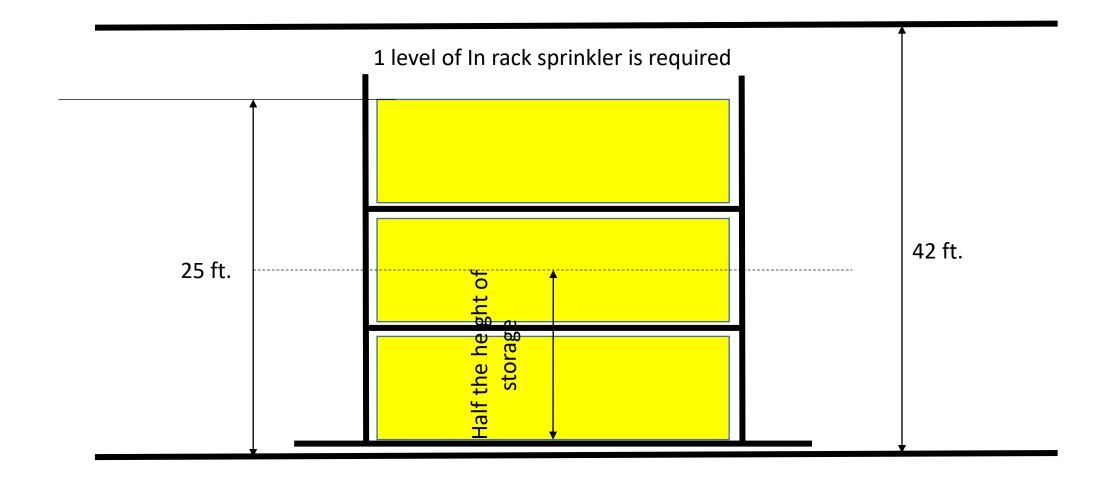

Commodity	In-Rack Sprinklers Approximate Nearest the Vertical Distance as Spacing	nd Maximum Horizontal		Maximum Storage		
Class	Longitudinal Flue ^c	Face ^{d,e}	Figure	Height	Stagger	
I	Vertical 20 ft (6.1 m), Horizontal 10 ft (3.0 m) under horizontal barriers	None	25.9.2.2.1(a)	30 ft (9.1 m)	No	
	Vertical 20 ft (6.1 m), Horizontal 10 ft (3.0 m)	Vertical 20 ft (6.1 m), Horizontal 10 ft (3.0 m)	25.9.2.2.1(b)	Higher than 25 ft (7.6 m)	Yes	
I, II, III	Vertical at 10 ft (3.0 m) or at 15 ft (4.6 m) and at 25 ft (7.6 m)	None	25.9.2.2.1(c)	30 ft (9.1 m)	Yes	
	Vertical 10 ft (3.0 m), Horizontal 10 ft (3.0 m)	Vertical 30 ft (9.1 m), Horizontal 10 ft (3.0 m)	25.9.2.2.1(d)	Higher than 25 ft (7.6 m)	Yes	
	Vertical 20 ft (6.1 m), Horizontal 10 ft (3.0 m)	Vertical 20 ft (6.1 m), Horizontal 5 ft (1.5 m)	25.9.2.2.1(e)		Yes	
	Vertical 25 ft (7.6 m), Horizontal 5 ft (1.5 m)	Vertical 25 ft (7.6 m), Horizontal 5 ft (1.5 m)	25.9.2.2.1(f)		No	
	Vertical 20 ft (6.1 m), Horizontal 10 ft (3.0 m) under horizontal barriers with two lines of staggered in-rack sprinklers		25.9.2.2.1(g)		Yes	










- Type of Commodity: Class 4, Encapsulated
- Storage Height: 25 feet
- Building Height: 42 feet
- Type of Rack Arrangement : Double row Rack
- ESFR K = 16.8 pendant sprinkler at the ceiling.

- Type of Commodity: Class 4, Encapsulated
- Storage Height: 25 feet
- Building Height: 42 feet
- Type of Rack Arrangement : Double row Rack
- ESFR K = 16.8 pendant sprinkler at the ceiling.

Table 25.2.5.1.1 ESFR Ceiling-Level Sprinkler Design Criteria for Rack Storage of Class I Through Class IV and Group A Plastic Commodities (Encapsulated and Nonencapsulated) Supplemented with In-Rack Sprinklers

		Sto	imum rage ight	Ceil	imum ing/ Height		Si	No. of Ceiling Sprinklers	No. of Required Levels of	Minimum Ceiling Sprinkler Operating Pressure	
Storage Arrangement	Commodity Class	ft	m	ft	m	K-Factor	Orientation	in the Design	In-Rack Sprinklers	psi	bar
Single-, double-, and multiple-row racks (no open-top containers)	Class I, II, III or IV, encapsulated or nonencapsulated, cartoned nonexpanded and exposed	25	7.6	45	14	14.0 (200)	Pendent	12	One level	90	6.2
	nonexpanded plastics					16.8 (240)	Pendent	12	One level	63	4.3

Thank You