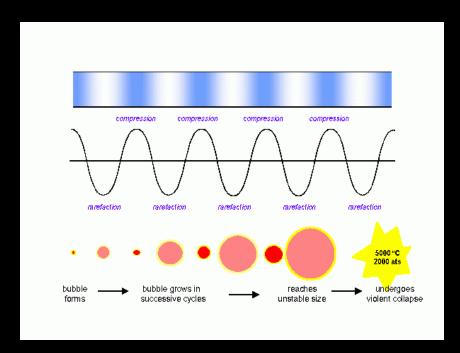

Ultrasound as an Advanced Oxidation Tool

Environmental Applications

Principles of Sonochemistry


- Effects of US in water treatment are the result of ultrasonically induced acustic cavitation.
- Sound ranges applied must be those that generate cavitation.

- Large scale applications are in the low range.
- Extensive reserach on higher frequencies, but not the MHz range, where cavitation is difficult to achieve without very high powers.

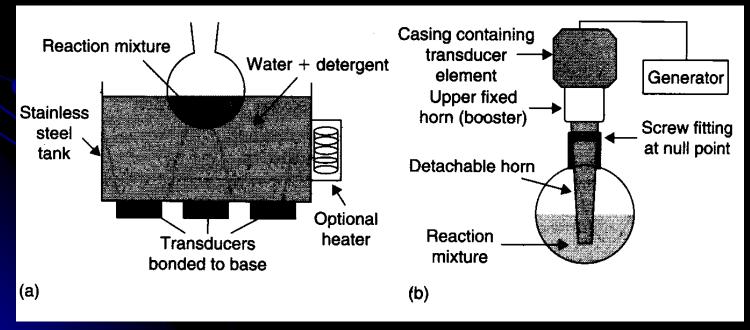
Origin of Ultrasonic Effects

- Like all other sound waves, US is propogated via a series of compression and rarefaction waves induced in the molecules of the medium
- Cavitation bubbles form when the rarefaction cycle exceeds the attractive forces between molecules of the liquid (at sufficiently high power).
- Bubbles grow by "rectified diffusion" (entering of vapor during expansion phase, not fully expelled during compression)

The "Hot Spot" Theory

- Each cavitation bubble acts as a localized microreactor, which, in aqueous systems generates instanteneous temperatures of several thosand degrees and pressures in excess of 1000 atmospheres.
- Transient cavitations:exist for no more than a few acoustic cycles, during which they expand to at least double their initial radius before collapsing violently within a few microseconds. (F \cong 300-1000 kHz; R \cong 4-5 µm; bubble life \cong 0.4 µs)
- Stable (inertial and non-inertial) cavitations:Collapse stage is delayed till after the elapse of a number of compression and rarefaction cycles, during which a large volume of dissolved gases flow into the gas phase.Occur at low frquency cavitation. Bubble life≅10 μs, R≅170 μm.

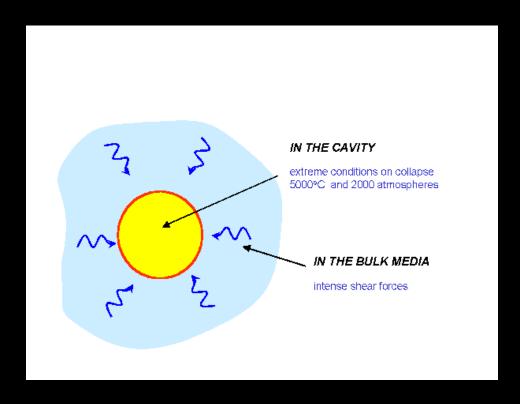
- Bubbles grow over a period of a few cycles to an equilibrium size related to the applied frequency.
- Bubbles collapase in succeeding compression cycles.
- Cavitation bubble collapse generates the energy for chemical and mechanical effects.


Uses of US in Environmental Protection

- Water decontamination
 - Biological: Direct mechanical action (cell rupture, break-up of bacterial clumps)
 - Chemical (direct oxidation)
- Efficient surface cleaning (decontamination of surfaces and biofilms)
- Control of air-borne contamination (agglomeration of smokes and aeresols)
- Sewage treatment (defoaming of liquids, stabilization and dewatering of sludge)

Lab-Scale Reactors

Two essential components

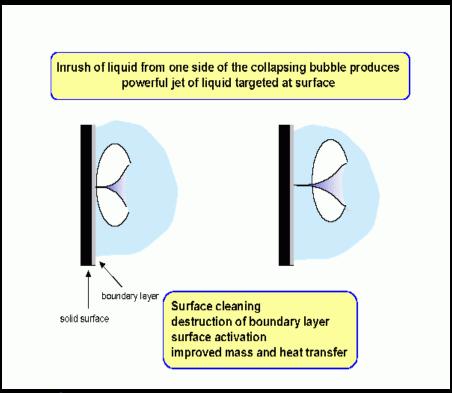

- 1. A liquid medium
- 2. A source of high energy vibration: transducer
 - probe

Homogeneous liquid-phase reactions

Zones of Reaction

- 1. The bulk liquid, where bubble collapse generates shear forces that produce mechanical effects
- 2. Bubble itself, where species entrapped inside will be exposed to extreme conditions of T and P
- 3. The bubble-liquid interface, where semihydrophobic species accumulate and where radicals begin to react

Homogeneous reactions (cont'd)


- Shear forces in the surrounding liquid are powerful enough to cause breaking of chemical bonds in compounds dissolved in the liquid.
- Disturbance by cavitation bubble oscilation and collapse also provides excellent mixing that results in rapid dissociation of chemicals and mixing of gases.
- If the liquid contains a dissolved gas, ultrasonic degasing occurs, because during rarefaction phase gases in the medium enter newly forming bubbles.

Degasing in homogeneous medium

- Such bubbles do not easily collapse in the comression cycle of the wave, because of their gas content and their contiual growth during rarefaction cycles (20,000-40,000 times per second by power US). As they fill with more gases they eventually float to the surface and degasing occurs instantaneously.
- Ultrasonic degasing is frequently used
 - to degas solvents for use in high performance liquid chromatography (HPLC)
 - to remove air from molten glass
 - to defob beer
 - to remove excess chlorine in disinfected water

Heterogeneous solid phase reactions

- Unlike cavitation bubble collapse in the bulk liquid, collapse on or near a surface is assymmetrical surface resistance to liquid flow from that side.
- Result is inrush of the liquid from the side of the bubble away from the surface, as a powerful liquid jet.
- The effect is equivalent to high pressure jetting

- Cleaning
- Removal of biofilms
- Increase of mass and heat transfer to the surface by disruption of interfacial boundary layers

Radical Reactions in Homogeneous medium

$$H_2O+)))\rightarrow OH+OH$$

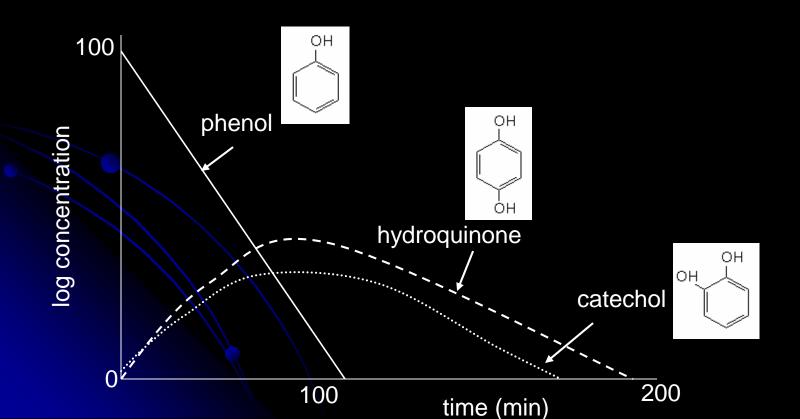
$$\bullet OH + \bullet OH \rightarrow H_2O_2$$

$$\bullet OH + \bullet OH \rightarrow H_2O + O$$

$$\bullet OH + \bullet OH \rightarrow H_2 + O_2$$

$$\bullet H + O_2 \rightarrow \bullet HO_2$$

$$\bullet HO_2 + \bullet H \rightarrow \bullet H_2O_2$$


$$\bullet HO_2 + \bullet HO_2 \rightarrow H_2O_2 + O_2$$

$$\bullet$$
OH+H₂O \rightarrow H₂O₂+O

•H+ •OH
$$\rightarrow$$
H₂O

Applications in Decontamination of polluted waters by ultrasound alone

Phenols

Halogenated hydrocarbons Initial concentration and chloride yield after min sonication of chlorinated aromatics at 500 kHz

Chloroaromatic	Conc(mM)	Cl ⁻ yield (%)
1,2-dichlorobenzene	0.4	90
1,3-dichlorobenzene	0.05	89
1,4-dichlorobenzene	0.2	95
1,3,5-trichlorobenzene	0.02	95
1-chloronaphthalene	0.04	98

 Destruction of chlorinated compounds and phenol take place at different sites and follows different pathways

H₂O₂ yields and rates of decomposition (μMmin⁻¹) of chlorinated compounds and phenol

Frequency	20 kHz	200 kHz	500 kHz	800 kHz
H ₂ O ₂ formation	0.7	5.0	2.1	1.4
Phenol degradation	0.5	4.0	1.9	1.0
CCI ₄ degradation	19	33	37	50

- Chemical contaminants behave differently under ultrasonic irradiation
 - Phenol decomposes at the interface or the bulk liquid at an optimal frequency of 200 kHz
 - two-step reaction pathway: i)radical production within the bubble; ii)migration of radicals to the interface or the bulk liquid to form peroxide or react with the target. As f increases, collapse occurs more rapidly and more radicals can escape from the bubble. But icreased f results in reduced cavitation intensity (violence) and reduced radical yields.
 - CCl₄ decomposes within the bubble and the rate increases with increasing frequency

Application of US with ozone

Provides 3 sources of •OH

- 1. From sonochemical decomposition of water
- From chemical decomposition of ozone
- From thermolytic decomposition of ozone inside the bubble as it collapses

Result is enhanced degradation of contaminants via:

- Enhanced OH formation
- 2. Enhanced mass transfer of O₃ in solution

Assignment

- Combined Applications of US (e.g. with UV light, metal electrodes, O₃) for environmental remediation
- Applications of US for biological decontamination and sewage sludge treatment