


#### **PUMPING**

- The operation of lifting water or any fluid is called pumping
- Pump, a mechanical machine, is used for lifting water or any fluid to a higher elevations or at higher pressures.



#### PURPOSES OF PUMPING

- To increase the water pressure at certain points in the distribution system.
- To lift treated water to elevated storage tanks→ flow automatically under gravity into distribution system.
- To lift raw river water to carry it to treatment plant.
- To lift water available from wells to an elevated storage tank in stages.
- To pump water directly into the distribution system.
- To take out water from basins, sumps, tanks etc.



#### Types of pumps

- Classification based on mechanical principle of operation
  - (i) Displacement pumps
  - (ii) Centrifugal pumps
  - (iii) Air lift pumps
  - (iv) Miscellaneous pumps
- Classification based on type of power required
  - (i) Steam engine pumps
  - (ii) Diesel engine pumps
  - (iii) Electrically driven pumps
- Classification based on the type of service called for
  - (i) Low lift pumps
  - (ii) High lift pumps
  - (iii) Deep well pumps
  - (iv) Booster pumps

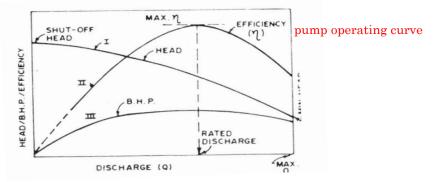


### SELECTION OF PUMP

- Capacity of pump
- Number of pump units required
- Suction conditions
- Lift (total head)
- Discharge conditions and variations in load
- Floor space requirement
- Flexibility of operation
- Starting and priming characteristics
- Type of drive required
- Initial costs and running costs.



### **CENTRIFUGAL PUMPS**


 Rotodynamic pumps which convert Mechanical energy into Hydraulic energy by centripetal force on the liquid.





## CENTRIFUGAL PUMPS...

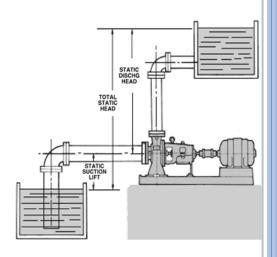
 key performance parameters of centrifugal pumps are capacity, head, BHP (Brake horse power), BEP (Best efficiency point) and specific speed.





# **PUMPING TERMS**

 Head: A Centrifugal pump → velocity energy to a liquid → pressure energy.

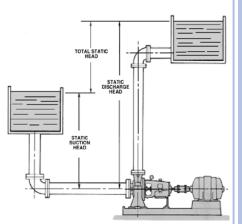

O Head = 
$$H = \frac{v^2}{2g}$$

peripheral impeller velocity = 
$$v = \frac{RPM \times D}{60}$$



# PUMPING TERMS...

- SUCTION LIFT exists
   when the source of supply
   is below the center line of
   the pump.
- STATIC SUCTION LIFT is the vertical distance in meter from the centerline of the pump to the free level of the liquid to be pumped.






Water Supply & Urban Drainage By Zerihun Alemayehu

### PUMPING TERMS...

- STATIC DISCHARGE HEAD is the vertical distance between the pump centerline and the point of free discharge
- TOTAL STATIC HEAD is the vertical distance between the free level of the source of supply and the point of free discharge or the free surface of the discharge liquid.





## PUMPING TERMS...

- FRICTION HEAD (h<sub>f</sub>) is the head required to overcome the resistance to flow in the pipe and fittings.
- TOTAL DYNAMIC SUCTION <u>LIFT</u> (hs) is the static suction lift minus the velocity head at the pump suction flange plus the total friction head in the suction line.
- TOTAL DYNAMIC SUCTION <u>HEAD</u> (hs) is the static suction head plus the velocity head at the pump suction flange minus the total friction head in the suction line.



#### PUMPING TERMS...

- TOTAL DYNAMIC DISCHARGE <u>HEAD</u> (hd) is the static discharge head plus the velocity head at the pump discharge flange plus the total friction head in the discharge line.
- o HEAD (H) or TOTAL Dynamic HEAD (TDH)
  - TDH = h<sub>d</sub> + h<sub>s</sub> (with a suction lift)
     TDH = h<sub>d</sub> h<sub>s</sub> (with a suction head)



#### POWER AND EFFICIENCY

- The work performed by a pump is a function of the total head and the weight of the liquid pumped in a given time period.
- Work done by the pump = W x H m-kg/sec = γ x Q x H m-kg/sec
- Pump input or brake horsepower (BHP) is the actual horsepower delivered to the pump shaft.
- Pump output or hydraulic horsepower (WHP) is the liquid horsepower delivered by the pump.

$$WHP = \frac{Q \times TDH \times Sp. \ Gr.}{75}$$

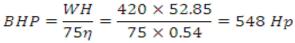
$$BHP = \frac{Q \times TDH \times Sp. \ Gr.}{75 \times Pump \ Efficiency}$$

$$Pump \ Efficiency = \frac{WHP}{BHP} = \frac{Q \times TDH \times Sp. \ Gr.}{75 \times BHP}$$



#### EXAMPLE 1

Population of a city is 120,000 and rate of water supply per head per day is 200 liters. Calculate the BHP of motor to raise the water to an overhead tank 50 m high. Length and diameter of the rising main is 200 m and 40 cm, respectively. Assume motor efficiency 90 % and the of the pump 60 %. Take f = 0.01 and peak hourly demand as 1.5 times the average demand.

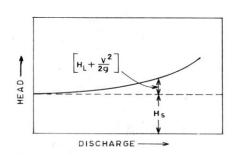


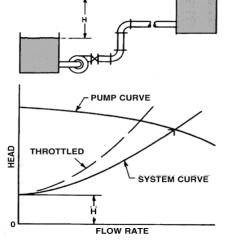

## SOLUTION OF EXAMPLE 1

- Average demand = 120,000 x 200  $= 24 \times 10^6 \text{ L/day}$ = 24000 m<sup>3</sup>/day (0.28 m<sup>3</sup>/sec)
- Peak hr demand = 1.5 x 0.28 m<sup>3</sup>/sec = <u>0.42 m<sup>3</sup>/sec</u>
- Weight of liquid delivered by the pump  $=1000 \text{ kg/m}^3 \times 0.42 \text{ m}^3/\text{sec} = 420 \text{ kg/sec}$
- Total static head = 50 m

$$h_f = \frac{flQ^2}{12.1D^5} = \frac{0.01 \times 200 \times 0.42^2}{12.1 \times 0.2^5} = 2.85 \ m$$

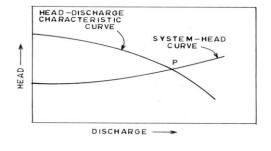
 $H = h_s + h_f = 50 + 2.85 = 52.85 \text{ m}$  $\eta = 0.9 \times 0.6 = 0.54$ 

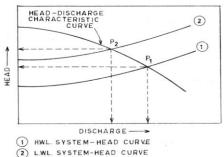



Water Supply & Urban Drainage By Zerihun Alemayehu

### System-head curve

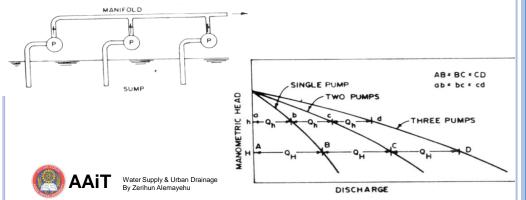

System Head Curve: the relationship between flow and hydraulic losses in a system





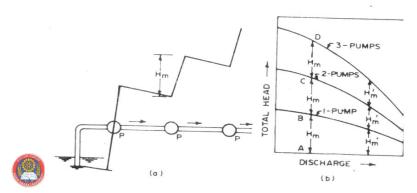



### SYSTEM-HEAD CURVE









## PUMPS OPERATING IN PARALLEL

- o for a purpose of increasing the total discharge.
- o Pumps should deliver the same head.
- The total system flow rate is equal to the sum of the flow rates of contributions from each pump.



#### PUMPS OPERATING IN SERIES

- o for a purpose of increasing the total head.
- o the pumps connected should deliver the same discharge.
- The total system head is equal to the sum of the contributions from each pump.



### **CAVITATION**

- Cavitation is a phenomenon of cavity formation or the formation and collapse of cavities.
- Cavities develop when the absolute pressure in a liquid reaches the vapor pressure related to the liquid temperature.
- When the net positive suction head (NPSH) is reduced → NPSHmin → detrimental cavitation
- The minimum static lift is given as

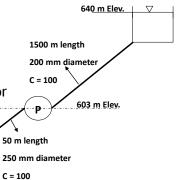
$$Z_{min} = \frac{p_a - p_v}{\gamma} - NPSH_{min} - h_{ls}$$

Where  $\boldsymbol{p}_a$  is atmospheric pressure,  $\boldsymbol{p}_v$  is vapor pressure of fluid and  $\boldsymbol{h}_{ls}$  head loss in the suction pipe

NPSH is obtained from manufuctures

AAiT

Water Supply & Urban Drainage
By Zerihun Alemayehu


#### EXAMPLES 2

The pump shown in the figure below has a head characteristics that can be expressed by

$$H = 100 - 6000Q^{1.85}$$

Where H = pump head in meters and Q = discharge in  $m^3/s$ .

- Calculate the head and discharge of the pump.
- b. Check the potential for cavitation if the anticipated maximum vapor pressure and minimum absolute barometric pressure are 0.40 m and 9.70 m, respectively. NPSH required for the pump is 3.0 m. Neglect minor head losses.





Water Supply & Urban Drainage By Zerihun Alemayehu

## SOLUTION OF EXAMPLE 2

- First calculate the TDH
- $o TDH = Hs + h_{ld} + h_{ls}$
- o Hs = 640 600 = 40 m

$$h_l = \frac{6.78L}{D^{1.165}} \left(\frac{V}{C}\right)^{1.85} = \frac{10.6L}{D^{4.865}} \left(\frac{Q}{C}\right)^{1.85}$$

- $\square$  After inserting D and L we get TDH = 40 +8067.66 Q<sup>1.85</sup>
- ☐ Since the TDH and the head delivered by the pump has to be the same we have:

 $100-6000 \ \mathrm{Q}^{1.85} = 40 + 8067.66 \ \mathrm{Q}^{1.85}$ 

 $\rightarrow$  Q = 0.0523 m3/sec and H = 74.45 m



# SOLUTION OF EXAMPLE 2

- $\circ$  H<sub>abs</sub> = 9.70 m, H<sub>vap</sub> = 0.40 m and NSPH = 3.0 m
- $\circ$  NPSH = H<sub>abs</sub> (H<sub>vap</sub> + h<sub>ls</sub> + suction lift)
  - Suction lift = 603-600 = 3 m

$$h_{ls} = \frac{10.6 \times 50}{0.25^{4.865}} \left(\frac{0.0523}{100}\right)^{1.85} = 0.3824 \ m$$

o NSPH = 9.7 - (0.4 + 0.3824 + 3)= 5.92 > 3 → no cavitation



