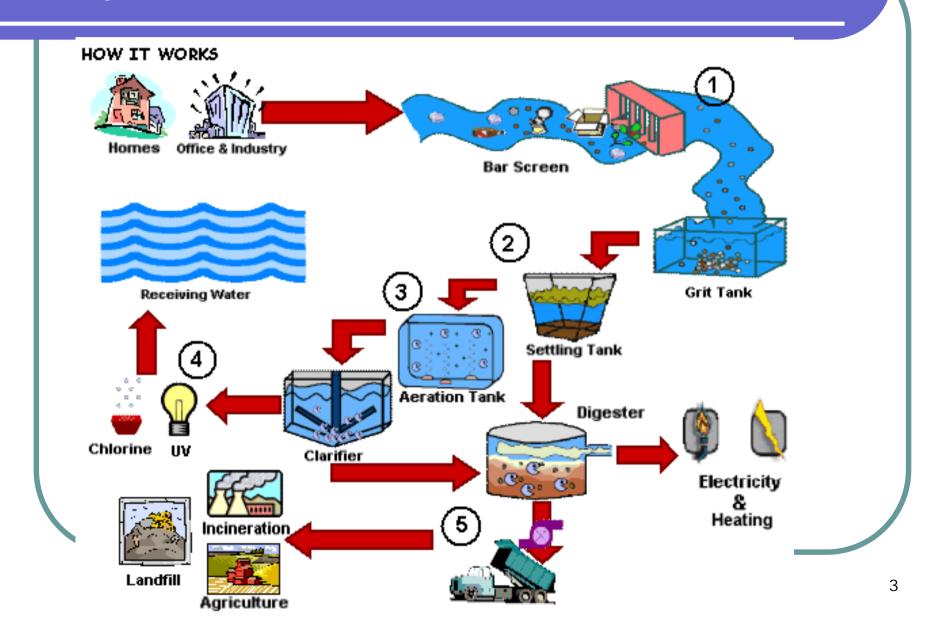

Chapter 8-Sludge stabilization

Raúl Muñoz Torre
Pedro García Encina


Purpose

Sludge is composed of the pollutants that have been removed by sedimentation and potential pollutants produced when organic matter degrades.

Sludge treatment is needed to reduce the water and organic content of the sludge and render the solids suitable for reuse or final disposal

More specifically, the purpose of sludge stabilization is to 1) <u>reduce</u> <u>pathogens</u>, 2) <u>eliminate offensive odors</u>; and 3) <u>inhibit</u>, <u>reduce or eliminate the potential for putrefaction</u> (which is done by biological reduction of the volatile organic fraction or addition of chemicals).

City of Toronto

Sources of Sludge

Screenings Coarse/large organic and inorganic materials

Grit removal Grit (heavy inorganic solids) and scum

(Floatable material containing grease,

oils, fats, waxes... of specific gravity lower

than 1)

Primary sedimentation Primary solids and scum, "smelly gray and

slimy" sludge from primary tanks

Biological treatment Suspended solids

Secondary sedimentation Biosolids and scum

Solids processing Solids, compost, ashes...

facilities

Composition

Untreated primary sludge:

Total solids (% of TS) 5-6 % (6 % typical)

VS (% of TS) 60 - 80 (65)

Grease and fats (% of TS) 13 – 65

Protein (% of TS) 20 - 30 (25)

Nitrogen (% of TS) 1.5 - 4 (2.5)

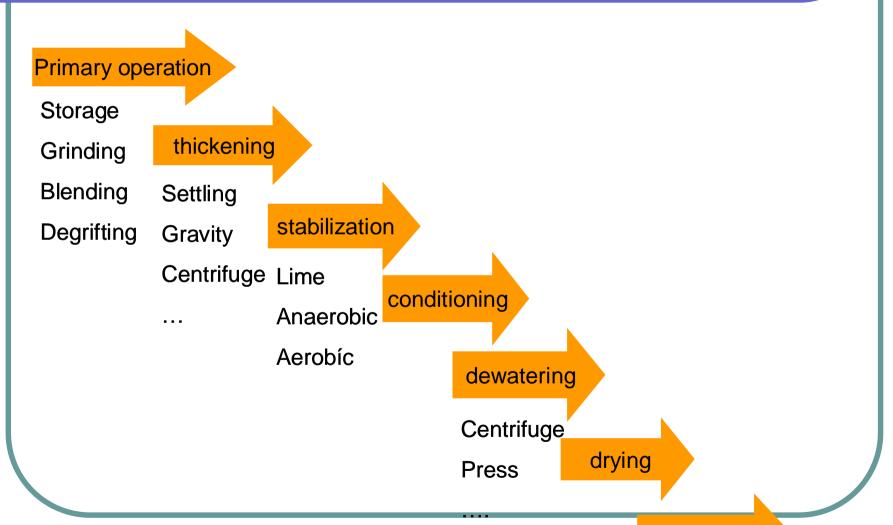
Energy (kJ TS/kg) 23 000 - 29 000 (25 000)

Untreated activated sludge:

Total solids (TS) 0.8 - 1.2 %

VS (% of TS) 59 - 88

Grease and fats (% of TS) 5 - 12


Protein (% of TS) 39 - 41

Nitrogen (% of TS) 2.4 - 5.0

Energy (kJ TS/kg) 19 000 – 23 000

Other contaminants include SiO₂, pathogens, P, heavy metals

Sludge Treatment

Main methods for sludge reduction

Alkaline stabilization Addition of lime Ca(OH)₂ to maintain high

pH: this actually increases the amount of

sludge.

Anaerobic digestion VS are converted into CH₄ and CO₂: energy

production

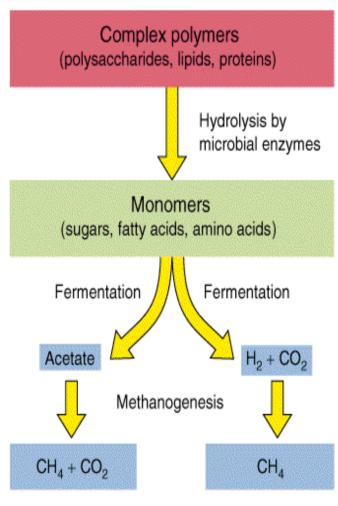
Aerobic digestion VS are converted to CO₂: simple but energy

intensive

Autothermal Similar to aerobic digestion, large amount of

thermophilic O_2 + insulated covered reactor \Rightarrow heat

digestion


Composting VS is biodegraded, requires bulking agent,

net solid production, odor formation

Comparison

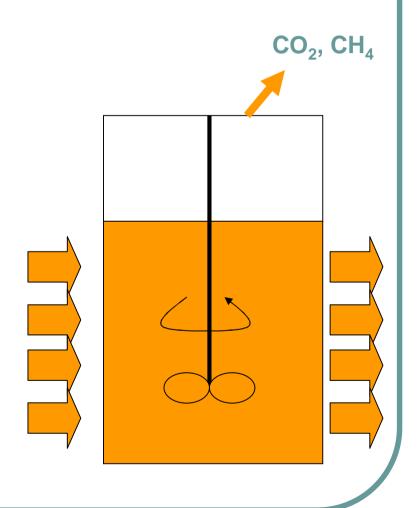
Process	Pathogen removal	Putrefaction attenuation	Odor control
Alkaline stabilization	Good	Fair	Fair
Anaerobic stabilization	Fair	Good	Good
Aerobic stabilization	Fair	Good	Good
Autothermal termophilic	Excellent	Good	Good
Composting	Fair	Good	Poor to Fair
Thermophilic composting	Excellent	Good	Poor to Fair

Anaerobic stabilization

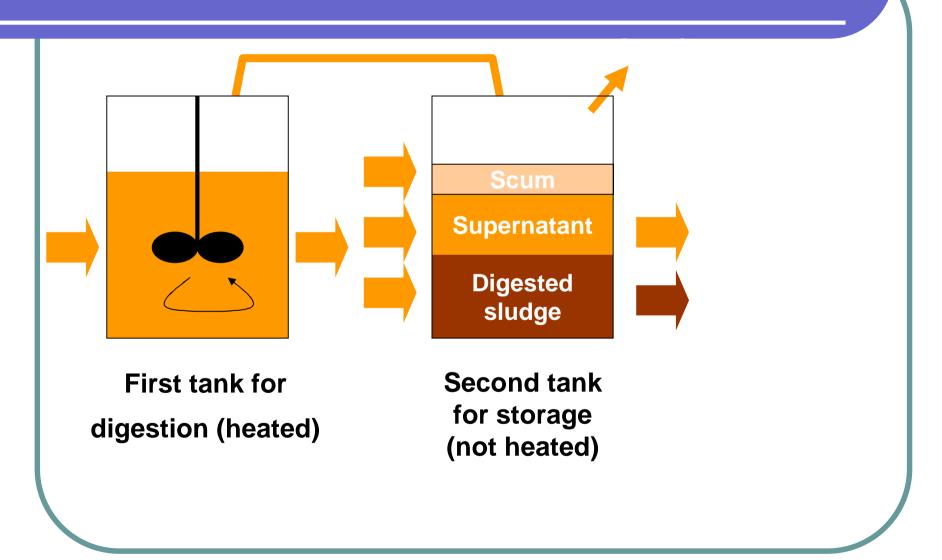
Important parameters:

- pH
- Temperature
- Inhibitory substances

Single stage


Heating is often necessary

Mechanical mixing

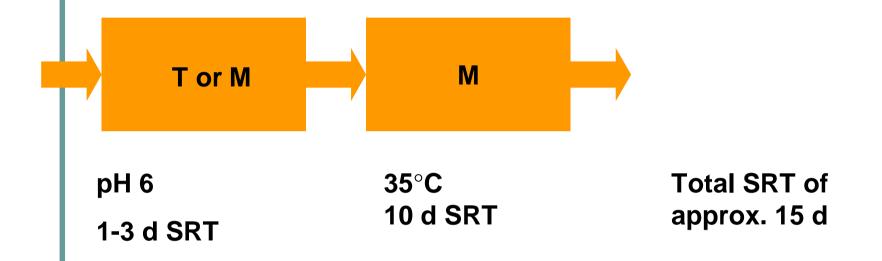

Multiple point feed

Required thickened sludge

Continuous or fed-batch operation

Classical two-stage digestion

Temperature-staged anaerobic digestion


Thermophilic Mesophilic

55°C
35°C
Total SRT of approx. 15 d

The process can also be operated as Mesophilic/Thermophilic configuration. It offers a better overall cost-efficiency

Thermophilic conditions enhance microbial activity and favor solid and pathogen removal. However, heating is costly.

Metabolically-staged anaerobic digestion

The first stage is used for hydrolysis and acidification (production of VFAs).

The second stage is used for methanogenesis.

Basic design parameters classical anaerobic digestors

Parameter	Unit	Value
Primary sludge volume	m³/capita	0.03 - 0.06
Primary sludge + activate sludge	m³/capita	0.07 - 0.11
Sludge loading rate	kg VSS /(m³-d)	1.6 – 4.8
VSS removal	%	56-65
SRT	d	15 - 30

Metcalf and Eddy (2003)

The sludge loading should be optimized: the highest possible to minimize reactor size and heating without having NH₃ inhibition problems.

Aerobic digestion

The NH₃ formed during biomass (C₅H₇NO₂) digestion is further oxidized to nitrate, and this nitrate is used for biomass digestion!

1:
$$C_5H_7NO_2 + 5O_2 \rightarrow 5CO_2 + 2H_2O + NH_3$$

2:
$$NH_3 + 2O_2 \rightarrow NO_3^- + H_2O + H^+$$

1 + 2 (3):
$$C_5H_7NO_2 + 7O_2 \rightarrow 5CO_2 + 3H_2O + NO_3^- + H^+$$

4:
$$C_5H_7NO_2 + 4NO_3^- + 4H^+ \rightarrow 5CO_2 + 2N_2 + NH_3 + 4H_2O_3^-$$

$$4 + 2 (5)$$
: $C_5H_7NO_2 + 3NO_3^- + 2O_2 + 3H^+ \rightarrow 5CO_2 + 2N_2 + 5H_2O_3^-$

$$3(3) + 5$$
: $4C_5H_7NO_2 + 23O_2 \rightarrow 20CO_2 + 2N_2 + 14H_2O_3$

About 75-80% of the cell tissue can be oxidized aerobically, the remaining fraction is made of inert compounds and non-biodegradable organic compounds.

Aerobic digesters

Traditionally limited to small WWTPs

Operated as batch or continuous

Alternating mixing and aeration can improve denitrification

Classified between "classical", "high purity oxygen" and "autothermal"

Addition of alkalinity (CaCO₃) is sometimes needed to avoid drops in pH.

Autothermal digester

Must be insulated and operated at high VSS load under intensive aeration (this often requires the use of pure O₂)

High temperature \Rightarrow nitrification is inhibited \Rightarrow NH₄⁺ formation \Rightarrow the pH can rise to 8 – 9, NH₃ is found in the reactor effluent and the off gas

High O_2 demand \Rightarrow microaerophilic (or even anaerobic) conditions might occur \Rightarrow production of fermentation and odorous products

Basic design parameters of classical aerobic digestors

Parameter	Unit	Value
SRT	d	40 (20°C) 60 (15°C)
Volatile solid loading	kg/(m³-d)	1.6 - 4.8
Reduction of VSS	%	38 - 50
Oxygen requirement	kg O ₂ /kg VSSremoved	1.6 – 2.3

Metcalf and Eddy

Basic design parameters of autothermal digestors

Parameter	Unit	Value
SRT	d	4-30
Volatile solid loading	kg/(m³-d)	3.2 - 4.2
Temperature	°C	35 - 70

Metcalf and Eddy (2003)

Normally, 2-3 reactors are used in sequence!!

Composting

Organic material undergoes biological degradation to a stable humus-like product that can be used as fertilizers

Efficient pathogen removal is achieved through temperature increase (50 – 70°C).

Can be operated anaerobically, but aerobic processes are more common (less risk for odors).

Often used as post-treatment after digestion

Principle

Due to the low water content, the design of the pile and the high C-and nutrient contents, rapid aerobic growth on easily biodegradable organic matter generates heat, resulting in an increase of Temperature.

This favors the growth of thermophilic fungi that degrade the less biodegradable organic matter: cell debris, cellulose and persistent hazardous pollutants.

Basic design

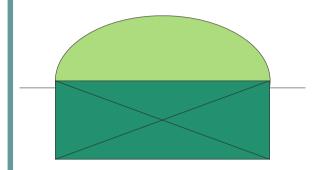
The sludge (often thickened) is mixed with a bulking agent whose purpose is to improve the porosity of the mixture, to avoid compaction (better O₂ transfer), to maintain moisture and to provide nutrients.

The mixture is then placed as piles which dimensions should be chosen to ensure microbial heat generation is greater than heat dissipated through the surface

The pile is aerated by mixing (windrow system), venting (piles) or both

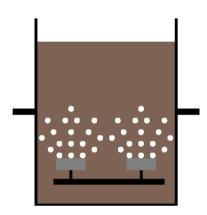
The material is composted for 21-28 days and left for maturation (curing phase) for 30 days.

Composting can also be done in special reactors (in-vessel composting)



Design considerations

Item	Comment	
Bulking agent	Should be inexpensive and readily available (wood chips)	
C/N ratio	20:1 – 35:1	
VS	VS should be at least 30% of TS	
Moisture	< 60% for static piles and windrows	
рН	6 - 9	
Temperature	50 – 60°C (70°C if pathogen removal is a priority)	
Mixing, turning	Needed to prevent drying, caking, air channeling	
Site constraints	Weather, area	


In BioWin3

Biowin 3 contains both Aerobic and anaerobic Digester

- Tank Dimensions
- T of operation
- Initial Values for simulation
- Outflow (overflow, cte outflow)

Aerobic Digester operates as CSRT and requires:

- Tank Dimensions
- Aeration Methods (DO or air supply set point)
- T of operation
- Kinetics and Aeration Parameters