OPERATOR MATH

Conversions & Formulas

References

- * Basic Math Concepts for Water and Wastewater Plant Operators, Joanne Kirkpatrick Price, Technomic Publishing Co., Inc., 1991.
- ❖ <u>Applied Math for Water/Wastewater Plant Operators & Workbook</u>, Texts and Workbooks, Joanne Kirkpatrick Price, Technomic Publishing Co., Inc., 1991.
- ❖ Wastewater Math The Basics, Skeet Arasmith, ACR Publications, Inc., 1995.
- ❖ The Math Text for Water and Wastewater Technology, 2nd ed., Grover Wright, Wright's Training, 1994.
- ❖ Simplified Math for Waterworks Operators, George Mason, ACR Publications, Inc., 1992.

Equivalents & Formulas

List of Symbols;

A = area

V = velocity

t = time

Vol = volume

= pounds

W = width

D = depth

L = length

Q = flow

r = radius

dia = diameter

cir = circumfence

 $\pi = 3.14$

Hp = horse power

psi = pounds per inch

ft = feet

sq = square

cu = cubic

yd = yard

DT = detention time

mg/L = milligrams per litre

ppm = parts per million

MGD = million gallons per day

gpm = gallons per minute

 Cl_2 = chlorine

Math equivalents

- 12 inches = 1 foot
- 36 inches = 3 feet or 1 yard
- 144 square inches = 1 sq. ft.
- 9 square feet = 1 sq. yd.
- 43,560 sq. ft. = 1 acre
- 325,828 gallons = 1 acre foot
- 1 cubic foot = 1,728 cu. in.
- 1cu.ft. of water contains 7.48 gals. & weighs 62.4 lbs.
- 1 gal. of water weighs 8.34 lbs.
- 1 liter = 1,000 milliliters
- 1 gram = 1,000 milligrams
- 1 mg/L = 1 ppm
- 1 kilogram = 1,000 grams
- 1 pound = 453.6 grams
- 1 gal. of water = 3.785 liter or 3,785 milliliters

- 1 grain per gal. = 17.1 ppm
- 1 cubic yard = 27 cubic feet
- 1% = 10,000 mg/L
- 1 psi = 2.31 feet of water
- 1 atmosphere = 14.7 psi
- 1day = 24 hours = 1,440 min. = 86,400 sec.
- $1 \text{ MGD} = 694 \text{ gals./min} = 1,545 \text{ ft}^3/\text{sec.}$
- 1 Hp = .746 kw = 550 ft. lbs/sec = 33,000 ft.lbs./min.

Words and Symbols

Hierarchy of Operations

MATHOPERATION	SYMBOL	EXAMPLE
Multiplication	X	$Q = V \times A$
Multiplication	•	$Q = V \cdot A$
Multiplication	No space	Q = VA
Multiplication	()()	Q = (V) (A)
Division		r = D 2
Division		$r = \frac{D}{2}$
Division	/	r = D/2

Word Problems

- Word problems are a series of expressions that fits into an equation. An equation is a combination of math expressions. Suggestions:
- Read the problem entirely
 Get a feel for the whole problem
- Draw a diagram to describe the problem statement
- List information and the variables you identify
 Attach units of measure to the variables (gallons, miles, inches, etc.)
- Define what answer you need, as well as its units of measure
- Set up equation(s), solve for variable, populate with data
- Work in an organized manner
 Working clearly will help you think clearly
 - Draw and label all graphs and pictures clearly
 - Note or explain each step of your process;
 this will help you track variables and remember their meanings
- Look for the "key" words (above)
 Certain words indicate certain mathematical operations.

Common Conversions

1. Linear Measurements

- \rightarrow 1 inch = 2.54 cm
- \rightarrow 1 foot = 30.5 cm
- 1 meter = 100 cm = 3.281 = 39.4 inches
- \rightarrow 1 acre = 43,560 sq. ft.
- \rightarrow 1 yard = 3 feet

2. Volume

- ➤ 1 gal. = 3.78 liters
- \rightarrow 1 cubic foot (ft³) = 7.48 gals.
- > 1 liter = 1000 mL
- ➤ 1 acre foot = 43,560 cubic feet
- \rightarrow 1 gal = 16 oz. dry wt.

3. Weight

- \rightarrow 1 ft³ of water = 62.4 lbs.
- \rightarrow 1 gal. = 8.34 lbs.
- \rightarrow 1 lb. = 453.6 grams
- \rightarrow 1 kg = 1000 g = 2,2 lbs.
- \rightarrow 1% = 10,000 mg/L

4. Pressure

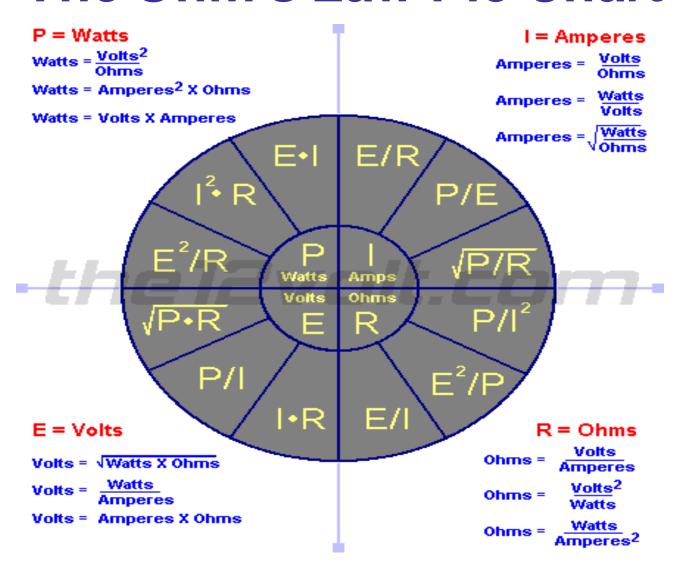
- > 1 ft. of head = 0.433 psi
- \rightarrow 1 psi = 2.31 ft. of head

5. Flow

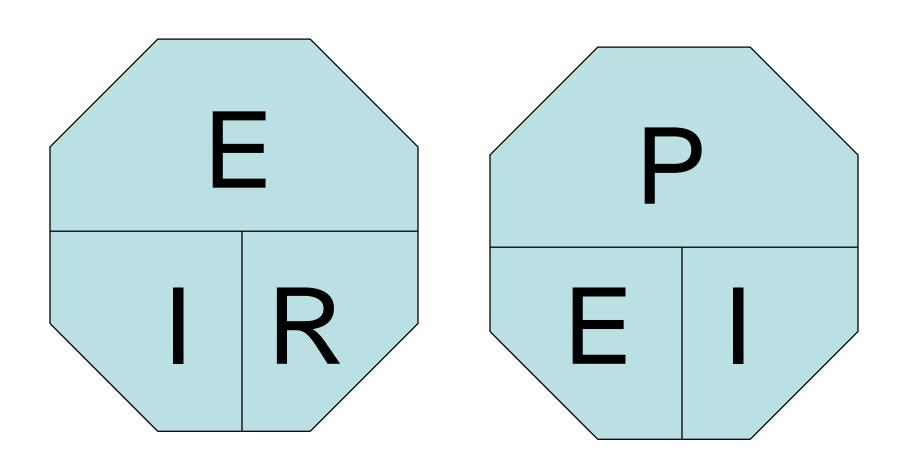
- \rightarrow 1 cfs = 448 gpm
- \rightarrow 1 gpm = 1440 gpd

Example # 1

- Question: How many <u>feet</u> are in 18 inches
- Known: <u>1 foot</u> = 12 inches
- Solution?

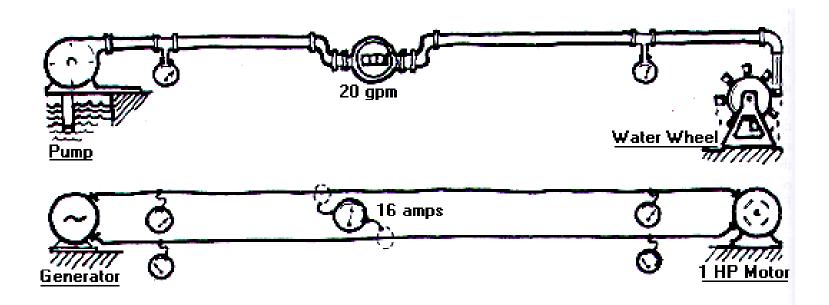

- Example # 2
- 1. Question: How many gallons are in 3291 cubic feet (cu.ft.)?
- 2. Known: 1 cubic feet = 7.48 gallons.
- 3. Solution: ?

- Example # 3
- 1. Question: how many feet are in ¼ mile?
- 2. Known: 1 mile = 5280 ft.
- 3. Solution: ?


- Example # 4
- Question: convert 3,920 cu.ft. to <u>cubic</u>
 <u>yards</u> (cu.yds.)
- Known: 1 cu.yds. = 27 cu.ft.
- Solution: ?

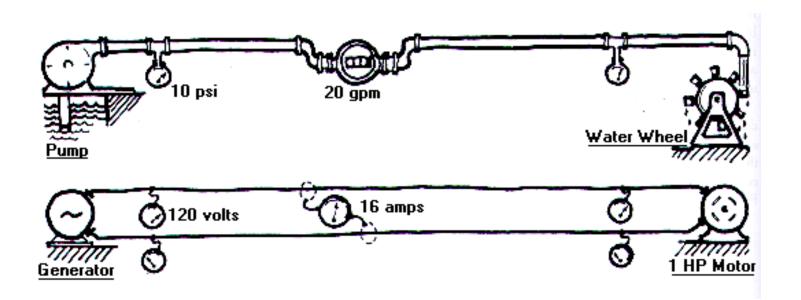
- Example # 5
- Gallons Per Day (GPD)
- Million Gallons Per Day (MGD)
- Question: convert 3,211,000 GPD to MGD
- Known: 1 MGD = 1,000,000 GPD
- Solution: ?

The Ohm's Law Pie Chart

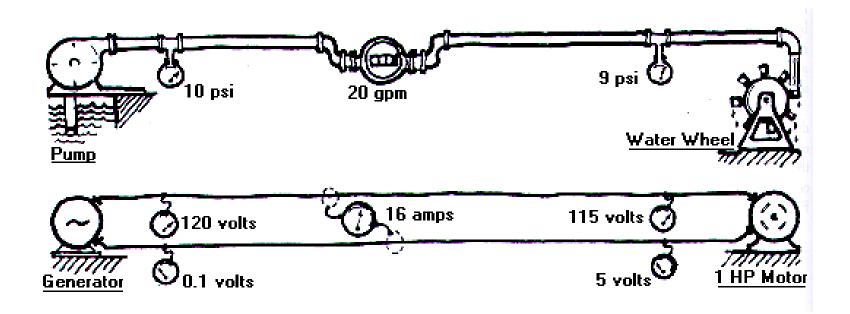


The Ohm's Law Pie Chart Shortcut Calculations

Current, I (Amps)


"Flow" of electricity defined as one Coulomb per second

Voltage, V (Volts)


❖ Defined as Electromotive Force, or EMF

Similar to pressure in a water system

Resistance, R (Ohms)

- ❖ The unit of resistance to current flow similar to headloss in a water system
- ❖ An ohm is the amount of resistance that allows 1 amp of current to flow when the applied voltage is 1 volt

Power, P (Watts or HP)

- > A function of both voltage and amps:
 - ❖ Volts X Amps = Watts
- Wattage is a measure of work
- > 1000 watts = 1 KW = 1.34 HP, or
- \triangleright 1 HP = 746 watts = 0.746 KW

Temperature Conversion

- There are two scales used to report temperature;
- Fahrenheit (F) = English scale
- Celsius (C) = metric scale
- C = 5/9 (F 32) or
- C = 0.55 (F 32) or
- C = (F 32) 1.8
- $F = (9/5 \times C) + 32$ or
- $F = (1.8 \times C) + 32$

Temperature Scales			
Fahrenheit	Celsius	Kelvin	
212	100	373	Boiling point of water
194	90	363	at sea-le vel
176	80	353	
158	70	343	
140	60	333	
122	50	323	
104	40	313	
86	30	303	
68	20	293	Average room temperature
50	10	283	
32	0	273	Melting (freezing) point of
14	-10	263	ice (water) at
-4	-20	253	sea-level
-22	-30	243	
-40	-40	233	
-58	-50	223	
-76	-60	213	
-94	-70	203	2007 (100 07) 1
-112	-80	193	-89°C (-129°F) Lowest
-130	-90	183	recorded temperature.
-148	-100	173	Vostok, Antarctica July, 1983

Reference: Ahrens (1994)

Department of Atmospheric Sciences University of Illinois at Urbana-Champaign